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ABSTRACT
The problem of low energy atomic scattering of electrons by multi-electron

atoms is formulated in the adiabatic exchange approximation. The effects of target

d'stortion by the electric field of the incident charged particle are determined by

computing a polarization potential to be included in the total scattering interaction.

The polarization potential is obtained through a polarized orbital calculation on
atomic systems described by Hartree-Fock type wave functions. App lication is made
to Na and Li where electron exchange is included in the reduction of the scattering
equation, and the phase shifts and total elastic scattering cross sections are obtained
through the solution of a set of integrodifferential equations. Exchange effects are
noted explicitly by solving the scattering equations neglecting electron exchange

and comparing the computed cross sections. The total elastic scattering cross sections
for Li and Na agree well with recent measurements over the entire experimental

range, and are significantly better than any previously published results.
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I. INTRODUCTION

The theoretical treatment of atomic collision processes has received a great
deal of attention by many investigators for the last thirty or more years. One can
find a vast amount of literature devoted to almost any phase of the problem. Yet
adequate solutions to almost all but the very simplest atomic collision phenomena
have yet to be realized. In this paper we will concern outselves with electron-
atom collision processes, and more particularly we will consider only the case of
electrons of low incident energy on single unbound atoms or ions.

The atomic scattering of electrons presents a very complex problem even
in the very simplest systems, the least complicated being that of electron-hydrogen
atom scattering. Even in this case, however, complete solutions have not as yet
been obtained. The Hamiltonian for this system is essentially the same as that for
the helium atom which has, of course, never been solved exactly. Scattering by
heavier atoms yields far more complicated Hamiltonians than that of the hydrogen
system and, of necessity, presents even more formidable problems in seeking any-
thing approximating an exact solution. It can be said, then, that at the present
stage of development in atomic scattering problems, exact solutions are nonexistent,
and progress toward an agreement of theory and experiment lies in finding the proper
approximations which yield accurate results, and thus more insight into the scattering
processes,

For low energy electrons incident on an atomic system, there are two major
effects which complicate the problem. These are 1) the exchange interactions
between the incident electron and the atomic electrons, and 2) the distortion of
the atomic systems by the electric field of the incident charged particle. For
certain atomic collision problems both these effects are more pronounced than
usual. In the case of the alkali atoms this is particularly true since the valence
electron is very loosely bound. Earlier calculations for the clkclis]-3 have shown

the extreme sensitivity of the calculated cross sections to the accuracy of the




polarization potential in the total scattering interaction and the exchange effects.
In this paper the problem of low energy elastic scattering of electrons by alkali-
type atoms is treated with application to atomic lithium and sodium in the energy
range from .003 to 25.0 eV. The effects of exchange and target distortion have
been calculated here through the use of the adidbatic exchange approximation
wherein the target atom is distorted by the static field of the incoming electron.

The polarization potential is calculated by a method of polarized orbitals similar

, . . ! o '
to that used by Temkin '~ and Callaway,  and electron exchange between the
- 4 Y G

incident and the valence electron is included through explicit use of the adiabatic

exchange approximation which leads to a set of integrodifferential equations for the

free electron wave functions.

II. THE POLARIZATION POTENTIAL
In this section the distortion of an atomic system by a slow incident electron
and the resulting polarization potential is developed from the application of first
order perturbation theory to Hartree-Fock electron orbitals. We note than analo-
gous perturbation calculations on Hartree and Hartree-Fock systems have been
carried out heretofore in order to determine atomic dipole polarizabilities (Sternheimer’ );

core polarization due to valence electrons in alkali atoms (Callaway ); and the

4
+

\

polarization potential for electron scattering (Temkin ).
We consider the first order perturbation by a free electron of an atomic

system whose unperturbed Hartree ~-Fock (H.F.) self consistent field wave functions

have been determined. Under the influence of the perturbation the H.F. one electron

orbitals and the H. F. energy depend on the coordinates of the free electron. The

perturbed orbitals v, of the H.F. determinant for the atomic system then sofisf'y

the following equation (in Rydberg units) which depends on the free electron

4,6

coordinate r..

P
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In these equations 'r.] i ]’2 are the coordinates of bound electrons and Tf is that of

the free electron. In order to simplify the above equations for the perturbed H.F.

