Application of a polycystic ovarian syndrome (PCOS) diagnostic questionnaire in clinical practice

Minnetta Williams FNP-BC

Follow this and additional works at: https://louis.uah.edu/uah-dnp

Recommended Citation
https://louis.uah.edu/uah-dnp/13

This Doctor of Nursing Practice (DNP) is brought to you for free and open access by the UAH Electronic Theses and Dissertations at LOUIS. It has been accepted for inclusion in Doctor of Nursing Practice (DNP) by an authorized administrator of LOUIS.
APPLICATION OF A POLYCYSTIC OVARIAN SYNDROME (PCOS) DIAGNOSTIC QUESTIONNAIRE IN CLINICAL PRACTICE

by

MINNETTA WILLIAMS, FNP-BC

A SCHOLARLY PROJECT

Submitted in partial fulfillment of the requirements for the Degree of Doctor of Nursing Practice

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA
2017
In presenting this scholarly project in partial fulfillment of the requirements for a doctoral degree from The University of Alabama in Huntsville, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by my advisor or, in his/her absence, by the Director of the Program or the Dean of the School of Graduate Studies. It is also understood that due recognition shall be given to me and to The University of Alabama in Huntsville in any scholarly use which may be made of any material in this scholarly project.

Hinnette Williams 4/4/17

Student Signature Date
SCHOLARLY PROJECT APPROVAL FORM

Submitted by Minnetta Williams in partial fulfillment of the requirements for the degree of Doctor of Nursing Practice and accepted on behalf of the Faculty of the School of Graduate Studies by the scholarly project committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama in Huntsville, certify that we have advised and/or supervised the candidate on the work described in this scholarly project. We further certify that we have reviewed the scholarly project manuscript and approve it in partial fulfillment of the requirements for the degree of Doctor of Nursing Practice.

4/4/17
(Date)

[Signature]
Committee Chair

[Signature]
Program Director

[Signature]
Dean

[Signature]
College of Nursing Associate

[Signature]
College of Nursing Dean

[Signature]
Graduate Dean
ABSTRACT
The School of Graduate Studies
The University of Alabama in Huntsville

Degree: Doctor of Nursing Practice College: Nursing
Name of Candidate: Minnetta Williams
Title: Application of a Polycystic Ovarian Syndrome (PCOS) Diagnostic Questionnaire in Clinical Practice

Introduction: Polycystic Ovarian Syndrome (PCOS) is the most common cause of menstrual dysfunction and hyperandrogenism. PCOS is recognized as a heterogeneous disorder that results in overproduction of androgens, primarily from the ovaries and leads to anovulation, hirsutism, and insulin resistance. PCOS diagnosis is challenging for providers because of the varying diagnostic criteria and inconsistency of the patients’ complaints. A validated diagnostic screening questionnaire would be very helpful in assisting providers in making a clinical diagnosis of PCOS. The purpose is to have an effective diagnostic screening questionnaire that can be used in any provider’s office to assist in diagnosing probable PCOS. Objectives: The objectives were to determine how many Health Care professionals (HCP’s) used the PCOS screening questionnaire to identify probable PCOS, determine if questionnaire was helpful in diagnosing PCOS patients, identify feasibility of the utilization of PCOS Screening questionnaire in clinical practice, and to identify barriers in the use of the PCOS diagnostic screening questionnaire. Implementation Plan: Health care professionals (Nurse Practitioners and Physicians) that worked in Obstetrics/Gynecology and Family Practice/Adult Medicine participated in the study. A pre-test was given to each provider before they started using the PCOS screening questionnaire. The health care professional used the PCOS screening questionnaire in
their office for 3 months with patients that had complaints of menstrual dysfunction, hirsutism, obesity, or acne. At the conclusion of the 3 months, the health care provider was given a post-test. All participation was voluntary. **Results:** Before participation in the project, none of the providers had used a diagnostic PCOS screening questionnaire. 62.5% of the health care providers diagnosed 1-5 patients with PCOS; 12.5% diagnosed 5-10 patients with PCOS; and 25% diagnosed >10 patients with PCOS. **Conclusion:** All the health care providers found the PCOS screening questionnaire to be helpful and effective in diagnosing PCOS patients and would continue to use in their practice. In addition, the providers would recommend the questionnaire to their colleagues.
ACKNOWLEDGMENTS

I would have not had the opportunity to complete the DNP program without the guidance of my committee members, help from my friends, and support from my loving family.

I would like to express enormous gratitude to my committee chair, Dr Azita Amiri, for excellent professional guidance and for pushing me when I thought that there was no end to the DNP journey. I would like to thank my committee co-chair, Dr Darlene Showalter, for professional guidance in editing my work to be parallel to renowned editors. I would also like to thank my clinical mentor, Dr Krishna Kakani, for dedication to serve on my committee, actively participate in my Scholarly Project research, and share her wealth of knowledge on PCOS.

I am grateful to all of those with whom I have had the pleasure to work with during the Scholarly Project. I would like to thank the offices of Dr Leon Lewis, Dr Krishna Kakani, Dr Deanah Maxwell, Dr Shannon Price, Ms Vivian Watson, CRNP, and Ms Sheila Jones, CRNP for graciously volunteering to participate in this Scholarly Project. Their kindness and medical knowledge allowed me to collect data for the project. I would also like to thank my office staff for their encouragement and support.

Most of all, I would like to thank my family and friends for all their love, support, and encouragement during the journey. I would like to thank my parents for always encouraging me to push forward to be the best that I can be. I also would like to thank my loving and very supportive husband, Jonathan, for always encouraging me and pushing me to work a little bit harder to reach my goals. I want to thank my three wonderful children, Joshua, Jeremiah, and Gabrielle for providing much love and unending inspiration. I love you all!
TABLE OF CONTENTS

SECTION I: DNP PROJECT

1. Identification of the Problem………………………………………9-16

 A PICOT Question……………………………………………..16

2. Review of the literature……………………………………………17-21

3. Theoretical and Conceptual Framework…………………………..21-24

SECTION II: SCHOLARY PROJECT PRODUCT

1. JNP – The Journal for Nurse Practitioners

 A. Aims and Scope of Journal

2. Application of a Polycystic Ovarian Syndrome (PCOS) Diagnostic Questionnaire in Clinical Practice

References…………………………………………………………….…..44-47

Tables……………………………………………………………………..48-52

 Table 1……………………………………………………………48

 Table 2……………………………………………………………49

 Table 3……………………………………………………………50

 Table 4……………………………………………………………51

 Table 5……………………………………………………………52

Figures……………………………………………………………………53-56

 Figure 1…………………………………………………………..53

 Figure 2…………………………………………………………..54

 Figure 3…………………………………………………………..55

 Figure 4…………………………………………………………..56

Appendix A: Diagnostic PCOS Screening Questionnaire
Appendix B: PCOS Pre-test
Appendix C: PCOS Post-test
Appendix D: Ferriman Gallwey Index chart
Appendix E: Laboratory Investigation of PCOS reference list
Appendix F: IRB Approval letter
Appendix G: Agency Support letter
Appendix H: Agency Support letter
Appendix I: Agency Support letter
Appendix J: Agency Support letter
Appendix K: Agency Support letter
Appendix L: Agency Support letter
Appendix M: Journal of Nurse Practitioners Author Guideline
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder and cause of anovulatory infertility in childbearing age women (Tang et al., 2006). This disease is complex and the exact physiology is unclear (Garad, Teede, & Moran, 2011). What is known about this condition is that hormone imbalance is the underlying problem. Hyperandrogenism and insulin resistance contributes to the etiology process of PCOS (Garad, Teede, & Moran, 2011). Women with PCOS can present with polycystic ovaries, but it is not necessary for this diagnosis (Boyle & Teede, 2012).

This population of women may have a plethora of symptoms and findings related to their condition. According to Madnani, Khan, Chauhan, Parmar (2013), the following signs and symptoms are common for women of reproductive age with PCOS: metrorrhrea or amenorrhea, acne, irregular menses, hirsutism, alopecia. Additional symptoms included metabolic syndrome, obesity, insulin resistance, acanthosis nigricans, Type 2 diabetes, dyslipidemias, hypertension, non-alcoholic liver disease, and obstructive sleep apnea (Madnani et al., 2013).

Moran et al. (2009) reported PCOS affects 5-10% of women who are in the reproductive age group. Occurring as young as 11, this condition has affected as many as 5 million women of childbearing age in the US alone (Eisenburg, 2014).

According to Sirmans & Pate (2014) 30% of the PCOS population will experience normal menses. Several studies have suggested that hypertension is more prevalent in the PCOS population compared to the general population (Bentley-Lewis, Seely, & Dunaif, 2011). According to Apridonidze, Essah, Iuorno, & Nestler (2005),
hypertension represented 45% of the PCOS population. A common factor in PCOS is obesity. Obesity seems to pose a higher risk for hypertension in the PCOS population. Women with PCOS may lack a healthy vasculature secondary to a decrease in nocturnal blood pressure (Bentley-Lewis, et al., 2011) and experience elevations in their mean arterial and ambulatory systolic pressures (Carmina, 2009). Often times PCOS is undiagnosed in women. This means that this population of women is uneducated regarding their condition, possible co-morbidities, and treatment options. It is imperative for health care providers to diagnose PCOS early to decrease risks for comorbidities. Understanding some of the PCOS related comorbidities such as obesity, hypertension, dyslipidemia, cancer, and Type 2 diabetes, will help this population live a balanced and healthier life.

Apridonidze et al. (2005) reported obesity in 67% of women with PCOS. Obesity seems to have increased over the years, which has had a big impact on the development of chronic conditions such as metabolic syndrome, coronary heart disease and type 2 diabetes (Apridonidze, et al., 2005). Reproductive health is significantly impacted by obesity due to increased body weight that contributes to ovulatory infertility. Overweight and obesity are commonly seen in PCOS women (Apridonidze, et al., 2005). Having excess body weight can exacerbate symptoms of PCOS such as hyperandrogenism, menstrual problems, infertility, insulin resistance, dyslipidemia, increased risk of metabolic syndrome, impaired glucose tolerance, and type 2 diabetes (Lim, Norman, Davies, & Moran, 2012).

Cardiovascular risk factors are significant among the PCOS population (Lim, et al, 2012). The risk varies according to the levels of LDL, HDL, triglycerides, and total cholesterol. Atherosclerosis has been reported to occur at higher rates in women with PCOS (Lim, et al, 2012). It has been noted that early coronary and other vascular
Diseases has been documented in the PCOS population by different techniques (Lim, et al, 2012). Some of the markers of vascular disease in the PCOS client are vessel intima-media thickness, coronary artery calcification, echocardiography with anatomic and functional differences, and impaired endothelial function (Apridonidze et al., 2005).

Dyslipidemia is strongly associated with the PCOS population (Apridonidze et al., 2005). According to data collected in a study by Apridonidze et al. (2005), 35% of the PCOS population had elevated lipid levels. Triglycerides and the low-density lipoproteins (LDL) were elevated above the normal limits and the high-density lipoproteins (HDL) were decreased (Apridonidze et al., 2005). According to Diamanti-Kandarakis, Papavassiliou, Kandarakis, and Chrousos, (2007), the National Cholesterol Education Program (NCEP) guidelines stated that approximately 70% of PCOS patients exhibit abnormal serum lipid levels. An unfavorable lipid profile that consists of increased LDL, decreased HDL and increased total cholesterol and triglyceride levels are associated with the elevated androgen and insulin levels found in women with PCOS (Hart & Norman, 2006). Among the lifestyle and genetic factors of PCOS, ethnicity has been shown to play a part in abnormal lipid profiles (Diamanti-Kandarakis et al., 2007). A recent study showed that 36% of Mediterranean patients with PCOS had abnormal lipid panels, which is significantly lower than US PCOS patients (Diamanti-Kandarakis et al., 2007). Most PCOS patients have a family history of PCOS. It is estimated that PCOS patients that have family members with a metabolic disorder, have approximately a 2.7 higher chance of having dyslipidemia than non PCOS patients. In this group, the development of dyslipidemia is approximately 1.8 in family members with PCOS (Diamanti-Kandarakis, et al., 2007).
Research has shown that the risk of endometrium, breast, and ovarian cancer is associated with women with PCOS (Hoyt & Schmidt, 2004). Endometrial cancer seems to be the greatest risk; it has been identified as being significant in PCOS patients (Hoyt & Schmidt, 2004). Long periods of exposure to estrogen that is unopposed could place someone to a risk of endometrial hyperplasia or cancer and possibly breast cancer. Though the exact linkage of PCOS and breast cancer is still unknown, some studies have suggested that chronic anovulation in the reproductive years may increase the risk of breast cancer in the menopausal years (Hoyt & Schmidt, 2004). The Cancer and Steroid Hormone study reported that patients with ovarian cancer were likely to report a history of PCOS (Hoyt & Schmidt, 2004). There is not enough research to support the theory and more studies are needed to clarify the association.

