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Summary

The paper deals with the derivation of general conservation equations for
heterogeneous continua = substances consisting of several distinct, possibly inter=
acting constituents, The analysis, resting for the most part on an admissible
superposition of the diffusive motions on the postulated motion of the mixture,
is based on axioms in integral form from which the basic differential equations
are deduced. The treatment is o rigorous, direct generalization of the classical
theory for simple continva. The main results are compared with those of Truesdell

and found to be in entire agreement,
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1. Introduction

From the viewpoint of continuum physics, the behavior of many materials
is well described by the properties of an ideal medium = the simple continuum;
but this classical representation must be modified ond extended in order that it
suffice as a model for materials consisting of several distinct and mutually inter-
acting constituents. A continuum theory describing such materials is called herein
a heterogeneous continuum theory. In the broadest sense, it is not restricted to
any particular state of continuously distributed heterogeneous matter and therefore
covers,” for example, flows of reacting mixtures of gases, liquids containing small
solid particles in suspension, and electrically conducting plasmas.

A general theory for heterogeneous continua was published by C. Truesdell

[1, 2], While rigorous, Truesdell's treatment is rather formal. He postulates
the differential balance equations for the constituents and sums these over all
constituents to obtain the equations for the medium as a whole. The summations
are so performed that each of the resultant equations possesses the same mathe~-
matical form as the corresponding equation for a simple continuum, More recently,
Kelly [3] gave a derivation of Truesdell's results starting from axioms in integral
form and including electromagnetic effects. Basically, his formalism amounts to
spatial integration and summation of the equations postulated by Truesdell, o
certain degree of order being introduced into the summation procedures by what he

calls a general balance principle stated for volumes fixed in space,

*We are referring to general equations of balance that, for each particular
continuum, must be developed and specialized further by including definite
constitutive equations. This paper, as well as the first three quoted works, deals
mainly with the derivation of the general balance equations and not the constitutive
equations. Numerous earlier papers, usually of a more special noture, are not
quoted herein because they are listed, together with critical evaluations,

in the exhaustive bibliography of (2],
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This paper, an extension of the author's earlier work [4], deals with the
development of a different mathematical model for heterogeneous continua, The
treatment is rigorous, yet simple and direct, and is closely related to the classical
theory for simple continua. It rests for the most part on an admissible superposition
of the diffusive motions of the components on the postulated motion for the mixture.
Material properties ascribed to the medium as a whole are used consistently. In
particular, the main axioms, unlike those in (1, 2] and [3], are stated in integral
form in terms of well defined material volumes for the heterogeneous continuum,
The differential balance equations for the medium as a whole are deduced from
these axioms and shown to be in agreement with Truesdell's results. The reader,
if he likes, may consider this formulation as an alternate to {1, 2] and in part to
[3] and also as a generalized analog of the classical theory of one component

fluid flow. An excellent treatment of the latter is due to J. Serrin i5].

2. Premises and Kinematical Definitions

The mathematical description of heterogeneous continua is based on
identifying tangible portions of heterogeneous matter with sets of points in three-
dimensional Euclidean space. The motion of the medium as a whole = the motion
of a mixture = is represented herein by a one-to-one continuous transformation of
the space into itself, The parameter t of this transformation represents time and

*
its range is ~0 < t <o where t =0 specifies an arbitrary initial instant. Thus
x, = ¢ (X, t); 2.1)
the spatial variables X denote the positions of mixture particles distinguished

from all others by means of the material variables X, conveniently chosen as the
|

positions of mixture particles ot t =0, Hence t may be restricted to 0 <t < 0.

*We use both Cartesian tensor notation and vector notation. Tensor indices appear as
subscripts and vectors are distinguished from other quantities by bars above a letter.
The superscripts are devoid of tensorial meaning and denote the components of the

mixture. All functions oppearing herein are assumed to be as many times continuously
differentiable as required.
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The Jacobian, J, of the mapping (2. 1) is such that

axi
0<J=-def(é—x—-)<cn. (2.2)
|
The terms "moving mixture particle" and moving point in space are synonymous.
By definition, an arbitrary finite volume V(t) is called material if it moves with
the mixture; that is, every point of the bounding material surface S moves according
to (2.1).

We will consider a heterogeneous continuum consisting of say N substances
and distinguish it from a simple (one-component) continuum by the two following
properties, regarded as explicit hypotheses.

