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SUMMARY

The study of electromagnetic wave scattering and propagation characteristics
in inhomogeneous media has recently attracted increased attention in basic and
applied science, particularly where applied to plasma sheaths.

In this paper a solution to several classes of plasma problems has been
found by applying a technique similar to that used in nonrelativistic quantum
mechanics when studying particle scattering by partial waves. In both types of
problems it is desired to find out how a varying index of refraction affects the
propagation of incident waves. The solutions are represented as sums or integrals
of Fourier components which represent the partial waves. When the inhomogeneous
medium is removed, the partial waves are known for many cases of interest; when
the spatially-varying medium is reintroduced, each of these partial waves will
change. It is convenient to define the partial wave phase shifts as the natural
logarithm of the ratio of the new to the old partial waves. These phase shifts will
in general be complex numbers.

The general mathematics of this approach is similar for both the quantum and
electromagnetic problems. A scalar equation is under consideration in both
approaches since the electromagnetic vector wave equation has been reduced to a
scalar equation by restricting the form of the conducting surface and the kind of
antenna allowed. The principal differences between the two types of problems
are contained in the boundary conditions imposed in each case. In addition to
these differences, it must be remembered that in the quantum problem the incident
wave is generated outside the varying region. In the electromagnetic problem, one
considers restriction from an antenna on a missile surface, the scattering properties
of the sheath, and the effect of the sheath on reception from an external source.

By using the approach described above, an analytic solution to several
problems of interest is obtained in the form of an infinite series where successive
terms are defined by an integral recursion relation. It should be mentioned that
no restrictions are necessary with regard to near- and far-fields and with regard

to the thickness of the medium layer.
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CHAPTER |

INTRODUCTION

The solution of the wave equation with a continually-varying wave
number has until recently been of primary interest in the field of quantum
mechanics, as applied to the Schroedinger equation with a varying potential.
Current interest in the wave equation has arisen also in the propagation of
electromagnetic waves in plasma media on conducting surfaces where the
plasma permittivity can be treated as a continuous (complex) function. A
common approach to this problem has been to approximate the continuous
variation by a constant average of €, and to obtain a solution by applying
the usual electromagnetic boundary conditions between regions with different
average values. However, this approximation may cause the solution to differ
markedly from the physically correct solution.

A more recent approach has been to formulate a power series solution
or a WKB-like solution for the ﬁelds.3 The power series approach requires
the use of large computers, and the value of an analytic solution is lost. The

WKB solution is not valid for a plasma thickness of the same order of magnitude

The analysis with homogeneous sheaths in References 10, 12, 14-16, in the
Annotated Bibliography may be compared with the analysis using inhomogen-
eous sheaths in References 1, 2, 5, 11, 20, 22, 23. The difference is also
pointed out explicitly in Chapter VI of this paper.

The power series technique has been applied in References 2, 11, 22, and
29 in the Annotated Bibliography.

3 The WKB approach is utilized in References 11 and 23 in the Annotated
Bibliography.
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as the wavelength of the source, and this is the situation that prevails in
many reentry problems.

In this paper, a different technique for handling the problem has
been derived for several coordinate symmetries. In the radiation problems
considered a constant-phase strip antenna is present on the conducting surface,
while in the scattering and transmission problems a polarized wave is incident
from infinity. By appropriate utilization of these restrictions, the vector
wave equation can be reduced to a linear, second order partial differential
equation that is separable. The boundary conditions on the electromagnetic
fields at the conducting surface are then applied to this equation in such a
way that one integration may be performed. A linear, first order differential
equation is obtained and this can be integrated directly without further
restriction.

The technique applied here is similar to that used in nonrelativistic
quantum mechanics when studying particle scattering by partial woves;1 in
both problems we want to find out how a varying index of refraction affects
the propagation of an incident wave. The solutions to both problems can be
represented as a sum or integral of Fourier components, and to these compo-
nents the name partial waves may be given.  When the inhomogeneous
region is removed the partial waves are completely known; when the varying
region is replaced it is convenient to express the new set of Fourier components
in terms of the old, and this is done by defining the partial wave phase shifts
in terms of the ratio of the new to the old components. The general treat-
ment of this approach is similar for both the quantum and electromagnetic
problems.

However, the problems are quite different when viewed from other
aspects. Perfectly conducting boundaries will always exist in the electro-

magnetic problem, so that both the regular and irregular solutions must be

The quantum mechanical partial wave technique is discussed thoroughly
in References 4 and 8 in the Annotated Bibliography .
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retained. [n the quantum problem, this would correspond to allowing an
infinite potential to exist. Since the method of solution in this paper depends
on the presence of the boundary, the mathematical techniques employed are
quite different from those of the quantum case. There is also a difference in
the basic wave equations to be solved; the quantum problem involves a
scalar wave equation in three dimensions while in the electromagnetic case
a vector wave equation must be solved and both two- and three-dimensional
models are considered. In addition to these differences, it must be remem-=
bered that in the quantum problem the incident wave is generated outside
the varying region. In the first case, radiation from an antenna on the
missile surface is considered, while in the second case we are concerned
either with the scattering properties of the sheath or with the effect of the
sheath on reception from an external source.

The solution is formulated in three steps. First, we are given a
particular problem we wish to solve, described by a differential equation and
certain boundary conditions. This problem will in general be very difficult
to solve, so we must approach it indirectly.

In the second step, we generate an entirely new, workable problem
designed to represent a first-order approximation to the actual problem. In
order to generate this approximate problem, we first define an average valve

of the permittivity such that

Re B o viue of 3] u | Emaximum value of minimum value of|
2 |theRe € across + Re € across the ‘

[ the sheath sheath J

{maximum value of minimum valve of]

Im | average value of €] = |the Im € across + Im € across the |
|the sheath sheath J

This definition is chosen to minimize the maximum difference between the
actual value of ¢ and the approximate value across the sheath. The new
workable problem is generated by replacing the region of varying € in the

actual problem by a region with a constant, average value of €, The
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4
approximate fields can then be found by applying the known electromagnetic
boundary conditions to the known solutions.

In the third part of the solution, the fields for the actual problem are
described in terms of those for the approximate, solvable problem. The
difference between these solutions is expressed as an (infinite) set of
differences between the Fourier components of the fields themselves. To
these Fourier components the name partial waves has been designated. The
differences between the actual and approximate partial waves is then expressed
by the (infinite) set of partial wave phase shifts. This nomenclature is in
anology with that used in quantum=-mechanical scattering problems.

Using the mathematical approach discussed above, an analytic
solution is obtained in the form of an infinite series where successive terms
are defined by an integral recursion relation. For many cases of interest this
series will converge rapidly.

Three two-dimensional models have been analyzed. The first two are
a conducting cylinder or wedge clad in an inhomogeneous medium either in
the presence of an electric or magnetic strip source or an incident polarized
wave from infinity. The third is a conducting plane clad in a linearly-inhomo-
geneous medium with periodic electric or magnetic strip sources or an
appropriate incident wave. The two three-dimensional models considered are
a conducting sphere or cone in a varying medium in the presence of a
circumferential strip antenna or an incident polarized wave from infinity.
Elliptical and parabolic coordinate systems cannot be utilized since the
metrical coei’ficients5 in these cases are functions of more than one coordinate
variable and the equations are not separable.

The iterative method of solution is derived in general form in

Chapter |l, and the mathematical similarities and differences between the

” J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, Inc.,

1941, Chapter |.
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quantum and electromagnetic problems are explicitly demonstrated. Once
the general method of solution has been developed, it is necessary to show
that the results are applicable to the plasma problem.

The problems with planar, cylindrical, and spherical conducting
surfaces are considered in Chapters |ll and |V. In the former the vector
wave equations are reduced to linear second order differential equations
for each case, and in the latter it is shown that the general method can be
applied to obtain a solution. The wedge and cone problems have been placed
separately in Chapter V since they are found to be only partially solvable.

Once the applicability of the method has been established, it is
desirable to work out an example to illustrate the usefulness and accuracy
of the results. This is done for a simple problem in Chapter VI, where the
limitations on the WKB and step function solutions are presented.

The appendices are intended to provide the mathematical and

physical references that are necessary in order to utilize the results of this

work.




CHAPTER 11

METHOD OF SOLUTION

A. General Development

In order to study electromagnetic wave propagation in inhomogeneous
media, one must obtain solutions differential equations of the form
&F, dF
o 4% D0 F 6@ 1D 69IRT =0 (o
Jf § =% di B e n (2-1)

” th ; 6 . :
where FL is the n  Fourier component of an electric field E or magnetic

field H, ¢ is one of the coordinate variables in the problem of interest,
and . ( &) is the relative permittivity in the region over which equation

(2-1) must hold:

[Resfbv\ I] " (2_2)

When € (¢) is set equal to a constant value S the medium is homogeneous,
r &

and in many cases of interest the solutions T:-n are known:
2= % =1
=%
d—-‘—Fn + Xl[_“pi)éajd——cj\ '+xz['\, ?,64-]‘:'\ - O‘
dgz ¥

If . is chosen to be average value of . (¢) over the range ¢,

It will be assumed for simplicity that n takes on only discrete values. Ifa
summation is involved, the radiation far fields may be found by simply letting
oo . |fan integral is involved, however, the integration must first be

performed before letting p?c0  since 9‘:;:9 S‘Fmdf ¥* -S- [;;':Fte)]d?,




then ?r: is an approximation to the field Fln. Although many important
features of the actual problem may not appear in the approximate one, it
represents a useful starting point. The following analysis utilizes the
approximate field ?rlx to obtain a solution for the actual field Fln

In the scattering problems, a perfectly-conducting surface is assumed
to exist at the inner boundary ; = Eie and in the radiation problems, a
specified strip antenna on an otherwise perfectly-conducting surface is
assumed fo exist at this boundary. We will assume that the same boundary
conditions apply to both the actual and approximate solurions7, and one of
the following cases will always hold:

0 (scattering problem)

Cael EN$)= (%) = (2-4)

known function (radiation problem)

. 0 (scattering problem)
dF,

il
Case ll == | = k; 4Fa - (2-5)
It g, '

known function (radiation problem)

In all the radiation problems to be treated, free space exists every-

where outside Region |:

€lf)=1 for all §2 e [Regwm L], (2-¢)

Y th :
Only outgoing waves will exist in Region |, so that the n' Fourier
component of the exact field will be equal to a complex number multiplied
times the nth component of the approximate field. This number will be

written:
2
e " (4 cmp\ex) ) (2-7)

This approximation has also been noted in Reference 29 in the Annotated
Bibliography.
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The Fourier components of the field will be called the partial waves, and 6n
the nth partial wave phase shift,

In scattering problems, one or more sources will exist outside Region |
and these sources will be assumed distant enought from Ee 5© that reflections
off of them may be neglected.

€ (V)= 1 $2 fe (2-8)

(except for sources) [ Region I1 ]

Both incoming and outgoing waves will now exist in Region |I. The components
of the incoming waves will be the same in both the exact and approximate
problems, while the outgoing wave components will differ by a multiplied
complex constant, as before. This constant will be of the form (2-7), where
Sn is again the nth partial wave phase shift.
The boundary conditions joining Regions | and Il will depend on the
continuity of the tangential E and H fields:
e R 4R GAETR)
df d€

(2-9)

dR o dB e
F;\I (SC): E\n(?e) 22 (‘ie\) = ;‘-% (fe) Ke .,

For future reference, we note that for the radiation problems, if ke = Ee ¢

(2-10)

-

L_ I Jo.
. v

fe




In = incoming wave

On= outgoing wave |

The first step toward obtaining a solution is to put equations (2-1)
and (2-3) into the standard forms

d%Yn K
> + ITn %, eMNly,=0 (2-13)

ﬁr\ + I [V\,‘E) éé\]gw -
de>

This can be accomplished by choosin98

| S‘E
1"'/1 » XI Eh’ t,éy-L't)]dt

\én= Fn e

T, 106 69)= X, [n, s, 6(5)) 'z'", xll Ln§,&(s))
-1 T4 5, 65 i

P
"I_* A J; thh;t/ é.‘)]dt

5»\: e

(2-17)

- \ [ -
I %,6)= Y.Ins )3, X [n¥§ & ] (2-18)
-L £ X Th, §,65]
where @ is an arbitrary constant that must be the same in both cases so

that Y, = ;n when Fn = Fn and € (¢) § For simplicity, define

IIn % (%)= ¢ (2-19)

; See Annotated Bibliography, Reference 27.