Type 2 Diabetes and Impaired glucose tolerance is also prevalent in the PCOS population. These patients have a 5 to 10-fold increased risk of developing Type 2 diabetes (Hoyt & Schmidt, 2004). It has been noted that there was a high prevalence of first degree relatives with type 2 diabetes, which confirms family history as an important risk factor (Hoyt & Schmidt, 2004). The overall presence of glucose intolerance in the PCOS population is 30-35% and 3-10% with Type 2 diabetes (Hoyt & Schmidt, 2004).

In order for this population to live a balanced life with PCOS, early detection is necessary. This task is the responsibility of the health care provider. The PCOS diagnosis can be challenging for health care providers because of the varying diagnostic criteria and variance in patients’ complaints. Over the years, different diagnostic criteria have been developed (Figure 1): a) National Institutes of Health (NIH) 1990 which includes the following elements and both criteria needed for
diagnosis: 1. chronic anovulation and 2. Clinical and/or biochemical signs of hyperandrogenism (with exclusion of other etiologies) (National institutes of health, 2012); b) Rotterdam 2003 which includes the following criteria and two of three criteria needed for diagnosis: 1. Oligo and/or anovulation 2. Clinical and/or biochemical signs of hyperandrogenism 3. Polycystic ovaries (National institutes of health, 2012); c) Androgen Excess & PCOS Society (AE-PCOS) 2006, which includes the following criteria and (both criteria needed for diagnosis: 1. Clinical and/or biochemical signs of hyperandrogenism 2. Ovarian dysfunction (oligo-anovulation and/or polycystic ovarian amorphology) (National institutes of health, 2012). Rotterdam is used the most often and recommended by Legro et al. (2013) for diagnosing PCOS. This criterion is most accepted because it is the most up-to-date and it has a wider scope; this criterion includes both the NIH and AE-PCOS criteria (National Institute of Health, 2012).

Figure 1. Diagnostic criteria for PCOS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Chronic anovulation</td>
<td>• Oligo- and/or anovulation</td>
<td>• Clinical and/or biochemical signs of</td>
</tr>
<tr>
<td>• Clinical and/or</td>
<td>• Clinical and/or</td>
<td>hyperandrogenism</td>
</tr>
<tr>
<td>biochemical signs of hyperandrogenism</td>
<td>biochemical signs of hyperandrogenism</td>
<td></td>
</tr>
<tr>
<td>(with exclusion of other etiologies, e.g.,</td>
<td>• Polycystic ovaries</td>
<td>• Ovarian dysfunction (Oligo-anovulation</td>
</tr>
<tr>
<td>congenital adrenal hyperplasia)</td>
<td></td>
<td>and/or polycystic ovarian amorphology)</td>
</tr>
<tr>
<td>(Both criteria needed)</td>
<td>(Two of three criteria needed)</td>
<td>(Both criteria needed)</td>
</tr>
</tbody>
</table>

According to Boyle and Teed (2012), individual components of the diagnostic criteria for PCOS are difficult to measure. The Rotterdam criteria is used for PCOS diagnosis include the following: androgen excess, ovulatory dysfunction, and polycystic ovarian morphology (Boyle & Teede, 2012). Two of these are included as a major component in all major classifications. Each one of the criteria has strengths and limitations.
There are strengths and limitations with using androgen excess as diagnostic criteria (Figure 2). The strengths include the fact that androgen excess is a component in all major classifications, it is a major concern for patients, and there are animal models available for research (Boyle & Teede, 2012). The limitations include the fact that androgen excess is only measurable through blood; concentrations of blood vary from age to age and time to time; the assays are not standardized; and clinical hyperandrogenism quantification is difficult and may vary dependent upon ethnicity (Boyle & Teede, 2012). Ovulatory dysfunction also is a component in all classifications (Boyle & Teede, 2012). Another strength of ovulatory dysfunction, according to Boyle and Teede (2012), is that it is a common concern for patients and infertility is common. Given ovulation is not totally understood, this is a limitation for ovulatory dysfunction. Other limitations for ovulatory dysfunction is the fact that this criterion is difficult to objectively measure and normal ovulation varies. Lastly, the strength of polycystic ovarian morphology lie in the fact that this criterion, historically, has been associated with PCOS and may be associated with hypersensitivity to ovarian syndrome (Boyle & Teede, 2012). There are limitations which can affect this criterion. The limitations include the lack of standardized and normative measurements, imaging possibly inappropriate in certain circumstances, and technology not universally available to accurately image (Boyle & Teede, 2012).
Figure 2. Strengths and limitations of diagnostic criteria

<table>
<thead>
<tr>
<th>Diagnostic Criteria</th>
<th>Strengths</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androgen Excess</td>
<td>• Included as a component in all major classifications</td>
<td>• Measurement is performed only in blood.</td>
</tr>
<tr>
<td>("National institutes of health," 2012)</td>
<td>• A major clinical concern for patients</td>
<td>• Concentrations differ during time of day.</td>
</tr>
<tr>
<td></td>
<td>• Animal models employing</td>
<td>• Concentrations differ with age.</td>
</tr>
<tr>
<td></td>
<td>• Androgen excess resemble but do not fully mimic human disease</td>
<td>• Normative data are not clearly defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assays are not standardized across laboratories.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clinical hyperandrogenism is difficult to quantify and may vary by ethnic group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tissue sensitivity is not assessed.</td>
</tr>
<tr>
<td>Ovulatory Dysfunction</td>
<td>• Included as a component in all major classifications</td>
<td>• Normal ovulation is incompletely understood.</td>
</tr>
<tr>
<td>("National institutes of health," 2012)</td>
<td>• A major clinical concern for patients</td>
<td>• Normal ovulation varies over a woman’s lifetime.</td>
</tr>
<tr>
<td></td>
<td>• Infertility a common clinical complaint</td>
<td>• Ovulatory dysfunction is difficult to measure objectively.</td>
</tr>
<tr>
<td>Polycystic Ovarian Morphology</td>
<td>• Historically associated with syndrome</td>
<td>• Technique dependent</td>
</tr>
<tr>
<td>("National institutes of health," 2012)</td>
<td>• May be associated with hypersensitivity to ovarian stimulation</td>
<td>• Difficult to obtain standardized measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lack of normative standards across the menstrual cycle and lifespan (notably in adolescence) as ovarian morphology varies with age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Technology required to accurately image not universally available</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Imaging possibly inappropriate in certain circumstances (e.g., adolescence)</td>
</tr>
</tbody>
</table>

The strengths and limitations of the PCOS diagnostic criteria can cause confusion among health care professionals, which could delay the progress in understanding PCOS and the ability to collaborate with women to address and manage their PCOS health related issues. (National institutes of health, 2012). Once a patient has been identified as someone with probable PCOS, the appropriate lab studies need to be ordered and the diagnostic criteria (NIH 1990, Rotterdam 2003, or AE-PCOS Society 2006) can be applied to diagnose the patient. Also, the PCOS diagnostic screening questionnaire would be very helpful to providers in making a clinical diagnosis of probable PCOS and utilization of the PCOS evidence based PCOS guidelines could
be used for information on how to treat the patient. Using the screening diagnostic questionnaire for probable PCOS would help providers be more aware of patients that have PCOS, possibly decrease the cost of ordering various lab studies that may not be needed, and most of all, start early intervention to decrease PCOS related comorbidities.

Purpose

The purpose of this project is to incorporate the PCOS diagnostic screening questionnaire as a routine part of clinical care to diagnose probable PCOS patients.

Objectives

1. To assess the number of Health Care Professionals (HCP’S) that used the PCOS screening questionnaire to identify probable PCOS patients.
2. To determine if the PCOS screening questionnaire was helpful in diagnosing probable PCOS patients.
3. To identify the feasibility of utilization of PCOS Screening questionnaire
4. To identify barriers in the use of the PCOS diagnostic screening questionnaire.

PICOT question

Can the PCOS diagnostic screening questionnaire (Intervention) be effective in assisting health care providers (population) to diagnose probable PCOS (outcome)?

Benefits: Ability to diagnose PCOS early and decrease comorbidities; ability to educate patients early on preventive measures and lifestyle changes that will benefit them.
Review of Literature

The Methodology used was CINAHL, Ebsco, PubMed, and MEDLINE databases were used. The key words were Polycystic Ovarian Syndrome, PCOS, PCOS guidelines, PCOS diagnostic criteria, and PCOS diagnostic tools.

In 2007, Pederson, Brar, Faris, and Corenblum did a study in Calgary to validate a simple questionnaire to use in screening women for the possible presence of PCOS (2007). At that time there were not any validated tools available in the literature to assist in making the clinical diagnosis of PCOS (Pederson, Brar, Faris, and Corenblum, 2007). They constructed a 4-item questionnaire for the use of diagnosing PCOS. The participants completed a questionnaire that asked questions designed to assist in the diagnosis of PCOS before their appointment with an endocrinologist. Participants were adult women, age 18 years old or older, who were referred to a reproductive endocrinologist for menstrual irregularity, fertility concerns, and hirsutism. The questionnaire was administered in 2 parts: The first part requested demographic information and a medical history including specific questions regarding known diagnoses of diabetes, hypertension, and dyslipidemia. The second part requested menstrual and fertility history; questions were asked relating to frequency of menses, history of failed attempts of pregnancy, history, sites, and treatment of coarse midline hair growth and acne, history of breast discharge, obesity, and variability of symptoms with weight change (Pederson, Brar, Faris & Corenblum, 2007). The endocrinologist completed their assessment with the standard diagnostic criteria (NIH criteria) without knowing the answers to the 4-item questionnaire. The endocrinologists made a diagnosis of PCOS using clinical criteria and biochemical data. The history of infrequent menses, hirsutism, obesity, and acne were strong predictors of a diagnosis of PCOS. The questionnaire yielded a sensitivity of 85% and
a specificity of 85% on multivariate logistic regression and a sensitivity of 77% and a specificity of 94% using the 4-item questionnaire (Pederson, Brar, Faris & Corenblum, 2007). Findings from the study included a validated tool that providers can use to help diagnose PCOS and can guide them in treating menstrual irregularity, infertility, and cosmetic concerns (Pederson, Brar, Faris & Corenblum, 2007). The tool can be used to alert providers to screen for associated and potentially devastating comorbid conditions (Pederson, Brar, Faris & Corenblum, 2007). A positive result from the questionnaire should prompt a careful clinical assessment for metabolic and neoplastic complications of PCOS; a negative result does not rule out PCOS with certainty and must be referred to the appropriate specialist (Pederson, Brar, Faris & Corenblum, 2007). Another conclusion of the study was that the questionnaire could be incorporated into family physician's busy practices (Pederson, Brar, Faris & Corenblum, 2007). The researchers recommend further utilization and analysis of this tool to further assess its validity.

In Australia, it was noted that there were limited clinical guidelines and no evidence-based guidelines internationally for the assessment or management of women with PCOS (Teede et al., 2011). The PCOS Australian Alliance in conjunction with the Jean Hailes Foundation for Women’s Health developed an Evidence-based guideline for the assessment and management of PCOS to help providers make timely diagnosis, accurate assessments, and optimal management of women with PCOS (“Evidence-based guideline,” 2011). This guideline was developed by drawing from clinicians' judgement, patient preference and research evidence, and was intended to aid in clinical judgement and patient preference, not to replace it (Teede et al., 2011). Although there are many types of guidelines, this evidence-based guideline followed a rigorous, systematic process of development and
promoted consistency of care across all settings (Teede et al., 2011). The guideline is meant to be relevant to the assessment and management of reproductive-age adolescents and women with PCOS, including those experiencing infertility (Teede et al., 2011). These guidelines are applicable to all health care settings and various health care professionals. The Australian evidence-based PCOS guidelines provides 38 recommendations that address four key areas: Challenges of assessment and diagnosis, assessment of emotional wellbeing, lifestyle management, and therapy for infertility.

