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PARABOLIC AND ELLIPTIC WAVEGUIDES 

CONSIDERED BY CONFORMAL MAPPING 

by 

F. J. Tischer and H. Y. Yee 

Summary: The cross-section of an arbitrarily-shaped waveguide is transformed 

into a rectangle. The rectangular guide is filled with a nonuniform anisotropic 

medium with such a distribution that the propagation properties are the same. 

Feenberg's perturbation method and the Rayleigh-Ritz method can be used for 

determining the propagation characteristics and the field distribution of the 

rectangular guide. The propagation constants of parabolic and elliptic guides 

are determined by both methods and compared with the exact values. 



In t roduc t ion  

The  common rec tangular  and  c i rcu la r  waveguides  of ten  do  not  have  the  

des i red  proper t ies  which  can  be  obta ined  by  o ther  c ross -sec t ions .  The  r idged  

waveguide  i s  an  example  for  such  a  guide .  The  comput ion  of  the  proper t ies  and  

charac te r i s t ics  of  such  nonconvent iona l  waveguides  can  be  car r ied  ou t  by  conformal  
12  

mapping  as  descr ibed  by  Tischer  and  Yee  in  preceding  repor t s .  '  

If  the  c ross -sec t ion  of  an  arb i t ra r i ly  shaped  a i r  f i l l ed  waveguide  can  be  

t ransformed by  conformal  mapping  in to  a  rec tangle ,  the  ana lys i s  of  the  a rb i t ra r i ly  

shaped  gu ide  can  be  rep laced  by  tha t  of  a  rec tangular  gu ide  f i l l ed  wi th  a  

nonuni form and  an iso t rop ic  medium.  The  propaga t ion  proper t ies  of  the  la t te r  gu ide  

can  be  computed  by  methods  of  so lv ing  par t ia l  d i f fe ren t ia l  equa t ions  of  second  

order  wi th  var iab le  coef f ic ien ts .  Feenberg ' s  per turba t ion  method  was  descr ibed  

prev ious ly .  

In  cases  where  the  Feenberg  per tuba t ion  method  i s  s lowly  convergent  o r  

no t  convergent  a t  a l l ,  the  Rayle igh-Ri tz  method  may be  used  for  de te rmin ing  the  

charac te r i s t ics  of  the  gu ide .  

In  th i s  repor t  the  parabol ic  and  the  e l l ip t ic  gu ide  a re  cons idered  as  examples  

for  non-convent iona l ly  shaped  waveguides .  F i r s t ,  the  parabol ic  gu ide  wi th  a  vane  

i s  ana lyzed  and  i t s  charac te r i s t ics  computed  by  both  Feenberg ' s  and  Rayle igh-Ri tz  

methods .  The  resu l t s  a re  compared  wi th  the  known exac t  so lu t ions .  Next ,  the  

propaga t ion  cons tan ts  for  a  number  of  vane  modes  of  a  semi-e l l ip t ica l  gu ide  a re  

ca lcu la ted .  

Conformal  Mapping  

Two cross -sec t  ions  of  waveguides ,  one  a rb i t ra r i ly  shaped  and  one  rec tangular ,  

a re  assumed.  The  two cross -sec t  ions  form l ines  of  cons tan t  coord ina tes  in  two comph 

'  F .  J .  Tischer ,  Proc .  IEEE,  Vol .  51 ,  pp .  1050 ,  Ju ly  1963.  

2 
F.  J .  Tischer  and  H.  Y.  Yee ,  UARI Research  Repor t  No .  12 ,  Univers i ty  of  
Alabama Research  Ins t i tu te  (1964) .  
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planes  as  shown in  F ig .  I .  Poin ts  a long  the  c ross -sec t ions  and  boundar ies  a re  

in te r re la ted  by  a  complex  func t ion  

R =  p  +  jq  =  f  (Z) ,  

where  R =  p  +  jq  i s  the  p lane  wi th  the  a i r  f i l l ed  c ross -sec t ion ,  and  Z  =  x  +  jy  i s  

the  p lane  wi th  non-uni formly  f i l l ed  c ross -sec t ion .  