) in the form
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orbitals we write ._(r] s
I
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where #.(r,) is the unperturbed H.F. or
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Our objective is to determine the first order perturbations X. of the single electron
|

orbitals ¥. of the Hartree-Fock determinant for the bound atomic system. In this
[
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calculation the term 2/r” is treated as a perturbation on the atomic system and the

4 The integro=

perturbations X, are determined from first order perturbation theory.
differential equations for the first order perturbation X, (?] 2 —r}) of the H. F. orbitals
may be determined from equation (1). These have been written down explicitly by
Callawcy,6 but are too complicated ro solve in any reasonable time. However,
if all the perturbed Coulomb and exchange integrals are dropped from the equations
for the first order perturbation of the H.F. orbitals, the resulting differential equations
are more tractable. The effect of omitting these integrals is discussed by Ccllawc:y6
and is shown to be reasonably small

The presence of the unperturbed exchange integrals A(r]) which are retained
in the equations for the perturbed Hartree-Fock orbitals still leave the equations in
a very complicated form. However, these terms can be replaced very conveniently
and with reasonable accuracy by an average exchange potential by the method
given by S|ofer.8 In the simplest form of Slater's method, the exchange term of
equation (7) is replaced by the function

Alry) olry) = 61:_83? LHE) fi(}’l)J]/3
|

glry)- (8)

The summation in this expression is carried over all occupied orbitals of both spins.
With this substitution and with the omission of the perturbation terms in the Coulomb
and exchange integrals, the resulting equation for the perturbation X, of a H.F.

orbital becomes:

it i g gy
)| T dr - A
1 1§

v~2 'y e g 04 > ) = [
["'v‘i + \/G]) As(r]) ei : Xi(r]’ rf) L
(9)

In this equation we expand the perturbation term Zk/r]f which appears in the two

terms on the right side, by the multipole expansion




(3 cosze- 1)+ ..

(rf‘)r]),

where 6 is the angle between " and Fee Substituting (10) into the two terms in the

brackets on the right of (9) we note that all but the spherically symmetric term in the
integral will vanish. Dropping the quadrupole and higher order terms the bracket

expression then becomes

where fe is the lesser and r_ the greater of Fye Tge We note that for large values

of r, the first and second terms in this expression will cancel each other leaving

1

2re
only the dipole term % cos 6. Also noting that for smaller values of f the
>

spherically symmetricrferm of the potential will be small as compared to the Coulomb
term, we make the dipole approximation and retain only the dipole term in the
bracketed expression.

To obtain the first order perturbation of each of the atomic electron orbitals

:i we thus have the following pair of differential equations to solve:

B ot -
[-«] + V(r]) - As(r]) € s : for rf>r]

2 o e . f . =
; v V(r]) 41 As(r])— ‘] ] Xi(r], rf) = ':7 cos © ri(l’]), for M >rf
]
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These equations musf be solved in the "inner" region where re<ry and in the

"outer" region where e > M and the solutions matched at the boundary Fe=ry

With the solutions for the perturbations X, of the Hartree-Fock orbitals

’

the dipole polarization potential is then determined from the expression

g -
. f) =LJ fi (r])—7 cos 6\(i(r],
i

?f)d?

| (12)

b

2

where the sum extends over all occupied orbitals %,.
]

The reduction of equations (11) into radial equations and (12) into integrals

3

over radial coordinates is accomplished easily by expansion of the functions .

and Xi in the form

(r))/r, Y™ (8, ¢) (13)

f-(r]) = P ’

o

. T , Cm-*m' Yml . ]
Xi(r], rf) . ¥ o ' Un"((rll l’f)/r] n 7"I !, (8, f_r) ( 4)

', m

With these substitutions the differential equations (9) separate into the radial equations

2 I, q & 2r
rd vt e (l + ]) st o ) = __I_.
| 3 v’(r]) +As(r])+ C]_Ung.,<r]'rf) 5 an(r]), re>r (155)
dr r r
1 1 f
2 v 2r
L fUen 3 e :
B V)t RN 8y (U Yt = =5 Vil ) 21 ()
dr] " "

which must be solved and matched at the boundary Fy=re The constants Cn 3

in equation (14) are determined from the Clebsch~Gordon coefficients which occur
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from the angular integrals. These are tabulated by Sternheimer and are zero unless

g = 131, where only the upper sign holds for £ =0, With the solutions to (15) the

polarization potential becomes

e -
= EA r -2
nl’}{f) = Knl"[ er ) an(r]) M Um"(”, rf) d ry ot “‘r Pn'(r])UnI‘Sy],rf)r] dr
f f

v

14

(16)

The constants Kn _,, are numbers which depend on ]I and on the number of electrons

in an nt shell and have been given by Sternheimer. In the limit as re =@ the

b ¢ : ; 4 : :
polarization potential calculated here should approach =a/r, where a is the dipole

polarizability, thus providing a convenient check on the accuracy of the solutions Vp.