I[hl %) €)= ¢O

and the equations to be solved become

A
%%2 . “P‘JV\

Clz—n

Je - “‘}‘o . (2-22)

Now multiply (2-21) by ;n from the left, (2-22) by Y from the left and
substract the resulting equations:

...n J_:ﬂ!\ 3 d -—A i " .
Y der %“a—?z (¢o ¢)V“(7K

v 2 1C du. - -
d‘((\d"z‘% 5“%“)

Integrating between arbitrary limits A and B,
B 3
- d — o
(B b = PR
d¢ 4% /a A

Substituting from (2-15) and (2-17)

B
T —1 "R g o
Gm[ﬁ‘léj—" i 3 Fnrcif. "%E\IF"‘L(XID\’ £, ea]—-X, L’,?,h(?)J)J}

d€ d% )

(2-25)

B
- f (9~ $) F TR 6(5) df
A

where

| 1)dt
) +' i}(xn’:";ff & + K Iw ¢ ¢ (%)) .
G(g) =e




B. Derivation of the Recursion Integral

B.1 Scattering

For the scattering case, choose
A= ¢
= 2 | ((1 bitr
B= ¢ Y cmq) 2-26)
X ]:Vl i(.) é-’j X [v‘ %L/ 6’(? )j ‘GW PQ’)?,H Ciuafm (2‘5)0nlj
'Xl Eh, ?c, éd]’ X, CV\, fe, €| ,e)j ‘Fbr both cuses
and from (2-4) and (2-5) the left-hand side of (2-25) will always vanish at

£y

>

1dF, i =3
Fa —- F,, .E" - L BIE (X, In§ &)~ X [u € &%) ] /
[ (; Tli 2z ( 189 % e ke ) E (2_27)

&(s") f R F. G(%)dE.

Since only Fln and an /d are unknown functions, this is a linear first
3

order differential equation in Fln

dRE oy
d¢ {l (X105, &) - X, T %, &(9)]) - ?-‘— == fﬁt

[ @&-9)F.*F *6(s)ds' = 0.

(for ¢ # E; when IEL represents an E field)

9 -

( ) can only be zero at .. If it were zero at any other valve ¢ = ¢ .
a pepfecfly-conductmg surface could be placed at £ without altering the
fields. In this case, no waves would propagate into or out of the region
., < e < wE and this possibly can be avoided by requiring . (¢) to be
finite everywhere




The solution to any equation in the form

d
Q—i +ix)y + Buy=0

== S"((X)dx [ .YO(O‘) dy
- i fﬁ(*?e dJx ——c]

so that (2-24) may be directly integrated:

€
_de [(;ﬁ ~§) FEEEGISNS" +
Fl)P () 6(s') ‘¢

£
+'. . (XTwt €] — X, T4 €91)dt
Plg)= €

y_LJF
Fr Jg o };1

S'L chxdg o Q-:.,I)-t,

The boundary condition at & has already been applied, so now we must use

the known boundary conditions at B To evaluate C, we first find from (2-27)

- ze u |
= (:(F;\I)LC){E)RQJ\ j((fg»@ F;IF" 6(59ds'

g‘ d% 1ETe 0 en (239




and from (2-11),
fe |

(™ L % « I
P(Se) _jh_n) ‘)Gtﬁl)J @ -@)R" B 68 $

563 f (o-9) REE* G(s)ds"

where

5(50" Kca I:(ie) szic) G (‘;e)(i_]:n o

Substituting (2-34) into (2-31), we obtain

- = (9‘ B 6 (5Hs"
- "P([fze) f(Fn‘P')a')j R

(2-36)

E g(guﬁ §|‘

(scattering)

for the scattering problem.

B.2 Radiation
For the radiation problem, let
A= & (arb‘rf:ranj)
B= Te
X, [n, %, &)= Xi\w, & ,ér(ii)-]
X, [ §e) €1= XD, Te 651




From equation (2-10) , the left-hand side of (2-25) will vanish at Eo®

FI‘JF* ‘°“Z‘+ Fa (XD 5 @1 XL"“*(‘W)}’

(2-38)

J (¢ ~¢) RERE6(sMS",

C-,ca)

Integrating as before in steps (2-28) to (2-31),

The boundary conditions at ¢ have already been applied, so the boundary
conditions at E; must now be utilized. To evaluate C, we note from (2-4)

and (2-5) that one of the following cases will always hold:

Case | EI(%)= EX (%)= known Rmctom.

T
CLFA = s S2a = Kuown Tvncdiom,
ds lg; Js (§

Case ||

Combining these results with (2-37) and (2-39), we obtain
o '((

K J'i o
Case | (= P(‘%J X g)ﬂ ()} ¢ ¢). " (2-40)

_Ze

o R GlsHs"
P(%a)+j(F‘)iPs)a?)L,(¢ #) (2-41)

+ [RPL ?)w)érﬂ y@ ~§)RF Gl Hs"

Casell C=




Substituting into (2-39),

>
h o
g i L’(‘ j; ENG)

_[(2-42)

g@ RS

7c

Case |l FI F’\IP ?} §(¢ ¢ LFn (’(illysu

p\ﬂ ff‘) PPa)ics)

Fe -

- | =
g ‘Ig]_(_:nl ] ) — LE+ Qs
[ﬂ d%eﬁmﬂjg_ Y@ ¢) REAs esﬂf

(2-43)

C. The lterative Solution

The complete solutions to (2-1) are

l

r e
pieffrg )t — | _of (d )R GlTd5"
)| 769 Lﬁ‘)? ')al%‘)J v

Se
5 Ja — ) RFETgls)ds" =
= j@, ) ] et

(scattering)

-~

FIELe (cp -¢) R G(3Ms" |
Ta (g)[ﬂ?‘) J CI) P(? ?)L Jl

(2-42)

(radiation, Case |)




¥
l( di | ]
tmu.,m J NP 6l4) f ¢ -¢4) RERYGLe) ds

+ [FT [ - % C L - - it
LFa qu&)«g 1. e o) BEREQLes" (2-43)

(radiation, Case Il)

Now write F q in terms of an infinite series, and substitute into the
appropriate equation.

RS REPE) (144, 48, +.

(scattering)

= ﬁrﬁ(—(‘l(uzx“l\‘ s
Plg;) AR o
(2-45)

(radiation, Case |)

A B 40 E{i) (Ut Ay, + Byt o )
P%) (2-46)
(radiation, Case Il)

with the resulting equations

j(¢ I8 (144, +hpt.)ds"

r‘(e)

rSe
J (go- ‘f’)f'('%)(HA +4,,+..,)ds"

(2-47)

(scattering)




S 3e
r c ,
Ml tH t.., ¥ ——) %[(C?O’wr(g”)(l*lhﬁ A.L'*f--)d‘i“

(2-48)

(radiation, Case 1)
§ d € | ,\‘Ee
— J (lé)— PIN(S") (L4, +hy ... )dg"

g (81 ¢!
te

rig;) (L IF f .(¢°’¢) Pty + 4yt ) o 3"
‘(ﬁ}d§>g £

(2-49)

(radiation, Case |l)

where M ’;’) = (Enl) IP(%‘) (\Lf) . (2-50)

These equations can be satisfied by choosing

l— fe TR, g( ?e

‘ o d€ u) et ~p)n(s"ds"

A, = dE ~)MeNdst + L | (f-oried
" £ rlg) ch.(qs" $)rie) B30 L»(.

fe ol A% .
\A sl o3 A, €'+ | d~9)ris)R, ds"
s T )sgm iy, +B(fe>J§¢('¢ il

(2-51)

|

!

%

; N

L (scattering)




(¢., ) N(s)d g"

?e ,

(2-52)

(radiation, Case |)

g’ \i‘f { )'
_\GPNeHS 4+ () KC D'
; r(s" j(, e (P(s dF f ¢ ¢

o l

F 4%/

_g_) f ()T, 8"+ 7 / (o P

g r‘? de
Fr O

(2-53)

(radiation, Case 11)

The infinite series in each case is essentially a power series in (¢o -¢ ) and
the series will converge rapidly if (¢° - ¢) is small. It is for this case that
the solution will be most useful.

The phase shifts are given directly by the evaluation of the & atg .

If we keep only first order terms,

fe

A, ("se = B-(—:) J (¢ —) r(s')d§

(2-54)

(scattering)




e fe
8,09 -] 45| (g-gnisns
% /g
(2-55)
(radiation, Case |)
e ke
_S% ) (d-@)r (a4 2"

. Mg ¢

Ahl (?e) (oD

j(hﬁ -p)Ns")ds" (2-56)

(radiation, Case I1)

FL—)— Qan
£F 4%

n L




CHAPTER 111

DERIVATION OF THE BASIC DIFFERENTIAL EQUATIONS

In this chapter the basic propagation equations are derived for problems
with specific rectangular>cylindrical and spherical symmetries. The derivation
begins with Maxwells equations in vector form and leads in each case to a
linear, second order differential equation. The derivations are carried out
in detail so that the Chapter will be useful for general reference. The
rectangular case is considered first, and the appropriate model compatible
with the symmetry restrictions is shown in Figure 1. Then the cylindrical case
is considered for two different symmetries, illustrated in Figures 2 and 3.

In the last section, the spherical case is developed and the mode! for
this problem is shown in Figure 4,

Maxwell's curl equations for propagation in a medium with a constant
permeability p and a general, anisotropic, inhomogeneous pemittivity can
be written

Ko OXH (X, % x3%) = €(X %X 0% E (xxexit) + rlxxax3) E(xXxit)

Ko PXE (xiXaxyt) = =P 2 Alxvixst)

where E and H are functions of position and time, € and o are functions of
position, and the factor ko has been intorduced to make the coordinates
dimensionless. All distances will be measured in terms of ko= %: wVpeE, -
Assuming harmonic time dependence, the curl equations become

Ko VXH (¥, %X 3) = [1w &0k Y, X3) +T7(¥, %2 %X3)] E (%X, % 3)

= iw € (4 %X3)E (X ¥ax3)




K°ng (xl\‘>x3\ = —(w N "‘T (X XX ) (3-2)

where ¢’

has been defined to be complex. Hereafter the prime will be
dropped. We will now derive the vector wave equations, starting with
these two relations. Multiplying both sides of (3-1) by ¢! from the left,

we obtain

Taking the curl of both sides and substituting (3-2),

KEEDXE ' OxH = péw‘F (3-3)
which is the vector equation for H. Taking the curl of both sides of (3-2),
and substituting (3-1),

Ko RXPXE = péw™E, (3-4)
the vector equation for E. Utilizing the following vector identifies]
YXPA = GUXA +9¢ x A
VPR =P0-A +VU¢- K
where ¢ is any scalar function and A an arbitrary vector, we can complete

the derivation of the wave equations. Now note the two Maxwell divergence

equations

(3-5)

v-B=0
v-D

f (3-6)

0 J. Reitz and F. Milford, Foundations of Electromagnetic Theory, Addison-

Wesley, (1960), p 18.