Tomlinson et al., 2017, performed a study on women with PCOS to identify how they were diagnosed and how their experience was with living a life with PCOS. It was thought that women with PCOS remain undiagnosed and are never referred for further investigation and treatment (Tomlinson et al., 2017). Therefore, significant health benefits could be achieved by improving recognition and detection of PCOS (Tomlinson et al., 2017). The study was used to identify possible strategies to improve PCOS detection and treatment. Women with PCOS were recruited from primary care, gynecology, endocrinology, and weight management clinics. The PCOS diagnosis was confirmed by using the Rotterdam criteria prior to the study. The study included women with a wide range of body mass index (BMI), who were between 18-45 years (Tomlinson et al., 2017). The results of the study revealed perceived delays and barriers to PCOS diagnosis: most women felt that they were diagnosed in their mid-twenties but had had signs and symptoms of PCOS for several years before; lack of empathy from the doctors; and received limited information about PCOS from their doctors (Tomlinson et al., 2017). The study also suggested significant concerns surrounding diagnosis, treatment and relationships with healthcare professionals (Tomlinson et al., 2017). According to Tomlinson et al., the concerns were associated
with considerable uncertainty, perceived delays and barriers, inadequate advice and a lack of accurate information (2017). Overall, the study suggested the need for increased education for healthcare professionals both in relation to the physical and emotional consequences of PCOS and in terms of patient/health professional interaction (Tomlinson et al., 2017).

A study was performed to assess PCOS diagnostic criteria and antimullerian hormone (AMH). The prevalence of PCOS can vary according to diagnostic consensus used, with estimates ranging from 9% according to National Institutes of Health consensus, up to 18% with the Rotterdam consensus (Mohammad & Seghinsara, 2017). In another study, the utility of AMH in combination with PCOS features for diagnosis of PCO was assessed (Sahmay et al., 2014). When the AMH was evaluated among the patients diagnosed with PCOS according to all three diagnostic criteria (the Rotterdam, Androgen Excess Society and National Institute of Health) as a single screening tool, it had relatively low sensitivity and specificity for diagnosis of PCOS (Mohammad & Seghinsara, 2017). It was suggested that satisfactory diagnostic potential could be achieved by combining the AMH level with other clinical symptoms (Mohammad & Seghinsara, 2017). The Rotterdam Criteria considers the antral follicle count (AFC) on ultrasound as one of the diagnostic criteria. Today’s technology of ultrasounds has improved and accuracy has increased, but the number of follicles seen in ultrasound increase too, depending on the specific equipment (Mohammad & Seghinsara, 2017). Serum AMH is synthesized by small antral follicles, which are precisely seen in ultrasound. However, even with the most advanced ultrasounds devices, the evaluation of polycystic ovarian morphology for diagnosis of PCOS has high variability and can be difficult to count antral follicles trans-abdominally in patients that have never been sexually active or patients that are
obese (Mohammad & Seghinsara, 2017). There is an absence of a worldwide standard for serum AMH assay, which makes the application of serum AMH level difficult (Mohammad & Seghinsara, 2017). The study concluded although there is a lack of well-defined population, stability and heterogeneity of circulating AMH, wide range of values, inter-laboratory variability and different immunoassay used worldwide, AMH could still be introduced as a criterion for PCOS diagnosis (Mohammad & Seghinsara, 2017).

Theoretical Framework

Rosswurm and Larrabee proposed a model for guiding nurses and healthcare professionals through a systematic process for the change to evidence-based practice (1999). This model recognized that translation of research into practice requires a solid grounding in change theory, principles of research utilization, and use of standardized nomenclature (Rosswurm & Larrabee, 1999). This model is based on theoretical and research literature related to evidence-based practice, research utilization, standardized language, and change theory (Figure 3). With many changes in the healthcare field, providers can no longer rely solely on clinical experience, pathophysiologic rationale, and opinion based processes (Rosswurm & Larrabee, 1999). It is imperative that providers learn to search for literature, critically appraise the findings, and synthesize the relevant evidence. The model has the following six phases (Rosswurm & Larrabee, 1999):

Figure 3. Rosswurm & Larabee Model for change to Evidence-Based Practice
1. Assess need for change in practice – Need to include stakeholders that may consist of discipline-specific or multidisciplinary practitioners, administrators, and patients who have a stake in the practice. Practitioners need to collect internal data and compare it with external data to identify the problem within practice.

Figure 4. Conceptual Framework

2. Link problem with interventions and outcomes - Define the problem by using language of standardized classifications and link the problem with classifications of interventions and outcomes. This will facilitate communications among practitioners;
provide standards for determining the effectiveness and cost of care, and identify the needed resources. Potential interventions and activities can be identified and outcome indicators can be selected.

3. Synthesize best evidence – The problem, potential interventions, and desired outcomes are critical in reviewing research literature. Research synthesis helps to determine the strength of the evidence to support the need for a change in practice.

4. Design a change in practice – A protocol, procedure, or standard is needed to help facilitate a change in practice to describe the process variables or sequence of activities in the change in practice. Relevant resources need to be identified and outcomes defined.

5. Implementing and evaluating change in practice – Pilot trial should be initiated with follow-up reinforcement of the practice change. Processes and outcomes need to be evaluated. In this phase, a decision should be made to adapt, adopt, or reject the practice change.

6. Integrate and maintain change in practice – Communicate recommended change to all stakeholders. If pilot trial results are positive, change strategies need to be identified. Monitor process and outcomes.

Many providers are treating symptoms of PCOS and not testing for or diagnosing PCOS. This is the reason that many patients that have PCOS are undiagnosed and are never educated on the comorbidities related to PCOS. It would be very helpful and important utilize a screening diagnostic PCOS questionnaire into practice. This would help with early PCOS diagnosis, and treatment and patient education.
SECTION II: SCHOLARY PROJECT PRODUCT
JNP - The Journal for Nurse Practitioners

A. Aims and Scope

JNP, the Journal for Nurse Practitioners, offers high-quality, peer-reviewed clinical articles, original research, continuing education, and departments that help practitioners excel as providers of primary and acute care across the lifespan. Each issue meets their practice needs and encourages discussion and feedback with thought-provoking articles on controversial issues and topics. JNP supports advocacy by demonstrating the role that policy plays in shaping practice and delivering outcomes.

The journal is published 10 times per year, distributed to approximately 100,000 readers in print form, and can be found online at www.npjournal.org. The journal is included in Scopus, CINAHL, and the Journal Citation Report published by Thomson Reuters.
Application of a Polycystic Ovarian Syndrome (PCOS) Diagnostic Questionnaire in Clinical Practice

By
Minnetta Williams, MSN, FNP-BC
PO Box 996 Madison, AL 35758
DNP student
University of Alabama in Huntsville
Huntsville, AL
muw0001@uah.edu

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Highlights:
Early diagnosis of PCOS can decrease comorbidities in PCOS women
The feasibility of the diagnostic PCOS screening questionnaire in clinical practice
Barriers in using the diagnostic PCOS screening questionnaire in clinical practice
Application of a Polycystic Ovarian Syndrome (PCOS) Diagnostic Questionnaire in Clinical Practice

Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder and cause of anovulatory infertility in childbearing age women (Tang et al., 2006). This disease is complex and the exact physiology is unclear (Garad, Teede, & Moran, 2011). What is known about this condition is that hormone imbalance is the underlying problem. Hyperandrogenism and insulin resistance contributes to the etiology process of PCOS (Garad, Teede, & Moran, 2011). Women with PCOS can present with polycystic ovaries, but it is not necessary for this diagnosis (Boyle & Teede, 2012).

This population of women may have a plethora of symptoms and findings related to their condition. According to Madnani, Khan, Chauhan, Parmar (2013), the following signs and symptoms are common for women of reproductive age with PCOS: metrorrhea or amenorrhea, acne, irregular menses, hirsutism, alopecia. Additional symptoms included metabolic syndrome, obesity, insulin resistance, acanthosis nigricans, Type 2 diabetes, dyslipidemias, hypertension, non-alcoholic liver disease, and obstructive sleep apnea (Madnani et al., 2013).

Apridonidze et al. (2005) reported obesity in 67% of women with PCOS. Obesity seems to have increased over the years, which has had a big impact on the development of chronic conditions such as metabolic syndrome, coronary heart disease and type 2 diabetes (Apridonidze, et al., 2005). Reproductive health is significantly impacted by obesity due to increased body weight that contributes to ovulatory infertility. Overweight and obesity are commonly seen in PCOS women (Apridonidze, et al., 2005). Having excess body weight can exacerbate symptoms of PCOS such as hyperandrogenism, menstrual problems, infertility, insulin resistance,
dyslipidemia, increased risk of metabolic syndrome, impaired glucose tolerance, and type 2 diabetes (Lim, Norman, Davies, & Moran, 2012).

Cardiovascular risk factors are significant among the PCOS population (Lim, et al, 2012). The risk varies according to the levels of LDL, HDL, triglycerides, and total cholesterol. Atherosclerosis has been reported to occur at higher rates in women with PCOS (Lim, et al, 2012). It has been noted that early coronary and other vascular diseases has been documented in the PCOS population by different techniques (Lim, et al, 2012).

Dyslipidemia is strongly associated with the PCOS population (Apridonidze et al., 2005). According to data collected in a study by Apridonidze et al. (2005), 35% of the PCOS population had elevated lipid levels. Triglycerides and the low-density lipoproteins (LDL) were elevated above the normal limits and the high-density lipoproteins (HDL) were decreased (Apridonidze et al., 2005). According to Diamanti-Kandarakis, Papavassiliou, Kandarakis, and Chrousos, (2007), the National Cholesterol Education Program (NCEP) guidelines stated that approximately 70% of PCOS patients exhibit abnormal serum lipid levels. An unfavorable lipid profile that consists of increased LDL, decreased HDL and increased total cholesterol and triglyceride levels are associated with the elevated androgen and insulin levels found in women with PCOS (Hart & Norman, 2006). Among the lifestyle and genetic factors of PCOS, ethnicity has been shown to play a part in abnormal lipid profiles (Diamanti-Kandarakis et al., 2007). A recent study showed that 36% of Mediterranean PCOS patients had abnormal lipid panels; this is significantly lower than the abnormal lipid panel of PCOS patients in the US (Diamanti-Kandarakis et al., 2007). Most PCOS patients have a family history of PCOS. It is estimated that PCOS patients that have family members with a metabolic disorder, have approximately a 2.7 higher
chance of having dyslipidemia than non-PCOS patients. In this group, the development of dyslipidemia is approximately 1.8 in family members with PCOS (Diamanti-Kandarakis, et al., 2007).

Research has shown that the risk of endometrium, breast, and ovarian cancer is associated with women with PCOS (Hoyt & Schmidt, 2004). Endometrial cancer seems to be the greatest risk; it has been identified as being significant in PCOS patients (Hoyt & Schmidt, 2004). It is thought that long periods of exposure to estrogen that is unopposed could place someone to a risk of endometrial hyperplasia or cancer and possibly breast cancer.

Type 2 Diabetes and Impaired glucose tolerance is also prevalent in the PCOS population. These patients have a 5 to 10-fold increased risk of developing Type 2 diabetes (Hoyt & Schmidt, 2004). It has been noted that there was a high prevalence of first-degree relatives with type 2 diabetes, which confirms family history as an important risk factor (Hoyt & Schmidt, 2004). The overall presence of glucose intolerance in the PCOS population is 30-35% and 3-10% with Type 2 diabetes (Hoyt & Schmidt, 2004).

In order for this population to live a balanced life with PCOS, early detection is necessary. This task is the responsibility of the health care provider. The PCOS diagnosis can be challenging for health care providers because of the varying diagnostic criteria and variance in patients’ complaints. Over the years, different diagnostic criteria have been developed (Figure 1): a) National Institutes of Health (NIH) 1990, which includes the following elements and both criteria needed for diagnosis: 1. chronic anovulation and 2. Clinical and/or biochemical signs of hyperandrogenism (with exclusion of other etiologies) (National institutes of health, 2012); b) Rotterdam 2003 which includes the following criteria and two of three
criteria needed for diagnosis: 1. Oligo and/or anovulation 2. Clinical and/or biochemical signs of hyperandrogenism 3. Polycystic ovaries (National institutes of health, 2012); c) Androgen Excess & PCOS Society (AE-PCOS) 2006, which includes the following criteria, and (both criteria needed for diagnosis: 1. Clinical and/or biochemical signs of hyperandrogenism 2. Ovarian dysfunction (oligo-anovulation and/or polycystic ovarian amorphology) (National institutes of health, 2012). Rotterdam is used more often and is recommended by Legro et al. (2013) for PCOS diagnosis. This criterion is commonly used because it is the most up-to-date and it has a wider scope; this criterion includes both the NIH and AE-PCOS criteria (National Institute of Health, 2012).