The  or ig ina l  a i r - f i l l ed  waveguide  i s  bounded  by  a  per fec t  conductor .  The  

rec tangular  equiva len t  gu ide  which  has  per fec t ly  conduct ing  wal l s  i s  f i l l ed  by  a  

non-uni form an iso t rop ic  medium as  shown in  re fe rence  2 .  The  proper t ies  of  the  

medium are  descr ibed  by  a  tensor  permi t t iv i ty  and  permeabi l i ty  as  fo l lows:  

e  =  e  
1  0  
0  1  
0  0  

0  

h 2  (x ,y)  
M =  H.  

1  0  
0  1 
0  0  l i 2 (x ,y)  

The  wave  equa t ion  for  the  rec tangular  gu ide  i s  g iven  by  

A y + k 2 h 2  (x ,y)  = 0  

jwt  

0 )  

for  t ime  vary ing  f ie lds  (e 1  ) ,  where  A i s  the  two-d imens iona l  Laplac ian  opera tor .  

The  propaga t ion  cons tan t  k  i s  g iven  by  

k 2  = k 2  -k  2  ,  
o  z  

i 2  2  k  =  w p  e  ,  
o  o  o  

I 2  / 2 w >  2  
k Z = V • 

The quant i ty  k^  i s  the  longi tud ina l  p ropaga t ion  cons tan t  and  Xg i s  the  gu ide  wave

length .  The  sca le  fac tor  h  o f  the  conformal  mapping  i s  g iven  by  

h  (x ,y)  =  f '  (z )  .  



(b)  

F ig .  I  -  Cross-sec t ions  o f  waveguides  in  cor responding  amplex  p lanes ,  (a )  
Arb i t ra ry  shape  in  the  R-p lane .  (b)  The  cor responding  rec tangular  
c ross -sec t ion  in  the  Z-p lane .  
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The function y stands for the hypothetical components of the electrical and 

magnetic field intensities. For TE wave modes y-= H , for TM wave modes 

= E^. The scalare function y is subject to the boundary conditions: 

3^(0,y) = y (a,y) = y (x,0) = y^(x,b) = 0 (2a) 

for TM modes. The corresponding conditions for TE modes are 

^ ̂(°/y)= ^xV>,y)=|^(x,°)= /^(x,b)= 0 . (2b) 

The next step consists in finding solutions of the wave equation I Eq. (1)1 taking 

into account the boundary conditions I Eqs. (2) 1 . 

The Feenberg Perturbation Method 

Except for four well known cases, Eq. (1) is nonseparable and no exact 

solutions for arbitrary boundaries are known. Therefore, approximate techniques 

must be used. Two methods of solving the wave equation by which the cut off 

frequencies, the propagation constants, and the fields distributions can be computed 
2 3 

are described. They are Feenberg's perturbation method ' and Rayleigh-Ritz 

method. 

Feenberg's method requires an expansion of the scalar function ys in terms 

of a complete set of orthonormaI functions / i.e. set 

\ \ - <3> 

where 6 satisfies the boundary conditions as does, 
q 

ff 6 <f> dS = 5 , JJ s Y r  q rq 

3 P. M. Morse and H. Feshbach, Methods of Theoretical Physics, (McGraw-Hill 
Book Company, Inc., New York, 1951) pp. 1010. 
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6  =  { i  : ? r =  i  •  
rq U it r = q. 

The summation is carried out over all possible values of q, the integration is 

taken over the cross-section of the guide in the Z plane. Since is continuous 

over the region, substituting Eq. (3) into Eq. (1) and some manipulation yields 

I (k2B - L 2 8 ) A = 0, (4) 
q rq q rq q 

where 
Ad) + L <p = 0, (5) 

q q q 

B = / f (b h2 (p dS , 
rq J Js rq 

and L is a constant. For a two dimensional problem, the subscript q denotes the 
q 

general indices 

m, n = 0,1,2,3, 

If p indicates a specific pair of m, n for TE or TM mode, Eq. (4) can be solved 
2 2 

for k by Feenberg's iterative approximate method as follows: 

First order: 

2 ( l )  2 
(k ) = L / B , P P PP 

Second order: 