11

See for instance Richmond, IEEE Transactions on Antennas and Propagation,
(May 1962), pp 300-305 (Appendix).
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Assume that the medium to be studied is electrically neutral,i.e., that
p =0, " Then (3-5) and (3-6), combined with the above vector relations,
can be expressed in the form

‘V-pﬁ = p%H =0 (3-7)

_— - - o —\ =
Vo &E. ® 60k ¢V 520, V-F 26V6E, pg

Now expand equations (3-3) and (3-4) for E and H to the form

— —‘ —— —
YV XVXH 4 €0 ¢ xva_é/éoH =0 (3-9a)

> - € TR
VXVXE; /6", E O (3_]00)

Introducing a new operator V+ V' H by the dei"inition]2
VXVxH = 9V.0 —-9.vH
the curl curl operators can be eliminated
VV-H—V.VH 4 ¢V&' xUxH=— € } =0
VV-E —v.wWE - § E =o0.
Substituting from (3-7) and (3-8)

V+VH— eT€ xOxH + € B=0

V-VE + V(6've-E) +§ E=o,

In rectangular coordinates only, we have
V. VH = 9%H , O.VE =V,
The vector wave equations (3-9) and (3-10), combined with the appropriate

boundary conditions, will completely define the solutions to a given problem

in which inhomogeneous media are present. In the cases treated below,

e J. Stratton, Electromagnetic Theory, McGraw-Hill, (1941), p 49.




specific solutions to the wave equations will be derived in rectangular,
cylindrical and spherical coordinate systems. In later applications, con-
ducting boundaries with rectangular, cylindrical and spherical symmetries
respectively will be considered. In each symmetry case, € will be chosen

to be isotropic, and the inhomogeneity represented by the variation in € and
the sources will be chosen so that either E or H will have only one nonzero
component. In the problems in which only one E component exists, the
fields will be described as E-polarized in the direction of the component. In
problems in which only one H component exists, the fields will be described
as H-polarized in the direction of the component. The solutions can be

characterized as follows:

H-polarized in the £ direction

Consistent with an infinite, constant-phase magnetic line
A —

source along an arbitrary coordinate direction ¢ , £ is

pure transverse (E ¢ = 0). For all the symmetries con-

sidered below, H ¢ will be the only nonzero component

of H.

. AT .
E-polarized in the ¢ direction

Consistent with an infinite, constant-phase electric line

0 . . . A (T "o
source along an arbitrary coordinate direction ¢ , H is
pure transverse (H ¢ = 0). For all the symmetries considered

below, E ¢ will be the only nonzero component of E.

A. Rectangular Coordinates

The first case to be considered is the solution of (3-9) and
(3-10) in a rectangular coordinate system, these solutions later to be applied
to problems with a planar conducting boundary. (Figure 1).
A.l H-polarized in the 2 direction
For this solution, choose the arbitrary direction? to be along

the z axis

A »
§=1
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so that E has no z component

E= XE 0vy) +G Eyly)

and H has only a z component.
H= = Hz (x, L1> >
From symmetry considerations, these conditions can be satisfied if

€= €lx),
and since the solutions represent a two-dimensional model and are independent

of z,

2 (any function) =0
2z

We will now solve equation (3-9)

V°H — eVE xoxd +€ R =0
subject to these assumptions.

From the general form of the curl oy

A A A
le| Ll..Q‘L L\BQ;

where A is any vector with components (A] A2 A3), (ql 9 q3) are the

three coordinates chosen with unit vectors (oA]’?::2 83), and (h] h2 h3) are

" J. Stratton, op. cit., Chapter 1.




the metrical coefficients. For the problem now under consideration, take
AN A A A A
(9.9299) = (xy2) A3 ) =(R§ 2)
h L\L =

The curl of H becomes

(3-12)

A

J

) )
2K '3»)
O

0

Hz

and since € i, a function of x only,

-
€vél = Xed€ = g 1d
JX €

1
The general form for the cross product is :

A A
?1. Qy Ay
-\(B - A‘ AL A}

(3~15)
Bc Bl Bj

where A and B are arbitrary vectors and (@'

~ A

ay 03) the unit vectors in the
Let A = éVe_'/ B8=V9YxH
A A A
X tj >

appropriate coordinate system. , so that

-\ —_
€VEXVXH = o & :_1{_ =
2X
(3-16)
-0H=

) , oX
and the differential equation for H

2Hx 4 2%Ha _
X




The only other nonzero fields, Ex and Ey' can be directly derived from Hz.

From (3-1),

K, VxH = weE
we find that

Ey= Ko M= By =¥ _ 4 (3-18)
wé Ay ¥ % W)
so that all the fields can be found once (3-17) is solved and Hz is determined.

If ¢ = o i equation (3=17) reduces to the well-known form]4

3 BlH’L “, =0
Dx’— fv t+ & (3-18a)

(where the factor k°2 has been absorbed into the variables x and y). This

equation can easily be solved by separation of variables, and through the
choices of symmetry made in the previous derivation, (3-17) is also solvable

by the separation of variables method. Let

Ha vy = L0O M(y) (3-19)

where L and M are arbitrary functions of one coordinate each. Substituting
into (3-17),

since the whole y dependence has been separated out. The only unknown
function is Lu(x):
2L
A ' W AedL’“-}-(ér—u")L-u.:O

)
d x* € dx dx (3-22)

o R. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill,

(1961), p 143,




where we have defined ¢ = A (x) . The partial differential equation
(3-17) has now been separated into two independent ordinary differential
equations. One of these equations is immediately solvable, but the one for
L can be solved directly only for a few, special choices of € (x ).

The general solution for H is obtained by forming a linear combination
of the solutions obtained by lethng u take on all possible values. This
procedure is exactly analogous to the solution of partial differential
equations by Fourier transform techniques.

In the completely unrestricted case, u can take on a continuous, infinite

range of values, and Hz can be written

+4Q0
L (Ug I
20

where Ll and L“ are any two linearly independent solutions of (3-22) and
a, and G‘L are crbntrory functions of the transform variables to be determined

from boundary conditions.
In the subsequent development, however, the following restrictions of

periodicity is made on Hz:

Hz (\"/Lj) e Hz(x;‘j""?))

1
and since any such periodic function can be represented in the form

(3-24)

+oo infbtﬁ
holeg)= 2, Halwe

n=-eo

we must restrict u to the discrete values

U=hD =

3 W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley,
(1962), p 186, 236.




so that (3-23) becomes

4+
Holvy) = S em%/w ta’ Lf, () +a," Lf =], (3-27)

h=-c

A
A.2 E-polarized in the z Direction

Now that the method of solution has been derived for rectangular
A
coordinates with fields H-polarized in the z direction, we now apply similar
L)
techniques to fields E-polarized in the z direction. Again we choose our

A A
vector ¢ inthe z direction,
A A

t=2.
We specify that only an EZ field exists
A
E - = EZ.LXI"J)
and only Hx and Hy fields exist.
g - Q Hx(x,uj) +g HH(XMj),
These symmetries are obtained by taking
€= €(¥)

and result in the two-dimensional nature

N
5z (any function) = 0,

These restrictions will now be applied to (3-10):
ViE +V(€'VeE)+£E =o0.

Since ¢ is a function of x only,

Y?ef'-)}(\‘i‘.e Qe-€E = O
dx '’

and the differential equation for Ez is

()lgz _+_D:LEZ. 4+ é/‘éc Ez:: 0.

2% 9 y*




To obtain the other nonzero fields from Ez' note that from (3-2)
KVXE = —iwp H
we obtain

sz — Ko oEz2 H = — Ko o€E=x
wpP Dy Y wpN X
giving all fields in terms of E_ as desired. If Cr = 60, (3-29) reduces

to the usual form noted before.

BIEL +©i.€_} +€_e EZ:O'
2X* dy* (3-31)

However, (3-29) will also separate immediately without this assumption.

We choose a, B to be two arbitrary functions of one coordinate each

E, = x) /%ug) (3-32)

and by direct substitution into (3-22),

1 d> +-§:——l§l3=u"

[}

so that the only integration not directly performable is the one for a (x).

The most general form for EZ is obtained by summing over v =n }\o’ .

= +j: -L"\’AO(%n T 1 o
E.lxy)= € e LBy ¥1x) +hb, o 9],

(3-34)
h=-

Oln and GIL are the linearly independent solutions to (3-24) and bln and

" R. Harrington, op. cit., p 143.




b . are arbitrary functions of the transform variables, to be detemined by

the boundary conditions.

B. Cylindrical Coordinates

We now choose a new set of coordinates in which to solve (3-9) and
(3=10). The choice of cylindrical coordinates is made for application to

problems with the appropriate symmetry. (Figures 2 and 3).

B.1. H-polarized in the 2 Direction

For the first solution, consider equation (3-%b)

V-9H — e9e' xOxH +§ H =0.
[+)

A
This time, we again choose our ¢ vector to lie along the z axis

A A
§=2

and allow only the E fields

- A A

E=p E—.‘(,(e,e) +© Eg (g 0)
and the single H field

g—:: QHz(G,G)

to exist. Such a symmetry is obtained by letting
€= €&le)

and requires that

?‘;‘c{_;_ (any function) = 0.

From the definition of the curl (3-11) with the new identifications
~ A A A
(q(((z.‘(';) — ((". Q,L) (Q‘?ZL&;) — (e [ z_)
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the curl of H for the present case is

P p® 2

2 23
D\o le; i

O (o} Ha

and since € is a function of p only,

- ¥ A
E'O(*‘ = {gc_cl_é = - _Lc_‘_(-.
dr edP

As done before, we apply (3-15) to obtain the cross product
A A

\5 © y -

cEYIXH =

From Stratton, U we have

- J. Stratton, op. cit., p 50.




- AT
VxVxH = L2 'D_\j_ L L“ ] vi] it
h % f o f Sl g (3-39)

so that, substituting into (3-9b), the differential equation for Hz becomes

12 p%He ) | %= _ | de QM=
B on 1 g = — € =0, (3-40)
0% " 9  p~2er € dp op .
To obtain the other nonzero fields, we see from (3-1)
KoWxH = iwéE
that
Ee & - Ko ?/HL ko

Dbt AL ‘:P__

W€ 2p e e

MJJE’P e

All fields are known when Hz is known. |f for comparison with standard
texts we again take Hz to be time harmonic with no z dependence and

e=¢ ¢ , (3-40) reduces to
o a

1
_HF_ FL of + 6o e = O (3-42)

: g ) 18 .
in agreement with the literature. But as before, equation (3-40) can
be solved as it stands by separating variables without the necessity for

further restrictions. Let
H, = Ale) BLB)

as explained earlier. Substituting into (3-40),

8 R. Harrington, op. cit., p 198.




imb
P [pdA 4dA)- £ _1dB r Bee T (-44)
A\’ dp™ op ® dor /

where now m must be taken as an integer so that the solution Hz (p, 0)
will be single-vclued.w The equation for Am ( p) becomes

d%Am 4 ( ‘\ la‘")“’" + (-2 ) A= 0.

d P 7 7 (3-45)

This is the only one of the two ordinary differential equations not directly

solvable. The general form of Hz can be written, as discussed earlier,

—+co im0
Hotpo)= = e [aF AZ®) +a¥ An@]
m=-€

(3-46)

where Ant and Am“ are the linearly independent solutions of (3-45) and

anl1 and on:I the arbitrary constants to be determined by boundary conditions.

A
B.2. E-polarized in the z Direction

For the E-symmetric case in cylindrical coordinates, we take

g:z

again, and now seek a solution to (3-10a)

CrPX E - e'/{.o E=0

with the assumptions that the only nonzero electric field is Ez,

E— ol 2 Ez(& 9)

" R. Harrington, op. cit., p 200.




and the only nonzero magnetic fields are H and H

\-.{ = ,{3”9(?,9) ’f‘é H’Q(QQ).