According to Boyle and Teed (2012), individual components of the diagnostic criteria for PCOS are difficult to measure. The Rotterdam criteria is used for PCOS diagnosis include the following: androgen excess, ovulatory dysfunction, and polycystic ovarian morphology (Boyle & Teede, 2012). Two of these are included as a major component in all major classifications. Each one of the criteria has strengths and limitations.

There are strengths and limitations with using androgen excess as diagnostic criteria (Table 2). The strengths include the fact that androgen excess is a component in all major classifications, it is a major concern for patients, and there are animal models available for research (Boyle & Teede, 2012). The limitations include the fact that androgen excess is only measurable through blood; concentrations of blood vary from age to age and time to time; the assays are not standardized; and clinical hyperandrogenism quantification is difficult and may vary dependent upon ethnicity (Boyle & Teede, 2012). Ovulatory dysfunction also is a component in all classifications (Boyle & Teede, 2012). Another strength of ovulatory dysfunction,
according to Boyle and Teede (2012), is that it is a common concern for patients and infertility is common. Given ovulation is not totally understood, this is a limitation for ovulatory dysfunction. Other limitations for ovulatory dysfunction is the fact that this criterion is difficult to objectively measure and normal ovulation varies. Lastly, the strength of polycystic ovarian morphology lie in the fact that this criterion, historically, has been associated with PCOS and may be associated with hypersensitivity to ovarian syndrome (Boyle & Teede, 2012). There are limitations, which can affect this criterion. The limitations include the lack of standardized and normative measurements, imaging possibly inappropriate in certain circumstances, and technology not universally available to accurately image (Boyle & Teede, 2012).

The strengths and limitations of the PCOS diagnostic criteria can cause confusion among health care professionals, which could delay the progress in understanding PCOS and the ability to collaborate with women to address and manage their PCOS health related issues. (National institutes of health, 2012). Once a patient has been identified as someone with probable PCOS, the appropriate lab studies need to be ordered and the diagnostic criteria (NIH 1990, Rotterdam 2003, or AE-PCOS Society 2006) can be applied to diagnose the patient. In addition, the PCOS diagnostic screening questionnaire would be very helpful to providers in making a clinical diagnosis of probable PCOS and utilization of the PCOS evidence based PCOS guidelines could be used for information on how to treat the patient. Using the screening diagnostic questionnaire for probable PCOS would help providers be more aware of patients that have PCOS, possibly decrease the cost of ordering various lab studies that may not be needed, and most of all, start early intervention to decrease PCOS related comorbidities. Therefore, the purpose of this project is to incorporate the PCOS diagnostic screening questionnaire as a routine part of clinical
care to diagnose probable PCOS patients. This project was designed to answer the following PICOT question: Can the PCOS diagnostic screening questionnaire be effective in assisting providers to diagnose PCOS?

Review of Literature

The Methodology used was CINAHL, Ebsco, PubMed, and MEDLINE databases were used. The key words were Polycystic Ovarian Syndrome, PCOS, PCOS guidelines, PCOS diagnostic criteria, and PCOS diagnostic tools.

In 2007, Pederson, Brar, Faris, and Corenblum did a study in Calgary to validate a simple questionnaire to use in screening women for the possible presence of PCOS (2007). At that time, there were not any validated tools available in the literature to assist in making the clinical diagnosis of PCOS (Pederson, Brar, Faris, and Corenblum, 2007). They constructed a 4-item questionnaire for the use of diagnosing PCOS. The participants completed a questionnaire that asked questions designed to assist in the diagnosis of PCOS before their appointment with an endocrinologist. Participants were adult women, age 18 years old or older, who were referred to a reproductive endocrinologist for menstrual irregularity, fertility concerns, and hirsutism. The questionnaire was administered in 2 parts: The first part requested demographic information and a medical history including specific questions regarding known diagnoses of diabetes, hypertension, and dyslipidemia. The second part requested menstrual and fertility history; questions were asked relating to frequency of menses, history of failed attempts of pregnancy, history, sites, and treatment of coarse midline hair growth and acne, history of breast discharge, obesity, and variability of symptoms with weight change (Pederson, Brar, Faris & Corenblum, 2007). The endocrinologist completed their assessment with the standard diagnostic
criteria (NIH criteria) without knowing the answers to the 4-item questionnaire. The endocrinologists made a diagnosis of PCOS using clinical criteria and biochemical data. The history of infrequent menses, hirsutism, obesity, and acne were strong predictors of a diagnosis of PCOS. The questionnaire yielded a sensitivity of 85% and a specificity of 85% on multivariate logistic regression and a sensitivity of 77% and a specificity of 94% using the 4-item questionnaire (Pederson, Brar, Faris & Corenblum, 2007). Findings from the study included a validated tool that providers can use to help diagnose PCOS and can guide them in treating menstrual irregularity, infertility, and cosmetic concerns (Pederson, Brar, Faris & Corenblum, 2007). The tool can be used to alert providers to screen for associated and potentially devastating comorbid conditions (Pederson, Brar, Faris & Corenblum, 2007). A positive result from the questionnaire should prompt a careful clinical assessment for metabolic and neoplastic complications of PCOS; a negative result does not rule out PCOS with certainty and should be referred to the appropriate specialist (Pederson, Brar, Faris & Corenblum, 2007). Another conclusion of the study was that the questionnaire could be incorporated into family physician's busy practices (Pederson, Brar, Faris & Corenblum, 2007). The researchers recommend further utilization and analysis of this tool to further assess its validity.

In Australia, it was noted that there were limited clinical guidelines and no evidence-based guidelines internationally for the assessment or management of women with PCOS (Teede et al., 2011). The PCOS Australian Alliance in conjunction with the Jean Hailes Foundation for Women’s Health developed an Evidence-based guideline for the assessment and management of PCOS to help providers make timely diagnosis, accurate assessments, and optimal management of women with PCOS (“Evidence-based guideline,” 2011). This guideline was
developed by drawing from clinicians’ judgement, patient preference and research evidence, and was intended to aid in clinical judgement and patient preference, not to replace it (Teede et al., 2011). Although there are many types of guidelines, this evidence-based guideline followed a rigorous, systematic process of development and promoted consistency of care across all settings (Teede et al., 2011). The guideline is meant to be relevant to the assessment and management of reproductive-age adolescents and women with PCOS, including those experiencing infertility (Teede et al., 2011). These guidelines are applicable to all health care settings and various health care professionals. The Australian evidence-based PCOS guidelines provides 38 recommendations that address four key areas: Challenges of assessment and diagnosis, assessment of emotional wellbeing, lifestyle management, and therapy for infertility.

Tomlinson et al., 2017, performed a study on women with PCOS to identify how they were diagnosed and how their experience was with living a life with PCOS. It was thought that women with PCOS remain undiagnosed and are never referred for further investigation and treatment (Tomlinson et al., 2017). Therefore, significant health benefits could be achieved by improving recognition and detection of PCOS (Tomlinson et al., 2017). The study was used to identify possible strategies to improve PCOS detection and treatment. Women with PCOS were recruited from primary care, gynecology, endocrinology, and weight management clinics. The PCOS diagnosis was confirmed by using the Rotterdam criteria prior to the study. The study included women with a wide range of body mass index (BMI), who were between 18-45 years (Tomlinson et al., 2017). The results of the study revealed perceived delays and barriers to PCOS diagnosis: most women felt that they were diagnosed in their mid-twenties but had had signs and symptoms of PCOS for several years before; lack of
empathy from the doctors; and received limited information about PCOS from their
doctors (Tomlinson et al., 2017). The study also suggested significant concerns
surrounding diagnosis, treatment and relationships with healthcare professionals
(Tomlinson et al., 2017). According to Tomlinson et al., the concerns were associated
with considerable uncertainty, perceived delays and barriers, inadequate advice and a
lack of accurate information (2017). Overall, the study suggested the need for
increased education for healthcare professionals both in relation to the physical and
emotional consequences of PCOS and in terms of patient/health professional
interaction (Tomlinson et al., 2017).

A study was performed to assess PCOS diagnostic criteria and antimullerian
hormone (AMH). The prevalence of PCOS can vary according to diagnostic
consensus used, with estimates ranging from 9% according to National Institutes of
Health consensus, up to 18% with the Rotterdam consensus (Mohammad &
Seghinsara, 2017). In another study, the utility of AMH in combination with PCOS
features for diagnosis of PCO was assessed (Sahmay et al., 2014). When the AMH
was evaluated among the patients diagnosed with PCOS according to all three
diagnostic criteria (the Rotterdam, Androgen Excess Society and National Institute of
Health) as a single screening tool, it had relatively low sensitivity and specificity for
diagnosis of PCOS (Mohammad & Seghinsara, 2017). It was suggested that
satisfactory diagnostic potential could be achieved by combining the AMH level with
other clinical symptoms (Mohammad & Seghinsara, 2017). The Rotterdam Criteria
considers the antral follicle count (AFC) on ultrasound as one of the diagnostic
criteria. Today’s technology of ultrasounds has improved and accuracy has increased,
but the number of follicles seen in ultrasound increase too, depending on the specific
equipment (Mohammad & Seghinsara, 2017). Serum AMH is synthesized by small
antral follicles, which are precisely seen in ultrasound. However, even with the most advanced ultrasounds devices, the evaluation of polycystic ovarian morphology for diagnosis of PCOS has high variability and can be difficult to count antral follicles trans-abdominally in patients that have never been sexually active or patients that are obese (Mohammad & Seghinsara, 2017). There is an absence of a worldwide standard for serum AMH assay, which makes the application of serum AMH level difficult (Mohammad & Seghinsara, 2017). The study concluded although there is a lack of well-defined population, stability and heterogeneity of circulating AMH, wide range of values, inter-laboratory variability and different immunoassay used worldwide, AMH could still be introduced as criteria for PCOS diagnosis (Mohammad & Seghinsara, 2017).

Theoretical Framework

Rosswurm and Larrabee proposed a model for guiding nurses and healthcare professionals through a systematic process for the change to evidence-based practice (1999). This model recognized that translation of research into practice requires a solid grounding in change theory, principles of research utilization, and use of standardized nomenclature (Rosswurm & Larrabee, 1999). This model is based on theoretical and research literature related to evidence-based practice, research utilization, standardized language, and change theory. With many changes in the healthcare field, providers can no longer rely solely on clinical experience, pathophysiologic rationale, and opinion based processes (Rosswurm & Larrabee, 1999). It is imperative that providers learn to search for literature, critically appraise the findings, and synthesize the relevant evidence (Figure 3).

The model has the following six phases (Rosswurm & Larrabee, 1999):
1. Assess need for change in practice – Need to include stakeholders that may consist of discipline-specific or multidisciplinary practitioners, administrators, and patients who have a stake in the practice. Practitioners need to collect internal data and compare it with external data to identify the problem within practice.

2. Link problem with interventions and outcomes - Define the problem by using language of standardized classifications and link the problem with classifications of interventions and outcomes. This will facilitate communications among practitioners; provide standards for determining the effectiveness and cost of care, and to identify the needed resources. Potential interventions and activities can be identified and outcome indicators can be selected.

3. Synthesize best evidence – The problem, potential interventions, and desired outcomes are critical in reviewing research literature. Research synthesis helps to determine the strength of the evidence to support the need for a change in practice.

4. Design a change in practice – A protocol, procedure, or standard is needed to help facilitate a change in practice to describe the process variables or sequence of activities in the change in practice. Relevant resources need to be identified and outcomes defined.

5. Implementing and evaluating change in practice – Pilot trial should be initiated with follow-up reinforcement of the practice change. Processes and outcomes need to be evaluated. In this phase, a decision should be made to adapt, adopt, or reject the practice change.

