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ABSTRACT 
In this paper, we discuss a new approach on operating system 
(OS) fingerprinting using IPv6 packets and supervised machine 
learning techniques. OS fingerprinting tools are essential for the 
reconnaissance phase of penetration testing. While OS 
fingerprinting is traditionally performed by passive or active tools 
that use fingerprint databases, very little work has focused on 
using machine learning techniques. Moreover, significantly more 
work has focused on IPv4 than IPv6. We introduce a collaborative 
neural network system that uses a voting design to deliver 
accurate predictions. This method uses IPv6 features as well as 
data link features for OS fingerprinting. Our experiment shows 
that our approach is valid and we achieve an average accuracy of 
86% over 100 sets of neural networks with a highest accuracy of 
96%. Finally, we explore the impact of additional training for 
poor neural network accuracy, and we show that our system can 
achieve an average accuracy of 92%, which is a 6% improvement 
over the previous approach. 

Categories and Subject Descriptors 
C.2.3 [Network Monitoring]; F.1.1 [Self-modifying machines 
(e.g., neural networks)];  

General Terms 
Measurement, Design, Reliability, Experimentation, Security. 

Keywords 
OS fingerprinting, Supervised Machine Learning, IPv6, Computer 
Networks, Neural Networks. 

1. INTRODUCTION 
Internet Protocol version 6 (IPv6) is the most recent numbering 
system that provides more IP addresses than Internet Protocol 
version 4 (IPv4). The growing need for IPv6 is slow but inevitable 
with rising IP address consumption. The new address space uses 
eight sets of four hexadecimal addresses separated by a colon (:) 
like: xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx (x would be a 
hexadecimal value) providing up to 3.42 x 1038 total addresses. 
IPv6 simplified header structures lead to faster routing compared 
to IPv4. Different operating systems (OS) have different 
implementations of IPv6 that exhibit slight variations in the 
protocol. These features can be used to do passive identification 
of the operating system, which is sometimes called OS 
fingerprinting.  

OS fingerprinting is important to network security with its 
relationship to the reconnaissance phase of penetration testing. 
Knowing the OS is essential for attackers to accordingly use tools 
and programs when gaining access to their targets. The network 
layer of the Open Systems Interconnection (OSI) model does not 
contain any explicit information about the operating system of the 
network device generating traffic. However, certain features are 
unique to each operating system.  

Machine learning focuses on the ability for computers to learn 
without being explicitly programmed. This is achieved with a 
combination of algorithms and simulated neural networks. These 
simulated neural networks are intertwined weights that adjust after 
passing in features (input) transformed by an activation function 
and taking the difference between the actual labels and the 
prediction (output). A greedy algorithm known as 
backpropagation provides a fast solution to pattern recognition in 
this supervised learning experiment.  

Present passive OS fingerprinting methods match the gathered 
network traffic with previously developed IPv6 signature 
databases. The approach in this work is to use supervised machine 
learning techniques to learn the slight variations in the IPv6 
network implementations of different OS’s.  

The rest of the paper is organized as follows: Section 2 covers the 
foundation of IPv6 and the contrast to IPv4, as well as an 
overview of OS fingerprinting and machine learning techniques. 
The methods for performing passive OS fingerprinting are 
discussed in Section 3. Section 4 presents the results comparing a 
variety of setups. Future work is discussed in Section 5 and the 
conclusions are in Section 6. 

2. RELATED WORK 
As shown in Figure 1, the format of IPv6 packets is designed to be 
simpler than the IPv4 format. The IPv6 header is reduced to 8 
fields from 14 fields in the IPv4 header. Four of the field names 
and positions have changed but functionality remained the same 
in the IPv6 header. The flow label is the only new field that is a 
quality of service mechanism to avoid congestion of the network 
[9]. There are 7 fields removed whose functionality has been 
grouped and moved to a next header field. The next header field is 
optional, yet can chain additional headers if the packet requires 
additional options or information. 



 
Figure 1. Comparison of IPv4 and IPv6 Headers [6]

In IPv6, Neighborhood Discovery Protocol (NDP) is responsible 
for the auto configuration of nodes on the network. NDP is meant 
to replace the Address Resolution Protocol (ARP), the Internet 
Control Message Protocol (ICMP), and the Internet Router 
Discovery Protocol (IRDP) from IPv4. The NDP uses five 
ICMPv6 packet types: Router Solicitation (RS), Router 
Advertisement (RA), Neighbor Solicitation (NS), Neighbor 
Advertisement (NA), and Redirect [8]. NDP conducts the 
Stateless Address Autoconfiguration (SLAAC) method as a 
device joins the network. There is an opportunity for passive OS 
identification when a device uses NDP to join a network. In 
addition, observing the NS and NA packets can identify the OS of 
nodes that have already joined the network and are 
communicating. 

