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Summary  

The  paper  dea ls  wi th  the  der iva t ion  of  genera l  conserva t ion  equa t ions  for  

he te rogeneous  cont inua  -  subs tances  cons is t ing  of  severa l  d i s t inc t ,  poss ib ly  in te r ­

ac t ing  cons t i tuen ts .  The  ana lys i s ,  res t ing  for  the  most  par t  on  an  admiss ib le  

superpos i t ion  of  the  d i f fus ive  mot ions  on  the  pos tu la ted  mot ion  of  the  mix ture ,  

i s  based  on  ax ioms in  in tegra l  form f rom which  the  bas ic  d i f fe ren t ia l  equa t ions  

a re  deduced .  The  t rea tment  i s  a  r igorous ,  d i rec t  genera l iza t ion  of  the  c lass ica l  

theory  for  s imple  cont inua .  The  main  resu l t s  a re  compared  wi th  those  of  Truesde l l  

and  found to  be  in  en t i re  agreement .  
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1.  In t roduc t ion  

From the  v iewpoin t  o f  cont inuum phys ics ,  the  behavior  of  many mater ia l s  

i s  wel l  descr ibed  by  the  proper t ies  of  an  idea l  medium -  the  s imple  cont inuum;  

but  th i s  c lass ica l  represen ta t ion  must  be  modi f ied  and  ex tended  in  order  tha t  i t  

suf f ice  as  a  model  for  mater ia l s  cons is t ing  of  severa l  d i s t inc t  and  mutua l ly  in te r ­

ac t ing  cons t i tuen ts .  A cont inuum theory  descr ib ing  such  mater ia l s  i s  ca l led  here in  

a  he te rogeneous  cont inuum theory .  In  the  broades t  sense ,  i t  i s  no t  res t r ic ted  to  

any  par t icu la r  s ta te  of  cont inuous ly  d i s t r ibu ted  he te rogeneous  mat te r  and  therefore  

covers ,*  for  example ,  f lows  of  reac t ing  mixtures  o f  gases ,  l iqu ids  conta in ing  smal l  

so l id  par t ic les  in  suspens ion ,  and  e lec t r ica l ly  conduct ing  p lasmas .  

A genera l  theory  for  he te rogeneous  cont inua  was  publ i shed  by  C .  Truesde l l  

(  1 ,  2 ) .  Whi le  r igorous ,  Truesde l l ' s  t rea tment  i s  ra ther  formal .  He  pos tu la tes  

the  d i f fe ren t ia l  ba lance  equa t ions  for  the  cons t i tuen ts  and  sums these  over  a l l  

cons t i tuen ts  to  ob ta in  the  equa t ions  for  the  medium as  a  whole .  The  summat ions  

a re  so  per formed tha t  each  of  the  resu l tan t  equa t ions  possesses  the  same mathe­

mat ica l  form as  the  cor responding  equa t ion  for  a  s imple  cont inuum.  More  recent ly ,  

Kel ly  [3 ]  gave  a  der iva t ion  of  Truesde l l ' s  resu l t s  s ta r t ing  f rom ax ioms in  in tegra l  

form and  inc luding  e lec t romagnet ic  e f fec t s .  Bas ica l ly ,  h i s  formal i sm amounts  to  

spa t ia l  in tegra t ion  and  summat ion  of  the  equa t ions  pos tu la ted  by  Truesde l l ,  a  

cer ta in  degree  of  o rder  be ing  in t roduced  in to  the  summat ion  procedures  by  what  he  

ca l l s  a  genera l  ba lance  pr inc ip le  s ta ted  for  vo lumes  f ixed  in  space .  

*We are  re fe r r ing  to  genera l  equa t ions  of  ba lance  tha t ,  for  each  par t icu la r  
cont inuum,  must  be  deve loped  and  spec ia l ized  fur ther  by  inc luding  def in i te  
cons t i tu t ive  equa t ions .  This  paper ,  as  wel l  as  the  f i r s t  th ree  quoted  works ,  dea ls  
main ly  wi th  the  der iva t ion  of  the  genera l  ba lance  equa t ions  and  not  the  cons t i tu t ive  
equa t ions .  Numerous  ear l ie r  papers ,  usua l ly  of  a  more  spec ia l  na ture ,  a re  not  
quoted  here in  because  they  a re  l i s ted ,  toge ther  wi th  c r i t i ca l  eva lua t ions ,  
in  the  exhaus t ive  b ib l iography  of  [2  J .  
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This  paper ,  an  ex tens ion  of  the  au thor ' s  ea r l ie r  work  [4 | ,  dea ls  wi th  the  

deve lopment  of  a  d i f fe ren t  mathemat ica l  model  for  he te rogeneous  cont inue .  The  

t rea tment  i s  r igorous ,  ye t  s imple  and  d i rec t ,  and  i s  c lose ly  re la ted  to  the  c lass ica l  

theory  for  s imple  cont inua .  I t  r es t s  for  the  most  par t  on  an  admiss ib le  superpos i t ion  

of  the  d i f fus ive  mot ions  of  the  components  on  the  pos tu la ted  mot ion  for  the  mix ture .  

Mater ia l  p roper t ies  ascr ibed  to  the  medium as  a  whole  a re  used  cons is ten t ly .  In  

par t icu la r ,  the  main  ax ioms,  un l ike  those  in  [1 ,  2 ]  and  [3] ,  a re  s ta ted  in  in tegra l  

form in  t e rms  of  wel l  def ined  mater ia l  vo lumes  for  the  he te rogeneous  cont inuum.  