6. Integrate and maintain change in practice – Communicate recommended change to all stakeholders. If pilot trial results are positive, change strategies need to be identified. Monitor process and outcomes.
Many providers are treating symptoms of PCOS and not testing for or diagnosing PCOS. This is the reason that many patients that have PCOS are undiagnosed and are never educated on the comorbidities related to PCOS. It would be very helpful and important utilize a screening diagnostic PCOS questionnaire into practice. This would help with early PCOS diagnosis, and treatment and patient education.

Methodology

Study settings

In this scholarly project, a PCOS diagnostic screening questionnaire was introduced in Ob/Gyn clinics to improve early PCOS diagnosis by incorporating the questionnaire as a routine part of clinical screening. A convenience sampling method was used to select 8 health care professionals (Doctors and Nurse Practitioners) from selected clinics.

Study Instruments

The following instruments were used in the study:

1. A validated 4-item PCOS screening questionnaire (Pederson, Brar, Faris & Corenblum, 2007) was used in the clinic to help screen women, age > 19, for possible PCOS (Appendix A). The questionnaire was developed by Pederson, Brar, Faris, and Corenblum in a research study titled “Polycystic ovary syndrome validated questionnaire for use in diagnosis” that was published in Canadian Family Physician, volume 53, June 2007 (Pederson et al, 2007). Permission to use the questionnaire was obtained from Dr. Sue D. Pedersen via email. Each question was assigned a score value 1, -1, or 0 and if the total score is > or equal to 2, the diagnosis is consistent with PCOS and if the score is < 2, the diagnosis is not consistent with PCOS.
2. A PCOS pre-test that consisted of 8 questions was administered to the health care professional prior to the start of the study (Appendix B). The health care professionals were asked to use the screening questionnaire in their practice for all female patients and consider the helpfulness of the screening instrument in the diagnosis of PCOS.

3. A PCOS post-test that consisted of 8 questions was administered to the health care professional at the conclusion of the study (Appendix C).

4. A Ferriman Gallwey Index chart tool was used to help assess for hirsutism. Ferriman Gallwey Index is used for clinical assessment of hair growth in women and to score the degree of excess male pattern body hair (Appendix D). The chart represents hair growth in a male pattern on woman shown in four different degrees of severity in 11 different body parts. Everybody part assessed is given a score that ranges from 0 (no excessive terminal hair growth) to 4 (extensive terminal hair growth). The numbers are added up to a maximum count of 36. A final score of 6 or more is enough to indicate hirsutism.

5. A reference list of normal values was given for the laboratory investigation of PCOS and information regarding how the ovaries should look in PCOS (Appendix E).

Procedure

The IRB granted approval for the proposal on September 26, 2016. After receiving approval from the IRB to conduct the project, the PI started the study by recruiting health care professionals that see the PCOS population. The PI obtained consent from the health care professionals to participate in the study. Each health care professional was oriented prior to the start of the study regarding the PCOS screening questionnaire process and administration of the questionnaire. They were told that the questionnaire would only take approximately 3-5 minutes to complete because it only consisted of only 4 questions and most health care professionals usually ask these questions when they
see their patients. However, they usually do not score the findings. They were also given educational materials that included the Ferriman Gallwey chart and PCOS laboratory reference list. Before starting the project in their office, a pre-test was given to the health care professional. The purpose for this pre-test was to identify professional information and current PCOS diagnostic process. The health care professionals were asked to utilize the diagnostic screening questionnaire in their clinic for 3 months for patients that came to their clinic with complaints of menstrual dysfunction, hirsutism, obesity, reproductive issues, acne, or any symptoms related to PCOS for probable PCOS. Contact information for the PI was given to each health care professional so that if any questions or problems arose, they would be able to contact the PI. This study was considered a health care professional training activity, where there was no patient interaction and no patient identification collected by the PI. The questionnaire was a guide for the health care professionals and was not collected by the PI. The health care professionals were educated on how to interpret the results of the screening questionnaire. Educational materials were given that included clinical assessment techniques and recommended lab tests to order after identifying PCOS patients. Also, the health care professionals were given the Ferriman Gallwey Index chart tool. The Ferriman Gallwey Index chart was used to help assess for hirsutism. At the end of the 3-month period, the PI made contact with the health care professionals to give them the posttest. The post-test was administered to assess the feasibility of utilizing the questionnaire in practice, the number of patients diagnosed with PCOS, and the continued use of the questionnaire in practice.

Evaluation

Each health care professional calculated the results of the PCOS screening questionnaire upon completion of the 3-month study. If the response score was > or
equal to 2, the diagnosis was consistent with PCOS, which meant the patient would need further testing. If the questionnaire response was <2, the diagnosis was not consistent with PCOS and other etiologies needed to be explored by the health care professionals. Once all data had been collected, it was analyzed to determine the efficacy of the screening questionnaire. The PI was able to determine if the PCOS screening questionnaire was helpful in diagnosing probable PCOS patients.

Results

The PCOS scholarly project was conducted with eight health care professionals that consisted of four medical doctors and four Nurse Practitioners. The project took place in three family practice/adult medicine clinics and five obstetrics/gynecology clinics. The PCOS screening questionnaire was utilized in their clinics for three months and was used with patients that had symptoms related to PCOS. Each health care professional that utilized the PCOS screening questionnaire as a part of this scholarly project stated that it was helpful in identifying PCOS patients. All eight health care professionals in their pre-test said that they had never used a PCOS screening questionnaire prior to this study. They all said in their pre-test that they used different methods to identify PCOS patients in their clinic such as utilizing the Rotterdam criteria and clinical assessment. At the conclusion of this study, each health care professional said in their post-test that they would continue to utilize the PCOS screening questionnaire in their clinic. The PCOS screening questionnaire helped the health care professionals to identify several PCOS patients according to their post-test and it allowed them to devise a needed treatment plan for their patients. The health care professionals in their post-test stated that they would recommend the PCOS screening questionnaire to their colleagues.
Discussion

The PCOS screening questionnaire was helpful to health care professionals in identifying and diagnosing PCOS patients. The results indicated that 100% of the health care professionals would continue to utilize the PCOS screening questionnaire in their clinic. In addition, the results indicated that each provider would recommend the questionnaire to their colleagues. In the original study by Pederson, Brar, Faris & Corenblum, the 4-item questionnaire was validated as being useful in screening women with menstrual irregularities, hirsutism, and other related findings for the presence of PCOS (2007). Though, the questionnaire had not been validated in a family practice setting, it was concluded that the questionnaire could be easily incorporated into a busy family practice office (Pederson, Brar, Faris & Corenblum, 2007). In this scholarly project, 62.5% of the utilization of the screening tool took place in an OBGYN clinic and 37.5% of the utilization occurred in Family Practice/Adult primary care clinics. This tool was found to be effective in the identification of women with PCOS.

Barriers

In order for the diagnostic screening tool to be used in a provider's office, barriers need to be examined. A limitation of this scholarly project was participation of health care professionals. Several forms of communication were used to recruit health care professionals to participate in the project, which included electronic means, face-to-face, other colleagues, and phone. Though approximately 20 health care professionals were contacted, only 8 health care professionals were willing to participate. Some of the health care professionals thought that utilizing the questionnaire in their clinic for 3 months was too long and it would take too much time away from their clinical practice time to administer the questionnaire.
Sustainability Plan

In order to sustain this project in a clinical setting, the PCOS screening questionnaire needs to be effective in diagnosing PCOS patients. Now that it has been proven to be successful, it would be a great questionnaire to be used in assisting providers to screen for PCOS and to diagnose it early in order to decrease the comorbidities that accompany PCOS.

Benefits

This study was beneficial in providing a screening tool for HCPs to utilize in the early diagnosis of clients with PCOS. By identifying these patients early, health care professionals will be able to help decrease the comorbidities that come with PCOS. An early and accurate diagnosis of PCOS would allow health care professionals the ability to educate patients early on preventive measures and lifestyle changes that would benefit them.
REFERENCES

Table 1.
Demographical and professional information

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Profession:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse Practitioner</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Physician</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Years of experience in health profession:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5 years</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>5-10 years</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>10-15 years</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>>15 years</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Years of experience in current specialty:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5 years</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>5-10 years</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>10-15 years</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>>15 years</td>
<td>3</td>
<td>37.5</td>
</tr>
<tr>
<td>Specialty area:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB/GYN</td>
<td>5</td>
<td>62.5</td>
</tr>
<tr>
<td>Family Practice</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Adult primary care</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>Number of patients seen daily:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>10-20</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>20-30</td>
<td>3</td>
<td>37.5</td>
</tr>
<tr>
<td>>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of patients diagnosed with PCOS yearly:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>3</td>
<td>37.5</td>
</tr>
<tr>
<td>10-20</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>20-30</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>>30</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Diagnostic Criteria used to diagnose PCOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irregular periods or no periods; obesity, hirsutism, fasting insulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menstrual irregularity, hirsutism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History, exam, sonogram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab results, ultrasound, menstrual history, exam findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical findings, lab results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menses, hair pattern, body shape, acne, fertility, facial features, transvaginal or external ultrasound, labs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrasound, patient symptoms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.

Feasibility of utilization of PCOS Screening questionnaire

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCOS Screening questionnaire helpful in identifying PCOS patients:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of probable PCOS patients identified:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>5</td>
<td>62.5</td>
</tr>
<tr>
<td>5-10</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>>10</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Number of patients diagnosed with PCOS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>5</td>
<td>62.5</td>
</tr>
<tr>
<td>5-10</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>>10</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Utilization of the Ferriman-Gallwey Index chart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>37.5</td>
</tr>
<tr>
<td>Have used previously</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>Utilization of the Laboratory Investigation of PCOS reference list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>
Table 4.

Health Care Professional’s recommendation of PCOS screening questionnaire incorporation into clinical practice

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCOS screening questionnaire is an effective tool to incorporate into clinic:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Recommendation of PCOS screening questionnaire to colleagues:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Educational materials were helpful in diagnosing and treating PCOS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.

Suggestions/Comments

<table>
<thead>
<tr>
<th>The lab values and materials will be a quick access for screening and diagnosis PCOS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I do not recommend doing free testosterone. All the questions are appropriate. When the diagnosis of PCOS is made on clinical basis, I do several tests but not all tests (laboratory tests) on each patient. Depending on whether they are on period or long-term amenorrhea, order pregnancy test. I use my clinical judgment regarding pelvic ultrasound and endometrial biopsy regarding their age, habitus, and other symptoms.</td>
</tr>
</tbody>
</table>
Diagnostic Criteria for PCOS

|----------|----------------|-----------------------|
| • Chronic anovulation
 • Clinical and/or biochemical signs of hyperandrogenism (with exclusion of other etiologies, e.g., congenital adrenal hyperplasia)
 (*Both criteria needed*) | • Oligo- and/or anovulation
 • Clinical and/or biochemical signs of hyperandrogenism
 • Polycystic ovaries
 (*Two of three criteria needed*) | • Clinical and/or biochemical signs of hyperandrogenism
 • Ovarian dysfunction (Oligo-anovulation and/or polycystic ovarian morphology)
 (*Both criteria needed*) |
Figure 2.

Strengths and Limitations of diagnostic criteria

<table>
<thead>
<tr>
<th>Diagnostic Criteria</th>
<th>Strengths</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androgen Excess ("National institutes of health," 2012)</td>
<td>• Included as a component in all major classifications</td>
<td>• Measurement is performed only in blood.</td>
</tr>
<tr>
<td></td>
<td>• A major clinical concern for patients</td>
<td>• Concentrations differ during time of day.</td>
</tr>
<tr>
<td></td>
<td>• Animal models employing</td>
<td>• Concentrations differ with age.</td>
</tr>
<tr>
<td></td>
<td>• Androgen excess resemble but do not fully mimic human disease</td>
<td>• Normative data are not clearly defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assays are not standardized across laboratories.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clinical hyperandrogenism is difficult to quantify and may vary by ethnic group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tissue sensitivity is not assessed.</td>
</tr>
<tr>
<td>Ovulatory Dysfunction ("National institutes of health," 2012)</td>
<td>• Included as a component in all major classifications</td>
<td>• Normal ovulation is incompletely understood.</td>
</tr>
<tr>
<td></td>
<td>• A major clinical concern for patients</td>
<td>• Normal ovulation varies over a woman’s lifetime.</td>
</tr>
<tr>
<td></td>
<td>• Infertility a common clinical complaint</td>
<td>• Ovulatory dysfunction is difficult to measure objectively.</td>
</tr>
<tr>
<td>Polycystic Ovarian Morphology ("National institutes of health," 2012)</td>
<td>• Historically associated with syndrome</td>
<td>• Technique dependent</td>
</tr>
<tr>
<td></td>
<td>• May be associated with hypersensitivity to ovarian stimulation</td>
<td>• Difficult to obtain standardized measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lack of normative standards across the menstrual cycle and lifespan (notably in adolescence) as ovarian morphology varies with age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Technology required to accurately image not universally available Imaging possibly inappropriate in certain circumstances (e.g., adolescence)</td>
</tr>
</tbody>
</table>
Figure 3.
Rosswurm & Larabee Model for change to Evidence-Based Practice

1. Assess need for change in practice
 - Include stakeholders
 - Collect internal data about current practice
 - Compare internal data with external data
 - Identify problem

2. Link problem interventions and outcomes
 - Use standardized classification systems and language
 - Identify potential interventions and activities
 - Select outcomes indicators

3. Synthesize best evidence
 - Search research literature related to major variables
 - Critique and weigh evidence
 - Synthesize best evidence
 - Assess feasibility, benefits, and risk

4. Design practice change
 - Define proposed change
 - Identify needed resources
 - Plan implementation process
 - Define outcomes
 - Pilot study demonstration
 - Evaluate process and outcome
 - Decide to adopt, adopt, or reject practice change

5. Implement and evaluate change in practice
 - Communicate recommended change to stakeholders
 - Present staff in-service education on change in practice
 - Integrate into standards of practice
 - Monitor process and outcomes
Figure 4.