OS fingerprinting techniques can be categorized as passive or 
active. Passive techniques do not send any traffic and rely on 
collecting regular traffic for analysis. Active techniques send 
crafted packets to identify systems based on responses, or the lack 
thereof. Active scanning and probing of the IPv6 space is 
impractical and an open problem due to the large address space 
unlike the IPv4 address space [3]. Fingerprinting tools, such as 
Nmap, require manual query development and accurate 
classification models. Nmap mentions that IPv6 OS detection is 
used just like IPv4: send probes, collect responses, and match a 
set of responses against a database [4]. However, these probes are 
seeking responses from higher-level protocols like TCP and 
require an expert-user to craft packets that can accurately identify 
nodes on the network. 

Passive tools, such as p0f, use purely passive mechanisms to 
identify the operating system and software of both ends of a 
vanilla TCP connection without interfering with the 
communication in any way [14]. P0f uses a fingerprint database to 
lookup signatures of collected packets. These signatures will 
include data extracted from the IPv4 and IPv6 headers, TCP 
headers, dynamics of the TCP handshake, and application 
payloads. While there is a database of IPv6 signatures, there is a 
stronger focus to expand the database of IPv4 signatures. Another 
passive tool, siphon, is a network mapping tool whose behavior is 
similar to p0f as it identifies network hosts using TCP headers, 

UDP headers, and the IPv4 header. However, this tool is outdated 
and does not include IPv6 network traffic identification [11]. 

An artificial neural network is a computational model that 
simulates the structure and functionality of a biological neural 
network. Neural networks are often characterized by their 
topology and ability to change interconnected weights in-order to 
form a response to input patterns. The backpropagation algorithm 
is commonly used to train multi-layer neural networks and has 
been effective for supervised learning [7, 12, 13]. Machine 
learning techniques have been used to uncover the IPv6 structure 
[10]. In [2], Weka, a well-known data mining toolkit, is used to 
generate OS fingerprints based on IPv4 and TCP features. 
However, to our knowledge using neural networks to perform 
passive OS fingerprinting based on IPv6 is not found in the 
literature.  

3. METHODOLOGY 
3.1 Data Collection 
Our dataset consists of all traffic received by a network consisting 
of twenty computers, a router, and a switch with one port 
mirroring traffic to the collecting computer running Wireshark. 
All the machines can dual-boot Windows 10 and Linux Ubuntu. 
The data is collected in separate instances where all the machines 
are running the same OS. The machines are booted and collection 
starts before powering on the router and switch. After data 
collection, the data is filtered to contain only IPv6 and packets 
with a source address from the router and collecting computer are 
removed. The data is converted from byte code to a PDML XML 
file, where a parser extracts features from the link-local layer up 
to the IPv6 protocol and translates them into an Attribute-Relation 
File Format (ARFF).  

Table 1 shows the number of input packets per OS. Although 
there are more Linux packets that could cause bias in the neural 
network, the Linux characteristics required more data to establish 
a distinction from Windows characteristics. All machines were 
powered on and left at the login screen to prevent any services 
from starting upon login and causing noise from application data. 
The majority of packets include ICMP packets from the NDP, 
with the remaining packets consisting of UDP standard queries, 
solicitations, DNS queries, and errors.  



Table 1. Number of Packets per OS 

 Overall Average 
Training Set 

Average Test 
Set 

Windows 6,482 5,186 1,296 

Linux 9,494 7,595 1,899 

Total 15,976 12,781 3,195 

3.2 Features 
Based on manual inspection, the six features chosen to identify an 
OS show subtle differences in two layers of the OSI model, 
namely the link layer and the network layer. Excluding the source 
address and destination address, there are six fields in the IPv6 
header. Since the neural network is learning distinctions, the 
version field is not used as a feature. In addition, the traffic class 
field was not included as a feature since no prioritization would 
have taken place. RFC 6437, IPv6 flow label specification, 
strongly recommends using a uniform, pseudo-random value 
when using a flow label [1]. Therefore, the flow label was not 
used as a feature because a randomly generated value will not 
contribute to defining OS characteristics. The three remaining 
IPv6 header fields, payload length, next header, and hop limit are 
used as features. The additional three features are in the link-local 
layer which contains the packet size, protocols used, and 
transport-layer protocol in the data-link frame as shown in Figure 
2. 