0 H

These restrictions can be satisfied by the choice of symmetry

€= é—(e)

and the requirement

_'g_(ony function) = 0.
Rz

Again from Stratton,

vV XVXE

=-2[12 506 , L3k
pop P55 T 56‘]

and substituting into (3-10a) directly, the differential equation for Ez is

L2 o026z 4 1 % . =
,P’()\Q?DP +P'z_ '6_9—7’ *t-‘é—bEz-O, (3-48)

From equation (3-2)

we find

H?: "—‘(o bEL




giving the rest of the fields. If ¢ = L (3-48) also reduces to the
well-known homogeneous form.2o To solve (3-48) directly by separating

variables, let
E:(g6) = M(IN(E) (3-50)

where M and N are the arbitrary functions of one coordinate each., Then
we obtain

R i 3 (3-51)

and

A 4 Ll 4 (6r =12 ) U,,= 0
A2 w ’

d p* . ds; = (3-52)

Only (3=52) cannot be directly solved. As before, Ez can be generally

written in the form

4o
E,.6)= = e™ [ bIMT(e) + bm Mu(e)] e

m=-o

where Mlm and Mnil are the linearly independent solutions of (3-52) and

I | i
b 4 and bmI are the arbitrary constants.

A
B.3 H-polarized in the 6 Direction

A A
Now choose ¢ = 0 and consider solutions of (3-%9a)

vaX{,T.peVé—\‘LVXPT— é/{.bl-T-‘—O
with the H field

H= oHe (¢,2)

and the E field

- See Equation (3-42)




SDUUBJUY |DlUBIWNDIIY) Yim JapuljAD) Buyonpuo) ‘g aunbiy

1l




E= $5(p2) + 2 Elpa)
We must take
e=€lp)
and require that

) (any function) = 0.

X<

Evaluating the curl curl, we get:
A

e

¢/

CXOKH = ]

XX 'D€ ®)
— OHe

Pz

P

(5]
= __é -alHG

'()P"—

The curl of H is




A

4

cVEXxH=(-lde
‘o

!—lbie 0
‘ P 2w

and the equation for H8 is

Dfﬂ-

If €= € . we obtain the homogeneous form

p- T A — ’ “\
L%.+i$+d4ﬂ9+ur%QHa=Q

2p- ' 22~ P op
From equation (3-2)

KDan = WEE

E‘f = —Ko Mg

————— e—

twep Z
We assume that
He = &(=) Blp)

and derive the equations

4 iq* 11—l
L% 4 e_lé"+(f’ ra

B3 dp~ A

Ao

%He 4 %Mo , (L1—1d¢) Do

the other fields are given in the form

N>

)

b

f

Kol
(wéf Df '

de ) 1dB8
% /Bdp

+ipyZ

o
q\

]
O
-
Q.

Sy

'+(€r'— 'L
P

T

}

)Hg =0.

+ (ér’“

(3-56)

(3-57)

(3-58)

(3-59)

(3-60)




We will assume that H | is periodic in the z direction with period T

0
He ()= Hg (2+7) (3-63)

so that M can only take on the values
N= V\q"’[?\ ;
The total solution then becomes

2 ™= [42 g3 +aT8Y ) )
he= Z e [aTBZ() +an B e

N=—0

I I -
where a and a ~ are arbitrary constants.

A
B.4 E-polarized in the 6 Direction

A

A
Choose,_:_ = 0

and consider solutions of (3-10a)
F~6&C =
"23% 2= 7. =0

with the E field
E_: = @ Ee (e, z)

and the H field
H=pHelpz) +2Halp,2).
We must taks

€= €(e)

and require that

2
L 2 -
=5 (any function) =0 .

Evaluating the curl curl, we get

P/f

©>
o
~

VX9 XE =




QXVRE = — é —?fge 'DlEe _L ok Ge
L Pt trey 2| (3-66)

'Df)" oz ’ap FT

and the equation for Ee becomes

-5 +eg =o. i

-
e
For the homogeneous case ¢ = . this takes the same form as (3-58).

The other fields are found from (3-2):

Ke VXE = —lwpa

Ho= _Ke 9Fe = —k 2¢ (3-68)
£ Lw;)f? Dz Hz g e

To separate variables, we choose

E = Clp) D(=)

and obtain the equations

LeX 449D L 4de 4 4cap
Cd(> P dz* ?(..dr P

(3-69)

L Do oEiP®

(3=71)

where D has been assumed periodic in the z direction with period T as done

in the last section:

N =R,




The general solution for E6 is

n '(\N{(\L r IC = (e) + Q b C (e) ] (3-72)

| I .
where a and Gn are orblfrory constants.
n

Spherical Coordinates (Figure 4) .

A
C.1 H-polarized in ¢ Direction

A A
We must now take ¢ in the ¢ direction,

.

We now will consider the solutions of (3=9b)

VO —€VE xOxH + €/ 0 =0

with the restrictions that the only H field is
A H (
P ¢ % 9)

and the only E field components that exist are

= FE.(v8) + BEp (v,0).

Tl

To satisfy these requirements, we may take

€= ELr)

and require that

= (any function) = 0.
of

Again, a two-dimensional separable problem has been obtained. From the

definition of the curl (3-11) with the identification
A A ‘\ AAA
(QLCUCH) = (r, 9/¢) ( QLQ CV‘9¢)

hy= rsmb




Conducting Sphere with Circumferential Antenna




the curl of H is

A
= ; fBs )

rsme 06

Since € isa function of r only,

EVE

€0E! XOXH =

WEDGS"’GH?)

From the general equation for OXQXE}

A

L
SmB

(3-76)

B _J,_stneHﬂ:—v.v?d
r*2e S mod®




and the equation for H . becomes

¢
12" 8__\_&
r?hHgs + A5 T g SmoHg - Jgiﬁb%rw +iH¢ 0 (3-77)

or in another form,

LSeeold, Apr | o . mt
ror’ Bt il Siveis SMOge — HE]

~\l de ? =
V‘:\ég}b’%rH¢ +e/f°H¢ =0,

, this becomes

]+QH¢=Q(-

m%e

the homogeneous case. Using (3-1) as done before,
K, OxH = (w €E

the other fields are given by

Ep= Xe L _ 9'simet
i {weyr Smb 00 ¢

- '—KO
o Twér or PH¢

once H . has been determined. Equation (3-79) can be solved by separation
of variables, letting
H¢ = F(8)6(v)

and we obtain two ordinary differential equations:

] We must have | an integer so that F will be finiteat 8 =0and 6 = x,




=
Sm*e
= % b ((ﬂv@)

é?l’) + (6 - U ‘qu({l O, (3-82)

r- rédr

1
where PI (cos B) is an associated Legendre polynomial. The general

solution for HO is then

Hg = %’ B es6) [0 8F W+ aE 67 ]

(3-83)

where c:lI and alll are the arbitrary constants to be detemined by boundary

conditions.

A
C.2 E-polarized in the ¢ Direction

In analogy to the H=polarized case, we seek solutions to the

differential equation
QXVXE + €/6LE ©

A . g
with the vector ¢ taken to lie in the ¢ direction:
A

2=9.

The only electric field is Eo

S
E=¢ {:ys (n 6)
and the only H fields are

H= ¢Helvo) + 6 Hglv,0).




Then € must have the functional form

€ =€)

and the condition

.
9 (any function) =0

must be satisfied. From these assumptions,

A A
Gy e i
VHE = | T e rsm© 0

5o 0

and the equation to be solved becomes

1 2 326 L 25805 =
Por’ o LB te g ok Y6 B =0, gy

In the homogeneous case € = 60, this also reduces to the form (3-79).
r

From the definition of the curl and (3-2),

VXE = ~-~CUJ/JH

we obtain

Hr= —Ko (MmO o= L 2 r€g, (3-86)

twpN rSmb 06 Twpt3r

giving all the nonzero fields. To solve (3-85) by separation of variables,

let

&= LLM(B)




and two ordinary differential equations are obtoined:22

_I__,d‘_r’-cJL- Erre L] L _dezandM M e '
L9r dv ZOY M [Sy'nﬁ)e?bsme do Asm-} —Uhi)
O}z

dre

2dL »
+£2 3+ (& —&ﬁ_rtp)\,ﬁo.

The € dependence is again obtained in Legendre polynomials, and in

terms of the solutions LlI and LIIl to (3-87), E¢ is given in general as

Ep (n0) = ? P ee26) T yTL*r) + b L 7).

As before, (3-87) and (3-88) represent the complete solution, with bll and

bl” arbitrary constants that must be chosen to satisfy the given boundary

conditions.

D. Summary of Derived Equations

For each of the problems discussed in Sections 3A - 3C, a differential
equation in the form of equation (2-1) has been derived. In each case, the
solution to the appropriate wave propagation problem can be obtained only
by obtaining the solution to this differential equation. A method for obtaining
such a solution has been outlined,in Chapter |l, so that the only aspect of each
problem still undefined is the choice of boundary symmetries compatible with
the assumptions already made. The differential equations that have been

derived are summarized below.

- See Equation (3-81) for reference.

B . ot 2 .




D.1 Rectangular Coordinates

A
H-polarized in the z direction

D.2 Cylindrical Coordinates

. . A . ’
H-polarized in the z direction

A
E-polarized in the z direction

3 ‘Am 3 /\AW\ + Cér
df f dp

A
H-polarized in the 6 direction

D.3 Spherical Coordinates

A
H-polarized in the ¢ direction

26 , (x-L1d )
Tr‘+ r Cd

*..‘ . A bl A




A
E-polarized in the ¢ direction

P pzdbyy (6- WY, =0,
rl_

drt rodr




CHAPTER IV

SOLVABLE PROBLEMS

A. Plane
A.1 H-polarized in the 2 Direction

The differential equation to be solved is (3-22)

subject to the requirements that

; -aa? (any function) =0

all fields are periodic in y with period 7
the only H field component is HZ
the only E field components are Ex and Ey

6::6()().

These conditions can be satisfied by placing the conducting boundary at
the plane x = 0 with H-field strip antennas (magnetic strip sources) in the

z direction, a distance T apart so that

0 scattering

Ao
1 , NC=
& Q e * i radiation
n
where the [, are detemined by the choice of antenna. From (3-18)
.

£ g :;H‘I—
¢ (wé X




and from the orthogonality relations derived in Appendix 1,

so that the boundary conditions (4~1) apply to the derivative of Ln. We
can let Ln = Fn [ See equation (2-1)] and Case Il [ equation (2-5)] will
hold when obtaining a sclution. From (2-10), (2-11), (2-26), and (2-37),

we must demand that

X‘[ﬂ,X,erﬁJ]X*o = X, Inx €l,

Xl [hl x ) Er(X)JX:Xc = XlL_H) x/ e) ‘]X"Xe

kt:ke_.

By comparing (2-1) and (3-22), we have

X,[nx, €)= - Xl[",)‘)ér()‘)Jtér"hl)—q

erdx TL

and from (2-9) and (3-18), ke = ke if

&Y (Xe) = Ec) .

Combining all of these conditions, . (x) must satisfy all the following

relations:

dér| =0,

g = & e
ﬁ.r (ch a dx X,xe_




From (4-4)

. 2
by = €.~ )
P(x)= € —N %1_ — -

and from equation (3-18a), with

N

¢ H1 + az
o .

o

we have

Equations (2-41) - (2-43) now give the solution immediately.

A.2 E-polarized in the 2 direction

The differential equation to be treated is (3-29),

-~ y -
_A_iy\ + ( ér— nl_)/o
ax™ 2

)dn= 0
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subject to the requirements (4-1) with the roles of E and H reversed. These
conditions can be satisfied by placing the conducting boundary at the plane

x = o with E-field strip antennas (electric strip sources) in the z direction

a distance T apart so that

f 0 scattering
E,(x=0) ke
2 }\nc % radiation
n

where the )\] are determined by the choice of antenna. Since the boundary
conditions (4-8) are applied to the variable in equation (3-29), we can let

F a and Case | [equation (2-4) | will apply. The conditions (4-3)

n

must again be satisfied, and by comparing (2-1) and (3-29) we have
X, %, & (0] =

XZ[V\, X;er(,)()] -

From (2-9) and (3-30), we will have
kg - kt

outomatically, so that none of the conditions (4-3) will restrict

any point. From (4-9),




is given by (4-7).