(k 2) (2) = L 2 / { B + I B B / IL ] } (6) P p PP q/^p pq qp _q - Bqq , 

(kp271} 
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higher order approximations and the expressions for the expansion coefficients 

A can be found in reference 2 . A suitable set of orthonormal functions which 

are solutions of Eq. (5) and satisfy the pertinent boundary conditions for TE modes 

is 

<t> ^ = J emen /ab cos (m11*/0) cos (rmy/b), (7a) 

where e = 1, if m,n = 0, and e =2 if m,n / 0. The corresponding set m,n m,n r » 

of functions for TM modes is 

= J 4/ab sin (miry/b). (7b) 

2 
The constant is given by 

L ^ = (rrflr/a)^ + (rnr/b)^ 
q mn \ / / 

(8) 

The approximate eigenfunction 1/^ may be obtained from Eq. (3) in which the 

expansion coefficients A can be calculated by substituting the approximate value 
2 ^ 

of k as shown in reference 2. 
P 

In some cases, the successive approximation of Eq. (6) is slowly convergent or 

not convergent at all. Under those conditions, other methods have to be applied. 

The Rayleigh-Ritz Method 

The difficulties resulting from non-convergence can be avoided by the Rayleigh-
4 5 

Ritz method. ' The application of this method to the present problem will be 

described next. 

H. Sagan, Boundary and Eigenvalue Problems in Mathematical Physics (John Wiley 
and Son, Inc., New York, 1961) Chapter 3 

R. Collin, Field Theory of Guided Waves (McGraw-Hill Book Company, Inc., 
New York, I960) Chapter 6 
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I t  can  be  shown tha t  

f f  y ^ A V d S  

k =  "  ~ 2  2 W 
S f X  dS ,  s  

where  the  e igenvalue  k  i s  a  s ta t ionary  quant i ty .  I t  i s  a  minimum i f  the  cor responding  

e igenfunc t ion  ^  is  a  so lu t ion  of  Eq .  (1)  and  subjec t  to  the  boundary  condi t ions  

as  s ta ted  in  Eqs .  (2 ) .  

I f  the  e igenfunc t ion  ^y  i s  approximated  by  y r  ,  then  the  cor responding  

approximate  e igenvalue  

ff <£r A fir dS 
x  a - — 2 < 1 0 > 

/ / s  h Z  r  dS 

where  y / -  sa t i s f ies  the  same boundary  condi t ions  as  i jy  does .  The  func t ion  

\ f /~  can  be  wr i t ten  as  a  f in i te  se r ies  

_  Q 
yy = I A <s> 
Y  q q  'q  ( I I )  

The  func t ion  <p^ i s  g iven  by  Eqs .  (7 ) ,  where  the  subscr ip t  q  denotes  a  pa i r  of  ind ices  

m,n .  The  s ing le  sum then  ac tua l ly  represen ts  a  f in i te  double  sum 

Q M N 
1 = 1  Z  
q  m n  

2 
with  M,  N be ing  in tegers .  Under  th i s  condi t ion ,  X >  k  .  

Since  the  quant i ty  X of  Eq .  (10)  i s  s ta t ionary ,  the  sca la r  func t ion  \ j s  of  

Eq .  (10)  has  to  be  ad jus ted  such  tha t  the  quot ion  on  the  r igh t  hand  s ide  becomes  a  

minimum.  By def in i t ion  [  Eq .  (11)1 ,  the  func t ion  ^  has  to  be  ad jus ted  by  vary ing  

the  coef f ic ien t  A ' s  on ly .  I t  fo l lows  
q  

3X 
— =  0 ,  for  r  equa l  to  a l l  poss ib le  va lues  of  q  .  
r  
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Substituting Eq. (11) into Eq. (10) and taking the partial differential with respect 

to yields 

Q 2 
I (L 8 - XB ) A = 0 (12) 
q q rq rq q > 

where the constant is defined by Eq. (8). Note that Eq. (12) is similar to Eq. (4) 

except the summation is summing over a finite number of terms instead of an infinite. 

