
Operating System Fingerprinting using IPv6 Packets and
Machine Learning Techniques

Adrian Ordorica
Computer Science and Computer Engineering

Department
University of Arkansas
Fayetteville, AR 72701

1(918) 978-5400
aordoric@uark.edu

Dale R. Thompson
Computer Science and Computer Engineering

Department
University of Arkansas

Fayetteville, AR 72701 USA
1(479) 575-5090
drt@uark.edu

ABSTRACT
In this paper, we discuss a new approach on operating system
(OS) fingerprinting using IPv6 packets and supervised machine
learning techniques. OS fingerprinting tools are essential for the
reconnaissance phase of penetration testing. While OS
fingerprinting is traditionally performed by passive or active tools
that use fingerprint databases, very little work has focused on
using machine learning techniques. Moreover, significantly more
work has focused on IPv4 than IPv6. We introduce a collaborative
neural network system that uses a voting design to deliver
accurate predictions. This method uses IPv6 features as well as
data link features for OS fingerprinting. Our experiment shows
that our approach is valid and we achieve an average accuracy of
86% over 100 sets of neural networks with a highest accuracy of
96%. Finally, we explore the impact of additional training for
poor neural network accuracy, and we show that our system can
achieve an average accuracy of 92%, which is a 6% improvement
over the previous approach.

Categories and Subject Descriptors
C.2.3 [Network Monitoring]; F.1.1 [Self-modifying machines
(e.g., neural networks)];

General Terms
Measurement, Design, Reliability, Experimentation, Security.

Keywords
OS fingerprinting, Supervised Machine Learning, IPv6, Computer
Networks, Neural Networks.

1. INTRODUCTION
Internet Protocol version 6 (IPv6) is the most recent numbering
system that provides more IP addresses than Internet Protocol
version 4 (IPv4). The growing need for IPv6 is slow but inevitable
with rising IP address consumption. The new address space uses
eight sets of four hexadecimal addresses separated by a colon (:)
like: xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx (x would be a
hexadecimal value) providing up to 3.42 x 1038 total addresses.
IPv6 simplified header structures lead to faster routing compared
to IPv4. Different operating systems (OS) have different
implementations of IPv6 that exhibit slight variations in the
protocol. These features can be used to do passive identification
of the operating system, which is sometimes called OS
fingerprinting.

OS fingerprinting is important to network security with its
relationship to the reconnaissance phase of penetration testing.
Knowing the OS is essential for attackers to accordingly use tools
and programs when gaining access to their targets. The network
layer of the Open Systems Interconnection (OSI) model does not
contain any explicit information about the operating system of the
network device generating traffic. However, certain features are
unique to each operating system.

Machine learning focuses on the ability for computers to learn
without being explicitly programmed. This is achieved with a
combination of algorithms and simulated neural networks. These
simulated neural networks are intertwined weights that adjust after
passing in features (input) transformed by an activation function
and taking the difference between the actual labels and the
prediction (output). A greedy algorithm known as
backpropagation provides a fast solution to pattern recognition in
this supervised learning experiment.

Present passive OS fingerprinting methods match the gathered
network traffic with previously developed IPv6 signature
databases. The approach in this work is to use supervised machine
learning techniques to learn the slight variations in the IPv6
network implementations of different OS’s.

The rest of the paper is organized as follows: Section 2 covers the
foundation of IPv6 and the contrast to IPv4, as well as an
overview of OS fingerprinting and machine learning techniques.
The methods for performing passive OS fingerprinting are
discussed in Section 3. Section 4 presents the results comparing a
variety of setups. Future work is discussed in Section 5 and the
conclusions are in Section 6.

2. RELATED WORK
As shown in Figure 1, the format of IPv6 packets is designed to be
simpler than the IPv4 format. The IPv6 header is reduced to 8
fields from 14 fields in the IPv4 header. Four of the field names
and positions have changed but functionality remained the same
in the IPv6 header. The flow label is the only new field that is a
quality of service mechanism to avoid congestion of the network
[9]. There are 7 fields removed whose functionality has been
grouped and moved to a next header field. The next header field is
optional, yet can chain additional headers if the packet requires
additional options or information.