. Cylinder

B.1 H-polarized in the 2 Direction

The differential equation to be solved now is (3-45),

dAm ¢ (1 — Lde\dAm S Y
dg"+(? éd‘})df * L %:)Aw\’o

subject to the requirements that
d :
be ¥ (any function) =0
2. the only H-field component is Hz

3. the only E-field components are Ep and Ee

These conditions can be satisfied by placing a conducting cylinder of
radius p, in the z direction with an H-field strip antenna (magnetic
I

strip source) in the z direction so that

B Lp2g1) =

f = 0 scattering

imB
L i Sme radiation

where the Sm are determined by the antenna. From (3-41)

Ee: — Ko BHL

— i

lwé bf

and from the orthogonality relations in Appendix 1,

x = — Ko H
Q:e‘)"\ we (’%?}\m




so that the boundary conditions (4-12) apply to the derivative of A .
m

We can let Fm = Am [ from equation (2-1)]ond Case || will hold.

Conditions (4-3) must also hold, and by comparing (2-1) and (3-45),

we have

X, Un, 2 €a )=

1
j)

(4-13)
X’LE“/P) éﬂ] . % éa—,wlm

-
andso thatk =k ,
e e

ér(?C\ - éa -
Combining these conditions, we must have
€r (?C} = éa

dé|
o il




(4-16)

where J'n and Ym are Bessel functions. Equations (2-41) - (2-43) now

give the solution.

A
B.2 E-polarized in the z Direction

The equation to be solved is (3-52)

dlﬂm R d’/_u_m & - P_‘)j_l =0
qez— +Ydf +(r (}L)MW\

subject to the requirements (4-11) with E and H interchanged. The
conditions can be satisfied by placing a conducting cylinder of radius Py
in the z direction with an E-field strip antenna (electric strip source)

in the z direction, so that

scattering

E. (p=rt) =

radiation

where the t are determined by the antenna. Since (4-17) applies

m
directly to the field variable in (3-52) we can take Fm = Mm and apply
Case |. Conditions (4-3) must hold, and by comparing (2-1) and (3-52),

X Dne &@1= X [ne€ld="'/p
([, p,6 O] = er,-ml/FL X.Inp)=6—M /FL (4-18)




ond the condition ke = Ee is automatically satisfied from (3-49).

We see that . (p) is not restricted by any of these conditions.

From (4-18),

eer (BD:

and when ., the solution to (3-52) is given by (4-16).

A
B.3 H-polarized in the 6 Direction

The differential equation that has to be solved is (3-62)
luidévdfﬁp L SNE ceD
o " & i 7 r s / =
( 1 € de dg,;. ( p F N
subject to (4-20)
- a%— (any function) = 0
2. the only H field component is H0
3. the only E field components are E 0 and EZ

4. H8 must be periodic in the z direction with period .

These conditions can be satisfied by placing a conducting cylinder of radius
o. inthe z direction, with H-field strip antennas in the 0 direction a

distance T apart in the z direction. The boundary conditions will be

E,(0=p) =
z ? {/‘) N 8
i‘ ;'jm & radiation

?f 0 scattering




where Bm determines the choice of antenna. From (3-59) and the
orthogonality relations in Appendix 1,
(E-.-_),u - _—"er (D_ﬁe)
g AR 1

so that we can let FP = Bp and apply Case |1, equation (2-5).

Conditions (4-3) must hold, and by comparing (2-1) and (3-62),
KOngelod="Yp = Ve 4% X,Tnp,éa7= Y

X’LCV\, f)é(@)j:ér’—l/(’i —HL
XLEVI/ p, €a J & - !/(91- "y

and to make ke = -l:e , we must take

éy- (e() = 63
from (3-59). Combining the restrictions, we obtain
é—ér =0 cié( =0 ér(f%) =& .
de lp; af'te

From (4-22),




rom equation (3-58), we have

(plez

L [aﬁy,(\;z;:xf) +bpY, Nepp) |

(4-25)

where J1 and Y] are Bessel| functions.

A
B.4 E-polarized in the 6 direction

The differential equation is (3=71)
¢y dC
cl_+_L__<p+ e 3 - ) Co 20
ot T 7 ap +lee= Y —1t) G
subject to conditions (4-20) with E and H interchanged. The conditions
can be satisfied by placing a conducting cylinder of radius P; in the
z direction with E-field strip antennas in the @ direction a distance T

apart in the z direction. The boundary conditions will be

0 scattering
(4-26)

mé R
2: , S radiation
m

where Y characterizes the antenna. We can let CP = FP [ see equation
m

2-1)] since the boundary conditions apply directly to the variable.

L

Comparing (2-1) and (3-71),

X, C"/Fl &g 1= X\Inp ) ® 1/f

¢ =

X4 [w, 4 &-(¢) ) &r— l/(:l iz
X~ D“; g, & J o Bil! '/fl 2

k =k automatically from (3-68). There are no restrictions on
e e

¢ (p)




From (4-26),

Ple)- L
Gf(i): PlA

— T
rey= ¢/ (RY)

and ’F'r: is given by (4-25).

C. Sphere
A
C.1 H-polarized in the ¢ direction

The appropriate differential equation is (3-82)

4" Gy 4 ( > %ﬂd_; + (- Jeu:l\

ort

dé€ -
&€dr >6Q 0
subject to requirements that
d .
l. e (any—funchon) = 0
2. the only H field component is H¢

3. the only E field components are Er and E ¢

4, ¢ = €(r)

These conditions can be satisfied by placing a conducting sphere
of radius r. about the origin, with a circumferential H-field strip antennc
I

in the o direction on the surface. Therefore, we will have

0  scattering

C
Eg (r=r}) = Z

seliads
%PL ((9”9)‘3( radiation




where the 9| specify the antenna. From (3-80) and the Appendix |

orthogonality relations,

<E6\R = _ Ko— .Da_r r*Hgb)ﬂ

tWeér

so that the variable F in equation (2-1) must be chosen equal to the

product rG,. Under this transformation, (3-82) becomes

de 4B*
qr

T2+ e- T,

3
& - (4-30)

where Case |l now applies [equation (2-5) | . Conditions (4=3) must hold,

and by comparing (2-1) and (4-30) we see that

X,Inyr &)= =L 2k X, nn&l=0

L(2+1)

X2Lwn, v, &)= & — r“—

Xl[ﬂ, Y') € ]: Ex M
e

and from (3-80) we must have
er (ve) = &

so that ke = Ee . In summary, the relations that must be satisfied are

dér =0 der =0

drir; ar lre &~ (Vo) = ¢ .




From (4-30)

gN= ¢, - ke _

¢o (r)=

( y\) Er LV
ert-q

G- \E

r)= B3

and from equations (3-79) and (4-30), we have for .

L8 4 (6 - WAYFE
r'l—

e

with the solution

4
Vr B (e 6) [54 Jm (\S?,r)+”c1YW_«§Q‘ﬂ (4-34)

where J and Y are Bessel functions.

A
C.2 E-polarized in the ¢ Direction

The differential equation to be solved is (3-87)

subject to conditions (4-29) with E and H interchanged. The conditions can
be satisfied by placing a conducting sphere of radius . about the origin, with

a circumferential E-field strip antenna in the ¢ direction on the surface. The




boundary condition will be

= [ 0 scattering
eg lr=r) = )
[ ZHQ Fi (w@) radiation
L

(4-35)

where hl determines the antenna. Since the boundary condition (4-35)
applies to LI directly, we may choose Fl = LI’ and Case | applies.
Conditions (4-3) again must be satisfied, and by comparing (4-35) and
(2-1) we find that

X\[h,r, € () )7 ‘Q/r Xz(-—"/'/ff(r)] e 1N AL,?.C")

(4-36)

XLk, P € ] =4, Xolnyw 6] = € -

auvtomatically, from (3-86). Equations (4-3) are satisfied
identically, and do not restrict the choice of 5
From (4-87)

e — AH) T

and from (3-29), -Fll is also given by (4-34).




CHAPTER V

PARTIALLY SOLVABLE PROBLEMS

The wedge and cone are considered in this chapter, and it is shown
that complete solutions cannot be obtained using the boundary value
techniques of this paper. The wedge configuration is shown in Figure 5 and
the cone in Figure 6.

A. Wedge

In all the prior problems in cylindrical coordinates, ¢_has been a
function of p and the boundary conditions have been specified by choosing
the value of one of the fields at a constant radius. We have shown in
Appendix 1 that for . (p) the © dependent functions are orthogonal for
different values of the spearation constant m. We will now consider the
difficulties encountered when either of these conditions are changed.
Consider first the H-field polarized in the 2 direction. If ¢ isallowed

to be a function of both p and 6, (3-37) must be modified to the form

A
p A

COEXIXH = 'g)__ B

e el P e e e ——— N L S . i 2

The expression for the VxVx }—-{_ is unchanged, so from (3-39) the

partial differential equation for Hz

~t z
bz 4 OHz _ @°°C € =
+be‘— +2%H1_O
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This equation is separable if €=¢€, = €, €r(8) orif €=€,=¢€, €.(p).

P'L

For € = €1 and letting Hz = A (p) B (8), we obtain

(( K- 7\) + 2(&&(—3)

Aresdl, >0
K real

€ 8= — (ik- A)t 2(ik=2)  (5-4)

where K and A are not quantized. The form of the separation constant has
been determined by requiring A to be finite at p = 00 , A similar require~
ment cannot be made at the originsince ¢ (p =0 )= 00. If an attempt is
made to set A = 0, an inconsistent result is obtained. The functions A ( p)
are not orthogonal for different choices of (ik = A), and the functions B (8)
will not be orthogonal either for different separation constants if . ®) is
allowed to exist,

If we let € = €_ and separate as before, we obtain

2

PL elé_g’)clﬁ_ (A 23 (1
+046le) =
“fep dp-dpatl . EO T

+im6
B= ¢ ) (5-6)

The separation constant in this case has been quantized by the requirement
B16)= Ble+ ?.iT) . For the wedge, we wish to specify Ep at + 60, and for
i 8
A e U
E(g,60= FlO =2Ze o A ()
. ~m9
E(p)-W=S@)=2€ " Qm A
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Il . g
where A m(p) representing the irregular solution has been dropped since
p = 0is included in the region of interest. A new difficulty is now encoun-
tered, hoxgever. When F (p) and G(p) have been specified, the coefficients
= I M (»] I "M
Q.. € and Q. € * - cannot be determined. |n order to
' g I I
evaluate the constants, the functions Am (p) and Am, (p) must be orthogonal

over some range of integration of p:

r  §
| Aw (€) A,/ () WO do

A

| where some known weighting function W (p) might be included] , so that
we may write
8 T __tnlg, T
jﬂair:(e) A Wl = e Q.
B T, ~im & T
J" ;\,g(e) Ao (BWle)= e N
d

?
i
l
?
|

However, the functions Aml (p) are unknowns, and the integrals (5-9)
cannot be evaluated even if (5-8) can be shown to exist. For ¢ = ¢ Y

the functions A ( p) are not orthogonal, and the same difficulty is met in

MR il S e o JEE

opplying the boundary conditions.