The consequence is that X remains an approximation. Since r can be taking on 

any pair of indices in q, Eq. (12) is a system of T linear homogeneous equations, 

where T is the total number of terms in Eq. (1 1). In order to have a nontrivial 

solution for the A 's, the determinent formed from the coefficients within the 
q 

parentheses vanishes. Therefore, 

det. L 2 6 - B X 
q rq rq 

= 0 (13) 

Eq. (13) is an algebric equation for X of order T. Since the matrix form of the 

determinant is real and symmetric, it always can be solved for T real roots of X by 

Newton's Method*"1 or by an electronic computer. If X.^ denotes the i^ root 

calculated by a T x T determinant of the form as Eq. (13) in which all the lower order 

elements are included, and all roots are distinct, i.e. ^ ^ ^3 

it can be shown that 

X.O > X.(i+,) > X.(i+2) > > X.(T)> > k.2 (14) 

2 th 
for all i, where k. is the i propagation constant of the waveguide. Since the 

function can be expressed in terms of the complete infinite set of orthonormal 

functions { <f>^ } as shown in Eq. (3), it follows that 

^ G. B. Thomas, Jr., Calculus and Analytic Geometry, (Addison-Wesley Publishing 
Company, Inc., 3rd ed. I960) pp. 451 
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lim X.<T> = k.2 

1 I 
T -*• oo 

2 
The accuracy of the eigenvalue k. obtained by this method can be estimated by 

observing the convergence of X^ >/X.^. The expansion coefficients A can be 
' q 

obtained by substituting X. into Eq. (12) and solving for in terms of A.. 

Parabolic Guide With Axial Vane 

As an example of the application of the theory discussed previously, the 

parabolic guide with axial vane is considered in this section. The cross-section of 

this guide in the R-plane may be transformed into a rectangle in the Z-plane (see 

Fig. 2) by means of the transformation function 

R = Z2/a. 

The scale factor may be obtained by taking the magnitude of the first differentiation 

of R with respect to Z as follows: 

U 2  A  ,  2  2 V /  2  h = 4 (x + y )/a . 

It is possible to translate the y-axis in such a manner that it is collinear with the 

boundary of the rectangle in the Z-plane as shown in Fig. I (b). However, for 

simplicity, instead of doing this, it can be shown that for a scale factor which is 

symmetric with respect to the y-axis, the eigenfunction can be expanded as follows: 

Odd TM modes: 

Z n n J 2/ab sin (mrrx/a) sin (rnry/b), 

Even TE modes: 

t" m, n Am,„ K V2ab <» W<0 co. <n.yA). 
where the boundaries of the rectangle are given by y = 0, y = b, x = -a, and x = a. 
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Fig .  2  -  (a)  Corresponding  c ross -sec t ions  Cross -sec t ion  of  a  parabol ic  waveguide  
wi th  ax ia l  vr ine  in  the  R-p lane .  (b)  Rec tangular  c ross -sec t ion  in  the  
Z-p lane .  



1 1  

Under  th i s  assumpt ion ,  a l l  in tegra t ion  i s  s t i l l  t aken  over  the  c ross -sec t ion  of  the  

rec tangular  gu ide ,  and  

L 2  = (mn/a) 2  + (n i r /b ) 2 .  
mn 

For  the  d iscussed  case ,  a  =  b .  The  even  TM or  the  odd  TE modes  a re  not  cons idered  

s ince  no  exac t  so lu t ions  a re  ava i lab le  for  compar i son .  

Cons ider  the  oddTM mode  f i r s t ,  the  quant i ty  B in  bo th  Eqs .  (6)  and  (13)  i s  

g iven  by  

B = (8 /3) -  I  (2 /p 2 )  +  (2 /q 2 )  1 / T T 2 ,  
pqpq 

-2 -2 -2 

B =  B = ( - l ) P + r 8u I  (q-s )  -  (q+s)  ]  s  /  p 
qpsp  pqps  

Severa l  approximate  e igenvalues  of  ka  ca lcu la ted  by  the  Feenberg  and  Rayle igh-Ri tz  

method  for  the  odd  TM.  ,  mode  a re  tabula ted  in  Table  1  and  Table  11 ,  where  the  
' r ' 

subscr ip t  1 ,1  ind ica tes  on ly  one  var ia t ion  in  bo th  x  and  y  d i rec t ion .  