Conceptual Framework

1. Assess need for practice change
 - Involve Health care professionals (HP's) in OB/GYN, Family Practice, & other clinics that may see PCOS patients
 - PCOS pre-test
 - Current PCOS screening method vs. validated PCOS screening questionnaire
 - Identify the need to diagnose PCOS early to decrease PCOS related complications

2. Link problem interventions & outcomes
 - Utilize validated PCOS screening questionnaire
 - Select outcome measures such as number of HP's used the screening questionnaire, effectiveness of questionnaire, barriers to utilizing questionnaire, and percentage of HP's to continue utilizing the PCOS screening questionnaire

3. Synthesize best evidence
 - Synthesize "Polycystic ovary syndrome validated questionnaire for use in diagnosis". Canadian Family Medicine, vol. 55, June 2007
 - Validated screening questionnaire with sensitivity of 77% and specificity of 94% as a tool to support the diagnosis of PCOS
 - Positive result prompts clinical assessment for complications of PCOS

4. Design practice change
 - Incorporate validated PCOS screening questionnaire as a part of clinical care
 - HP's use questionnaire in clinic for 3 months for patients in clinic with complaints of menstrual dysfunction, hirsutism, obesity, reproductive issues, or acne
 - Define PCOS screening outcomes

5. Implement & Evaluate practice change
 - Pilot 4-item PCOS screening tool in practice for 3 months
 - Evaluate the use of questionnaire and outcomes via post-test
 - Make a decision to adopt, adapt, or reject practice change of utilizing the PCOS screening questionnaire from post-test results

6. Integrate & Maintain practice change
 - Within clinical practice, recommend the need for change in practice to all stakeholders
 - Present PCOS screening questionnaire to all staff involved in clinical care
 - Integrate questionnaire into daily clinical practice
 - Monitor the use of questionnaire and outcomes in clinical practice
APPENDICES
APPENDIX A

Screening Questionnaire for diagnosis of Polycystic Ovary Syndrome (PCOS)

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>CRITERIA TO ATTAIN SCORE VALUE</th>
<th>SCORE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please answer this question, NOT INCLUDING any time spent pregnant, receiving birth control pills or injections, after menopause, or after having both ovaries or the uterus surgically removed: Between the ages of 16 and 40, about how long was your average menstrual cycle (time from first day of one period to the first day of the next period)? (select ONE only)</td>
<td>Patient indicates any one of: - 35-60 days - More than 60 days - Totally variable</td>
<td>1</td>
</tr>
<tr>
<td>• <25 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 25-34 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 35-60 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• More than 60 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Totally variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>During your menstruating years (not including during pregnancy), did you have a tendency to grow dark, coarse hair on your (circle ALL that apply)</td>
<td>Patient indicates 3 or more sites</td>
<td>1</td>
</tr>
<tr>
<td>• Upper lip?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Chin?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Chest between the breasts?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Back?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Belly?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Upper arms?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Upper thighs?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have you ever been obese or overweight between the ages of 16 and 40? (circle ONE)</td>
<td>Patient indicates Yes</td>
<td>1</td>
</tr>
<tr>
<td>• Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between the ages of 16 and 40, have you ever noticed a milky discharge from your nipples (not including during pregnancy or recent childbirth)? (circle ONE)</td>
<td>Patient indicates Yes (Patient indicates No)</td>
<td>-1</td>
</tr>
<tr>
<td>• Yes</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>• No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>If > 2, consistent with diagnosis of PCOS If < 2, not consistent with diagnosis of PCOS</td>
</tr>
</tbody>
</table>
Appendix B
PCOS Pre-test

Name: Contact number:

1. What is your health profession?
 a. Nurse Practitioner
 b. Physician Assistant
 c. Nurse Midwife
 d. Other

2. How many years of experience do you have in your health profession?
 a. 0-5 years
 b. 5-10 years
 c. 10-15 years
 d. > 15 years

3. How many years of experience in your current specialty area do you have?
 a. 0-5 years
 b. 5-10 years
 c. 10-15 years
 d. >15 years

4. Which specialty area is your clinic?
 a. OB/GYN
 b. Family Practice
 c. Other

5. How many patients do you currently see on a daily basis?
 a. 5-10
 b. 10-20
 c. 20-30
 d. > 30

6. How many patients do you diagnose with PCOS yearly in your clinic?
 a. 0-10
 b. 10-20
 c. 20-30
 d. >30

7. What diagnostic criteria do you use to diagnose PCOS?
8. Do you use a PCOS diagnostic screening questionnaire to identify probable PCOS patients based on symptoms?
Yes
No

If yes, what screening diagnostic questionnaire do you use?
Appendix C

PCOS Post-test

Name: Contact information:

1. Did you utilize the PCOS screening questionnaire with your patients to identify PCOS patients?
 Yes No I have used previously
 If no, please explain

2. Was the screening questionnaire helpful in identifying PCOS patients?
 Yes No I have used previously
 If no, please explain

 If yes, how many probable PCOS patients were identified?
 a . 0-5
 b . 5-10
 c . >10

 Of the above probable PCOS patients that were identified, how many of those patients were diagnosed with PCOS?
 a . 0-5
 b . 5-10
 c . >10

3. Did you utilize the Ferriman-Gallwey Index chart to help diagnose hirsutism?
 Yes No I have used previously
 If no, please explain

4. Did you utilize the Laboratory Investigation of PCOS reference list?
 Yes No I have used previously
 If no, please explain

5. Do you think that the PCOS screening questionnaire would be an effective tool to incorporate into your clinic?
 Yes No

6. Would you recommend the PCOS screening questionnaire to other colleagues?
 Yes No

7. Was the educational materials/information provided helpful in diagnosing and treating PCOS?
 Yes No
8. Any suggestions or comments?
Appendix D

Ferriman Gallwey Index Chart

Modified Ferriman–Gallwey (F-G) hirsutism scoring system. Each of the nine body areas is rated from 0 (absence of terminal hairs) to 4 (extensive terminal hair growth), and the numbers in each area are added for a total score. A modified F-G score ≥6 generally defines hirsutism.
Appendix E

Laboratory Investigation of PCOS Reference list

<table>
<thead>
<tr>
<th>Test</th>
<th>Normal value</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-hCG</td>
<td>< 5 mIU per mL (< 5 IU per L)</td>
<td>Exclude pregnancy</td>
</tr>
<tr>
<td>TSH</td>
<td>0.5 to 4.5 μU per mL (0.5 to 4.5 mU per L)</td>
<td>Exclude thyroid dysfunction</td>
</tr>
<tr>
<td>Prolactin</td>
<td>< 20 ng per mL (< 20 μg per L)</td>
<td>Exclude hyperprolactinemia</td>
</tr>
<tr>
<td>Testosterone (total)</td>
<td>< 20 ng per dL (< 0.7 nmol per L)</td>
<td>Exclude androgen-secreting neoplasm</td>
</tr>
<tr>
<td>Testosterone (free)</td>
<td>20 to 30 years—0.06 to 2.57 pg per mL (0.20 to 8.90 pmol per L)</td>
<td>Establish diagnosis or monitor therapy</td>
</tr>
<tr>
<td></td>
<td>40 to 59 years—0.4 to 2.03 pg per mL (1.40 to 7.00 pmol per L)</td>
<td></td>
</tr>
<tr>
<td>DHEAS</td>
<td>600 to 3,400 ng per mL (1.6 to 9.2 μmol per L)</td>
<td>Exclude androgen-secreting neoplasm</td>
</tr>
<tr>
<td>Androstenedione</td>
<td>0.4 to 2.7 ng per mL (1.4 to 9.4 nmol per L)</td>
<td>Establish diagnosis</td>
</tr>
<tr>
<td>17 α-hydroxyprogesterone</td>
<td>Follicular phase < 2 μg per L (6.1 nmol per L)</td>
<td>Exclude NCAH</td>
</tr>
<tr>
<td>Fasting insulin</td>
<td>< 20 μU per mL (< 144 pmol per L)</td>
<td>Exclude hyperinsulinemia</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>65 to 119 mg per dL (3.6 to 6.6 mmol per L)</td>
<td>Exclude type 2 diabetes or glucose intolerance</td>
</tr>
<tr>
<td>Fasting glucose: insulin ratio</td>
<td>@ 4.5</td>
<td>Exclude insulin resistance</td>
</tr>
<tr>
<td>Test</td>
<td>Normal value</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Cholesterol (total)</td>
<td>150 to 200 mg per dL (1.5 to 2 g per L)</td>
<td>Monitor lifestyle changes</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>35 to 85 mg per dL (0.9 to 2.2 mmol per L)</td>
<td>Monitor lifestyle changes</td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>80 to 130 mg per dL (2.1 to 3.4 mmol per L)</td>
<td>Monitor lifestyle changes</td>
</tr>
<tr>
<td>Pelvic ultrasonography</td>
<td></td>
<td>Monitor lifestyle changes</td>
</tr>
<tr>
<td>Endometrial biopsy</td>
<td>Negative for hyperplasia/malignancy</td>
<td>Exclude malignancy or hyperplasia</td>
</tr>
</tbody>
</table>

Note: Diagnosis of PCOS established by exclusion of other causes of oligomenorrhea or hyperandrogenism. Other tests may be of benefit in monitoring therapy.

PCOS = polycystic ovary syndrome; β-hCG = beta subunit human chorionic gonadotropin; TSH = thyroid-stimulating hormone; DHEAS = dehydroepiandrosterone sulfate; NCAH = nonclassic adrenal hyperplasia; HDL = high-density lipoprotein; LDL = low-density lipoprotein.

Pelvic ultrasound - ovarian volume greater than 10cm³ and/or 12 or more 2mm to 9 mm follicles.
December 18th 2016
Minnetta Williams
College of Nursing
The University of Alabama in Huntsville

Dear Ms. Williams,

The UAH Institutional Review Board of Human Subjects Committee has reviewed your proposal, *Diagnostic Screening Questionnaire in Polycystic Ovarian Syndrome (PCOS)*, and found it meets the necessary criteria for continued approval. Your proposal seems to be in compliance with this institution’s Federal Wide Assurance (FWA) 00019998 and the DHHS Regulations for the Protection of Human Subjects (45 CFR 46).

Please note that this approval is good for one year from the date on this letter. If data collection continues past this period, you are responsible for processing a renewal application a minimum of 60 days prior to the expiration date.

No changes are to be made to the approved protocol without prior review and approval from the UAH IRB. All changes (e.g., a change in procedure, number of subjects, personnel, study locations, new recruitment materials, study instruments, etc.) must be prospectively reviewed and approved by the IRB before they are implemented. You should report any unanticipated problems involving risks to the participants or others to the IRB Chair.

If you have any questions regarding the IRB’s decision, please contact me.