The  d i f fe ren t ia l  ba lance  equa t ions  for  the  medium as  a  whole  a re  deduced  f rom 

these  ax ioms and  shown to  be  in  agreement  wi th  Truesde l l ' s  resu l t s .  The  reader ,  

i f  he  l ikes ,  may cons ider  th i s  formula t ion  as  an  a l te rna te  to  [1 ,  2)  and  in  par t  to  

[3J  and  a l so  as  a  genera l ized  ana log  of  the  c lass ica l  theory  of  one  component  

f lu id  f low.  An exce l len t  t rea tment  of  the  la t te r  i s  due  to  J .  Ser r in  [5 ] .  

2 .  Premises  and  Kinemat ica l  Def in i t ions  

The  mathemat ica l  descr ip t ion  cf  he te rogeneous  cont inua  i s  based  on  

ident i fy ing  tangib le  por t ions  of  he te rogeneous  mat te r  wi th  se t s  of  po in ts  in  th ree-

d imens iona l  Euc l idean  space .  The  mot ion  of  the  medium as  a  whole  -  the  mot ion  

of  a  mixture  -  is  represen ted  here in  by  a  one- to-one  cont inuous  t ransformat ion  of  

the  space  in to  i t se l f .  The  parameter  t  o f  th i s  t ransformat ion  represen ts  t ime  and  

i t s  range  i s  -oo  <  t  <ao  where  t  =0  spec i f ies  an  arb i t ra ry  in i t i a l  ins tan t .  Thus*  

x .  =  <p.  (X . ,  t ) ;  (2 .1)  

the  spa t ia l  var iab les  x .  denote  the  pos i t ions  of  mix ture  par t ic les  d i s t inguished  

f rom a l l  o thers  by  means  of  the  mater ia l  var iab les  X.  convenien t ly  chosen  as  the  

pos i t ions  of  mix ture  par t ic les  a t  t  =  0 .  Hence  t  may be  res t r ic ted  to  0  <  t  <  ao .  

*We use  bo th  Car tes ian  tensor  no ta t ion  and  vec tor  no ta t ion .  Tensor  ind ices  appear  as  
subscr ip t s  and  vec tors  a re  d is t inguished  f rom o ther  quant i t i es  by  bars  above  a  le t te r .  
The  superscr ip t s  a re  devoid  of  tensor ia l  meaning  and  denote  the  cor rponents  of  the  
mix ture .  Al l  func t ions  appear ing  here in  a re  assumed to  be  as  many t imes  cont inuous ly  
d i f fe ren t iab le  as  requi red .  
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Th e  Jacobian ,  J ,  of  the  mopping  (2 .1)  i s  such  tha t  

3x .  
0  <  J  s  det  (^J - )  <  co  .  (2 .2)  

i  

The  te rms  moving  mix ture  par t ic le"  and  moving  poin t  in  space  a re  synonymous .  

By def in i t ion ,  an  a rb i t ra ry  f in i te  vo lume V( t )  i s  ca l led  mater ia l  i f  i t  moves  wi th  

the  mix ture ;  tha t  i s ,  every  poin t  o f  the  bounding  mater ia l  sur face  S  moves  accord ing  

to  (2 .1) .  

We wi l l  cons ider  a  he te rogeneous  cont inuum cons is t ing  of  say  N subs tances  

and  d is t inguish  i t  f rom a  s imple  (one-component )  cont inuum by  the  two fo l lowing  

proper t ies ,  regarded  as  expl ic i t  hypotheses .  

1 )  There  ex is t  func t ions  p k (x ,  t )  >  0  such  tha t  the  mass  M k  

of  the  component*  i s  

M k  = /  p k  dv .  (2 .3)  
V 

k  
2)  There  ex is t  vec tor  f ie lds  J  .  (x . ,  t )  tha t  a re  a  pr ior i  known 

func t ions  of  cer ta in  wel l  def ined  thermodynamic  var iab les .  

These  vec tor  f ie lds ,  ca l led  the  d i f fus ive  (mass)  f luxes ,  

sa t i s fy  the  condi t ion  

N  k 
1  J .  (x . ,  t )  =  0 .  (2 .4)  
k=l  '  1  

The to ta l  mass  of  the  mix ture  i s  

N  k 
M = I  M .  (2 .5)  

k=l  

*Hereaf te r  k  e  {1 ,  2 ,  N} wi l l  a lways  se rve  to  ident i fy  a  typ ica l  subs tance  
of  the  cont inuum.  
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We set M = / p dv and thus 
V 

P = E P . 
k=l 

The concentrations of the components are defined as w^ = p^/p. Clearly 

I w k  =  1 .  

The velocities and accelerations of the mixture are defined as 

(2.6) 
3 <t>. 

W X. 
and ' 

dv.  
°i 3t X. * 

I 
(2.7) 

0 I D 0 
The symbol gpj^. is henceforth replaced by -j^, and represents the usual 

derivative holding x. fixed. 
' 3vj 

From (2.1), (2.2), (2.6) and (2.7) we obtain a. = + v. v.,.. A more 
i 3t | i | 

general formula is 

§ T  - f 7  +  y i F ' l  ( 2 " 8 )  

where F stands for a scalar or a component of a vector quantity associated with 

the motion. 
k 

The diffusive velocities v., defined as 

k k , k 
v. • J./p , (2.9) 

are regarded as "carriers" of masses, momenta and energies for the individual 

components relative to the motion (2.1). They form the apparatus whereby masses, 

momenta, and energies are transported by diffusion into an arbitrary material 

* N 
Henceforth we introduce a more compact notation: I = I , f  = f  and 

r r k=l V 
9 = 9 . While omitting the symbols S and V on integral signs, in the text we 

shall always emphasize our consistent use of material volumes and surfaces. 
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volume V.  Sca la r  products  o f  the  v  . ' s  wi th  var ious  forces  sha l l  be  ca l led  work  

ra tes  due  to  d i f fus ion .  Wi th  re fe rence  to  an  arb i t ra ry  mater ia l  vo lume,  we  s ta te  

the  fo l lowing  superpos i t ion  pr inc ip le :  

"Dif fus ive  phenomena  a re  superposed  (added  tensor ia l ly )  on  

the  cor responding  phenomena  assoc ia ted  wi th  the  mixture  mot ion ."  