A
Consider now the E-field polarized in the z direction. The partial

differential equation for EZ is

—

f’bf)??)f) 'Y R




This equation can be ted if Ev |
Ihis eq n separated | =€, = =
p € é; €, S (6

’(:U’I‘L t | 2
¢t T + €-16) H;=0
¢

: 3 .>F - '\’L ~ L ’ ‘ 1
e F YB——»L g C’_.ti—{‘ +V CT(":/ H‘)_:O 2 . (5-12)

o0p * op 6%
Equation (5-12) leads to exactly the same difficulties encountered in
equations (5-7) to (5-9). Equation (5-11) , however, is similar to (5-3)
and (5-4). Separating variables,
“;: A(f’) 6{9)

we obtain

l 54 sdA e

s - s + ’L __!‘_5 =0

,‘??tu g 5 +&lf)=0

with the resulting equations

1azh & s — (AK=NT
5 el )

Kinp _
pdodb. gea) Aele ARl
A dfc 7 Y/% K real

When an attempt is made to solve the problem of a cylinder clad in
medium €, = & (:I-—(-g-) with a strip antenna in the z direction, the
boundary conditions can again not be applied since the 6 dependent
solutions are unknown functions and are nonorthogonal for different
separation constants,

The problem of strip antennas in the p direction on the surface of
a wedge is not solvable since neither E nor H will have only one nonzero
component. The same difficulty is encountered with a cylinder clad in o
medium with a 6 dependence and strip antennas in the 8 direction.

” r~
0. Lone
A

Consider first the H-polarized in the ¢ direction, where ¢ is




DUUSJUY |DHUSISJWNDILY) Wiim aL
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allowed to be a function of rand 8. Equation (3-75) becomes

€VEYOXRH =

- | 2€D? i _L'Bé ]
¢):rebfbr P42 55 Faimoss STMONS (5-15)

The curl curl remains unchanged, so that the new equation for H¢ is

roltg 2 suetyg —

2
be ' on 'ae s Sme2e 5~ THe

¥ 0€
&

g2 -2 SmeH?g—\—ér% 5.

This will separate if €= € = €& &__ﬁ orif €=6&.= €& r)
choice ¢ = € leads to difficulties encountered in equations (5-7) to
(5-9). Ife = e‘], we obtain
Hg= Alr) BLe)
A= (ik-2s Yik=242) A=

A veal, 20
K real

iKinr
e

©) | d
er{e)"a’% 3mdo$ e B (5-17)

—(iK=2+1) (iKk=2+42)




where the form of (ik = A) is chosen so that A is finite at p =00 ., This

problem is again unsolvable in all cases since neither the functions A ( p)

or B (8) are orthogonal with their same member for different separation

constants. For the fields E~polarized in the gdirection, the ¢ = ¢

2

case is unsolvable for the same reasons already given. For € = ¢ o e

Winr
d dh_ (u-a)Gr-2+) A= e % sl >
of dr r K veal

|d 1 d s5eB+616 = -Gk-2) (IK-A+i 5-18
Bab Smb g LA Ly ) ) e

again leading to nonorthogonal functions.

The sphere clad in a medium €= & éL:_-? with a strip antenna in

the ¢ direction is not solvable since the 8 dependent functions are unknown
and nonorthogonal.

The problem of a strip antenna in the © direction on the surface of
2 cone is not solvable since E and H will both have more than one nonzero

component. This difficulty is encountered also if . is allowed to be a

function of ¢ .

PRURE——— S S
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CHAPTER VI

DETAILED ANALYSIS OF THE PLANAR CASE

A
A. E-polarized in the z Direction

1. The lterative Solution

Consider now the case of an electric strip source on a
conducting plane (fields E-polarized in the z direction) with a variation

in . represented by the equation

=Y
Eid= 142e T {132/ I+mah (6-1)

Above the antenna we may take B = 0. This relation has the properties

that
d €ér| _ d €r
- 0 ——
X lp dX

20 1% xe>»b

L

Erlmay = & L) =1+2 f fp=0,
Erlt) X |+ Ae ,
We will choose A small enough so that only first order terms need be

considered. From Equation (2-55), we find that

Xe

o | LLb
o ox (¢.-d) N(x)d X
Ba, (xe) J et jx, ¢—¢)

o

’)A .
3 pefer to Figures 7-10. Figure 8 represents the € variation close to the

missile nose, Figure 9 the variation at the nose-body junction and Figure 10
the variation above the antenna.
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and from (4-7) and (4-10),
rix= GEnI)L
b = o

C X "'I ,“X
EF= Q.‘Ietk"* 40 ¥

where

——e——

K"széa—m"%: ) k:x':’\j \—hl_?}z: .

% (6-4)

We are only interested in real values of Kni (h% < 1) , since the fields
outside the sheath

nA

°fa lko y 4
Dhe ‘td e nx

will be exponentially attenuated for all imaginary an . From the
orthogonality of the functions eih)ohy and gimm"/?‘ Y , each n'h
term must individually satisfy appropriate boundary conditions, and only
those terms for which V\z"/f(\ = 41  inside the sheath will contribute to
the radiation fields outside the sheath. The term n = 0 represents a wave
propagating without any y dependence; i.e., a plane wave moving in
the x direction. From symmetry considerations, this term must be the
same for both fields H-polarized in the 2 direction and fields E-polarized
inthe 2 direction. The term V\?b/b-’ 1 is o wave propagating along

the surface of the sheath in the y direction and is a surface wave. The
%\3 -

terms for which 0=h 1 are a mixture of the above situations.

If we define the antenna by the coefficients L

D
Ezl(x'-"@ 53 éxue 0/?5




then by the straightforward application of boundary value techniques, we

find that

¥, €

+
Kn x+kh7~

+1K'\XX€ ,’k'\ £ kf‘i \}

Knﬁ + K"V

+ (’fﬁif""

—

\ 4+ k,“‘)(z.

YXe

1()\ x+ K'\X- J

We will choose €3 = 1 so that we have

MWL) (24 ks™e)
4(1+4 kn,'fi)h (1+kme)*

In order to better understand and analyze (6-9), the following computa~

tions will be made for Y\a.gi L €L

(i) Find Anl (Xe) to first order in A for a sheath of width x =t
e
with a constant value of € = 14 A . This result should show why the step-

function approach is not an adequate way to treat inhomogeneous media.
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This problem can be worked by rigorous boundary value techniques, by the
WKB method and by the iterative solution derived in this paper. All these
results should agree and a check on prior computations may be obtained.

(ii) Find An] (xe) to first order in A using the WKB technique. This
result should agree with Equation (6-9) for large values of t (which will
make € slowly varying over a wavelength). This problem will again provide

a way of checking the equations derived in this paper.

2. The Step Function Solution

a. Rigorous method

From Equations (6-3), (6=5), and (6-6), the field ot Xy is

given by

0
e
Koxtbm L ___—— | (6-10)

E, 9=¥,¢ g
-iK"‘{:_}__ l(nx"kn:>e-f(r‘“

é pad At
l‘nxm
lfwelef€=1+)\)

Khx:Kn:(['l" .,2_-;;_) -Rr V_\,’%cci
o Kax

0
an“‘ﬁfnx

KoK

and we obtfain

STeP FeN.—RLG,

.




b. WKB method
The WKB method gives for the electric field:

A N . "
™ i 8 -1 kdx )
8 |

“+ e
Voo i

(6-14)

If we take €=|4+A ‘F(X) and require d+) % = 0O, then
d X e

+ ). )
+ (k’m“*_’f&; )e
Ky ) +Kanx

—— ———————eee

Kns ()4 Kni

i

Ky () ~Knx
}(n\’ L*) + k"?‘

(6-16)

e

e

—Ljo Kde+ k’\‘ (f)"k,:
Ky EH Enx

|f we take f (x) = 1, Equation (6-16) is identical with (6~10), o useful

s *‘M—

check. But without making this restriction, if we let A be small and

take only first order terms, we obtain




-~ A\
2L(vut

wkB ft)e Atlo) ' ’
Am = - 7\ Tt ’:(_;;:..—-—- - ~L~ "‘;C + e J ';()‘H X
4 Ky { Knx Z Bx ~0

(6-17)
for f (x) = 1, this solution is identical with the one obtained before,
Equation (6-13).

c. lterative method
From Equation (2-55)
‘f‘. Xt_‘_ .)(l 7 Ke
k= |
By )= — | =X | (d—9) r(x)dx
© iy Jx!
and Equations (6=3), we obtain by direct integration
STEP FEN-TT. ) Zilost) A+
o / -n -
Ay, = = (l-e foi ¥ == (6-18)
LH{H;; £ K"A

a result identical with those obtained by the other methods.

3. The WKB Solution

This solution is easily obtained from Equation (6=17) with

$0= € (1 2/ )

WKB .
A s LAN p
n 3 ———— o :

| » : o x y v o IVO":Q)
Z ¥y “ Knx

4, Comparison of the Different Methods

We have now derived the following equations:
T e L 01 ) 240 3 - N’
ATo HEEHRZO) | g4 63E)
| L\ T a2 e WA
41+ Z( 1+ )™




A iy 7 = L)__t_ A

\ < T

| 4 K“‘; L\'Knil_
AST‘&? Fen, d
A, = 3 2tk €Y 4 M

[ - e - g . T

4 (;:— ( | > ZK,‘,QL (bu) all 3 Mv‘ﬂu«{&)
We first note that
T WK
By e S
; \arge + : (6~-20)

as it must, since this is the region of validity for the WKB Method. It is
also interesting to see that the step-function approximation has introduced
a non-existent oscillating term into the answer, due to the properties of
the step-function region acting as a resonant cavity. However, for small
t, the step term is a much better approximation than in the WKB solution.
All three solutions are graphed in Figure 11 for n = 0 and the iterative

solution is graphed for several n for the case 7= 10 Ao in Figures (11-15).

a A
B. H-polarized in the z Direction

Now consider the case of a magnetic line source on a conducting

plane (fields H-polarized in the z direction) with the same ¢ variation

as before.

—2X [+
CalY= | + e (H.ZX/.&)' (6-1)
From equation (2-56), we have
Rl T ( XQ.SI.&L- ( Xer‘(x,‘){qj '”‘d))d)ﬂ”
By R Jo F(x") )X' ;
+ [ TR 17 [ T ro) (o)’
Pdx -o °° (6-21)

S R T S — S ——————— —




- - P — -~

N ———

85
ond from (4-6) and (4-7)

rag = @&
4,-¢ = -2e -2+ 5 (14269%]

0
Fﬂ * Ch e ’ . ( )

We define the antenna coefficients Yn as in (6~4) and find from direct

integration that

- £ k all+2)(1+ -2-"‘—-(:) 2 (1-24%) .

Oy ®
- T .
¥t Kax ('&V,,,"i‘) ]

ML) 4lwe-L

From (2-46), we see that to first order in A,

—

Rf= 75 (1ra, +1) e

o that the total correction term is

SERN Rore 1{‘[3(2gﬁ”—1)+~&1(2¢f—l7]

Anl -
* 2, N\
va Y14 Ky +)
A g \ g (6-25)
%=
2(\+Kn €9 .
From symmetry considerations, we must require that Equation (6-25) is
equal to Equation (6-9) whenn= 0, k:x = 1. This equality does in fact

exist, an important check on the whole situation.

We now wish to show graphically how each n i term contributes to
the total field intensity at a given observation point and how the change in
the field intensity at this point varies with the plasma thickness and the

choice of antenna. |n order to do this, we first note that the solution in
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Region Il (outside the plasma) is always of the form

400 40 ~,_K_. e
T A T T LR, Y7
FPa & T = % 0, e
Nn=-00 n=-0o

. (o] A o A - A A
wnere]:n=knx K+ B Y andr =x x+y y. When the plasma

thickness is reduced to zero, the components are denoted as F nl . The Fourier
components for which k:x is imaginary will be exponentially damped in the
x direction and will not contribute to the radiation field. Therefore, if we
restrict ourselves to consideration of the field intensity at large distances from

the plane, we may write

w2-2 ( radiation field)

Each nth term in this sum represents a plane wave of amplitude aI:‘ traveling
in the k_ direction. We can therefore describe each component F, by a vector
of length an“ in the direction of En' There will be a finite number of terms
contributing to the radiation field and all these terms will be directed into the
vpper-half plane above the plasma. The length of each vector will represent
the maximum value this component will ever have. In order to find the actual
rodiation field intensity from the graphical plot described above the magnitude
of each component must be multiplied by a complex phase factor, and the
resultant scalars added together. These complex phases are of course dependent
on the particular point of observation chosen.