1) There exist functions pk(;, t) > 0 such that the mass Mk

t
of the k " component® is

M e Lo dv. 2.3)

V
2) There exist vector fields J‘; (xi, t) that are a priori known
functions of certain well defined thermodynamic variables.
These vector fields, called the diffusive (mass) fluxes,

satisfy the condition

gt "
£ J, (x,t) =0, (2.4)
k= ' |

The total mass of the mixture is

Z

M= (2.5)

n ™
=

*Hereafter k ¢ {1, 2, +.., N} will always serve to identify a typical substance
of the continuum,




Weset M = [ pdvand thus
v

N
p=L p.

k *

k=]

The concentrations of the components are defined as wk - pk/p. Clearly
k

Iw =1,

The velocities and accelerations of the mixture are defined as

09,
Rk
W wix, renl
and |
avi
% wx )
The symbol 2 is henceforth replaced b LA and k] represents the usual
4 a | X; Y Dt ar
derivative holding X, fixed, 2
-
From (2.1), (2.2), (2.6) and (2.7) we obtain a, = -5'-1 + v.I v;,i. A more
general formula is
DE _ oF
m = 'a""— + Vi F’i (2'8)

where F stands for a scalar or a component of a vector quantity associated with
the motion.

k
The diffusive velocities Vi defined as

V‘f = JL:/p‘< ’ 2.9)

are regarded as "carriers” of masses, momenta and energies for the individual
components relative to the motion (2.1). They form the apparatus whereby masses,

momenta, and energies are transported by diffusion into an arbitrary material

*Henceforth we introduce a more compact notation: I= I , [= [ and
k=1 Vv
# = 4. While omitting the symbols S and V on integral signs, in the text we

shollsolwayt emphasize our consistent use of material volumes and surfaces.
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volume V. Scalar products of the vL:'s with various forces shall be called work
rates due to diffusion. With reference to an arbitrary material volume, we state
the following superposition principle:

"Diffusive phenomena are superposed (added tensorially) on

the corresponding phenomena associated with the mixture motion."
This principle forms the basis for the axioms presented in the next section and,
through their consequences, is shown to imply a definite interdependence of the
mixture motion as a whole and the diffusive motions of the components.

In addition to the above, we shall frequently make use of the following

well known theorem

Transport Theorem = Let V be an arbitrary material volume and

F(;, t) a scalar or vector function of position. Then

D 3 DF
Br dev—f(—D-;+Fvi,i)dv. (2.10)

The proof is standard and will not be given,

3. Conservation Principles

The differential equations governing the behavior of the mixture are
deduced from the following postulates,

Postulate |:

The rate of change of mass of the k' component of the mixture within
an arbitrary material volume V equals the sum of its diffusive mass flow into V
and the rate of production* of mass of the kth component. This conservation

principle is expressed by the statement

BD{ fpkdv =g J‘;nido +J dev 3.1

*Due to chemical reactions.




easily obtained from (3.2) ond (3.4).

-

. Lo -
where n, denotes the unit normal, positive outward, and K represents the mass
. " t
rate of production per unit volume of the k " component. Now, from (2,10)

and (3.1) it follows easily that

k
Dp - k k ks
S o +0 v 35 = K)dv=0

r

and since V is arbitrary this implies

k
Dp k o
—-DT + p Vi,; -K Ji'i o (3.2)
Summing (3.2) over all components and using (2.4), we obtain
Dp | k
Bt PV = K3 (3.3)
Theorem | = The total mass M within an arbitrary material
volume V is conserved,
Dp -
Dr + PYiry = 0 (3.4)
if and only if
.
IK =0, (3.5)

k
Henceforth we shall assume that whenever explicit formulas for the K~ are given

their sum always vanishes. The statement (3.4) is then a direct consequence of

(2.4), (3.1) ond (3.5).

The local composition of a heterogeneous medium is usually expressed in

k L ) th :
terms of the concentrations w . The pertinent equation for the k' component is

Dwk

a3 e x®, (3.6)

p
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Before we state the axioms expressing conservation of linear momentum
ond energy, we shall define a number of quantities appearing therein, The
definitions are always consistent with the superposition principle,

The tofol linear momentum of an arbitrary material volume V is
JELp (v +v )dv, from (2.4), 2.9 ond p= & pk, it follows that the integral

of the sum of diffusive momenta vanishes; that is, J' L pk vki dv = 0, ond therefore

¥ A pk (vi *'vl:)dv ':fpvi dv.