I1l. THE SCATTERING EQUATION

As mentioned in Section |, both target distortion and electron exchange are

extremely important in electron scattering by the alkali atoms and must be dealt with

accordingly in the scattering equation. On the other hand, if one wishes to obtain

cross sections over a fairly wide energy range as in the present investigation, the

scattering equation must be written in a reasonably tractable form, since many partial

waves are required in the calculation. In order to achieve these objectives the

scattering equation is written as essentially a two electron equation for the free

electron and the single valence electron in the field of the perturbed core orbitals

with exchange between the incident and valence electrons included explicitly,

Exchange with core electrons is accounted for implicitly through the exchange term

As(r) of equation (7) and core polarization is included directly through Vpc(r) which

is the polarization potential of the core electrons. The Schroedinger equation may

then be written in the form



e

Pk . 4R bz i = 2 Vo> =
L9 % * E V(r]) V(r2) - As(r]) +As(r2) Vpc(r]) + Vpc('z) e (r], r2) =0,
(17)

12
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where " and r, are position vectors for the two electrons, and the terms V(r), As(r)

are given by equations (6) and (8). Vpc(r) is the polarization potential for the core
electron calculated by the method of Section Il.

With this scattering equation the adiabatic exchange model is again utilized
to express the wave function ¥ (F] ¢ r.2 for the free and the bound electron. In this
approximation ¥ is written in the form

g .- . + - —

¥y, 1p) = ¥ (), 1)) Flry) = 4,() F(ry),

' .
where e is the ground state wave function for the valence electron, ¥ is the

perturbed ground state function which is perturbed adiabatically by the free electron
whose wave function is F, and the perturbation term is 2/r]2'

The plus sign in (16) refers to the symmetric (singlet) state of the two electrons,
and the minus sign to the antisymmetric (triplet) state. In the adiabatic exchange
approximation adopted here the symmetry of the wave function Y is partially destroyed
since the unperturbed bound state function Y, appears in the second term of (18)
rather than the first order perturbed function §'. The omission of the first order
perturbed term in the exchange wave function means that the function ~(-r’] " ?2) is
not completely antisymmetric except in the limit of large ) where the perturbation
becomes zero. This approximation is consistent with the perturbation calculation
of H.F. functions in Section Il and should have an equally small effect on the
accuracy of the scattering equofion.a’ "

The perturbed ground state function §' is written, as in Section Il, in

the form

'o(r]) + X(r], r2) ’

and the perturbation X is determined from equation (9).
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Equation (18), with ¥ written as in (19), may be substituted into equation

(17) in order to obtain an equation for the free electron function F. With this sub-

stitution, equation (17) may be multiplied on the left by .;(:]) and the result
P e

1

With the use of equations (5), (9) and (12) the Schroedinger

integrated over

equation becomes

3222, iy A
L2+ 7 Volra) Al +V,, () +Vp,(rp) JFir))

2 ."'."/2_,_2 g g
- J d T.I ‘O(l]) ‘ko EO E)F(r]) ‘O(rz) (20)

where the upper and lower signs refer to the singlet and triplet states respectively.

2 L I S :
Here the term k=~ = E - Eo is the kinetic energy of the free electron and E0 is
o

the ground state energy of the bound electron, ‘.’O(r2) is defined as

which is the screened Hartree-Fock potential for the neutral atom. The term

a2

)

2

Vp (rz) is the polarization potential due to the perturbed valence electron and
v

is given by

~

= 1 o .\
Vp, (rp) A

v o

-

X (r] . r2) d 2

"12

which is, in the dipole approximation, just that of equation (12) where X is to

be determined from equation (11). Thus the sum of the two terms \/p + V., is
c Py

the polarization potential for the core plus the valence electron and is just the

polarization potential of equation (12) for the complete atom. This will be

denoted by Vp N

By the use of a partial wave expansion of the free electron wave function

F(r) equation (20) can be reduced to a radial equation for each partial wave f .

Thus we write




=10=

F(F}) . “The f‘ (r) Fi (cos 8

. )
r

With this expansion, the equation for the partial wave f becomes

& 2 2
St slk®-v +v A < AU L E - 1B8
! o o p s o o

r2 bl fOUodr

d o

r
-([+1) f‘u r'dr
o

.

(22)

whereu =r ¥ isthe radial part of the normalized ground state wave function

c o
for the valence electron.

The integrodifferential equation (20) may be solved in a non-iterative fashion
by a procedure used by Marriott, L or in an iterative self-consistent calculation
as was used in the present work.

If electron exchange is completely ignored between the bound and free
electrons, the scattering equation (22) reduces to a homogeneous equation where
the right side is identically zero. Solutions to both sets of equations were obtained

in order to determine the effect of exchange on the calculated cross sections.

