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SU.'\A‘ VA . -

The application of the point-matching method to 1 imensional
problcms is formulated in this report. Investigations are starte m t
scattering of plane waves by accoustically soft and hard fi ti

Due to the symmetry of the scatterer, the incident wav
Fourier series of azimuth angle. A number of system
g Y
geneous algebraic equations is necessary to obtain a ' . I the

systems of equations is quite similar to that of the

The accpustic formulation is extended to obtain the solut f ittering
of electromagnetic plane waves by perfectly conducting t nmetri
bodies. In this case, the boundary conditions consist of

ponents of the electric field which vanish at the surfa the f
However, the resultant equations are in the same form as in t ] usti

problem.
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INTRODUCTION:

The point-matching method has been applied in many areas of
engineering science during recent years . Most of these applications
are two-dimensional eigenvalue problems. A finite number of point

around the periphery of the boundary in question are chosen such that

these points describe the boundary contour approximately™’". By
utilizing a computer, this method can easily produce many practical
solutions to the eigenvalue problem and similar types of problems. For

example, all hollow-piped waveguides within the limitations posted in
Ref.[6] can be solved by the same computer program. However, for
three-dimensional problems, many more points are necessary to describe
the surface of the body under consideration. The huge number of
algebraic equations required in some systems may be beyond the capacity
of the present computers. But, this difficulty can be overcome fo
rotational symmetric bodies which are frequently confronted in practical
applications. The problem of scattering by bodies of revolution will be
investigated by the point-matching method in this paper. The three-
dimensional problem is reduced to several problems similar to those of
two-dimensional cases. This reduction is due to the rotational symmetry
of the scatterer and the resolution of the incident wave in terms of ylin-

drical modes.

In the following considerations, the scalar plane wave ittering
by accoustically soft and hard bodies of revolution will be investigated
Y Y
first. This case is quite similar to the two-dimensiona 1t
2-4 . : Y
problem . From accoustic formulations it is easy t t
rinciples of the point-matching method in three -dime nal problems.
P P g
Practical approximate solutions can be obtained if this method is applied

to rotationally symmetric bodies of smooth contour




deviation from a semi-circle. The scattering of ele
perfectly conducting bodies of revolution will be conside next. The
formulation is more complicated, however, the basic principle and the
applicability of the method are similar to those of a ics. The scat-
tering properties are determined by the polarization and the propagation
direction of the incident plane wave as well as the shape of the scatterer.
Since any arbitrarily polarized plane wave can be
components namely: the transverse electric (TE) and the transverse magnetic
(TM) polarizations with respect to the symmetric axis of the body, the
scattering of TE and TM waves can be considered separately without loss
of the generality. The total scattered fields of an arbitrarily polarized
plane wave are simply the superposition of the TE and the TM solutions.
In all cases, the method takes its starting point in the resolution
of the incident wave functions into cylindrical modes which are the terms
of the Fourier expansion with respect to the azimuth angle of t ncident

wave function. The scattered field is expressed in the form of the general

spherical harmonic solution with specification of outgoing wave. The

point -matching technique is applied to the boundary conditions for terms
of the same azimuth variation. Then, the problem is approximated by a

finite number of systems of linear inhomogeneous algebraic equations which

can be solved by a computer in the same routine. With tl nowledge of
the scattered fields, all scattering properties can be evaluated easily. The
expressions for the total scattered power and the tota ittering cross section
are quite simple. In the case of nose on scattering, n reduces to

only one system of equations.




B BACKGROUND:

The scatterer under consideration is a body
encloses the origin of the coordinate system as show
accoustics, the body is either soft or hard. For scatt
magnetic waves, the body is made of perfectly condu
Without loss of generality, the incident wave may be
propagating in the direction 0= 80 , and 0; where @ and ¢
are the spherical coordinates with z axis colinear with the symmetric
axis of the body. The incident accoustic plane wave is a scalar
quantity while the incident electromagnetic plane wave is a vector,

Any arbitrarily polarized plane wave can be resolved into two components:
one polarized with electric field perpendicular to the plane of incidence;
and the other polarized with electric field parallel to the plane of incidence.
With respect to the z-axis, the symmetric axis of the body, the perpen-
dicular polarization is a transverse electric (TE) wave while the parallel
polarization is a transverse magnetic (TM) wave. For simplicity, the
scattering of the TE and the TM waves are considered separately. The
scattering properties of the arbitrarily polarized plane waves are simply

the superposition of these two solutions.