This  p r inc ip le  forms  the  bas i s  for  the  ax ioms presen ted  in  the  next  sec t ion  and ,  

th rough the i r  consequences ,  i s  shown to  imply  a  def in i te  in te rdependence  of  the  

mixture  mot ion  as  a  whole  and  the  d i f fus ive  mot ions  o f  the  components .  

In  addi t ion  to  the  above ,  we  sha l l  f requent ly  make  use  of  the  fo l lowing  

wel l  known theorem 

Transpor t  Theorem -  Let  V be  an  a rb i t ra ry  mater ia l  vo lume and  

F(x ,  t )  a  sca la r  o r  vec tor  func t ion  of  pos i t ion .  Then  

^  /  Fdv =  /  (^  + Fv. , . )  dv  .  (2 .10)  

The  proof  i s  s tandard  and  wi l l  no t  be  g iven .  

3 .  Conserva t ion  Pr inc ip les  

The  d i f fe ren t ia l  equa t ions  govern ing  the  behavior  o f  the  mix ture  a re  

deduced  f rom the  fo l lowing  pos tu la tes .  

Pos tu la te  I :  

The  ra te  of  change  of  mass  of  the  k* k  component  o f  the  mix ture  wi th in  

an  a rb i t ra ry  mater ia l  vo lume V equals  the  sum of  i t s  d i f fus ive  mass  f low in to  V 

and  the  ra te  of  p roduct ion*  of  mass  o f  the  k* k  component .  This  conserva t ion  

pr inc ip le  i s  expressed  by  the  s ta tement  

/  p k  dv =  - /  J k  n.  da  +  /  K k  dv (3 .1)  

*Due  to  chemica l  reac t ions .  
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.k where  n .  denotes  the  uni t  normal ,  pos i t ive  outward,  and K represents  the  mass  

ra te  of  product ion per  uni t  volu  

and (3 .1)  i t  fo l lows eas i ly  tha t  

ra te  of  product ion per  uni t  volume of  the  k*^ component .  Now,  from (2 .10)  

/  (^"  + P k v ; ' j  +  j k ' i  "  < k )  dv = 0  ,  

and s ince  V is  a rb i t rary  th is  impl ies  

k  
Dp k  „k  ,k  . .  

Dt  p  V i ' i  =  "  J i ' i  •  

Summing (3 .2)  over  a l l  components  and us ing (2 .4) ,  we obta in  

5£ + pv.,. = I Kk. (3.3) 

Theorem I -  The to ta l  mass  M within  an  arbi t rary  mater ia l  

volume V is  conserved.  

+  pv , , .  =  0  (3 .4)  
Dt  

i f  and only  i f  

I  K k  = 0  .  (3.5)  

k  Hencefor th  we shal l  assume that  whenever  expl ic i t  formulas  for  the  K are  given 

thei r  sum a lways  vanishes .  The s ta tement  (3 .4)  is  then a  di rec t  consequence of  

(2 .4) ,  (3 .1)  and (3 .5) .  

The local  composi t ion  of  a  heterogeneous  medium is  usual ly  expressed in  
k  th  

terms of  the  concentra t ions  w .  The per t inent  equat ion for  the  k  component  i s  

Dw k  k k 
+  J i ' i  =  K  '  < 3 - 6 >  

eas i ly  obta ined f rom (3 .2)  and (3 .4) .  
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Before we state the axioms expressing conservation of linear momentum 

and energy, we shall define a number of quantities appearing therein. The 

definitions are always consistent with the superposition principle. 

The total linear momentum of an arbitrary material volume V is 
k k i 

/ I p (v. + v.)dv; from (2.4), (2.9) and p = Z p , it follows that the integral 

of the sum of diffusive momenta vanishes; that is, / I pk v^ dv = 0, and therefore 

/ I p^ (v. +v^)dv = / pv. dv. 

This quantity is influenced by the direct stress, / It1- ds, and the body force 

/ I p f | dv, where t. denotes the direct component stress and f^ stands for 

the (body) force per unit mass acting on the k component of the mixture. The 

force f acting on a unit mass of the mixture is defined as f. = Z w^ fH , and 

hen ce / Z pkf*! dv = / pf. dv. 

Next, we introduce the definitions of several kinetic energies and rates 

of work. The total kinetic energy is «T = / Z p 1 v * v 1 dv; the kinetic 

energies of the mixture motion and the sum of diffusive motions are respectively 

K = / p I v I /2 dv and = J Z p^ I v 1/2 dv. As an immediate con­

sequence of (2.4), (2.9) there follows KT = K + K . The total rates of work 
k k due to surface and body forces are respectively expressed as <f Z t. (v. + v.) da 

k k k I I I  
and / Z p f. (v. +v.) dv. Parts of the total rates of work enter the balances 

of Kp and K and so it is often convenient to write the contributions due to diffusive 

motions and the mixture motion separately, for example, 

/ Z p^ f^ (v. + v^) dv = / p. f. v. dv + / Z p^ fk v^ dv. 
i i i i i 

We complete now our set of definitions. The total internal energy of a 
k k k 

material volume is f Z p E dv where E represents the internal energy per 

unit mass of the k* component. Alternately, with E, the internal energy per 
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uni t  mass  o f  the  mix ture  def ined  as  E s  Z w k  E k ,  we  have  /  Z p k  E k dv = /pE dv .  