Figure 1. Comparison of IPv4 and IPv6 Headers [6]

In IPv6, Neighborhood Discovery Protocol (NDP) is responsible
for the auto configuration of nodes on the network. NDP is meant
to replace the Address Resolution Protocol (ARP), the Internet
Control Message Protocol (ICMP), and the Internet Router
Discovery Protocol (IRDP) from IPv4. The NDP uses five
ICMPv6 packet types: Router Solicitation (RS), Router
Advertisement (RA), Neighbor Solicitation (NS), Neighbor
Advertisement (NA), and Redirect [8]. NDP conducts the
Stateless Address Autoconfiguration (SLAAC) method as a
device joins the network. There is an opportunity for passive OS
identification when a device uses NDP to join a network. In
addition, observing the NS and NA packets can identify the OS of
nodes that have already joined the network and are
communicating.

OS fingerprinting techniques can be categorized as passive or
active. Passive techniques do not send any traffic and rely on
collecting regular traffic for analysis. Active techniques send
crafted packets to identify systems based on responses, or the lack
thereof. Active scanning and probing of the IPv6 space is
impractical and an open problem due to the large address space
unlike the IPv4 address space [3]. Fingerprinting tools, such as
Nmap, require manual query development and accurate
classification models. Nmap mentions that IPv6 OS detection is
used just like IPv4: send probes, collect responses, and match a
set of responses against a database [4]. However, these probes are
seeking responses from higher-level protocols like TCP and
require an expert-user to craft packets that can accurately identify
nodes on the network.

Passive tools, such as p0f, use purely passive mechanisms to
identify the operating system and software of both ends of a
vanilla TCP connection without interfering with the
communication in any way [14]. P0f uses a fingerprint database to
lookup signatures of collected packets. These signatures will
include data extracted from the IPv4 and IPv6 headers, TCP
headers, dynamics of the TCP handshake, and application
payloads. While there is a database of IPv6 signatures, there is a
stronger focus to expand the database of IPv4 signatures. Another
passive tool, siphon, is a network mapping tool whose behavior is
similar to p0f as it identifies network hosts using TCP headers,

UDP headers, and the IPv4 header. However, this tool is outdated
and does not include IPv6 network traffic identification [11].

An artificial neural network is a computational model that
simulates the structure and functionality of a biological neural
network. Neural networks are often characterized by their
topology and ability to change interconnected weights in-order to
form a response to input patterns. The backpropagation algorithm
is commonly used to train multi-layer neural networks and has
been effective for supervised learning [7, 12, 13]. Machine
learning techniques have been used to uncover the IPv6 structure
[10]. In [2], Weka, a well-known data mining toolkit, is used to
generate OS fingerprints based on IPv4 and TCP features.
However, to our knowledge using neural networks to perform
passive OS fingerprinting based on IPv6 is not found in the
literature.

3. METHODOLOGY
3.1 Data Collection
Our dataset consists of all traffic received by a network consisting
of twenty computers, a router, and a switch with one port
mirroring traffic to the collecting computer running Wireshark.
All the machines can dual-boot Windows 10 and Linux Ubuntu.
The data is collected in separate instances where all the machines
are running the same OS. The machines are booted and collection
starts before powering on the router and switch. After data
collection, the data is filtered to contain only IPv6 and packets
with a source address from the router and collecting computer are
removed. The data is converted from byte code to a PDML XML
file, where a parser extracts features from the link-local layer up
to the IPv6 protocol and translates them into an Attribute-Relation
File Format (ARFF).

Table 1 shows the number of input packets per OS. Although
there are more Linux packets that could cause bias in the neural
network, the Linux characteristics required more data to establish
a distinction from Windows characteristics. All machines were
powered on and left at the login screen to prevent any services
from starting upon login and causing noise from application data.
The majority of packets include ICMP packets from the NDP,
with the remaining packets consisting of UDP standard queries,
solicitations, DNS queries, and errors.

Table 1. Number of Packets per OS

 Overall Average
Training Set

Average Test
Set

Windows 6,482 5,186 1,296

Linux 9,494 7,595 1,899

Total 15,976 12,781 3,195

3.2 Features
Based on manual inspection, the six features chosen to identify an
OS show subtle differences in two layers of the OSI model,
namely the link layer and the network layer. Excluding the source
address and destination address, there are six fields in the IPv6
header. Since the neural network is learning distinctions, the
version field is not used as a feature. In addition, the traffic class
field was not included as a feature since no prioritization would
have taken place. RFC 6437, IPv6 flow label specification,
strongly recommends using a uniform, pseudo-random value
when using a flow label [1]. Therefore, the flow label was not
used as a feature because a randomly generated value will not
contribute to defining OS characteristics. The three remaining
IPv6 header fields, payload length, next header, and hop limit are
used as features. The additional three features are in the link-local
layer which contains the packet size, protocols used, and
transport-layer protocol in the data-link frame as shown in Figure
2.