Sincerely,

William Wilkerson
IRB Chair
Dean, Honors College
Appendix G

Krishna Kakani, MD
200 Franklin Street, Suite 102
Huntsville, AL 35801

Phone: 256-251-5121
Fax: 256-469-6061

Wednesday, September 07, 2016

Minnetta Williams, MSN, FNP-BC
College of Nursing
University of Alabama in Huntsville

Ms Williams,

I am pleased to support your research proposal entitled “Diagnostic Screening Tool in Polycystic Ovarian Syndrome.” I give approval for you to recruit potential study participants from my clinical practice.

I look forward to collaborating with you on this work. Please keep me informed of your study planning.

Sincerely,

Krishna Kakani

Dr Krishna Kakani
Tuskegee Medical & Surgical Center

October 17, 2016

Minnette Williams, MSN, FNP-BC
College of Nursing
University of Alabama in Huntsville

Ms Williams,

I am pleased to support your research proposal entitled “Diagnostic Screening Questionnaire in Polycystic Ovarian Syndrome.” I give approval for you to recruit potential study participants from my clinical practice.

I look forward to collaborating with you on this work. Please keep me informed of your study planning.

Sincerely,

[Signature]

Dearah D. Maxwell, M.D.
Appendix I

Leon W. Lewis, M.D., P.C.
Obstetrics & Gynecology
420 Lowell Drive • Suite 401 • Huntsville, Alabama 35801
Phone: 256-459-8845 • Fax: 256-459-8849
www.leonwlewismdgyn.com

Leon W. Lewis, M.D., F.A.C.O.G.
Board Certified
Obstetrics & Gynecology

Kristine L. Weaver, C.R.N.P.
Nurse Practitioner

October 01, 2016

Minnette Williams, MSN, FNP-BC
College of Nursing
University of Alabama in Huntsville

Ms Williams,

I am pleased to support your research proposal entitled “Diagnostic Screening Questionnaire in Polycystic Ovarian Syndrome.” I give approval for you to recruit potential study participants from my clinical practice.

I look forward to collaborating with you on this work. Please keep me informed of your study planning.

Sincerely,

Leon W. Lewis MD
January 27, 2017

Miaorita Williams, MSN, FNP-BC
College of Nursing
University of Alabama in Huntsville

Ms Williams,

I am pleased to support your research proposal entitled “Diagnostic Screening Questionnaire in Polycystic Ovarian Syndrome.” I give approval for you to recruit potential study participants from my clinical practice.

I look forward to collaborating with you on this work. Please keep me informed of your study planning.

Sincerely,

Name: Vivian Watson

Address: 1824 N Ridge Ave
Tifton Clinic

Business: Tifton Clinic

31794
February 25, 2017

Minnetta Williams, MSN, FNP-BC
College of Nursing
University of Alabama in Huntsville

Ms. Williams,

I am pleased to support your research proposal entitled “Diagnostic Screening Questionnaire in Polycystic Ovarian Syndrome.” I give approval for you to recruit potential study participants from my clinical practice.

I look forward to collaborating with you on this work. Please keep me informed of your study planning.

Sincerely,

Dr. Shannon L. Price OB GYN
Affinity Physicians for Women
39 Kent RD #1
Tifton, GA 31794
January 27, 2017

Minnette Williams, MSN, FNP-BC
College of Nursing
University of Alabama in Huntsville

Ms Williams,

I am pleased to support your research proposal entitled “Diagnostic Screening Questionnaire in Polycystic Ovarian Syndrome.” I give approval for you to recruit potential study participants from my clinical practice.

I look forward to collaborating with you on this work. Please keep me informed of your study planning.

Sincerely,

Name: Sheila Jones NP-C
Address: 1824 N. Ridge Avenue
Tifton, GA 31794
Business: Tifton VA Clinic
Appendix M

JNP Author Guideline

DESCRIPTION

JNP: The Journal for Nurse Practitioners offers high-quality, peer-reviewed clinical articles, original research, continuing education, and departments that help practitioners excel as providers of primary and acute care across the lifespan. Each issue meets their practice needs and encourages discussion and feedback with thought-provoking articles on controversial issues and topics. *JNP* supports advocacy by demonstrating the role that policy plays in shaping practice and delivering outcomes. The journal is an official publication of the American Association of Nurse Practitioners and also is affiliated with the Australian College of Nurse Practitioners.

The journal is published 10 times per year, distributed to approximately 100,000 readers in print form, and can be found online at www.npjournal.org. The journal is included in Scopus, CINAHL, and the Journal Citation Reports published by Thomson Reuters.

Benefits to authors
We also provide many author benefits, such as a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.

Please see our [Guide for Authors](http://www.npjournal.org) for information on article submission. If you require any further information or help, please visit our [Support Center](http://www.npjournal.org).

AUDIENCE
Nurse Practitioners working in primary care, women's health, geriatrics, pediatrics, and other specialties within acute care and non-hospital settings.

IMPACT FACTOR
2015: 0.234 © Thomson Reuters Journal Citation Reports 2016

ABSTRACTING AND INDEXING
CINAHL
Scopus

EDITORIAL BOARD
Editor-in-Chief
Marilyn W. Edmunds, PhD, NP, Nurse Practitioner Connections, Alpine, UT

Associate Editor
Julee B. Waldrop, DNP, FNP, PNP, University of North Carolina at Chapel Hill, Mobile, AL
Associate Publisher
Dawn Nahlen, MA, Elsevier, Inc., North Little Rock, AR

Editorial Board

Patricia T. Alpert, DrPh, MSN, FNP-BC, PNP-BC, CNE, FAANP, Associate Professor & Physiologic Department Chair, School of Nursing, University of Nevada, Las Vegas, NV
Susan Apold, PhD, ANP-BC, FAAN, FAANP, Clinical Professor, New York University College of Nursing, New York, NY
Debra J. Barksdale, PhD, FNP-BC, ANP-BC, FAANP, FAAN, Associate Dean of Academic Programs, VCU School of Nursing, Richmond, VA
Diane M. Burgermeister, PhD, RN, Professor, College of Nursing and Health, Madonna University, Livonia, MI
Jan DiSantostefano, NP, MS, Nurse Practitioner, SAS Healthcare, Apex, NC
Elsie Duff, Faculty, Collaborative Nurse Practitioner Program, Saskatchewan Polytechnic, Canada
Susanne Gibbons, PhD, CRNP, C-ANP/GNP, Uniformed Services University, Bethesda, MD
Ann Marie Hart, PhD, FNP, Assistant Professor, School of Nursing, University of Wyoming, Laramie, WY
Christopher J. Helms, RN, MSN, ANP-BC, FACNP, Australian College of Nurse Practitioners, Canberra, Australia
Randall Steven Hudspeth, RSHudspeth Consulting, Boise, ID
Miriam Kravitz, DNP, FNP-BC, Orleans Dermatology and Laser Therapies, Orleans, MA
Carolyn Mathis Dolan, MSN, JD, Professor, Community/Mental Health Nursing, University of South Alabama, Fairhope, AL
Patricia C. McMullen, PhD, JD, CRNP, Dean and Ordinary Professor, School of Nursing, Catholic University of America, Washington, DC
Kenneth P. Miller, Endowed Professorship, Coordinator FNP Program, University of Texas Health Sciences Center, San Antonio, TX
Alison Mitchell, RN, MSN, ACNP-C, Methodist Hospital/Texas Medical Center, Houston, TX
Sandra M. Nettina, MS, ANP, Nurse Practitioner, Columbia Medical Practice, Columbia, MD
Timothy Nguyen, PharmD, BCPS, CCP, FASCP, Associate Professor, College of Pharmacy & Health Sciences, Long Island University, Brooklyn, NY
Mary A. Paterson, PhD, MSN, Ordinary Professor, Director of Assessment, Catholic University of America, Washington, DC
Carol M. Patton, DrPH, FNP-BC, CRNP, CNE, Associate Clinical Professor, College of Nursing and Health Professions, Drexel University, Philadelphia, PA
Kathy Pereira, Associate Professor, School of Nursing, Duke University Medical Center, Durham, NC
Demetrius Porche, DNS, PhD, FNP, Professor and Dean, School of Nursing, Louisiana State University Health Sciences Center, New Orleans, LA
Laurie Scudder, DNP, NP, President, Nurse Practitioner Alternatives, Columbia, MD
Nancy Selix, Assistant Professor, Nursing and Health Professions, University of San Francisco, San Francisco, CA
Janet Selway, DNS, CRNP, Assistant Professor, Catholic University of America, Washington, DC
Julie A. Stanik-Hutt, PhD, ACNP/GNP, FAANP, Professor and Director of AG-ACNP Track, University of Iowa College of Nursing, Iowa City, IA
Joan Stanley, PhD, CRNP, FAAN, Senior Director of Education Policy, American Association of Colleges of Nursing, Washington, DC
Kathleen Tori, ENP, MN(NP), MHSc, CCRN, GradDip VET, MACN, MACNP, Senior Nursing Lecturer/Deputy Postgraduate Course Coordinator, La Trobe University, Bendigo, Australia
Susan Wysocki, iWomansHealth, Washington, District of Columbia, USA
Theresa P. Yeo, PhD, MPH, MSN, AOCNP, Associate Director, Jefferson Pancreas Tumor Registry, Philadelphia, PA
Diagnostic Tips
Mellisa Hall, University of Southern Indiana, Indiana, USA
Image of the Month
Joanne Thanavaro, DNP, APRN, ANP-BC, GNP-BC, FAANP, St. Louis University, St. Louis, Missouri
Legal Limits
Carolyn Buppert, CRNP, JD, Boulder, CO
Point/Counterpoint
Donald Gardenier, DNP, FAANP, Nurse Practitioner, Palm Springs, CA
Prescription Pad
Timothy Nguyen, PharmD, BCPS, CCP, FASCP, Long Island University, Brooklyn, NY
Quality Care for Women’s Health
Denise Link, Arizona State University, Phoenix, AZ, USA
Test Your Knowledge
Sandy Wilbanks, APRN, FNP, Freeland Primary Care, Freeland, Michigan, USA
GUIDE FOR AUTHORS

Purpose

JNP: The Journal for Nurse Practitioners, offers high quality, peer-reviewed clinical articles, original research, continuing education, and departments that help nurse practitioners (NPs) excel as providers of primary and acute care across the lifespan. Each issue meets their practice needs and encourages discussion and feedback with thought-provoking articles on controversial issues and topics. JNP supports advocacy by demonstrating the role that policy plays in shaping practice and delivering outcomes.

Article Types

Except as noted, all articles should be 4,000 to 5,000 total words, inclusive of all headings, titles, author information, keywords, abstract, text, references, tables, and graphics. Authors will be guided stepwise through the submission process and must choose a category from the following options:

Original Research - follow standard research format using headings to identify research question, review of literature, methods, sample, data analysis, results, recommendations, and conclusions. For quantitative studies, please include a power analysis used to calculate needed sample sizes. Include a concise and factual abstract that does not exceed 100 words and that summarizes the article content.

Brief Report - summation of research findings without a full research report. Examples include reports of role expansion of the NP in other countries, quality improvement projects, or other information of interest to NPs that does not warrant a full feature article. Articles are limited to 2,000 words, including a concise and factual abstract (less than 100 words), references, tables, and figures. Brief Reports are listed in the print edition table of contents but published in full online and included in all databases in which JNP is indexed. Contact Associate Editor Julee Waldrop at jwaldropJNP@gmail.com with questions.

Case Challenges - designed to stimulate interest among experienced NPs in a clinical problem that they might encounter in clinical practice (not something that would be extremely rare). The section focuses on the diagnostic reasoning process and follows a prescribed template. Articles are limited to 2,500 words, including a concise and factual abstract (less than 100 words), references, tables, photos, or figures. Case Challenges are listed in the print edition table of contents but published in full online and included in all databases in which JNP is indexed. Contact Associate Editor Julee Waldrop at jwaldropJNP@gmail.com with questions.

Clinical Feature - focus on the latest evidence-based information about the presentation, diagnosis, treatment, and management of a particular clinical problem relevant to NP practice. Authors may also include up to 3 minutes of video to demonstrate or explain components of the clinical article, for example, demonstrating a particular assessment procedure. Publication
priority will be given to articles demonstrating an interdisciplinary team approach or policy implications. Include a concise and factual abstract that does not exceed 100 words and that summarizes the article content.

Policy Feature - identify issues, trends, barriers, legislative successes, or recommendations that affect NPs' ability to practice to the full extent of their education. Include a concise and factual abstract that does not exceed 100 words and that summarizes the article content.