 

Figure 2. Layout of a neural network 

3.3 Neural Network System 
We used a Java neural network toolkit based on the free machine 
learning toolkit Waffles [5] to build an IPv6 packet classifier. The 
goal is to find a trained neural network layout for passive OS 
identification. The initial experiment consisted of training one 
neural network with a feed-forward backpropagation gradient 
descent using varying hidden units, momentum, and learning 
rates. An experiment consists of initializing the neural network 
weights to small random values, randomly re-ordering the data, 
splitting data to a training set and testing set, training the neural 
network configuration with the training set, and measuring 
accuracy of the OS prediction with the testing set. The varying 
hidden units are used to expand the expressiveness of the neural 
network to be able to represent complex models. The activation 

function of any layer used the hyperbolic tangent "tanh". Other 
activation functions were explored, such as identity, logistic, 
arctan, and rectified linear unit, but often gave much poorer 
results. Before the neural network can start training, the initial 
weights are set to small random values calculated using the 
Gaussian distribution. These random values, as well as the 
randomly selected training data, can influence and modify the 
weights of the neural network as it may get stuck in a local 
optimum. The process is repeated over a hundred experiments to 
ensure finding the global optima for best accuracy.  

For each experiment, the data is loaded into matrices and rows are 
randomly swapped. Then, the data is split into a training set (80%) 
and a testing set (20%). Although several neural network layouts 
were explored, containing multiple layers with hidden units 
{1,2,3,4,5,6} and without hidden units, the average accuracy for a 
single neural network was approximately 65%. Accuracy is 
defined as the number of misclassified packets from the testing set 
over the total number of packets from the testing set. Upon a 
closer inspection of the misclassifications, the Linux packets were 
the only OS that would fall under a misclassification. It appeared 
that some setups were able to classify specific Linux packets over 
other setups that were better classifying other types of Linux 
packets. A voting system will take advantage of these various 
setups, so a collection of three neural networks are used together 
for classification. All neural networks train on the same training 
data, and validate on the same testing data. Instead of a majority 
rule, the voting system took a unanimous approach when 
classifying Windows packets. To classify as a Windows packet, 
there must be a consensus across all neural networks. If any or all 
neural networks predicted the packet OS as Linux, then the packet 
OS will be classified as Linux.  

To pipeline the OS identification process, there is one rule in the 
process that will always classify a packet as a Windows OS if the 
protocols feature includes the Link-Local Multicast Name 
Resolution (LLMNR) protocol. LLMNR is included in all 
Windows versions back to Windows Vista. LLMNRD is a 
daemon implementing the LLMNR protocol that can only be 
supported on Linux to respond to name resolution queries sent by 
Windows client. However, this is an additional package that must 
be installed separately if desired. The dataset shows that only 
Windows clients contained the LLMNR protocol. This is the only 
rule which purpose is to demonstrate that there can be additional 
rules to further increase the accuracy of OS classification beyond 
the neural network prediction. 

  
Figure 3. Neural Network System for Passive OS 

Fingerprinting Using IPv6 



4. RESULTS 
4.1 Experiment Results 
The neural network system used for passive OS fingerprinting is 
shown in Figure 3. Three neural networks of varying 
configurations each contribute an OS prediction. The voting 
system rule requires a unanimous vote for a Windows OS 
prediction. Otherwise, the prediction will be for a Linux OS.  

Table 2. OS Classification Accuracy 
 Windows 

Accuracy 
Linux 

Accuracy 
Overall 

Accuracy 

Average 100% 76% 86% 

Best 100% 93% 96% 

Worst 100% 2% 42% 

 
As shown in Table 2, this voting system has no misclassifications 
for Windows machines despite the larger number of Linux 
packets used in training. With the neural network voting system, 
the average overall accuracy over a hundred experiments is 
approximately 86% with a 21% improvement from using one 
neural network at 65% accuracy. However, for any given Linux 
packet the average accuracy is 76%. In the best-case scenario, 
Linux accuracy increased to 93%, increasing the overall accuracy 
to 96%. While in the worst-case scenario, almost any Linux 
packet was classified incorrectly. This worst-case neural network 
configuration occurs rarely, which may be caused by poor random 
weight initialization. 

Table 3. Accuracy of Neural Network System 
Accuracy Approximate Percentage (%) 

Average (100 experiments) 86 
Maximum 96 

Median 95 
Minimum 45 

Standard Deviation 13 
 
The average, maximum, median, minimum, and standard 
deviation of the accuracy are shown in Table 3. The average 
accuracy is taken from all the experiments. Although the average 
is 86%, the median is approximately 95% which shows that the 
accuracy data points have a skewed left distribution. The average 
is decreased due to a few outlier experiments that occurred either 
because of an unusual initialization of random weights or unusual 
distribution of training data during data randomization. These 
outliers occur 5%, or less, of the time. The weights for the highest 
accuracy setup are recorded for future OS classification without 
additional training.  