Figure 2. Layout of a neural network

3.3 Neural Network System
We used a Java neural network toolkit based on the free machine
learning toolkit Waffles [5] to build an IPv6 packet classifier. The
goal is to find a trained neural network layout for passive OS
identification. The initial experiment consisted of training one
neural network with a feed-forward backpropagation gradient
descent using varying hidden units, momentum, and learning
rates. An experiment consists of initializing the neural network
weights to small random values, randomly re-ordering the data,
splitting data to a training set and testing set, training the neural
network configuration with the training set, and measuring
accuracy of the OS prediction with the testing set. The varying
hidden units are used to expand the expressiveness of the neural
network to be able to represent complex models. The activation

function of any layer used the hyperbolic tangent "tanh". Other
activation functions were explored, such as identity, logistic,
arctan, and rectified linear unit, but often gave much poorer
results. Before the neural network can start training, the initial
weights are set to small random values calculated using the
Gaussian distribution. These random values, as well as the
randomly selected training data, can influence and modify the
weights of the neural network as it may get stuck in a local
optimum. The process is repeated over a hundred experiments to
ensure finding the global optima for best accuracy.

For each experiment, the data is loaded into matrices and rows are
randomly swapped. Then, the data is split into a training set (80%)
and a testing set (20%). Although several neural network layouts
were explored, containing multiple layers with hidden units
{1,2,3,4,5,6} and without hidden units, the average accuracy for a
single neural network was approximately 65%. Accuracy is
defined as the number of misclassified packets from the testing set
over the total number of packets from the testing set. Upon a
closer inspection of the misclassifications, the Linux packets were
the only OS that would fall under a misclassification. It appeared
that some setups were able to classify specific Linux packets over
other setups that were better classifying other types of Linux
packets. A voting system will take advantage of these various
setups, so a collection of three neural networks are used together
for classification. All neural networks train on the same training
data, and validate on the same testing data. Instead of a majority
rule, the voting system took a unanimous approach when
classifying Windows packets. To classify as a Windows packet,
there must be a consensus across all neural networks. If any or all
neural networks predicted the packet OS as Linux, then the packet
OS will be classified as Linux.

To pipeline the OS identification process, there is one rule in the
process that will always classify a packet as a Windows OS if the
protocols feature includes the Link-Local Multicast Name
Resolution (LLMNR) protocol. LLMNR is included in all
Windows versions back to Windows Vista. LLMNRD is a
daemon implementing the LLMNR protocol that can only be
supported on Linux to respond to name resolution queries sent by
Windows client. However, this is an additional package that must
be installed separately if desired. The dataset shows that only
Windows clients contained the LLMNR protocol. This is the only
rule which purpose is to demonstrate that there can be additional
rules to further increase the accuracy of OS classification beyond
the neural network prediction.

Figure 3. Neural Network System for Passive OS

Fingerprinting Using IPv6

4. RESULTS
4.1 Experiment Results
The neural network system used for passive OS fingerprinting is
shown in Figure 3. Three neural networks of varying
configurations each contribute an OS prediction. The voting
system rule requires a unanimous vote for a Windows OS
prediction. Otherwise, the prediction will be for a Linux OS.

Table 2. OS Classification Accuracy
 Windows

Accuracy
Linux

Accuracy
Overall

Accuracy

Average 100% 76% 86%

Best 100% 93% 96%

Worst 100% 2% 42%

As shown in Table 2, this voting system has no misclassifications
for Windows machines despite the larger number of Linux
packets used in training. With the neural network voting system,
the average overall accuracy over a hundred experiments is
approximately 86% with a 21% improvement from using one
neural network at 65% accuracy. However, for any given Linux
packet the average accuracy is 76%. In the best-case scenario,
Linux accuracy increased to 93%, increasing the overall accuracy
to 96%. While in the worst-case scenario, almost any Linux
packet was classified incorrectly. This worst-case neural network
configuration occurs rarely, which may be caused by poor random
weight initialization.