Table  1  -  Propagat ion  cons tan ts  computed  by  Feenberg ' s  method  
and  the  exac t  va lue  

™ , , 1  

(odd)  

<M ( I )  a
 

1 

Exac t 7  ™ , , 1  

(odd)  2 .955  2 .762  2 .788  2 .78  

Table  11  -  Propagat ion  cons tan ts  computed  by  Rayle igh-Ri tz  method  and  
the  exac t  va lue  

™1 , 1  V xW a  V A^a  Exact 7  

(odd)  2 .955  2 .843  2 .795  2 .780911 2 .780895 2 .78  

The  exac t  va lues  i s  g iven  by  (ka)  =  0  for  odd  TM^ modes ,  J  ^4  (ka)  =  0  

for  even  TE modes .  The  roots  were  found  in  E .  Jahnke  and  F .  Emde,  Tables  of  
mm f h  

Funct ions  (Dover  Publ ica t ion ,  4  ed i t ion ,  1945)  
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For  the  odd TMj j mode,  the  Feenberg 's  method gives  rapidly  convergent  

answer  comparable  to  the  exact  va lue .  Using only  the  three  lowest  order  terms 

in  Eq.  (12) ,  the  er ror  of  Rayle igh-Ri tz  method i s  approximate ly  0 .5%.  The values  

of  f i t®* and ^  a were ca lcula ted  by a  7094 computor  and show that  

ka  =  2 .780 is  correc t  to  four  d ig i ts .  

Consider ing the  case  of  even TE modes ,  the  quant i ty  B i s  g iven by 

B =  8 /3 ,  
oooo 

B =  B =  B =  B =  ( -1) P  8 J2/(P«) 2 ,  p /  0 
pooo opoo oopo ooop r  r  

B pqpq =  ( 8 / 3 )  +  2 1 1  " 2  ( P ~ 2 +  ^ '  P'^  *  °  

B n n n n  = = (8/3)  +  2/ (p i r ) 2 ,  p  /  0 
popo opop 

B =  B =  ( - l )^""  8  [  (p- r f 2  + (p+r) ' 2 ]  K - 2  p /  r  
pqrq qpqr  

The f i rs t  three  order  of  approximat ions  for  the  propagat ion constant  k  a  of  TE ^ ^  

mode ca lcula ted  by the  Feenberg  method are  tabula ted  wi th  the  exact  value  in  

Table  I I I .  The s low convergence  resul ts  f rom the  fac t  tha t  the  maximum of  the  

longi tudinal  magnet ic  f ie ld  of  the  even TE modes  of  the  a i r  f i l led  rec tangular  

guide  is  located  a t  the  same point  where  the  permit t iv i ty  and permeabi l i ty  of  the  

non-uniformly f i l led  rec tangular  guide  is  zero .  For  the  same reason the  propagat ion 

constants  of  the  h igher  order  even modes ,  l ike  2 '  ^3  g e tc . ,  computed 

by th is  method are  not  convergent  a t  a l l .  Using the  7094 computer  to  solve  the  

36 x  36 secular  determinant  of  the  Rayle igh-Ri tz  method,  the  approximate  value  of  

ka  for  even TE^ ^ mode is  3 .4913.  This  i s  an  excel lent  solut ion in  compar ison 
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with  the  exac t  va lue .  

Table  111  -  Propaga t ion  cons tan ts  computed  by  Feenberg ' s  
method  and  the  exac t  va lue  

T E 1,1  

(even)  

M W  

' 

Q
 2

 
l I 

<M ( J )  
c 7 
Exact  

T E 1,1  

(even)  2 .536  3 .685  3 .185  3 .49  

Semi-El l ip t ic  Waveguide  

As  another  example  of  the  Feenberg ' s  method ,  the  semi-e l l ip t ic  waveguide  

wi l l  be  inves t iga ted  as  fo l lows:  

The  conformal  t ransformat ion  i s  

R =  a  cos  Z  

and  t ransforms  the  c ross -sec t ion  of  a  semi-e l l ip t ic  waveguide  in  the  R-p lane  in to  

a  rec tangle  in  the  Z-p lane  as  shown in  F ig .  3 .  The  boundar ies  of  the  rec tangle  

a re  a t  y  =  0,  y =  b ,  x  =  0,  and  x  =  i t .  The  sca le  fac tor  h  i s  g iven  by  

U 2  2  /  i 2  2  x h  =  a  (cosh  y  -  cos  x ) .  