This  quant i ty  i s  a  par t  o f  the  to ta l  energy ,  f l  p k  (E k  + d v >  h a v i n g  , h e  

decompos i t ion  

,  . -k .2  
/  I  p  (E +  - V  ^  )dv  =  /  pEdv +  K +  K^.  

The  ba lance  of  to ta l  energy  depends  in  par t  on  the  t ranspor t  o f  hea t  in to  the  vo lume,  
k  k  k  

I  h  .  n .  da ,  and  on  the  ra te  of  genera t ion  of  energy ,  /  Z p  Q dv;  the  la t te r  

in tegra l s  imply  tha t  wi th  each  component  there  i s  assoc ia ted  a  f lux  of  hea t  h k  and  
k  _  k  k  k  '  

an  energy  source  Q  .  With  h .  =  Z h  .  and  Q = Z w Q we have  the  obvious  

a l te rna te  express ions  h .  n .  da  and  /  pQdv.  

Pos tu la te  I I :  

The  ra te  of  change  of  to ta l  l inear  momentum of  a  mater ia l  vo lume V equa ls  

the  sum of  the  inward  f lux  of  to ta l  l inear  momentum and  the  forces  ac t ing  on  the  

volume.  This  p r inc ip le  may be  o therwise  expressed  as  

S  Z p k  (v .  +  v k )dv  =  Z p k  (v .  +  v k )v k n.  da  

+  /  Z  t j d a  +  /  Z  p k f k  d v  .  ( 3 . 7 )  

k  k  
We adopt  now Cauchy ' s  s t ress  hypothes i s ,  t .  =  t .  (x . ,n . ,  t ) ,  and  use  i t ,  toge ther  

wi th  (3 .7)  and  the  assumpt ion  of  boundedness  of  in tegrands ,  to  obta in  the  decompos i t ion  
k  k  *  

t .  =  T, .  n , .  On the  bas i s  o f  th i s  re la t ionsh ip ,  p rev ious  def in i t ions ,  Gauss '  theorem 
'  ' I  I  

and  (2 .10) ,  we  wr i te  (3 .7)  in  the  form 

^ v i  k  k  k  k  k  k  
S i p - t f  -  I  T , n  + I  (P v i v j> ' j -  Zp  fydv-O 

*  Hencefor th  we  assume tha t  the  tensors  T j  j  a re  symmetr ic ,  bu t  i t  i s  unders tood  
tha t  many of  the  resu l t s  remain  va l id  wi thout  th i s  assumpt ion .  
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and since the volume is arbitrary, easily deduce the differential equation 

PT5T • £Tii'i" 1 + IPk«l' (3-8> 

k  k  
Upon defining t. = Z t . and writing the corresponding tensor as T.. = Z T.., 

this basic result takes the form 

Dv. , k L , 
p-of =Tn-i"1 (p  "iV'i +PV (3 '9> 

DK 
From (3.8) we now obtain easily a useful relationship for . 

Theorem II - The rate of change of K is 

=  /  Z  t ^ v .  d a - /  Z  p ^ v S . n .  d a - / Z T j .  v . , .  d v  

+ / Z p'' v^vS./. dv + / Z p^f'lv, dvt (3.10) 
I  |  I  |  I I  

To prove (3.10), it suffices to integrate the product of (3.8) with v. and rearrange 

the result using (2.10) and (3.4). When N = 1, the medium is a simple continuum 

and (3.10) reduces to the well known formula 

^  =  $  t .  v . d S - / T . . v . , . d v + / p f . v . d v .  

k k k 
Otherwise, the general statement (3.10) always contains the terms / Zp v .v .v.n. da 

and f Z pkvl<vl<v , dv that express, with respect to the mixture motion, the 
i i i I 

rate of work and dissipation due to diffusive stresses. 

Postulate III: 

The rate of change of total energy of an arbitrary material volume V 

equals the sum of the total rates of work of surface and body forces, the inward 
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flux of total energy, the inward flux of heat and the total heat generated within 

the volume. This principle may be written as 

5 / 1 /  ( E k  + J ^ ^ ) d v  =  f r ,k. (v. + vk)da 

2 
+ / Z pk f*! (v. + v^)dv - / Z p^ (E^ + *v "^v * ) V^n. da 

- <f Z h^n. da + / Z p^Q^ dv. (3.11) 

Expanding the total energy terms and combining the result with (3.10) gives after 

some obvious cancellations, 

We write the left hand side of (3. 11) in the form / Z p^ (E^ + lv^l/2)dv+^p-
DK 

and substitute (3.10) for ; furthermore, we use 

— —k ^ 
i* r k /ck Iv + v I . k j J x k ck k 0 Z p (E + ^ ) v . n. da = $ Z p E v . n. da 

+ <f Z p^ 1^1 /2 v^ n. da + <f Z p^ v^ v. v^ n. da. 