V. APPLICATION TO Li AND Na
A. Calculated Polarization Potential
In the calculation of the polarization potential, the unperturbed wave
functions for the atomic system were taken as the Hartree-Fock-Slater (H.F.S.)
wave functions obtained from a slightly modified program originally written by

] ~ - 2
Herman and Skillmann. 2 The output of the program furnished the functions




bk

V(r), As(r), e;) and Pn'(r) in equations (15), which could then be solved for the

perturbations Unr*xl of a given orbital whose radial function is Pn‘. For a given

value of e equations (15) were integrated by the Numerov process for inhomo-
geneous equations as described by Hartree, 3 over the same f mesh as that of the
H.F.S. program which fumished the unperturbed functions. The integration in the
inner region was started by noting, as did Sternheimer,6 that for ;e 0 the inhomo-
geneous term on the right side of (11) is negligible as compared to the potential terms
on the left. The solution may thus be started by a series exponsion]3 near the origin

and continued by numerical integration. With this procedure there is an arbitrary

41
constant in the starting values, this being the value of (Unt—*i,/rl )O' For the

inhomogeneous set of equations (11), this parameter in the starting conditions must

be determined in order to satisfy the boundary conditions; that the solutions to (1 la)

and (11,,) and their derivatives match at ry =T and that the solution be exponentially
’

+]
n' "1/ r )O
coded program until two values were found which enclosed the correct one. The

y

decreasing at infinity. The value of (U was varied automatically in the
choice was then narrowed by successive solutions until an accuracy of five to six
significant figures in the starting value was achieved. The calculations were performed
on a Univac 1107 computer at the University of Alabama Research Institute.

In the present calculation the total polarization potential was taken to be
that contributed by electrons in the two outermost shells of the alkali atom. For
Li both the core and valence electrons are in s-states. In Sternheimer's notation
these undergo s = p perturbations and the radial equations must be solved for the
perturbation U] 01 and U2,O»~' 1 In the case of Na the 2s and 3s electrons
experience s - p excitations similar to Li. However, for the 2p electrons, two
modes of excitation 2p = d and 2p —+ s are possible and the perturbation U2, 12
and U2, 1 9re required.

The solutions to the pair of differential equations (11) for the perturbations

1(r, rF) exhibit a behavior very similar to the simpler solutions obtained by

U"l"l—
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Sternheimer. Thus the nodes of the radial function Un(—d.' correspond in number

to the orbital next higher in energy than nt having \' angular momentum. Also

the contributions ns +p and np — s are opposite in sign as found in Sternheimer's
calculations and tend to cancel each other in their contribution to Vp. (Stern-
heimer supports this behavior with a reasonable physical and mathematical argument . )
The solutions to equations (11) are of course more complicated than those of Stern=
heimer since his equations correspond to those only in the asymptotic region of e
where only one of equations (11) holds. As the free electron moves in toward the
nucleus, the pair of equations must be solved for each value of fee In the actual
solution the equations were solved over a 441 point mesh on ry and for 110 values

of Moo As one would expect from physical arguments, the amplitude and to some
extent the shape of the perturbation Unl—-l'(r’ rf) of an n Xk orbital depends on the
position s of the free electron. The perturbation is small for large Fer largest when
Feal s where s is the position of the largest maximum of the unperturbed function,
and small again for St 0. This is clearly shown in Fig. 1 where the unperturbed

radial function P3s(r) for sodium and the perturbation U3 0_’](r, rf) for three values

of e are shown.

We have so far considered the core polarization as being due only to the
electric field of the incident electron. However, since the valence electron is

strongly polarized bythe field of the incident particle, there is an induced field

. 14 . i
acting on the core due to the polarized valence electron orbital. ~ This field

tends to induce a moment of opposite sign in the core orbitals, thus decreasing
the effective polarization of the core. An estimate of the size of this effect can

be obtained by calculating the electric field at the nucleus 2 (0) due to the

E
val
perturbation of the valence electron wave functions. The z-component of this

field is given byM
@

-

'Z(O,r) = e ) Ping F ©O8 6 dv

L E

val
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where Ping 1 the electron density induced by the field -e./r2 of the charge -e

f

ot z =r.. Forthe valence electron in an s-state this becomes

f

@

5 - \ﬁ [
i'xE (O, rf) = e 3 J P

val,z

_ -2
00" Yn, 01\ 1 T

O

If the valence electron were completely external, the total field acting on a core
electron would be the sum of that due to the free electron and that given by the
induced field of Eq. (24). However, since the valence electron penetrates the
core the effective field due to the valence electron is reduced from this value,

But more important for our purposes is the fact that in the scattering problem the
perturbing electron also penetrates the atomic system. Thus the induced field

(Eq. (24)) is a function of Fer and since the core polarization potential only be-
comes appreciable for small values of fer it is necessary to calculate the induced
field of the valence electron for several values of re in order to estimate the size
of this effect on the core polarization as compared to the direct field of the pene-
trating electron. This has been done by evaluating Eq. (24) for several values of

r.. The results for Na are shown in Table 1.