This quantity is influenced by the direct stress, ¢ I Ik ds, and the body force
i pkf dv, where tk denotes the direct component stress and F stands for
the (body) force per unit mass acting on the k' th component of fhe mixture, The
force f, acting on a unit mass of the mixture is defined as fi =1 wk f‘; , and
hence [ I pkfl; dv = [ pfi dv.

Next, we introduce the definitions of several kinetic energies ond rates

—k;2
W pk%/—l- dv; the kinetic

energies of the mixture motion and the sum of dnffuswe motions are respectively

«
K‘=fp|v|/2 dv and K. = [ L p

of work. The total kinetic energy is K

0 I /2 dv. As an immediate con-

sequence of (2,4), (2.9) there follows K. = K + K_. The total rates of work

T D
k %
due to surface and body forces are respectively expressed as ¢ I t, (vi + v:) da
and J I pk fk (v +v ) dv. Parts of the total rates of work enter the balances

of K. and K ond so it is often convenient to write the contributions due to diffusive

D

motions and the mixture motion separately, for example,

k
f}: k l'<(V +vk dv—fpfv dv+prfkv dv.
We complete now our set of definitions. The total internal energy of o
material volume is J L pk Ek dv where Ek represents the internal energy per

unit mass of the kfh component. Altemately, with E, the internal energy per
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unit mass of the mixture defined as E = [ w‘< Ek, we have [ I pk Ekdv = [pE dv.
: s | v 2
This quantity is a part of the total energy, JS'I pk (Ek + ILLZT’i-I—) dv, having the

decomposition
5

l—Y—E-L)dv = [ pEdv +K +KD.

SIp@ES+
The balance of total energy depends in part on the transport of heat into the volume,

 k
- Lh s da, and on the rate of generation of energy, S L pk Qk dv; the latter

. g . - ) .
integrals imply that with each component there is associated a flux of heat h. and
I

]

an energy source Qk. With hi L h‘; ond Q = [ wk Qk we have the obvious
alternate expressions =¢ hi n, da and [ pQdv.

Postulate |l:

The rate of change of total linear momentum of a material volume V equals

the sum of the inward flux of total linear momentum and the forces acting on the

volume. This principle may be otherwise expressed as

D k AL k k, k
Or S Ip (Vi*vi)dv = -4 Lp (vi+vi)vinid°

+ ¢ L f‘:do 3 e pkfkidv ) (3.7)

Kk ke
We adopt now Cauchy's stress hypothesis, t o ti ., ni, t), and use it, together
|

with (3.7) and the assumption of boundedness of integrands, to obtain the decomposition

f‘f = T!(. n.." On the basis of this relationship, previous definitions, Gauss' theorem
i i

and (2.10), we write (3.7) in the form

Dv,

i k
f{PE“Y-T

st
"o

+ I (pk vt: vkil),i - kaf‘:}dv=0

- - T
*Henceforth we assume that the tensors T;: are symmetric, but it is understood
that many of the results remain valid without this assumption.
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and since the volume is arbitrary, easily deduce the differential equation

Dv,

. k k k k k k '
P B L Tii'i I(p vivi)'i + Lp fi . (3.8)
P o o . k
Upon defining ti = 1 ti and writing the corresponding tensor as T,, = 1 T.i,
|' |
this basic result tokes the form
ii_—r -z(kkk‘ + pf (3.9)
p D’ s ii,i P vivi),i pi' n
. g . i DK
From (3.8) we now obtain easily a useful relationship for Bt
Theorem || = The rate of change of K is
Wagt t‘:vi do=¢ L pkvkiv‘fv;ni da -f):T‘i‘i Vy, AV
|

Dt
¢ ke
+ S L pk v‘(ivkivi,idv*f): pkfivi dv, (3.10)

To prove (3.10), it suffices to integrate the product of (3.8) with v, and rearrange

the result using (2. 10) ond (3.4). When N =1, the medium is o simple continuum

and (3. 10) reduces to the well known formula

LR Ftv.ds= ST, v, dv + [ pf, v, dv.
Dt Y i g

. k k k
Otherwise, the general statement (3.10) always contains the terms § Lp V.V ivini da
and J L pk v‘ka_v,,, dv that express, with respect to the mixture motion, the
e
rate of work and dissipation due to diffusive stresses.