Table 3. Accuracy of Neural Network System
Accuracy Approximate Percentage (%)

Average (100 experiments) 86
Maximum 96

Median 95
Minimum 45

Standard Deviation 13

The average, maximum, median, minimum, and standard
deviation of the accuracy are shown in Table 3. The average
accuracy is taken from all the experiments. Although the average
is 86%, the median is approximately 95% which shows that the
accuracy data points have a skewed left distribution. The average
is decreased due to a few outlier experiments that occurred either
because of an unusual initialization of random weights or unusual
distribution of training data during data randomization. These
outliers occur 5%, or less, of the time. The weights for the highest
accuracy setup are recorded for future OS classification without
additional training.

4.2 Discussion
Table 4. OS Classification Accuracy with Extra Training

 Windows
Accuracy

Linux
Accuracy

Overall
Accuracy

Average 100% 87% 92%
Best 100% 94% 96%

Worst 100% 4% 43%

We explored the impact on the Windows accuracy, Linux
accuracy, and overall accuracy using additional training on the
neural network system. For additional training, the training data
set is reused in a feed-forward backpropagation gradient descent
in order to explore local optimum that potentially results in more

accurate classification. Our intuition is that the Linux classifier
could be improved with more data as it may learn more
characteristics for Linux identification. We considered above 90%
overall accuracy a good experiment so in the event that the
experiment achieved less than 90% accuracy the neural network
system will do another iteration of training on the same training
data, then measure accuracy with the same validation data. The
average, best, and worst results are shown in Table 4. With this
additional step, the average accuracy for Linux predictions
increased to 87% with an improvement of 11% from 76%. This
raised the overall accuracy from 86% to 92% with the extra
training for select experiments. Furthermore, the maximum
accuracy for Linux predictions is 94% with an increase of 1%
from 93%, which did not notably change the overall accuracy of
96%. The worst accuracy for Linux predictions is 4% with an
increase of 2% from 2% without the extra training. These results
show an improved Linux classifier which may be due to fitting the
neural network models with more accurate configurations, while
still facing the possibility of evolving towards an over-fitted
model.

Table 5. Accuracy of Neural Network System with Extra
Training

Accuracy Approximate Percentage (%)
Average (100 Experiments) 92

Maximum 96
Median 95

Minimum 43
Standard Deviation 10

The average, maximum, median, minimum, and standard
deviation of the accuracy with extra training are shown in Table 5.
The average accuracy with extra training is 92%, a 6%
improvement from 86%. The maximum and median accuracies
remained the same at 96% and 95%, respectively. The minimum
accuracy decreased to 43% from 45%. One reason for this is that
when the extra training occurred, occasionally the neural network
system got worse with predictions, most likely due to overfitting.
However, this did not occur often and provided more benefits as a
whole increasing average accuracy. With improved accuracies,
the standard deviation decreased to 10% with an improvement of
3% from 13%.

As shown in Figure 4, the left chart shows the distribution of
experiment accuracy per experiment in intervals. Approximately
67% of neural network systems achieved an accuracy between
90.6% to 100%, followed by smaller distribution in the lower
accuracy intervals with 4 instances within an accuracy of 71.8%
to 81.2% and a cluster of 24 sets of neural networks with an
accuracy in the range of 62.4% to 71.8%. There are a few
remaining sets of neural networks on the lower end of accuracy
ranging from 40.5% to 53.1%.

In comparison to the distribution of experiment accuracy with
extra training, there is a major improvement of 92 sets of neural
networks with an accuracy between 90.6% to 100%. This is a
major improvement with an overall increase of 25% from 67%.
The remaining interval clusters significantly decreased with only
one set of neural networks with an accuracy between 71.8% to
81.2%, five sets of neural networks with an accuracy between
62.4% to 71.8%, and two worst-case sets of neural networks with
an accuracy range of 40.5% to 53.1%. This distribution shift
shows a significant improvement by using additional training on
the neural networks in the event of a classification accuracy less
than 90%.