Note that while the rate of change of total energy equals the sum of the rates of 

change of / pEdv, K and K^, a similar decomposition of the integral expressing 

the transport of total energy into the volume by diffusion yields the cross term 
k k k 

4 Z p v . v. v. n. da. From our viewpoint such terms are manifestations of various 
I • I • 

interactions among the constituents of a heterogeneous medium. Unfortunately, 

the precise nature of such interactions is unknown. 
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^ / Z pk (Ek + lvk| /2) dv = / Z Tk.v.f.dv - / I pk vk vk v.,. dv 
in t| i | i | i | 

+ / pk fk vk dv + / Z tk vk da - / Z pk (Ek + Iv^l /2) vk n. da 

- / I n. da +/ Z pk Qk dv. 

The above equation, written in terms of volume integrals, takes the form 

£ / Z pk (Ek + l^|2/2)dv = / I (Tk - pkvk vk)v.,. dv 

-/ Z[hk +pk (Ek + 1^1/2) vk - Tk vk),. dv + / I (pkQk + pkfkvk)dv. 

It is convenient now to introduce into this expression the definitions 

L L 1 _L 2 
pE* = I p (EK + j lv I ), 

* _ k k k 
T.. = T„ - I p v v , 
i| 'I 1 I 

* _ ,. k k /ck . 1 k,^x k Tk k, 
=  Z [ h .  + p  ( E  + j l v  I  ) v . -  T . . v . j  

* _ _ k rk k 
p Q  =  p Q  +  Z p  f j V . ,  

suggested by the natural grouping of terms in the integrals and by the viewpoint 

adopted herein towards diffusive effects. Using (2.10), there follows 
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and  s ince  the  volume i s  a rb i t ra ry  th i s  impl ies  

(3J2) 

Equat ion  (3 .12)  i s  a  genera l iza t ion  of  the  energy  equa t ion  for  s imple  cont inua  to  
k  

which  i t  reduces  whenever  v  .  =  0 .  

Next ,  we  obta in  f rom (3 .12)  an  express ion  for  p  to  be  used  in  the  sub­

sequent  d i scuss ion  on  thermodynamics .  For  th i s  purpose ,  we  def ine*  the  se t  o f  

sca la rs  {X k )  

X k  •  ~  (p k  | v k | 2 /2 )  +  (p k  | ' v* C | 2 /2  v k ) , .  +  p k  1^1/2  v . , .  

-K k  | v k | 2 /2  +  p k  v k  v k  v. , .  +  T k  v k , .  -  p k  f k  v k  -  (T k .  v k ) , . ;  (3 .13)  
1  '  '  ^  i  |  i |  i |  i  |  r  i  i  11  •  i  

subs t i tu t ing  (3 .13)  in to  (3 ,12)  y ie lds  the  requi red  equa t ion  

p  -^  = T. .  v . , .  +  I  T k .  v k , .  -  (Z h k  + p k  E k  v k ) , .  +  pQ + F (3 .14)  
r  Dt 11 i  |  MM '  1 1  

where  

F  =  -  I  (X k  + K k  | v k | 2 /2 ) .  

The  resu l t s  (3 .14) ,  (3 .  12) ,  (3 .9)  a re  in  en t i re  agreement  wi th  Truesde l l ' s .  

This  i s  necessary  because ,  o ther  than  a  formal  in tegra l  o f  (3 .13) ,  no  expl ic i t  fo rmula  
for  DKp/Dt  i s  ava i lab le .  

**Whi le  the  der iva t ions  d i f fe r ,  they  a re  not  en t i re ly  unre la ted .  A somewhat  c loser  
connec t ion  be tween  the  two may be  es tab l i shed  as  fo l lows .  We suppose  tha t  the  
chemica l  reac t ions  and  poss ib le  o ther  in te rac t ions  among the  cons t i tuen ts  resu l t  in  
p roduct ions  of  to ta l  momentum and  to ta l  energy ,  th i s  be ing  expressed  by  inc luding  on  
the  r igh t  hand  s ides  of  the  ax ioms (3 .7) ,  (3 .11)  the  in tegra l s  / I  p (p ;  +  K (v k  +v ; ) ]dv ,  
/ Ip [e k +£ k  (E k  + jv*  +v  |  /2) ]  dv;  K k  = pK k ,  and  p% « k  denote  respec t ive ly  
product ions  of  k t h  to ta l  momentum and  k f ^  to ta l  energy  due  to  in te rac t ions .  Because  
IK k  = I  K k  = 0 ,  cont r ibu t ions  due  to  the  mix ture  mot ion  vanish .  The  remain ing  
por t ions  of  the  in tegrands  may be  se t  equa l  to  zero  on  the  bas i s  of  the  same sor t  o f  
theorems as  in  (1 ,2) ,  the  la t te r  express ing  the  requi rement  tha t  each  d i f fe ren t ia l  
equa t ion  for  the  medium as  a  whole  possess  the  same mathemat ica l  s t ruc ture  as  the  
cor responding  equa t ion  for  s imple  cont inuum.  S ince  th i s  l eaves  the  main  resu l t s  
una l te red ,  we  have  chosen  not  to  pursue  th i s  course .  
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4.  Thermodynamics  

The  purpose  of  th i s  sec t ion  i s  to  jo in  the  preceding  deve lopment  wi th  the  

necessary  thermodynamica l  cons idera t ions .  This  i s  done  by  der iv ing  f rom pos tu la ted  

equa t ions  of  s ta te  for  the  cons t i tuen ts  an  equa t ion  of  s ta te  for  the  medium as  a  

whole ,  by  deducing  severa l  forms  of  the  Gibbs  equa t ion ,  and  by  der iv ing  the  

equa t ion  express ing  the  ba lance  of  to ta l  en t ropy  of  a  he te rogeneous  cont inuum.  