Postulate I11:

The rate of change of total energy of an arbitrary material volume V

equals the sum of the total rates of work of surface and body forces, the inward
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flux of total energy, the inward flux of heat and the total heat generated within

the volume. This principle may be written as

-ﬁf I p (E +j——)dv-fif‘:(vi+vk:)do

- -k
k k
+SLp fi(vi+vl:)dv-f[ pk(Ek+i_V_+2_V_I-)v‘;nido
k k -k
-4 Ihinido +JSIp Q dv. (3.11)

Exponding* the total energy terms and combining the result with (3. 10) gives after

some obvious cancellations,

2
*We write the left hand side of (3.11) in the form g— F X pk (Ek + I;kl/?)aw%}s'
and substitute (3. 10) for %Ef ; furthermore, we use
2

|C+C“| k k k

fipk(Ek-i- 5 )vinido—-prE

-
v,n, da
' |

2 .
k k k k
+ § 1 pk lzkl /2 v, n, da + §Llp vivivin da.
Note that while the rate of change of total energy equals the sum of the rates of

change of J pEdv, K and K_, a similar decomposition of the integral expressing

D

the transport of total energy into the volume by diffusion yields the cross term

[ 1 pk v‘f v‘f v.n, da. From our viewpoint such terms are manifestations of various
§r |

interactions among the constituents of a heterogeneous medium. Unfortunately,

the precise nature of such interactions is unknown.



alfa
. 2
-3; T S al P A Tl,:i Vi dv = S p“v‘:v‘;vi,idv

kkk k

2
+Jp dv+f[tvkdo-‘-£p (E +|'\7k|/2)v‘;nido

-¢ L h‘;ni da +prka dv.
The above equation, written in terms of volume integrals, takes the form
2
_DPf— ¥ Zpk (Ek + Izkl /2)dv = [ L (T:(I - kaL:V:)vi'i dv

k k

-J'Z[h s 2348 -Tkvll, dv + S L(Q5+ p Vv,

It is convenient now to introduce into this expression the definitions

g Iy (Ek+%|3ki2),

T;; = Tii -1 pkvkivki ’

t‘; " X[h‘; + 0" (E +%I;kiz)vk'-T:vki
pQ' = pQ+£pkfkiva,

suggested by the natural grouping of terms in the integrals and by the viewpoint
adopted herein towards diffusive effects. Using (2.10), there follows

t

f(p-——- - T' viri * E. - pQ*)dv = 0,




=%

and since the volume is arbitrary this implies

DE* * * o 3
PEp = ¥ ti’i tPpQ . €.12)

Equation (3. 12) is o generalization of the energy equation for simple continua to

which it reduces whenever v‘; =,

Next, we obtain from (3. 12) an expression for p -B—Et to be used in the sub~

sequent discussion on thermodynamics. For this purpose, we define” the set of

scalars { )\k}

i k12 2
N2 k 1%1%2) + % 4122 )+ et 972 v,

12
-Kl< |V"l/2 + pk v‘; v‘; v.,. + Tk. vl,(,i- P f v -(T k),‘, (3.13)

substituting (3.13) into (3.12) yields the required equation

= T.. ¥ipq

pBT TR A

DE zr“ ki-(lh‘?*pkEkv‘;),i+pO*F (3.14)

.
FeE-I (+ k2.

The results (3.14), (3.12), (3.9) are in entire agreement with Truesdell's,

i This is necessary because, other than a formal integral of (3.13), no explicit formula
for DKD/Dt is available.

* .
*While the derivations differ, they are not entirely unrelated. A somewhat closer

connection between the two may be established as follows. We suppose that the
chemical reactions and possible other interactions among the constituents result in
product ions of total momentum and total energy, this being 9xprossnd by m(lumng on
the rlgh? hand sides of the O)L' s (3.7), (3.11) the integrgls S L p [p + K5 ( (v§ + v )ldv,
SIiple k + Rk (Ek + Iv |%/2)] dv; Rk = pkk, ond p%, X denote resoech:eny
productions of k”" total momentum and k'h total energy due to interactions. Because
IKk= pkk = 0, contributions due fo the mixture motion vanish. The remaining
portions of the integrands may be set equal to zero on the basis of the same sort of
theorems as in [1, 2], the latter expressing the requirement that each differential

equation for the medium as @ whole possess the some mathematical structure as the
Since this leaves the main results

corresponding equation for simple continuum.
unaoitered, we have chosen not to pursue this course,




4. Thermodynamics

The purpose of this section is to join the preceding development with the
necessary thermodynomical considerations. This is done by deriving from postulated
equations of state for the constituents on equation of state for the medium as a
whole, by deducing several forms of the Gibbs equation, ond by deriving the
equation expressing the balance of total entropy of a heterogeneous continuum,
The latter suggests then several candidates for a possible general postulate of
irreversibility. Our treatment is a simpler and somewhat modified version of that
due to Truesdell [1,2]. The fundamental ideas go back to the classical work of
J. W. Gibbs."