4.2 Discussion 
Table 4. OS Classification Accuracy with Extra Training 

 Windows 
Accuracy 

Linux 
Accuracy 

Overall 
Accuracy 

Average 100% 87% 92% 
Best 100% 94% 96% 

Worst 100% 4% 43% 
 

We explored the impact on the Windows accuracy, Linux 
accuracy, and overall accuracy using additional training on the 
neural network system. For additional training, the training data 
set is reused in a feed-forward backpropagation gradient descent 
in order to explore local optimum that potentially results in more 

accurate classification. Our intuition is that the Linux classifier 
could be improved with more data as it may learn more 
characteristics for Linux identification. We considered above 90% 
overall accuracy a good experiment so in the event that the 
experiment achieved less than 90% accuracy the neural network 
system will do another iteration of training on the same training 
data, then measure accuracy with the same validation data. The 
average, best, and worst results are shown in Table 4. With this 
additional step, the average accuracy for Linux predictions 
increased to 87% with an improvement of 11% from 76%. This 
raised the overall accuracy from 86% to 92% with the extra 
training for select experiments. Furthermore, the maximum 
accuracy for Linux predictions is 94% with an increase of 1% 
from 93%, which did not notably change the overall accuracy of 
96%. The worst accuracy for Linux predictions is 4% with an 
increase of 2% from 2% without the extra training. These results 
show an improved Linux classifier which may be due to fitting the 
neural network models with more accurate configurations, while 
still facing the possibility of evolving towards an over-fitted 
model. 

Table 5. Accuracy of Neural Network System with Extra 
Training 

Accuracy Approximate Percentage (%) 
Average (100 Experiments) 92 

Maximum 96 
Median 95 

Minimum 43 
Standard Deviation 10 

 
The average, maximum, median, minimum, and standard 
deviation of the accuracy with extra training are shown in Table 5. 
The average accuracy with extra training is 92%, a 6% 
improvement from 86%. The maximum and median accuracies 
remained the same at 96% and 95%, respectively. The minimum 
accuracy decreased to 43% from 45%. One reason for this is that 
when the extra training occurred, occasionally the neural network 
system got worse with predictions, most likely due to overfitting. 
However, this did not occur often and provided more benefits as a 
whole increasing average accuracy. With improved accuracies, 
the standard deviation decreased to 10% with an improvement of 
3% from 13%. 

As shown in Figure 4, the left chart shows the distribution of 
experiment accuracy per experiment in intervals. Approximately 
67% of neural network systems achieved an accuracy between 
90.6% to 100%, followed by smaller distribution in the lower 
accuracy intervals with 4 instances within an accuracy of 71.8% 
to 81.2% and a cluster of 24 sets of neural networks with an 
accuracy in the range of 62.4% to 71.8%. There are a few 
remaining sets of neural networks on the lower end of accuracy 
ranging from 40.5% to 53.1%. 

In comparison to the distribution of experiment accuracy with 
extra training, there is a major improvement of 92 sets of neural 
networks with an accuracy between 90.6% to 100%. This is a 
major improvement with an overall increase of 25% from 67%. 
The remaining interval clusters significantly decreased with only 
one set of neural networks with an accuracy between 71.8% to 
81.2%, five sets of neural networks with an accuracy between 
62.4% to 71.8%, and two worst-case sets of neural networks with 
an accuracy range of 40.5% to 53.1%. This distribution shift 
shows a significant improvement by using additional training on 
the neural networks in the event of a classification accuracy less 
than 90%. 



 
Figure 4. Distribution of Experiment Accuracy Comparison

5. FUTURE WORK 
This work can be extended and improved. First, regularization 
techniques should be applied to prevent the common neural 
network problem of overfitting. In addition, a larger and more 
diverse data set should be collected to verify the accuracy in a 
production network having multiple versions of the operating 
systems. While traffic was gathered from twenty separate 
machines, the OS image for all the machines are the same for the 
Windows image and the same for the Linux image. IPv6 traffic 
from a variety of Windows and Linux versions needs to be 
gathered to determine if this technique can identify the OS and 
release versions. Finally, it is unknown if operating systems 
running as virtual machines on a host machine can be identified 
with the same level accuracy. The virtual interfaces may affect the 
IPv6 features. 

6. CONCLUSIONS 
In this paper, we develop and test a passive OS fingerprinting 
technique using three machine learning based classifiers and a 
voting scheme trained on IPv6 features found in the network layer 
and data link layer. Unlike some OS fingerprinting techniques, the 
method is passive, that is, it does not require sending packets to 
the machine. Instead, normal traffic is gathered by passively 
listening. In addition, this method is developed to use only IPv6 
features for OS fingerprinting, not IPv4. The average accuracy of 
100 sets of neural networks is 86%, with a maximum of accuracy 
of 96%.  
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