The angular pattern may be presented in another form if we apply the

symmetry relation F (y) = F (-y) and note cn“ = a " . The field intensity

may then be written in the form




- i - S —— —
O(’
PR
Gl
) W e
F: v thn\, o Coo™X Q_?_"
- * g°
Nn=0

order for the vector representing F_ to have a length independent of the
.

i

sordinates, we must take y = 0 once the sum has been reduced to positive

ly. This restriction greatly reduces the impertance of this particular form

fF. We will return now to the prior, more general form and utilize it in all

turther discussion.

= > =l . 1o "
For convenience F is chosen to be a normalization factor and we define
o

[
absolute value of Fn
. I
absolute value of Fo (6-26)
e .‘cn—] x component of k (6-27)

y component of k .

h point on the angular pattern is defined by its radius vector r  and angle

respect to the conducting plane 6 . Each Fourier component (or partial
! n

! will give rise to a single vector on this graph
F_ will give rise to a single vector on th graph.

In order to illustrate the results of the example worked out in this
oter, we choose T = 10 A ., Therefore, n will run from =10 to +10
o

~ 1 . . - . 72 - 1 .
21 such vectors will exist. Equation (6=25) has been graphed for n=0,

- . o 11 =\ 1 ol H talre 14
2,+5,+7, + 10 in Figures (11 = 15), and the angular pattern in Figures 15

were plotted using these results, where from the general definition
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/
DB,
Vi = \ 2 \ (6-28)
-\ o
B,=kom T¥nx (6-29)
Wn Ao

The end-points of the vectors have been indicated by points and then these
points have been joined together by a smooth curve.

For both E and H sources the t = 0 curve is a semicircle about the antenna,
w that for this case the radius vector may be defined to be unity for all 6n and
the other patterns will then be shown with relative magnitudes. The electric
ine source is considered in Figure 16, and it will be noted that the partial waves
with large y components contribute less and less to the total field intensity as
the plasma thickness increases. On the other hand, when the magnetic line
source pattern in Figure 17 is examined, it may be noted that the partial waves
with large y components contribute more and more strongly to the total field

ntensity as the plasma thickness increases.
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APPENDIX 1

THE FOURIER TRANSFORM

A. The Finite Fourier Transform

Given a function f with

fFle+2) = £4) (A1-1)

that can be represented by a Fourier series

fH = € c, g 2w BF
iy (Al1-2)
then the Cn can be found by evaluating the integral
ok
Cy= "_Z*j fleye d<€. (A1-3)
_’C/L

This representation exists if the summation (A1-2) converges uniformly to
24 ' 3 : 1
f(t) for all t.“7 One of the most important results of this requirement is

the series can be integrated temm by term.

in A
Let g (t) = %dne N AT Le another function of t and require that
'5:['{)'-‘ 9{“5\. (A1-4)
. inAt imAt . : %
Since e and e are orthogonal functions, then Equation (A1-4) can

only be satisfied by choosing o= dn. This can be proven as follows:

24 W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley,
1962.
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= S T ——
Given oy
' i 1W\A*‘

e, e w1

n wm
Multiply both sides by e ipM

Un-p) At L (m=pI Xt
&t = Z dme (A1-6)

and integrate from O to T :

(‘,} tln-p)2 ¢ 2

iln-p m-
2cale a+=2’dmge‘“‘ "htdt
n m o '

n
(]
(A1-7)
We know that
Ta
S’ e dt = (A1-8)
o
s a= o0
so that
T 7S (T (w~P)
i bn=p) Ut — -1)=0
5 e‘n J = iUvﬂTW( ‘) Ry (A1-9)
o
q3 ik 2

97

Only the term n = p contributes to the left-hand side of (A1-7) and only the

term m = p contributes to the right-hand side, i.e.,

- ———

Cp=dp. (A1-10)
B. The Fourier Transform
o
If we write An = -Xrl , equations (A1-2) and (A1-3) become
Nt
T - T — i - —




b ;"“":‘ ™
1T/
\ ( “nat
A= = | +ttle d+ .
21 )
._’271
Now let Wya=nA , so that
A=W, —W, = D,
w,t
fH= 2 Ae " Aw,
n
+T/2
weil < ™
= e lLU“
Ar\ zvg £ e dt,
...’(*/,l
Now let A=+0, so that
£ )= 5 Alw) e dw
Zw©

21

- - -lwt&{_
Alwy= L ,( L£eqe .
_Q)

These are fundamental relations for Fourier integrals. Orthogonality

relations similar to (A1=10) also exist for this case.

98
(A1-12)
(A1-13)
(A1-14)
(A1-15)
(A1-16)
(A1-17)




APPENDIX 2

OTHER METHODS OF SOLUTION

A. WKB Solufion25

The Wentzel-Kramers-Brillouin, or WKB approximation, is
applicable to situations in which the wave equation can be separated
into one or more total differential equations, each of which involves a
single independent variable.

The basic propagation equation considered can be written in

the form
‘EB +KHU=0 KX = &K > O, ,
o™ (A2-1)
Now make the change of variable
woo = petle 509 (A2-2
and (A2-1) becomes
2 \Z
;‘Oi‘;% i @‘4% ey O. (A2-3)

&) .
We substitute an expression of S in powers of ko in (A2-3) and equate

equal powers of ko :

O uS,+ lksl +¢-01$,_+... (A2-4)

25 L. Schiff, Quantum Mechanics, McGraw=Hill, 1955,

V. Ginzberg, Propagation of Electromagnetic Waves in Plasma, Gordon

and Breach, 1960.

v‘_.....,.“.{“:m
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(A2-5)
7z
=L
(dio) + ér (.X) =0
A (A2-6)
i 45 _20\_§_°‘tﬁ =0
il i (A2-7)
Integration of these equations gives
S, = E S le.09 dx
o VEr A3
o B 0 P, 2
S = _;./(/Y\\Jér(ﬂ ) (A2-9)
and we thus obtain to this order of approximation
4 e §\< (a4 x
U(_X) - 6
— ) (A2-10)
V K(x)
The WKB solution will be useful if
| .:.{ Ci‘.% | Jdér
© = .‘_ <
d (KX
e 4 d (KX)
V= (A2-11)

which means that the fractional change in € over a wavelength must be
r

small compared to unity.
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B. Green's Function Solution

G (r, r—o) is a field at the observer's point r caused by a unit
point source at —o’ then the field at r caused by a source distribution
p (FO) is the integral of Gp over the whole range of r_0 occupied by the
source. The function G is called the Green's function. It is a solution to
a given partial differential equation that is homogeneous everywhere except
at one point. When the point is on a boundary, the Green's function may be
used to satisfy inhomogeneous boundary conditions; when it is out in space,

it may be used to satisfy the inhomogeneous equation.

If the partial differential equation of interest is the Helmholtz equation
— 2 i
Vi tk ¢ =0 (A2-12)

then the required Green's function is the solution of the inhomogeneous

Helmholtz equation

VG, (FR)+KG (MR)= —4W8(F-R) . (213

It can be shown that Gk is a symmetric function of r and Fo' and from this

requirement it follows that we must have

QL ER) i RelE) | BN ol
R—o

To find the behavior of 9, for R =0, we integrate both sides of

(A2-13) over a small sphere of radius ¢ about Fc . This gives us

“ An inhomogeneous boundary condition is one that requires the field or its
nonzero value on the boundary. An inhomo~-

derivative to have a specified, nde
erm (a term not multiplied by the

geneous equation contains a source f
dependent variable or its derivatives).




Sg F?Z(qktﬁfo)“ + ‘ZL[H G (%) 4V = - 471, (A2-15)

The integral on the right-hand side equals -4 7 because of the properties of

the delta function and become the sphere integrated over includes the point

r = r—o. We assume that the first integral in (A2-15) will dominate as

R=0.

The divergence theorem states that
# F-4R = “ g (w.F)dv

-2 &
and applying this to (A2-16), since ¥V =V I

e Ta. dA=/[da\ (47&)
TH Sy <§ Ik (J%)R:é (A2-17)

or written another way,

‘iﬁé LHTR'Z' —2 = 4T as R ©, (A2-18)
d
so that

G 7o) B ol it (A2-19)




for the three-dimensional case. Similarly, for two dimensions

Gg (F7) =2 -2nR  y R=o0. (A2-20)

For one dimension, the Green's function G has a discontinuity in slope

equal to =4w at x = X

: XaTE
@5) = = Uy e0. (A2-21)
o X )

If the boundaries of a particular problem are at infinity, then

+1kR
Glrg(ﬁrn) = C g 4
R (3 dimensions) (A2-22)
o _ N L
S ID T e HO (KR) (2 dimensions) (A2-23)

(A2-24)

K Ix-xol
€

(1 dimension)




APPENDIX 3

PROPERTIES OF ORDINARY, LINEAR, SECOND
ORDER DIFFERENTIAL EQUATIONS

The following definitions and statements can be found in many texts

on differential equations:

1. The order of a differential equation is the order of the highest-

ordered derivative appearing in the equation.

2. An equation is linear if each term in the equation is either

linear in all the dependent variables and their various derivatives or does
not contain any of them.

3. An equation involving ordinary derivatives is called an ordinary
differential equation.

4. Given the functions f] ) RN , fn(x) then if constants € nes

€ not all zero, exist such that
< f] xX)+ ... + T fn (x) =0

identically, the functions f](x) A= fn (x) are said to be linearly dependent.
If no such relation exists, the functions are said to be linearly independent.
th :
5. An ordinary differential equation of the n order has, in general,

a solution containing n arbitrary constants. For a second order equation in

y, the solution can be written

y = C‘yl 'szyz =

Y For instance see E. Rainville, Elementary Differential Equations,

MacMillian, 1957.

e R



The functions Y1 and Yo must be linearly independent or ¢

to only one arbitrary constant.

]

and ¢

2
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APPENDIX 4
BOUNDARY CONDITIONS ON THE ELECTROMAGNETIC FIELDS

Maxwell's equations can be written in the form

VxE= —2B
o€ (Ad-1)
VXH_ s 3..@.- +3
® (A4-2)
ZB=0
(A4-3)
oot (Ad-4)

In order to establish the boundary conditions on the fields, Equations

(A4-1) = (A4-4) must be combined with the vector relations

j.s Aw da = Yv VA A dh

[(F45 = [(@@)Rda
c S (A4-6)

known respectively as the divergence theorem and Stokes' theorem.