We state now the basic assumptions. The main hypothesis is that Ek - the
specific internal energy of the kth component = is influenced by the totality of

" : sith i N,
parameters consisting of all partial specific volumes, (v , ..., v | where

k

< k " skt
v 2 1/p, ond that these together with one additional scalar parameter s are

. " N2 - . - - .
sufficient to determine E independently of time, motion and stress; s , dimensionally

th specific entropy. The set

k'h

independent from all other parameters, is called the k

%0 N " : .
{s ,v, «ee, v } issaid to constitute the thermodynamic state of the component

N, " .
and its subset {v] , veeay vV } is called the thermodynamic substate. The thermo-

dynamic state is specified by a definite functional relationship

i N
Ek=Ek(sk,v,...,v ¥ (4.1)

herein referred to as a caloric equation of state. It is assumed that all such relation=
ships are differentiable as many times as required and may be inverted to yield any

one variable in terms of the remaining ones. Therefore

k N .k
dE® =9% &+ I E (4.2)

s o=l

*The reader is referred to [6], [7] ond [8]. An exhaustive list of pertinent papers
may be found in (2],
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and since (4.1) is valid for any motion (4.2) expresses o general change in the
state of the kth constituent. The particular change associated with the mixture

motion is given by

An alternate expression is

DEk

e &Y S

Dt

is the temperature of the kth constituent.
We come now to the first important result of this section ascertaining under

what conditions there exists an equation of state for the mixture of the form

R L i ) (4.5)

compatible with the given equations of state (4.1);

N
L

k k

w S

g =

k=]
is called the total specific entropy of the mixture ond, as before,
Y g

EE I wt,
k=]

*Henceforth we omit the subscripts becouse it is clear from a given functional
relationship and its partiol derivatives which variobles are held fixed.
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Theorem | = A mixture whose constituents have equations of state of the

form (4.]) possesses anequation of state (4.5) if and only if the local thermodynamic
: ] N. .3 N
states described by s , ..., s , v, ..., v , aore subject to the following
conditions:
2
l. L components have the same tempercture TI =T =,,
2, The concentrations of the remaining N = L components are zero,
L+l L+2 N
- =w

D% oW sl

ok b . . | N o
The proof is simple since, for fixed v , ..., v , 0 necessary condition

dE = T ds =T s,

k

isT =TE x (or the particular wk = (). The reader con easily complete

the proof.

In practice it is not so much the equations of state (4.1), (4.5) that are
used but rather the rate equations typified by (4.4). Such an equation for the
mixture is obtained in a straightforward way from (4.5) and previous hypotheses.
it suffices to put vk E v/wk into (4.5), form the differential expressing the
general change in E and then observe that, for the special change following the

motion of the mixture, this implies

N
DE Ds Dv §

« Dwk
Dt

.._—:T——-'"—-—-'f

M
Dt Dt Dt k

Equation (4.6) is called the Gibbs equation; the coefficients T, w,uare respectively

the mixture temperature, total pressure and chemical potential. The latter are now
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given explicitly in terms of the constituent quantities. We multiply (4.3) with

p , use previous hypotheses and some rearrangement to obtain

. w0 owP
Ot

N N K -
1
S 5

P k=1 p=1 Wp* P

—Tk Dwk
s) Dt

Equation (4.7) is precisely of the form (4.6) provided

N

- Tsk -Yf—
wk

N o
; WP 2E

w
p=I v k=] p=i|
it is important to note that the validity of (4.7) with coefficients (4.8) is
not an assumption but a consequence of the caloric equations of state of the con-
: - k. =’ - k,k k
stituents and the condition T = T. In the special cose when E =E (s ,v ) we

have

K cam
where the partial (or component) pressures w  are defined as

K
ot

XN E - —

avk

The last statement is summarized in the following theorem:
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Theorem 2 - |f the components satisfy equations of state Ek =E° (sk, vk)
ond if at each instant of time t ot a place X, the component temperatures are
identical then there is o Gibbs equation such that

1. The total pressure is equal to the sum of the partial pressures,

2. The chemical potentials are pk = Ek - Tsk >t vk.

The Gibbs equations discussed thus far require Tk =T, It is worthwhile

to consider here a more general Gibbs equation not subject to this requirement,

. A B . .
namely, one that admits ot a place X: 0 T # T . For this purpose we retain the

constituent equations of state (4. 1) but do not demand an equation of state for the
mixture of the form (4.5). At each point X, in space at each instant of time t
we define a mean temperature T for the mixture as
N N
L

)3 Tkwkdsk =?