Figure 4. Distribution of Experiment Accuracy Comparison

5. FUTURE WORK
This work can be extended and improved. First, regularization
techniques should be applied to prevent the common neural
network problem of overfitting. In addition, a larger and more
diverse data set should be collected to verify the accuracy in a
production network having multiple versions of the operating
systems. While traffic was gathered from twenty separate
machines, the OS image for all the machines are the same for the
Windows image and the same for the Linux image. IPv6 traffic
from a variety of Windows and Linux versions needs to be
gathered to determine if this technique can identify the OS and
release versions. Finally, it is unknown if operating systems
running as virtual machines on a host machine can be identified
with the same level accuracy. The virtual interfaces may affect the
IPv6 features.

6. CONCLUSIONS
In this paper, we develop and test a passive OS fingerprinting
technique using three machine learning based classifiers and a
voting scheme trained on IPv6 features found in the network layer
and data link layer. Unlike some OS fingerprinting techniques, the
method is passive, that is, it does not require sending packets to
the machine. Instead, normal traffic is gathered by passively
listening. In addition, this method is developed to use only IPv6
features for OS fingerprinting, not IPv4. The average accuracy of
100 sets of neural networks is 86%, with a maximum of accuracy
of 96%.

7. REFERENCES
[1] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme. 2011.

IPv6 Flow Label Specification. RFC 6437.

[2] David W. Richardson, Steven D. Gribble, and Tadayoshi
Kohno. 2010. The limits of automatic OS fingerprint
generation. In Proceedings of the 3rd ACM workshop on
Artificial intelligence and security (AISec '10). ACM, New
York, NY, USA, 24-34.
DOI=http://dx.doi.org/10.1145/1866423.1866430

[3] Durumeric, Z., Wustrow, E., and Halderman, J. A. 2014. An
Internet-wide View of Internet-wide Scanning. In USENIX
Security Symposium (2014).

[4] Fyodor. The art of port scanning. Phrack 51, 7, September
1997. http://www.phrack.org/issues/51/11.html.

[5] Gashler, Michael S. Waffles: A machine learning toolkit.
Journal of Machine Learning Research, 12:2383–2387, July

2011. ISSN 1532–4435.
http://www.jmlr.org/papers/volume12/gashler11a/gashler11a
.pdf.

[6] Infobidouille. Comparison of IPv4 and IPv6 headers. 2014.

[7] Lulseged Ayalew, Dietmar P. F. Möller, and Gerhard Reik.
2007. Using artificial neural networks (ANN) for real time
flood forecasting, the Omo River case in southern Ethiopia.
In Proceedings of the 2007 Summer Computer Simulation
Conference (SCSC '07). Society for Computer Simulation
International, San Diego, CA, USA, , Article 19 , 7 pages.

[8] Narten, T., Nordmark, E., Simpson, W., and H. Soliman.
2007. Neighbor Discovery for IP version 6 (IPv6). RFC
4861.

[9] Octavio J. Salcedo Parra, Angela Patricia Rios, and Gustavo
López Rubio. 2011. IPV6 and IPV4 QoS mechanisms. In
Proceedings of the 13th International Conference on
Information Integration and Web-based Applications and
Services (iiWAS '11). ACM, New York, NY, USA, 463-466.
DOI=http://dx.doi.org/10.1145/2095536.2095631.

[10] Pawel Foremski, David Plonka, and Arthur Berger. 2016.
Entropy/IP: Uncovering Structure in IPv6 Addresses. In
Proceedings of the 2016 Internet Measurement Conference
(IMC '16). ACM, New York, NY, USA, 167-181. DOI:
https://doi.org/10.1145/2987443.2987445.

[11] The Subterrain Security Group. 2000. Siphon Project.
https://github.com/unmarshal/siphon.

[12] Wonje Choi, Karthi Duraisamy, Ryan Gary Kim, Janardhan
Rao Doppa, Partha Pratim Pande, Radu Marculescu, and
Diana Marculescu. 2016. Hybrid network-on-chip
architectures for accelerating deep learning kernels on
heterogeneous manycore platforms. In Proceedings of the
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES '16). ACM, New
York, NY, USA, , Article 13 , 10 pages. DOI:
https://doi.org/10.1145/2968455.2968510.

[13] Yogesh Singh and Pradeep Kumar. 2010. Application of
feed-forward neural networks for software reliability
prediction. SIGSOFT Softw. Eng. Notes 35, 5 (October
2010), 1-6.
DOI=http://dx.doi.org/10.1145/1838687.1838709.

[14] Zalewski, M. 2012. p0f v3 (version 3.09b).
http://lcamtuf.coredump.cx/p0f3/.