The  la t te r  sugges ts  then  severa l  candida tes  for  a  poss ib le  genera l  pos tu la te  of  

i r revers ib i l i ty .  Our  t rea tment  i s  a  s impler  and  somewhat  modi f ied  vers ion  of  tha t  

due  to  Truesde l l  [1 ,2] .  The  fundamenta l  ideas  go  back  to  the  c lass ica l  work  of  

J .  W.  Gibbs .*  
k  

We s ta te  now the  bas ic  assumpt ions .  The  main  hypothes i s  i s  tha t  E -  the  

spec i f ic  in te rna l  energy  of  the  k t k  component  -  is  in f luenced  by  the  to ta l i ty  of  
1  N 

parameters  cons is t ing  of  a l l  par t ia l  spec i f ic  vo lumes ,  {v  ,  . . . ,v  ]  where  
k  k  k  

v  5  l /p  ,  and  tha t  these  toge ther  wi th  one  addi t iona l  sca la r  parameter  s  a re  
k  k  

suf f ic ien t  to  de te rmine  E independent ly  of  t ime ,  mot ion  and  s t ress ;  s  ,  d imens iona l ly  

independent  f rom a l l  o ther  parameters ,  i s  ca l led  the  k t k  spec i f ic  en t ropy .  The  se t  
k  1  N .  th  [ s  ,  v  ,  . . . ,  v  }  i s  s a i d  t o  c o n s t i t u t e  t h e  t h e r m o d y n a m i c  s t a t e  o f  t h e  k ' n  c o m p o n e n t  

N  
and  i t s  subse t  . . . ,v  }  i s  ca l led  the  thermodynamic  subs ta te .  The  thermo­

dynamic  s ta te  i s  spec i f ied  by  a  def in i te  func t iona l  re la t ionsh ip  

c k  c k /  k  1  u U E =  E ( s  ,  v  ,  v  )  ,  (4 .1)  

here in  re fe r red  to  as  a  ca lor ic  equa t ion  of  s ta te .  I t  i s  assumed tha t  a l l  such  re la t ion­

sh ips  a re  d i f fe ren t iab le  as  many t imes  as  requi red  and  may be  inver ted  to  y ie ld  any  

one  var iab le  in  te rms  of  the  remain ing  ones .  Therefore  

k  N k  
j c k 9E* ,  k  A  • ;  9E ,  p  
dE =  —r ds  +  I  —- (4 .2)  

8s  p=l  9v  

*The  reader  i s  re fe r red  to  [6 ] ,  [7]  and  [8] ,  An exhaus t ive  l i s t  o f  per t inen t  papers  
may be  found in  [2 ] .  
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and since (4.1) is valid for any motion (4.2) expresses a general change in the 

state of the constituent. The particular change associated with the mixture 

motion is given by 

DEk _ 9Ek Dsk * 9Ek Dv? 
-or-TZ -or + z. 77 -or * (4-3) 

as p=l 9vr 

An alternate expression is 

DEk k Dsk + ^ 9Ek D/ ,. .. 

^ ^ <4"4) 

where 

Tk = 9Ek 

a k 9s 
v 

N t • • • t 
is the temperature of the k^ constituent. 

We come now to the first important result of this section ascertaining under 

what conditions there exists an equation of state for the mixture of the form 

E  s E ( s , v ' ,  . . . ,  v N )  ( 4 . 5 )  

compatible with the given equations of state (4.1); 

N 
s = I 

k=l 

r k k 
I w s 

is called the total specific entropy of the mixture and, as before, 

N k k E = Z wK E , 
k=l 

* Henceforth we omit the subscripts because it is clear from a given functional 
relationship and its partial derivatives which variables are held fixed. 
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Theorem 1 - A mixture whose constituents have equations of state of the 

form(4.1)possesses anequation of state (4.5) if and only if the local thermodynamic 
1 N 1 N 

states described by s , ...,s , v , ...,v , are subject to the following 

conditions} 
1 2 L 1. L components have the same temperature T = T =...T = T, 

2. The concentrations of the remaining N - L components are zero, 
L+l L+2 N _ w = w = . . . w = 0 . 

1 N 
The proof is simple since, for fixed v , v , a necessary condition 

for 

N k k k 
dE = I w T ds =T ds, 

k=l 

I  0 p  I  
is T = T = — (or the particular w =0). The reader can easily complete 

O S  

the proof. 

In practice it is not so much the equations of state (4.1), (4.5) that are 

used but rather the rate equations typified by (4.4). Such an equation for the 

mixture is obtained in a straightforward way from (4.5) and previous hypotheses. 

It suffices to put v^ = v/wk into (4.5), form the differential expressing the 

general change in E and then observe that, for the special change following the 

motion of the mixture, this implies 

DE = T Ds _ Dv * k ( 6) 

Dt ' Dt- * Dt k=, M Dt 

w here 

_ 9E _ 9E k _ 3E 
T  =  a T -  " 5 - * '  "  