From (A4-3), (A4-4) and (A4-5), we obtain

3‘- B-fda=0 (A4-7)

-
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R Bl TR e R R »
A "‘r.‘ o 3 ',?4 "’ ’}s'r'\

Y ndd = dy =g,
f g jrosing (A4-8)
From (A4-1), (A4-2), and (A4-6), we obtain

s ¢ (A4-9)

[ Rz - [, (2B+7)Rdn . (A4-10)

If a pillbox is constructed on S in the usual manner, we obtain from (A4-7)

and (A4-8),
(8,—B.)n = (Ad=11)

(A4-12)

where w is the surface change density. If a rectangular path C is drawn

cutting S in the usual way, we obtain from (A4-9),

(E:® + E.®)Aas= —2B.nAs8) =0
’+

S | e (A4-13)

where ;] and ;2 are in the direction of circulation and r_\o perpendicular

to the plane of path C. From (A4-10),
0T g .5 =( 2D —>-N—ASI~
(H ’tl x .f: (.1)_A5 (34: +J v ‘Q (Ad-14)
nx (l-_h _Hl) - K
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where K= [om S—Al

exists only if the conductivity of one medium becomes infinite.
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APPENDIX 5

DESCRIBING A PLASMA SHEATH IN TERMS OF A VARYING ¢28

The equation that governs the electron motion in a plasma is

which will be recognized as the Lorentz force equation. E and B are the
applied electric and magnetic fields, 2/ is the collision frequency for
momentum transfer between electrons and atoms or ions, and a term multiplied
by the pressure gradient has been assumed negligible.
We take E and v to be time harmonic, E. .. =B . =
static static

neglect B A since it is v/c times smaller than the electric force term.
wav

(A5-1) becomes

0, and

fsY, w el A —V—
JL&)VO —n—") Eo VVo (A5-2)

and solving for oy

&)

w-—jv

The current densityJ_o becomes

28

This material was taken partly from " Outline of A Course in Plasma Physics",

Part 2, American Journal of Physics, Vol. 31, Number 8, August 1963.
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(where N is the ionization density)

and substituting into Maxwell's equation, we obtain

Oxflo = jw (- Ne )E

‘7)(50 = —JjWNg Ro

Comparing with Equations (3-1) and (3-2), we see that

y
i & R

mw(w-‘j"’)

él: €e — NEZ’L o NG—L ; A

m(w"-«-‘:;’) m Wlwv?)
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(A5-4)

(AS-4)

(A5-5)

Comd

ity i i o+ . i il
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APPENDIX 6

TYPICAL ¢ VARIATIONS AROUND A RE-ENTERING MISSILE

Computed values of the ionization density and collision frequency for
a typical plasma sheath have been shown in several publications. The values
used in the current example were taken from AFCRL Report 87, by and are
computed for a SCOUT missile (Figure 7). This data, when substituted into
Equations (A5-5) yields values of € in the sheath (Figures 8-10).,

= W. Rotman and G. Meltz, Experimental Investigation of the Electro-
magnetic Effects of Re=Entry, Air Force Cambridge Research Laboratories,

Bedford, Mass.
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(2b)

ANNOTATED BIBLIOGRAPHY

Albini and Jahn, "Reflection and Transmission of Electromagnetic Waves
at Electron Density Gradients," Journal of Applied Physics, (January,
1961), pp 75-82.

A TEM wave is incident on a linear ramp T=Tp z/zo (or combin=-
ation of ramps) terminating in a constant electron density and
solutions to the wave equation in the ramp region are expressed
in terms of Airy functions. Transmission and reflection
coefficients were found to have a "strong, irregular dependence"”
on the ramp width. Further comments on the article are made
by L. S. Taylor in a letter in the September, 1961 issue of JAP.

P. J. Wyatt, "Scattering of Electromagnetic Plane Waves from |nhomo-
geneous Spherically Symmetric Objects," Physical Review, (September,
1962), pp 1837-1843.

P. J. Wyatt, "interdependency of Plasma Frequency and Surface Diffus~
ivity from Electromagnetic Scattering Analyses," Journal of Applied
Physics , (July, 1963), pp 2078-2083.

A plane wave is incident on an inhomogeneous, spherically-
symmetric scatterer composed of a medium whose optical
properties are continuous everywhere except possibly at their
outermost surfaces r = b. All of the important scattering
quantities are expressed in terms of solutions to the following

differential equations at b:

&2Wy _2dndwy 4 [w- U Jw =0

d*' wipige " e

2, 4

%6t 4 [w-— D) g = 0.

de® ¢

An example is worked out, using computer techniques to
generate the solutions.
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J. J. Brandstatter, An Introduction to Waves, Rays, and Radiation in
Plasma Media, McGraw-Hill, {1943).

The material on inhomogeneous media is mainly concemed with
ray tracing techniques.

Mott and Massey, The Theory of Atomic Collisions, Oxford, (1933)

Chapter 2 presents a detailed development of quantum
mechanical scattering using partial waves.

J. R. Wait, "Reflection of Electromagnetic Waves Obliquely from An
Inhomogeneous Medium," Joumnal of Applied Physics, (December,
1952), pp 1403-1404.

(Letter). A plane wave is incident obliquely on to the plane
surface of a semi-infinite medium with a permittivity ¢ that
varies in a direction perpendicular to the surface. An
analytic solution is obtained for
= =
€D = E-&)e” +e, , =z==o,
L. |. Schiff, "Scattering of Waves and Particles by Inhomogeneous

Regions," Journal of the Optical Society of America, (February, 1962),
pp 140-144,

Electromagnetic and Schroedinger waves are compared and
approximation techniques for perturbations in optical path
are discussed.

Recent Developments in the Theory of Wave Propagation, A Seminar,

New York University, (1949-1950).

A generalized solution to three-dimensional wave scattering
is developed using S-matrix theory in Section 111-C (p 30).
Two possible definitions for S are discussed in detail.
Schwinger's variational procedure for the solution of wave
scattering problems is applied in Section Il1-D (p50). The
remaining sections of the seminar notes are devoted to
mathematical analysis of other important aspects of wave

scattering.
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(8) Powell and Craseman, Quantum Mechanics, Addison-Wesley, (1961).

Chapter 8 is completely devoted to the theory of scattering,
including partial wave analysis and S-matrix theory.

(9) R. Shore and G. Meltz, " Anisotropic Plasma-Covered Magnetic
Line Source," IRE Transactions on Antennas and Propagation,

(January, 1962), pp 76-62.

Radiation from a magnetic line source in a ground plane
covered by an anisotropic, homogeneous (lossy) plasma
layer is considered.

(10) H. Raemer, "Radiation from Linear Electric or Magnetic Antennas
Surrounded by a Spherical Plasma Shell," IRE Transactions on
Antennas and Propagation, (January, 1962), pp 69-78.

The radiation from a linear electric or magnetic antenna
surrounded by a spherical shell of homogeneous plasma is

analyzed.

(11a) L. S. Taylor, "Electromagnetic Propagation in an Exponential
lonization Density," IRE Transactions on Antennas and Propagation,

(September, 1961).

The propagation of a TE wave into a plane stratified medium
in which the ionization density varies as exp z/z is

investigated.

In a subsequent letter (March, 1962), J. R. Wait points
out this result was obtained previously by a variety of
others, who are referenced.

(11b) L. S. Taylor, "R. F. Reflectance of Plasma Sheaths,"” Proceedings
of the IRE, (December, 1961), pp 1831-1836.

Series solution when the medium is bounded by a plane

conducting wall.

——
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(11c) J. Richmond, "Transmission Through Inhomogeneous Plane Layers,"
IRE Transactions on Antennas and Propagation, (May, 1962) pp 300-
305.

Solutions are found from step-by-step numerical integration.

(11d) J. Richmond, " The WKB Solution for Transmission Through Inhomogen=
eous Plane Layers," IRE Transactions on Antennas and Propagation,

(July, 1962), pp 472-473.

(Letter). The WKB method is applied to the above problem
and several examples evaluated.

(11e) R. Yamada, "Reflection of Electromagnetic Waves from a Stratified
Inhomogeneity," IRE Transactions on Antennas and Propagation,
(July, 1961), pp 364-370.

A more general approach to the above using WKB~-like
approximations.

(12) M. Plonus, "Diffraction of a Plane Wave by a Perfectly Conducting
Sphere with a Concentric Shell," IRE Transactions on Antennas and
Propagation, (November, 1961), pp 573-576.

Diffraction from a perfectly-conducting sphere with a
homogeneous concentric shell spaced any distance from
the sphere surface is presented.

An error in the asymptotic expansions is pointed out by
R. Garbacz in a letter in May, 1962, p 345.

(13) Hodara and Cohn, "Radiation From a Gyro-Plasma Coated Magnetic
Line Source," IRE Transactions on Antennas and Propagation,

(September, 1962), pp 581-593.

This paper analyzes the radiation from a magnetic line source
supported by a perfectly conducting plane and coated with a
sheath of lossy (homogeneous) gyro-plasma.
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(14)

J. R. Wait, Electromagnetic Radiation From Cylindrical Structures,
Pergamon, (1959).

An extensive treatment of antennas and conducting surfaces
in homogeneous media,

(15)

Panofsky and Phillips, Classical Electricity and Magnetism, Addison-
Wesley, (1956).

A general reference. Scattering from a conducting cylinder
and sphere in a homogeneous medium are treated on pp 199-

208,

(16)

M. Omura, "Radiation Pattern of a Slit in a Ground Plane Covered
by a Plasma Layer," Air Force Cambridge Research Laboratories
Report 62-958, (December, 1962).

An M.S. Thesis, this paper considers only o homogeneous
sheath.

(17) M. Moe and D. Saxon, "Variational Methods in Scattering Problems, "
Physical Review, (August, 1958), pp 950-957.

Introduction of a variety of stationary expressions to increase
the usefulness of variational methods.

(18) H. Uberall, "Scattering of Electromagnetic Waves in Saxon=Schiff
‘ Theory! Physical Review, (December 1962), pp 2429-2434,

A phase shift analysis has been made for a general weak
scatterer with complex dielectric constant and permeability,
using Green's function techniques.

(19) Du Bois et al, "Propagation of Electromagnetic Waves in Plasmas,”

Physical Review, (March 1963), pp 2376~2397.

Green's function techniques are used to treat the propagation
. : . L bt :

of electromagnetic waves in uniform, weakly interacting

plasmas.




(20)

(21)

(22)

(23)
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C. Yeh and Z. Kaprielian, "Scattering From a Cylinder Coated With

An Inhomogeneous Dielectric Sheath," Canadian Journal of Physics,
(1963), vol 41, pp 143-151.

A general plane wave is incident on a cylinder and solutions
are found for the homogeneous sheath and for a thin sheath
with

€k

KT

Computer evaluations have been graphed.

6’(_?‘\:

H. Tuan and S. Seshadri, "Radiation From a Line Source in a
Uniaxially Anisotropic Plasma," Canadian Journal of Physics,
(1963), vol 41, pp 246-257.

Solutions are found in a homogeneous, anisotropic plasma
with a magnetic line source.

W. Rusch, "Radiation From an Axially Slotted Cylinder With a Radially
Inhomogeneous Plasma Coating;' Canadian Journal of Physics,

(January 1964), pp 26-42.

A 1
The solution is formulated for €(Kg) = €ol\ ~ "_‘ﬁiﬁ)ﬁ_tl
and evaluated using series expansion m Egw
and computer techniques.

A. Penico, "Propagation of Electromagnetic Waves in a Plasma With
An Inhomogeneous Electron Density," Proceedings of Symposium on
the Plasma Sheath, Air Force Cambridge Research Center, (December

T959), pp 132-140.

A one-dimensional variation in € is assumed and WKB-type
solutions are found. Also, a few rigorous solutions are

obtained:
K@= (@ 24b) ‘_
NG ~57
K= (Q, z+b)  (Gz+ ba)
—Y L 1
K() = (a btk (4, 2+b) L€' (az+0) (@z+b.)' ]
K(Q) = K(—c) =0,




(24)

(25)

(26)

(27)

(28)

(29)
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J. Harris, "Radiation Through Cylindrical Plasma Sheaths," Second
Symposium on the Plasma Sheath, Air Force Cambridge Research
Center, (1962).

Only the abstract is available at present. The approximation
technique is based on an exact integral formulation for the
field radiated by a line antenna on a cylinder in a plasma
sheath.

D. S. Saxon, "Tensor Scattering Matrix for the Electromagnetic Field,"
IRE Transactions on Antennas and Propagation, (July 1956), p 579.

(Abstract only). The scattering of an arbitrary incoming wave
by a lossless, but otherwise unrestricted scattering object is
described in terms of a tensor scattering matrix.

Bernard Friedman, "Propagation in a Non-Homogeneous Medium, "
Electromagnetic Waves, pp 301-309.

A general derivation gives the cases for which Maxwell's
Equations are separable. Eigenfunction techniques are then
applied to the problem.

Richards, Manual of Mathematical Physics.

A general reference on methods of solving differential
equations.

W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley,
(1962) .

A general reference on finite and infinite Fourier transforms.

“Radiation From Slotted=Cylinder Antennas in a Re-Entry Plasma
Environment,"” NASA Technical Note, NASA TN D-2187

Numerical techniques are applied to the problem,
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