£
TABLE |I. Electric Field at the Nucleus due to
Perturbed Valence Electron of Na as

a function of rge

211 597 3.017 6.075

O, r .0169 .037 .0949 .0501

¢

“val ,z

We note that the induced field of the valence electron first increases as

r, decreases from infinity, reaches a maximum for Feno T (see Fig. 1) and then
(&)

f
decreases rapidly for smaller values of Fer approaching zero at e 0. This can
easily be seen from Fig. 1 where the amp litude of the perturbation of the valence

electron is seen to first increase and then decrease as e gets smaller.

dr. (24)
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In order to estimate the effect of this interaction on the calculated polari-
zation potential, we show separately in Fig. 2 the polarization potential from the
valence electron and from the core electrons as calculated from Eq. (16). Then

note that for values of r greater than ~2a where the induced field of the valence

O

electron is appreciable, the polarization potential due to the core electrons whether
due to the direct terms from the incident particle or from the induced field of the
valence electron is essentially negligible as compared to the large valence electron
contribution. Furthermore, for small values of f where the core polarization potential
becomes appreciable, the induced field due to the valence electron becomes small

as compared to the perturbing field of the incident electron (down by a factor of

six from its maximum (Table 1) and thus can reasonably be neglected in the calculation
of Vpc, since this is the only region where '/‘jc is important, Thus in the present

treatment the core and valence contributions to V are calculated independently

and added (Fig. 2), neglecting the induced effects of one upon the other. The
core contribution is almost entirely due o the 2p—d excitation, since the 2p—s and

2s-+p contributions cancelled each other almost exactly.

As a check on the accuracy of the calculations one can compare the

asymptotic value of the calculated dipole polarization potential with the value
. 4 s
which one knows should result, namely V (r) o/ for r =+ @ where a is the

dipole polarizability whose value is available from experiment, Thus, in Table ||

we give the calculated value of a from the present calculation which is obtained

from the equation @ =V _(r) - r. at fe = 25a,.. The results are converted to A

J

and with other calculations.

in Il and compared with experimental values

The agreement with experiment is very good.

TABLE Il. Dipole Polarizabilities From Asymptotic
Value of Vy, in Present Calculation and

v

From Experiment, 'V

Li Na

Present

Measured

SHT
Sternheimer

(a) Ref. 14
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B. Solutions to the Scattering Equation
The solutions of the scattering equation (22) for all partial waves " having

i 7 were obtained by an iterative self consistent method of solution. In this tech-

nique the integration was started by expanding fy in a power series near the origin

ond continued by Numerov's method. In addition, the required starting values
for the integrals on the right side of (22) were obtained by first solving (22) with
the right side set equal to zero (no-exchange approximation). The resulting wave

functions were then used in the integrals for the next iteration.

Having started the iteration the entire integrodifferential equation was iterated

through a self consistent field procedure. For this, the integrals on the right side
were compared at some large value of r (r = 30, at which point the integrands vanish
to a good approximation because of the bound orbitals) with the value from the pre-
ceding iteration. If the value of the integrals from one iteration differed by more
than 0. 1% from that of the preceding solution, then the process was repeated until
this criterion was satisfied

For values of 4> 7 it was found that the exchange terms of Eq, (22) were
completely negligible, therefore the solutions fy were found by simply solving the
homogeneous equation obtained by setting the right side of (22) equal to zero

The phase shifts 5: and "1; were obtained directly from the solutions to
9. (22) by integrating the equation out to a distance which was large enough that

2
all terms in the differential equation were negligible as compared to k™ (<10 ).

4
-l

The phase shifts were obtained by comparison with the spherical Bessel functions.

istance at which this criterion is satisfied depends, of course, on the value

| he

~
d
2 . . "
of k For the smallest values of k this distance was n as large as 500a and

. O

for the highest values of k it was as small as 35a_. The proper multiple of » to be

odded to the phase was obtained directly by a node count on the solutions ;l and

on the corresponding Bessel .’.,nc'.‘iona)'l, The result was available directly from the

odditional number of nodes in the function
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For comparative purposes, the first few phase shifts for Na are shown in
Fig. 3 with exchange included and in Fig. 4 with exchange neglected in the
scattering equation., The effect of exchange is evident in the plot of the phase
shifts, However, in the calculations of the total cross sections the effect is much
more pronounced.