Equation (4.6) is called the Gibbs equation; the coefficients T, ir,pkare respectively 

the mixture temperature, total pressure and chemical potential. The latter are now 
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given explicitly in terms of the constituent quantities. We multiply (4.3) with 
|( 

p , use previous hypotheses and some rearrangement to obtain 

nF n. n N N k ack i N N k p D E _ _ . D s . D v  w _  9 E _  1  _  w  9 E  DwK 

Dt Dt _ L, P a P " P , , \ n2 77 "Dt~ k=l p=l wr d>/ k=l p=l ^ 9v 

+ E (Ek - Tsk) ^ . (4.7) 
k=l Ut 

Equation (4.7) is precisely of the form (4.6) provided 

. . . k N . p N N k aC:k 
k  -  c k  T  k  v  T  P  _ _ _ w 9E , 0. p = E - Is p Z wr —r , tt = - I Z . (4.8) 

w p=l 9v k=l p=l wP 9vP 

It is important to note that the validity of (4.7) with coefficients (4.8) is 

not an assumption but a consequence of the caloric equations of state of the con-

stitue 

have 

k k k k k 
stituents and the condition T = T . In the special case when E = E (s , v ) we 

^  k  k  _ k _ k  k k  
TT = Z TT , P = E " IS + TT V , 

k = l 

k 
where the partial (or component)pressures TT are defined as 

_ 9Ek 

The last statement is summarized in the following theorem: 
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k k  k  k  Theorem 2  -  If  the  components  sa t i s fy  equa t ions  of  s ta te  E =  E ( s  ,  v  )  

and  i f  a t  each  ins tan t  o f  t ime  t  a t  a  p lace  x .  the  component  tempera tures  a re  

ident ica l  then  there  i s  a  Gibbs  equa t ion  such  tha t  

1 .  The  to ta l  pressure  i s  equa l  to  the  sum of  the  par t ia l  p ressures ,  
k  k  k  k  k  

2 .  The  chemica l  po ten t ia l s  a re  p  =  E -Ts  +  i r  v .  
k The  Gibbs  equa t ions  d i scussed  thus  fa r  requi re  T  =» T .  I t  i s  wor thwhi le  

to  cons ider  here  a  more  genera l  Gibbs  equa t ion  not  subjec t  to  th i s  requi rement ,  

namely ,  one  tha t  admi ts  a t  a  p lace  x .  ,  T^  T^ .  For  th i s  purpose  we  re ta in  the  

cons t i tuen t  equa t ions  of  s ta te  (4 .1)  bu t  do  not  demand an  equa t ion  of  s ta te  for  the  

mixture  o f  the  form (4 .5) .  At  each  poin t  x .  in  space  a t  each  ins tan t  o f  t ime  t  
*s/ 

we  def ine  a  mean  tempera ture  T for  the  mix ture  as  

N  k k k  ~ N  k k  
Z T w ds  -  T I  w ds  » 

k= l  k=l  

Clear ly ,  

N ,  ,  N  ,  .  
T  d s  =  T  {  I  w  d s  +  Z  s d w } .  

k=l  k=l  

Computa t ions  s imi la r  to  those  y ie ld ing  (4 .7) ,  (4 .8)  g ive  now 

N k  
DE "S Ds  Dv _  « .k  Dw 
D T  =  T i 5 f - " D 7  +  kr=/ "or 

where  

k  N „p  

H  =  E  - T s  I  w P " T  
w p=l  ov  
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ond the  to ta l  p ressure  i r  i s  the  same as  in  (4 .8) .  Of  course ,  T i s  no t  a  s ta te  

var iab le  in  the  usua l  sense  and  therefore  the  appl icab i l i ty  of  the  above  formula t ion  

needs  fur ther  examina t ion .  Subsequent  d i scuss ion  i s  a lways  cons is ten t  wi th  

Theorem 1  and  no  fur ther  ment ion  of  T  i s  made .  

We obta in  now the  d i f fe ren t ia l  equa t ion  express ing  the  loca l  ba lance  

of  to ta l  spec i f ic  en t ropy  s  and  f rom i t  deduce  an  in tegra l  equa t ion  for  the  ba lance  

of  to ta l  en t ropy  /  psdv;  gu ided  by  the  procedures  es tab l i shed  in  the  theory  of  

s imple  cont inua  we  sugges t  then  cer ta in  inequa l i t i es  regarded  as  poss ib le  genera l  

pos tu la tes  of  thermodynamic  i r revers ib i  l i ty .  

Equat ions  (3 .14)  and  (4 .6)  a re  rewr i t ten  as  

(4 .7)  

and  

(4 .8)  

where  

N 
Q = pQ -  p  Z 

k=l  

and  
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The terms P^,  and Pj  a re  ca l led  respect ively  the  external  power ,  the  external  

non-mechanical  supply  of  energy and the  inner  power .  El iminat ing p  between 

(4 .7)  and (4 .  8  )  g ives  us  the  equat ion for  the  product ion of  to ta l  speci f ic  ent ropy,  

p T T 5 b P E - p l + Q E  

that  may be  expressed as  

N  k k  k  
p  h + I  p E v  j  

D  Ds _  E I .  k=1 '  1  N k .k  k .  
P D t  j  V  j  '  ' j  J  T ' i  ( h i  1  P  E  v ; )  

T k=l  

p Q - p  Z  ( X k  +  K k  j  | ^ | 2 )  

+  — .  (4.9)  

We in tegra te  (4 .9) ,  use  the  t ranspor t  theorem and af ter  some obvious  

rearrangement  obta in  the  corresponding in tegra l  equat ion for  the  balance  of  to ta l  

ent ropy,  

N k k  k  
(h .  +  Z p k  E K  VJ )  

/  ps dv =  -  /  n.  da  + /  (A + )  dv ,  (4 .10)  

where  

1  ^  k k  k  N  k k 1  i—ki2 
T A 5  P .  p -  1  T„ (h.  +  Z  p  E v . )  -  p Z (X +  K % Jv |  } (4 .11)  