= k=]

k  k

w ds .

Clearly,

N
£ S},

k=]

e Dwk
"
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ond the total pressure w is the same as in (4.8). Of course, 1 is not a state
voriable in the usual sense and therefore the applicability of the above formulation
needs further examination. Subsequent discussion is always consistent with
Theorem 1 and no further mention of T is made.

We obtain now the differential equation expressing the local balance
of total specific entropy s and from it deduce an integral equation for the balance
of total entropy J psdv; guided by the procedures established in the theory of
simple continua we suggest then certain inequalities regarded as possible general
postulates of thermodynamic irreversibility.

Equations (3.14) and (4.6) are rewritten as

N ,

¥ ok
I (f+K“5h|%-w;+
k=1

Q =pQ-p
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-1 -
The terms PE’ QE and P‘ are called respectively the external power, the external

non-mechanical supply of energy and the inner power. Eliminating p %E between
t

(4.7) and (4. 8 ) gives us the equation for the production of total specific entropy,

Ds _
pTa-— PE-P‘ +QE

that may be expressed as

We integrate (4.9), use the transport theorem and after some obvious

rearrangement obtain the corresponding integral equation for the balance of total

entropy,
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The theory of simple continua suggests” that we may set

TA>0

* ' r 1 » 1 . L
We follow the treatment of Truesdell [2]. For o simple continuum which obeys

a caloric equation of state E = E(s, ck), k=1, ..., K we have
R ds
. : Par P& T |
where P, = L Tk _d_a__; the quantities < = a—E- are called thermodynamic !
| P dt 9 Aok £ ‘
k=1 a
tensions. Eliminating p % between the above equation and the equation
o . P. +Q
o T Wi
= = - 1
where PE = Tii Dii' QE pQ hi'i' gives
ds
Nap «Pp ¢
AS okt Sk b

Integration of

- } T
d EET B TR e
-(-T_)l--

]

leads to

: h

i .
Eot-f ps dv ==g : n; da+ J (A + P—?i)dv

hT,,
TAE (P, -P) - ——

On the basis of physical arguments we have

PE - PI >0 whenQ =0ond T = const,

ond

h. 1.0 00 when Q = 0 and PE-P. = (,
R

Therefore TA > 0 and for T > 0 the above expression is equivalent to

My Q
d%-fpsdvz-f = do+fP——dv

The last statement is odopted as a postulate of irreversibility.




ond odopt the equivalent inequality

N

h,+ L
/ .
k=]

1

D [
a‘rPdez-‘(

as a general postulate of irreversibility,

Ifmuﬂ'beenphoﬂzodfho?Tﬂ\: 0, ond hence (4.12) are merely suggested
as possible hypotheses. Other condidates for a "general postulate of irreversibility”
are easily obtained because the terms which enter A are not uniquely defined.

For example, we may write (4.9) in the form

pk ([K = px)vs

The assumption

is equivalent to
N . .
k
= PK(EK'H)V.?
!
D k=l ‘ B2 4y, (4.15
-D—tfpsdvz-f[ T lnido*fro { )




The inequality TA' 2 0 is the same as Truesdell’s
TA > 0. Of course, this difference is also reflects
statements (4.15) and (4.11). We may, if we wish, construct sti
group the fhermm‘/m;mic variables into "forces ind "fluxe oy -
with the results given by various writers on "irreversible thern

example, in [4], a A is used which leads to the results of

H. A, Toelhoeck and S, R. De Groot [10], proper interpretation of terr

made where necessary.) Writers on that subject go one step further and
. 1 . . . A
partial sums occurring in a particular A be separately non=negative

advanced for the support of such steps do not appear to us very

is fundamentally lacking is the knowledge of the appropriate group of tra

of the thcrmodynomic variables and the invariance which we are to re

appears therefore that further progress towards a rigorous theory of thern

must wait until such time when this question is settled in sufficient generality.

* * '
A general critical evaluation of "irreversible thermodynamics ™ may D¢
[1]., An illuminating critique directed ot the well know X
Onsager was given by D. B. Colemon and C. Truesdell [ 11 ],
modern work on classical thermostatics the reader is referred to the work

Coleman and W. Noli [12].

For a rig
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