The values of the phase shifts for singlet and triplet scattering are listed
in Tables A~l and A-1l of Appendix | for several energies. In Table A-lll are
the phase shifts for higher values of { where the triplet and singlet partial waves
were indistinguishable. Finally, in Tables A=V and A-V are listed the phase

]
shifts for Li and Na with exchange effects ignored completely. 6

V. TOTAL ELASTIC SCATTERING CROSS SECTIONS
With the phase shifts 6; and 6; determined, the total elastic scattering
cross section for the singlet or triplet case may be determined (in units of vrooz)

from the expression

21+ sin2 81‘

where the (+) refers to the singlet and the (=) to the triplet states of the system,

The total cross section is then

If electron exchange is neglected the total cross section is given by Eq
where the S’\ ‘s are those obtained from the homogeneous equation analogous to
Eq. (22)

In Figs. 5 and 6 the total elastic scattering cross sections for Li and Na
are shown compared to the experimental results of Perel, Englander and Bederson

Q

and of Brode 0 (The results are plotted as a function of Vvolts in order to show
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the low energy values more clearly.) The agreement with experimental values over
the range of the experiments is quite good. In particular we note the double reso-
nance exhibited by the total cross section, one at about 1/4 volt and another smaller
peak at about 1.5 volts which corresponds exactly in energy to the experimental peak
in this region. Unfortunately, no experimental cross sections are available for Na
and Li in the very low energy region as in the case of Cs, thus the second peak in
the calculated cross section cannot be checked against experiment at present. The
calculated cross sections are about 5-15% higher than the experimental values of
Perel, et al., however, their results were normalized to those of Brode ot 2 eV,

thus the absolute values of the experimental curve may be in error by this amount,
particularly since Brodel8 states that his values below 4 eV are uncertain to 2 15%.

Also shown on Fig. 5 are some recent theoretical cross sections for Li obtained

. 2
by Bauer and Brownelq and by Vinkalns, Karule and Obedkov. The results of Bauer

and Browne were obtained by adjusting a variable parameter in an approximate ex-
pression for the polarization and exchange potential. The results of Vikalns, et al.,
were obtained using a polarization potential obtained from coupling with the first
excited p state (2p) by perturbation theory. The results of the present calculations
are in much better agreement with experiment than any of the prior calculations.

We note in Fig. 5 and 6 that in the present results for both Li and Na the
calculated cross sections decrease to relatively small values at very low energies
The values at zero energy were determined by calculating the scattering lengths

+ . 21
A= for singlet and triplet states from the modified effective range theory expansion

<+ + , 2 * . ; a T
tan o~ = A"k - (wa/3) k" - (daA~/3) k" In (1.23 Vak) + «--
o

+ g o4 P
where A~ is the scattering length. The values of A were obtained from the phase

shifts at k = /.00025 (RY) and are shown in Table V1.
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TABLE Ill.  Scattering Lengths for Li and Na

Na

It is worthwhile to compare the scattering lengths of Table |11 with those calculated

for electron-hydrogen scattering by various methods. In the case of hydrogen the

singlet scattering length is A =6a and the triplet A 2a (Resenberg, Spruch

Q

22 i o ' . +
and O'Malley ™ give upper bounds of 6.23a_ond 1.91 a_ respectively for A" and
> 22 Vv
Y 2 . . Lo R 4 ;
A ; other calculations agree well with these results ) We note from the results of

Table |11 that both the singlet and triplet scattering lengths of Li and Na are very
little different from those of hydrogen. This is significant for two reasons. First,
though the alkali atoms are much more complicated than hydrogen, they retain
hydrogen-like characteristics and polarization and exchange effects are similarly
important as in the hydrogen atom. Second, and perhaps more important for com-
parison purposes, is the fact that the negative ions of Li and Na are estimated to
have approximately the same binding energy as that of the hydrogen atom (roughly
J=.8¢eV) 24 Thus, heuristically one would predict that the singlet and triplet
scattering lengths for these alkalis should resemble those for hydrogen, which is
true in the present calculation.

I3
=t

di ffer auite drastically from those «
The present results for zero energy differ quite drastically from those ¢
20

other calculations for alkali atoms. The results of Vinkalns, Karule, and Obedkov

o " -~ - : ; £ <al '“211. N
for Liare A = -4.8 and A -10.4 and those of Salmona and Seaton or Na

+ - L .r Bl o ! ~r
are A =9 and A =-12. Both these results are very much different from those for

hydrogen and from the present results, being exactly opposite in relative magnitude
and yielding much larger values of o for E = 0. The present results also differ greatly
26
“N

+ 4 o T ’ -
from those for Cs by Crown and Russek, A ==-20and A =360 a_ which yield
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very large cross sections at zero energy. Though no experimental data is available
for comparison at very low energies, the present results seem more reasonable from
the above argument. Also the results ot higher energies are much better in the
present calculation than in any of the previous alkali atom calculations, which
lends some support to the present low energy results.