The  quant i ty  B i s  g iven  by  

TM:  
Sinh  2b  .2 ,  -2  

B pqpq =  TS b ( S ' n h  2 ^ t 4 b  +  ( 2 q 1 t )  '  "  +  C/ 4 ) 8  
P/ 1  

" "/<> <Vr,2 * V4,,2>< 

B pqps  =  q + S  b ( s i n h  2 b J  ^  4 8  +  ( c l " s )  1 1  '  -  14b +  (q+s)  i r  ]  }  

TE:  

B =  s inh  2b /4b ,  
oooo  

B =  (s inh  2b /4b)  -  (1 /4)  6  
popo p ,  
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B = I (1/4b) + b 14b2 + (2qir)2! ^ sinh 2b q ^ 0 
pqpq « / 

B = - -4- (6 0 + 5 . i •?)' 
pqrq 4 p+r,2 |p-r| , 2 

B = (-l)q+r b sinh 2b 11 4b2+ (q+s)2ir2 1 _1 + I 4b2 + (q-s)2ir2| _1 ) , q / s 
pqrq 

/2~ 
B = B = - — 6 0 

pqoq oqpq 4 p,2 , 

B = B = (-l)q il b sinh 2b/(4b2 + q2n2), 
pqpo popq 

The propagation constants of TMj and TE^Q modes are computed by the 

Feenberg method up to the 3rd order approximation. They are tabulated in Table IV, 

and compared with the exact values. 

Table IV - Propagation constants computed by Feenberg's 
Method with exact values 

fro)'" (ka)(2) M<3> 0 
Exact 

™11 3.182 3.073 3.082 3 . 0  

™21 4.104 3.839 3.885 / 

TE,0 
1.234 1.203 1.204 1 . 2  

Note that the convergence is very good for these three cases, but no convergence 

is obtained for the TE^ ^ mode. This can be explained by the same reason as in the 

previous example. 

o 
Calculated from curves given by L. J. Chu, J. Appl. Phys. vol 9, pp. 583, 

September 1938 
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Discuss ion  

The  c ross - sec t ion  o f  an  a rb i t r a r i ly - shaped  wavegu ide  i s  t r ans fo rmed  in to  

a  r ec tang le .  The  equ iva len t  r ec tangu la r  gu ide  i s  t hen  f i l l ed  wi th  a  nonun i fo rm,  

an i so t rop ic  med ium.  The  Feenberg  pe r tu rba t ion  method  and  the  Ray le igh-Ri tz  

me thod  can  be  used  fo r  de te rmin ing  the  p ropaga t ion  cha rac te r i s t i c s  and  the  f i e ld  

componen t s  d i s t r ibu t ion .  The  l a t t e r  me thod  i s  p re fe rab le  in  cases  where  the  

convergence  o f  the  fo rmer  me thod  i s  no t  sa t i s fac to ry .  For  h igher -o rde r  modes ,  

the  Feenberg ' s  me thod  i s  s imple r  i f  t he  convergence  i s  s a t i s fac to ry .  The  computed  

examples  show tha t  good  approx imat ion  can  be  ach ieved  wi th  smal l  number  o f  

t e rms .  

I t  shou ld  be  men t ioned  tha t  the  a rb i t r a ry  c ross - sec t ion  a l so  can  be  t r ans 

fo rmed  in to  a  c i r c l e .  The  bas ic  equa t ions  remain  the  same  excep t  the  expans ion  

o f  the  e igenfunc t ion  y  in  t e rms  o f  cy l indr i ca l  func t ions .  The  expans ion  i s  

V"  =  I  I  A J  (o (  r )  cos  m ( f  ,  
1  m n  mn m mn '  

where  TM:  J  ( < v  r  )=  0 ;  TE:  J  '  (DC r  )  =  0 ,  and  r  i s  t he  rad ius  o f  
m w mn o  m mn o  o  

the  cy l inde r i ca l  conduc t ing  wa l l .  
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