E  1  T  '  1  k=l  '  k=l  
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The theory  of  s imple  cont inua  suggests*  tha t  we may se t  

T A >  0  

*We fol low the  t rea tment  of  Truesdel l  [2] .  For  a  s imple  cont inuum which obeys  

a  calor ic  equat ion of  s ta te  E =  E(s ,  a k ) ,  k  =  1 ,  . . . ,  K we have 

dE _ ds  — 
,  p dT =  p  dT I 

k  da  i gg  
where  P.  =  p  I  T —T— ;  the  quant i t ies  T = —R- are  ca l led  thermodynamic  

.  C I .  H .  dE **  
tensions .  El iminat ing p  — between the  above equat ion and the  equat ion 

»£ = pe+°E 
where  P £  = T. .  D. . ,  Q £  s  pQ -  h. , . ,  g ives  

In tegra t ion of  
p T 5f  =  P E~ P I  + q E 

leads  to  

ds  P E "  P |  , h i .  h i  T ' i  pQ 
P  d t  =  T  "  ̂ ' i  t 2 ~  T  

•jr f ps  dv = -£  -=j-  n .  da  + /  (A + )d\  
d t  I i  

where  

T A =  (P,  -  P.)  -
h j , t  i  

E  I  T  

On the  bas is  of  physica l  arguments  we have 

P -  P >  0  when Q = 0  and T =  const ,  
and 

h .  T , .  >  0  when Q = 0  and P c  -  P.  =  0 .  
i i -  t  I  

Therefore  T A >  0  and for  T >  0  the  above express ion is  equivalent  to  

/  ps dv > -  £  —y-i-  da  +  /  ̂  dv 

The las t  s ta tement  i s  adopted as  a  postula te  of  i r revers ib i l i ty .  
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and adopt  the equivalent  inequal i ty  

h .  + Z p k  E k  v k  

/  ps dv > -  /  ( ] n .  da + /  ̂  dv (4.12)  

as  a  general  postulate  of  i r revers ibi l i ty .  

I t  must  be  emphasized that  T A > 0 ,  and hence (4.12)  are  merely suggested 

as  possible  hypotheses .  Other  candidates  for  a  "general  postulate  of  i r revers ibi l i ty"  

are  easi ly  obtained because the terms which enter  A are  not  uniquely def ined.  

For  example,  we may wri te  (4 .9)  in  the form 

h.  + Z p k  (E k -  M k )v k  

pj£ -  "  I y ^  + A 1  (4 .13)  

where 

N k u i  ^  k k 
TA'  S  Z T. .  (v . , .  +  v . , . )  + nv. , .  -  ̂  T, .  (h .  +  Z pEK  v.)  

k=l  '  '  T  '  '  k-1 

-p  Z {  X k  + K k  (^-Iv^l  + p k )  + p k  v*? (4-) , .} .  (4 .14)  
k=l  

The assumption 

T A'  > 0  

is  equivalent  to  

h .  + Z p  (E "  H ) v  j  

^ S ps dv > -  /  ( k = 1  T  J" ,  da + /  ̂  dv.  (4.15)  

4 
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Th e  inequa l i ty  TA'  >  0  is  the  same as  Truesde l l ' s  [1 ,2]  and  c lear ly  d i f fe ren t  f rom 

TA >  0 .  Of  course ,  th i s  d i f fe rence  i s  a l so  re f lec ted  in  the  cor responding  in tegra l  

s ta tements  (4 .15)  and  (4 .11) .  We may,  i f  we  wish ,  cons t ruc t  s t i l l  o ther  inequa l i t i es ,  

group  the  thermodynamic  var iab les  in to  " forces"  and  " f luxes"  and  obta in  agreement  

wi th  the  resu l t s  g iven  by  var ious  wr i te rs  on  " i r revers ib le  thermodynamics ."  (For  

example ,  in  [4 ] ,  a  A is  used  which  leads  to  the  resu l t s  o f  S .  R.  De  Groot  (9J  and  

H.  A.  Toelhoeck  and  S .  R.  De  Groot  [10] ,  proper  in te rpre ta t ion  of  te rms  be ing  

made  where  necessary . )  Wri te rs  on  tha t  sub jec t  go  one  s tep  fur ther  and  requi re  tha t  

par t ia l  sums occur r ing  in  a  par t icu la r  A be  separa te ly  non-nega t ive .  The  a rguments  

advanced  for  the  suppor t  o f  such  s teps  do  not  appear  to  us  very  convinc ing .*  What  

i s  fundamenta l ly  l ack ing  i s  the  knowledge  of  the  appropr ia te  group  of  t ransformat ions  

of  the  thermodynamic  var iab les  and  the  invar iance  which  we  a re  to  requi re .  I t  

appears  therefore  tha t  fur ther  progress  towards  a  r igorous  theory  of  thermo-mechanics  

must  wai t  un t i l  such  t ime  when th i s  ques t ion  i s  se t t l ed  in  suf f ic ien t  genera l i ty .  

*A genera l  c r i t i ca l  eva lua t ion  of  " i r revers ib le  thermodynamics"  may be  found in  
[1 ] . ;  An i l lumina t ing  c r i t ique  d i rec ted  a t  the  wel l  known rec iproca l  re la t ions  of  
Onsager  was  g iven  by  D.  B.  Coleman and  C .  Truesde l l  [  11  ] .  For  a  r igorous  
modern  work  on  c lass ica l  thermosta t ics  the  reader  i s  re fe r red  to  the  work  of  D.  B.  

Coleman and  W.  Nol l  [12] ,  
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