Finally in Figures 7 and 8 are plotted the total elastic scattering cross
sections for Li and Na neglecting electron exchange. The results are compared
with those having exchange included, thus exhibiting the effect of the Pauli prin-
ciple on the calculated cross sections. The results at low energy are, as expected,
strongly effected by exchange effects. This is especially true for Na where the
figure shows that the results differ by an order of magnitude. Thus one can con-
clude that computed electron scattering cross sections for the alkalis are completely

unreliable at energies below one volt in the no-exchange approximation, a fact

. . e . 9
which has earlier been demonstrated in the case of Cs.

VIi. CONCLUSIONS

From the results obtained in the present calculations it seems that the
method of polarized orbitals and the adiabatic exchange approximation is capable
of describing low energy electron scattering from more complicated atomic systems,
these being represented by H.F. type wave functions. In the calculation of the
polarization potential for the alkali atoms, the approximation used in earlier cal-
CUlOﬁOﬂS,A’é’ 10 that only the outer region of the perturbation equations be included,
seems to be inadequate. Since the valence electron is very weakly bound, the wave
function of the valence orbital has an appreciable amplitude over a rather large dis-
tance, and the inclusion of the inner and outer regions in the equations for the per-

tutbed radial functions gives a strong dependence of the amplitude and the shape of

the perturbation U ; on the free electron position. With the strong dependence

neg—"y
g

of the scattering cross sections on the shape of the polarization potential in the

region near the atomic radius, this behavior should not be ignored in the calculation

of V.
o
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There are two points which should be mentioned in comparing the present
interaction potential for electron-alkali atom scattering with other calculations
on the same problem. The first, which was pointed out by Temkin,4 is that the
perturbed orbitals X; contain, at least partially, the effects of both the continuum
and configuration interaction. The perturbed wave function contains terms of
higher angular asymmetry than the original function and corresponds roughly to a
perturbation of some closely lying configuration. Furthermore, the radial dependence,
which arrives from the solution of an inhomogeneous set of equations, reflects the
effects of all higher states even of the states of the r:onfinuum.4 The methods
employed in other calculations for the alkalis include the contributions from only
a limited number of higher states to the polarization potential, usually only one™’
or at most two or thre624'25 excited states. This has been shown to be adequate
for very large e where the results may be compared to that yielded by the dipole
polorizability,24 but for values of e comparable to the atomic radius where the
perturbation is considerably stronger this approximation may be inadmissible.

Another significant difference in this comparison is the treatment of the
core electrons. Here, both the effects of core polarization and exchange are in-
cluded, at least approximately; core polarization by drect calculation and exchange
in the core through the use of the Slater exchange approximation for the exchange
potential in Eq. (17). Somple calculations for Na neglecting these effects indicate
that both contributions are important for some values of E. The method of Bauer and
Brown26 yields a convenient approximation to both effects, though adjustable para-
meters are involved in the calculation. Their calculated cross sections for Li are
well below experimental values in the region just below the first excitation threshold.

In the present treatment the Slater approximation for the exchange terms in
the Hartree-Fock equations was utilized in calculating the bound state as well as
the free wave functions. There are, of course, more accurate wave functions

available for Li and Na, but the magnitude of the problem begins to be unmanagable




29

in the complete H. F. perturbation calculation. The H.F.S. wave functions are,

in fact, very close approximations to the H.F. solutions and since exchange polari-
zation terms are neglected in the polarization potential calculations, it seems that
little would be gained by using more exact H.F. ground state wave functions in the
equations derived here. In fact, the present investigation indicates that a useful
criterion for a "good" set of bound state wave functions in a low energy scattering

problem where the polarization potential is so important is that set which gives a

good value of the polarizability in the polarization potential calculation. The

H.F.S. wave functions used here satisfy this requirement very well.,
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APPENDIX

Tables of phase shifts for Li and Na
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TABLE A-lV
Phase Shifts for Lithium (No exchange)