Educational Feature - articles that describe NP faculty curricular design, implementation, evaluation, mentoring, precepting, or other components of NP education. These presentations will be considered for an online-only faculty section and may include live URLs, links to mobile apps or audios, more lengthy forms, etc, that lend themselves to online publication. While the peer-reviewed articles will appear online only, they will be listed in the table of contents for the print version of the Journal and will be indexed in all databases in which JNP is included. Include a concise and factual abstract that does not exceed 100 words and that summarizes the article content.

Department - after working directly with the department editor and receiving his or her direction and approval, material less than 1,100 words may be submitted for the following sections. To facilitate communication with select department editors, please use the following emails:
• Point/Counterpoint: Don Gardenier, dgardenier@gmail.com.
• Current Issues in NP Practice: Laurel Halloran, laurelnp@yahoo.com. Online only.
• Diagnostic Tips: Mellisa Hall, mhall@usi.edu. Expert clinicians share important factors to consider in assessing or diagnosing or procedures used in specific clinical problems. Online only.
• Image of the Month: Joanne Thanavaro, jthanava@slu.edu. Online only.
• Mobile Apps for NPs: Angela Golden and Patricia Krauskopf, npfromhome@gmail.com. Online only.
• Prescription Pad: Tim Nguyen, timnguyenpharmd@gmail.com. Updates from common medications to novel treatments for primary care complaints, geared toward experienced prescribing clinicians.
• Quality Care for Womens Health: Denise Link, deniseg.link@gmail.com.

Letter to the Editor - Address comments to Editor-in-Chief, Marilyn W. Edmunds at editor@journalnp.com.

BEFORE YOU BEGIN

Ethics in publishing
Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication.

JNP and Elsevier adhere to the highest standards with regard to research integrity and in particular the avoidance of plagiarism, including self-plagiarism. It is therefore essential that authors, before they submit a paper, carefully read the Ethical guidelines. When submitting a paper,
authors will be prompted as to whether they have read and agree to these guidelines before proceeding further with their submission. Authors are reminded that, where they draw upon material from another source, they must either put that material in the form of a quote or write it entirely in their own words. In both cases, they must explicitly cite the source, including the specific page number in the case of a quote or a particular point.

If your university or hospital library uses a software platform such as iThenticate to ensure content originality, please submit the results of the software analysis for your article in your cover letter.

Human and animal rights
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should clearly indicate in the manuscript that such guidelines have been followed.

Conflict of Interest
All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. As you move through the submission process, you will be required to submit a signed copy of the "Conflict of Interest" form that is found on the website. Use a separate form for you and each coauthor. JNP also requires all authors to acknowledge, on the Title Page of their manuscript, all funding sources and/or granting agencies that supported their work, as well as all institutional or corporate affiliations of all the authors and to disclose to the Editor any commercial associations that could pose a conflict of interest or financial bias. These include employment, consultation fees, grants or other funding, patent licensing arrangements, company stock, payments for conducting or publicizing a study, paid expert testimony, travel, honoraria, gifts, or meals. If the article is accepted for publication, the Editor will determine how any conflict of interest should be disclosed. Articles with commercial support and professional editing are not usually eligible for publication but would be considered for paid supplements. See also http://www.elsevier.com/conflictoffinterest.

Submission declaration and verification
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a
published lecture or academic thesis or as an electronic preprint, see 'Multiple, redundant or concurrent publication' section of our ethics policy for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck.

Authorship
All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Article transfer service
This journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal. More information.

Copyright
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution.
and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (more information). Permitted third party reuse of open access articles is determined by the author's choice of user license.

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. More information.

Elsevier supports responsible sharing
Find out how you can share your research published in Elsevier journals.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Please note that such information should appear on the Title Page. Generally, articles that have been funded by business or industry or have received professional editing support will be precluded from publication as features but may be eligible for consideration as paid supplements.

Accountability
JNP requires all authors to acknowledge, on the Title Page of their manuscript, all funding sources and/or granting agencies that supported their work, as well as all institutional or corporate affiliations of all the authors. Authors are also required to disclose to the Editor, in a covering letter at the time of submission, any commercial associations that could pose a conflict of interest or financial bias. These include consultation fees, patent licensing arrangements, company stock, payments for conducting or publicizing a study, travel, honoraria, gifts, or meals. If the article is accepted for publication, the Editor will determine how any conflict of interest should be disclosed. Authors are expected to fulfill the requirements of their employer's publication policy before submitting their manuscript. The Journal follows the ICMJE's Uniform Requirements for Manuscripts Submitted to Biomedical Journals (http://www.icmje.org).

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder's open access policies. Some funding bodies will reimburse the author for the Open Access Publication Fee. Details of existing agreements are available online. After acceptance, open access papers will be published under a noncommercial license. For authors requiring a commercial CC BY license,
you can apply after your manuscript is accepted for publication.

Open access
This journal offers authors a choice in publishing their research:

Open access
- Articles are freely available to both subscribers and the wider public with permitted reuse.
- An open access publication fee is payable by authors or on their behalf, e.g. by their research funder or institution.

Subscription
- Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs.
- No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access publication fee for this journal is **USD 2500**, excluding taxes. Learn more about Elsevier's pricing policy: http://www.elsevier.com/openaccesspricing.

Green open access
Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information. Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form. [Find out more.](#)

This journal has an embargo period of 12 months.

Language (usage and editing services)
Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's WebShop.
Informed consent and patient details
Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author and copies of the consents or evidence that such consents have been obtained must be provided to Elsevier on request. For more information, please review the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.

Also, please note that if an accepted article identifies a particular facility, patient/client, etc, the author is responsible for securing written authorization to use that name.

Student papers
Students are held to the same standards as other authors, and their papers must be written in a scholarly format at the level for physician or experienced NP readers. Student papers must meet the requirements of the journal and be co-authored by a university faculty member who has worked with the student to ensure the paper is in publishable form and that it represents the best paper from their institution. Studies must have a sufficiently developed methodology with large enough sample size to result in valid conclusions that can be generalized beyond the sample itself. Pilot studies are generally not acceptable, and authors with strong methodologies are encouraged to continuing collecting data until they have enough data to draw conclusions that warrant publication. If accepted, student papers will be held for publication until the students have graduated.

JNP welcomes the submission of capstone projects that follow the guidelines above. Authors of these projects should review Publishing a DNP capstone: The where, what, and how before submission.

Submission
Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.

Submit your article
Please submit your article via http://ees.elsevier.com/jnp.

PREPARATION
Review process
Articles deemed potentially publishable will undergo double-blind peer review, which means that both the reviewer and author name(s) are not allowed to be revealed to one another for a manuscript under review. The identities of
the authors are concealed from the reviewers, and vice versa. For more information please refer to http://www.elsevier.com/reviewers/peer-review.

To facilitate this, please include the following separately:

Title page (with author details): This should include the title, authors' names and affiliations, and a complete address for the corresponding author including telephone and e-mail address.

Blinded manuscript (no author details): The main body of the paper (including the references, figures, tables and any acknowledgments) should not include any identifying information, such as the authors' names or affiliations. Reviewers are asked to return their response within 2 weeks but often require longer. Almost all submissions require revision, which is to be completed within 30 days. Because of the intense competition among articles, JNP has a commitment to make publication decisions quickly; unrevised articles will not be allowed to remain indefinitely in the system.

Essential Title Page information

Title - Be concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.

Author names, full credentials, and affiliations - Where the family name may be ambiguous (eg, a double name), please clearly indicate given names and surnames. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations, institutional and corporate, with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.

Author byline - Indicate which 2 credentials each author would like after their name in the byline and table of contents (eg, Joan Smith, MSN, PNP).

Corresponding author - Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. **Ensure that phone numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.**

Present/permanent address. - If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Funding - Report all funding sources and/or granting agencies that supported your work, as well as all institutional or corporate affiliations of all the authors. Authors' full credentials; authors' current job titles, employers, and the cities in which they work; and the email address for the corresponding author will be listed in the biography at the end of the article, so please be sure to include all necessary information.

Highlights

Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). You can view example Highlights on our information site.

Permissions

The author is responsible for obtaining written permission to use any
Copyrighted materials, including illustrations, photographs, tables, and any content taken from websites. Documentation of permission to reprint copyrighted materials should be submitted electronically when the article is submitted. Additional information on securing permissions can be found at http://www.elsevier.com/journal-authors/author-rights-and-responsibilities.

Formatting of funding sources
List funding sources in this standard way to facilitate compliance to funder's requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa]. It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding. If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Artwork

Electronic artwork General points

- Make sure you use uniform lettering and sizing of your original artwork.
- Embed the used fonts if the application provides that option.
- Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Provide captions to illustrations separately.
- Size the illustrations close to the desired dimensions of the published version.
- Submit each illustration as a separate file.

A detailed guide on electronic artwork is available.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats

If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format. Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi. TIFF (or JPEG): Combinations bitmapped line/halftone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:

- Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
- Supply files that are too low in resolution;
- Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF) or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) in addition to color reproduction in print. Further information on the preparation of electronic artwork.

Illustration services
Elsevier's WebShop offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier's expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image 'polishing' is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.
A DOI can be used to cite and link to electronic articles where an article is in-press and full citation details are not yet known, but the article is available online. A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambeh W.B., Franke M. (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, https://doi.org/10.1029/2001JB000884. Please note the format of such citations should be in the same style as all other references in the paper.

Web references
At a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc), should also be given. Web references should be included in the reference list.

Data references
This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley and Zotero, as well as EndNote. Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal's style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link:
http://open.mendeley.com/use-citation-style/the-journal-for-nurse-practitioners

When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference formatting
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references
yourself they should be arranged according to the following examples:

Reference style

List: Number the references in the list in the order in which they appear in the text.

Examples:

Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:

Reference to a website:

Reference to a dataset:

Journal abbreviations source

Journal names should be abbreviated according to the List of Title Word Abbreviations.

Video

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including *ScienceDirect*. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary material
Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the 'Track Changes' option in Microsoft Office files as these will appear in the published version.

AudioSlides
The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Submission requirements
Papers should be written in a scholarly format using references generally no older than 5 years. Writing should be at the level for physicians and experienced NPs.

Please prepare the following items for submission: Abstract - create a concise and factual abstract that does not exceed 100 words and that summarizes the article content. References should be avoided. Keywords - List at least 5 words that best describe your article and would identify it through a standard search engine. Cover letter - indicate who you are, a very brief summary of your article, and why you believe it would fit with JNP's mission; also state that the manuscript has not been and will not be submitted elsewhere for publication. Conflict of interest statement - submit a signed copy of the "Conflict of Interest" form that is found on the website as you move through the submission process. Use a separate form for you and each coauthor. Title page - include title of the manuscript; name of authors in order in which they should appear; an affiliation, address, phone number, and e-mail address for each author; author byline; and funding sources. Please identify the corresponding author who will receive all correspondence. Student authors should indicate their anticipated date of graduation. Word count - create a page that lists only the total number of words in the submission—not just the main text. Blinded manuscript - make no reference to the geographic location, the institution at which the work or study was conducted, or any of the names or affiliations of the authors. Generic terms should be used instead (region, university, medical center, etc). Tables and figures (if appropriate) - separately label and save each table and hi-resolution figure file. Figure legends (number and explanation) should be included at the end of the blinded manuscript, not as part of the figure file. Identify sources for all tables and submit written permission to publish copyrighted tables or images that you wish to reprint or adapt.
AFTER ACCEPTANCE

Proofs
One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author, or a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 7 (or higher) available free from http://get.adobe.com/reader. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/tech-specs.html.

If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately – please let us have all your corrections within 48 hours. It is important to ensure that all corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received.

Offprints
The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s Webshop. Corresponding authors who have published their article open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.

Disclaimers
All manuscripts are accepted for publication with the understanding that they are contributed solely to JNP.

Statements and opinions expressed in the articles are those of the author(s) and not necessarily those of the Editors, the American Association of Nurse Practitioners (AANP), or Elsevier. The Editors, AANP, and Elsevier disclaim any responsibility or liability for such material and do not guarantee, warrant, or endorse any product or services advertised in this publication.

Manuscripts become the permanent property of JNP and may not be published elsewhere without written permission from Elsevier. All accepted manuscripts are subject to copyediting.
AUTHOR INQUIRIES

Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch. You can also check the status of your submitted article or find out when your accepted article will be published.

© Copyright 2014 Elsevier | http://www.elsevier.com