A Comparison of Layered Lightning and Ice Processes in Stratiform Precipitation

Shelby Bagwell, Lawrence D. Carey
Department of Atmospheric Science

Overview

- Stratiform ice can be formed through two growth mechanisms: deposition and aggregation
- Stratiform lightning tends to layer horizontally
- Charged regions are often formed by ice particles colliding and separating, causing a slight separation of charge that builds over time
- This project studied inferring hydrometeor types based on three dual-polarization radar variables: horizontal reflectivity (Z_H), differential reflectivity (Z_{DR}), and correlation coefficient (CC)
- This project also studied how the placement of lightning layers compared to the hydrometeor types present at the time of the flash

Key Findings

- Based on Z_H, Z_{DR}, and CC (Fig. 3), the dominant hydrometeors were
 - Ice crystals above 8km
 - Aggregates between 4-8km
 - A mixture of rain and melting (wet) aggregates between 2.5-4km
- Where ice crystals/aggregates were dominant, deposition (aggregation) seemed to be the dominant growth mechanism
- In 2 cases, a region of increased Z_{DR} and decreased CC is seen around -15°C, likely associated with enhanced deposition (Fig. 3)
- In case 1, there was a lightning layer at 4km. In case 2 (Fig. 4), there were two layers: one at 4km and one centered at 7km. In case 3, there were three layers: one at 2.5km, one at 6km, and one at 10.5km

Methodology

- 3 Mesoscale Convective Systems (MCS) were chosen based on their proximity to the KHTX radar in Hytop, AL
- 3 flashes were chosen from within the stratiform region of the MCS’s based on their proximity to the Lightning Mapping Array (LMA) sensors
- Dual-Polarization radar data were manually and visually analyzed from 2.5km to the top of the storm using GR2Analyst to build vertical profiles for Z_H, Z_{DR} and CC
- Vertical profiles were used to infer hydrometeor types and were compared to LMA data using XLMA and temperature profiles from soundings

Conclusions

- There were lightning layers in all three cases either where aggregation was the dominant growth mechanism or in the melting layer
- All of the regions contain mixed hydrometeor types that could be conducive to charge build up via ice particle collisions or other mechanisms
- Future work could study the polarity of the charge layers and where they commonly are within the cloud

Acknowledgements

Special thanks to Sarah Stough for her advice and help on this project. Special thanks also to David Cook, Dr. Bernhard Vogler, and all RCEU staff. We acknowledge NCEI for use of their radar data, NASA SPoRT for use of their LMA data, University of Wyoming for use of their sounding data, and New Mexico Tech for use of their XLMA software. The sponsorship of the UAH Office of the Provost, UAH Office of the Vice President for Research and Economic Development, and the Alabama Space Grant Consortium is gratefully acknowledged.