8, 5, 8, 8,
142 2x-.008 n +.001
182  2¢-.014  x+.003
217 2x-,024  w+.004
279  2n-.048 = +.007
.331 2x-.073 = +.010
379 2x-.100 .012
422 2x-.127 .015
500  2x-.180 .019
569  2m-.231 .024
.631 2w~ .279 .029
741 2n - .346 +.036
836 2w~ .447 .048

n-1.197 2n-.750 .092

In-1.452 2x-.963

2¢+1.313 2¢-1.231

2¢+1.098  2x-1.397
2v+.976  2m-1.480
2v+.867  2w-1.575

2w+ .720

2x+ .590

2n+.511

2w+ .335

2v-.179
.530
.673
798
.913

2v-1.014

2v-1.193
.347
.490
.062
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Phase Shifts (contd.) and Cross Sections for Lithium
i P St T - I R . o ()

504.4

559.7

607.5

693.0

770.9

842.3

873.9

1030.3

1131.1

1214, 1

1310.6

1411.5

.020 1456.9
.030 1289.0
.050 1071.1
065 .007 1033.3
075 .008 1031.6
.085 009 1089.7
.100 011 1106.6
115 .014  .009 1103.7
125 017 011 1077.¢
. 150 .021 .013 969. 1
.250 .054 .032 755.3
350 091 056 035 684.4
. 400 114 071 .045 662 .8
450 .136 .087 .056 648.7
500 .159 .103 066 633.7
550 . 182 A17 . 784 617.1
650 220 . 147 .098 067 590.5
750 261 Y7 122 .085 061 .043 569.0
1.00 349 247 176 . 128 .092 .069 051 .038 519.1
1.50 A77 .362 .273 .210 . 160 122 096 .073 440.7

2.00 .562 444 . 348 .278 219 172 . 140 .110 382.0
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TABLE A-V
Shifts for Sodium (No exchange)

Energy 80 8] 4 55 57 68
00075 4n-.178 3n-.295

.0010 4n-.212 3n-.333 .0003

0015 4n-.273 3n-.397 .001

.0020 4u- 327 3u-.45] .002

.0025 4~ .375 3m-.499 .003

.0030 4n - . 418 3w-.542 .004 .001

.0040 4n-.497 3n-.617 .006 .002

.0050 4n- .566 3n-.682 .008 .003

.0060 4n~-,629 3u-.74] 011 .004

.0075 4n-.714 3n-.819 .014 .006

.0100 4n - .837 3n-.929 .014 .006

.0200 4x-1.20 3n-1.25 .057 018 .009

.0300 4n-1.47 3w-1.47 . 123 .031 014 ,008

.0500 3n+1.29 2 +1.44 « 357 075 .028 .014 .008

0650 3n+1.07 2w+1.26 616 124 .043 .,020 .012 .008
.0750 3n +.942 2n+1.16 .810 62 057 .02 .04 OOy
.0850 3n +.830 2n+1.07 .01 .205 072 .031 .017 .010
. 1000 3w +.679 2n+.954 23 275 .097 .042 .021 .013
1150 3w +.544 2¢ +.846 .43 349 .126 .054 .027 .016
. 1250 3 +.,463 2w +.781 .33 401 .147 031 .018
1500 3x+.281 2w +.637 e 514 202 045 .025
2500 3n=-.250 2¢+.211 .26 4 F A 115 .064
3500 3m=.615 2u-.081 2] 15 .609 190 1
.4000 3n-.763 2m-.200 20 .23 .682 .225 139
4500 3n-.894 2nx-.305 v 4 .28 750 264 162
.5000 3nr=-1.01 2x-.399 .22 .32 .808 .301 .188
5500 3r=1.12 2n-.484 .22 .35 .852 31 .215
.6500 3=-1.31 2n-.634 S .38 .932 396 .260
.7500 3n=1.47 2x-.762 .28 .41 ,986 448 306 .2
1.000 2v+1.34 22-1.02 .35 .42 .07 90 S .2
1.500 2r+.880 2x-1.38 A7 .38 .12 691 .530 .408




"

Phase Shifts (contd.) and Cross Sections for Sodium

Energy 8]0 5” 6]2 8]3 5]4 8]5 8]6 o<a
.00075 4778.0
.0010 4594, 1
.0015 4375.6
.0020 4235.2
.0025 4127.7
.0030 4036.5
.0040 3877.5
.0050 3734.4
.0060 3601.6
.0075 3417.2
.0100 3139.1
.0200 2313.9
.0300 1780.6
.0500 1267.2
.0650 1206.7
.0750 1234.7
.0850 1256,%
. 1000 1200.6
. 1150 1113.0
. 1250 1047.5
. 1500 914.8
.2500 753.4
.3500 .044 724 .8
.4000 .054 712.9
.4500 .067 704.3
.5000 .080 693.0
.5500 .094 679.5
.6500 .118 .080 657.3
.7500 . 146 101 072 .052 635.0
1.000 .206 « 128 110 .081 .062 044 575.3
1.500 313 .243 188 . 145 114 .086 .070 481.8
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