To simplify the analysis, the unit vectors U, vV, and 5 (see Fig.
of the orthogonal coordinate system of the scatterer will be introduced.
Their relationship to the Cartesian unit vectors are a

A, A, . N
X s$in @ cos ¢ + y sina sin ¢ + Z cos
A Y o N,
X COS G COs ¢ + y cosa sin ¢ - Z sin

8o A
¢ = =X sin ¢ +y cos
1
-3 A ”~ ® .
where a=cos (U . z) is the angle between unit

Using the conventional symbols (r, 8, ¢) for the spk
system, it is easy to show that

A
u

cos(@ -a) +v sin(@ -a)

A
v
A
v

A

r
A
0

= -G sin(g =a) + v cos(p -a)




A A A
Note that whena = @, vand v are reduced tobe r and € , and the

scatterer becomes a sphere. By means of relationships, (1) and (2), trans-
formations of the coordinate components of a vector among the Cartesian,

spherical and the (u, v, ¢) coordinate systems are given
sind cos¢d + A sina sing + A
) § <
cos(@ -a) - Ap sin(@ - a)

A cosa sing

Y

sin(@ -~a) 4 Ap cos(p -a)

A -A sin + A cos ¢
" Y
Before going into the detail analysis, it is convenient to discuss
the expansions of the incident wave functions in terms of cylindrical

modes. This is done by expanding the factors, exp. (jk_x), cos

exp. (]kxx), and sin ¢ exp. (ikxx) in a Fourier series of

k =ksine , k isthe propagation constant of the medium, and
X o

f= « =1 . It is known that

exp. (ikxx)

where m isan integer, € is the Neumann's number, i.e
m
for m=0, ¢ 2 for m >0, J isthe first kind Besse
m m

order m , and x = p cos ¢. By utilizing Eq.(4), it




where the prime denotes the derivative of a function with respect to

the argument., Observe that when @ = 0, the right hand side of
o

Eqs. (4) - (6) are reduced to unity, cos ¢ , and sin ¢, respectively.
This is the condition for nose on scattering. By virture of Egs. (4) - (6),
the incident plane waves can be resolved into hamonics of the azimuth

angle ¢.




3. ACCOUSTIC SCATTERING BY BODY OF REVOLUTION

The model considered in this section is a scalor plane wave
incident on a body of revolution. The scatterer is either soft or hard.

Let the incident plane wave function be normalized and given by

exp. i(kxx 4 kzz)

where kz =k cos 8. The first exponential can be expressed as in

Eq. (4). Physically, this means that the incident wave is the super-
position of cylindrical modes. Therefore, the point-matching method
can be applied to cases where the incident wave can be resolved into
cylindrical modes. The scattered wave is governed by the Helmholtz's

equation

ois . Mo el o
where ¥ is the Laplacian operator. The boundary conditions for the

present problems are

at the surface of a soft scatterer

5% (V + V)= at the surface of a hard scatterer

where —,0: is equivalent to the normal differentiation. Solutions of Eq. (8)

are known only in a few coordinate systems where the variables can be separated.
In general, the method of separation is not applicable. But in many cases, the

scattered wave can be expressed by the general solution of one of the separable

coordinate systems within practical acceptable approximation. Let the scattered

wave be expressed by the general solution of Eq. (8) in spherical coordinate

8

system with specification of outgoing waves, i.e.

h (2) (kr) pnm(cos e) LA

mhn




where A and B are constants determined by boundary conditions

mn mtr

(2)

h is the spherical Hankel function of the second kind " is the

n
Legende function of the first kind. From Egs.
boundary conditions, it can be seen that B
mn

and for each m,

1NQG

&
(k p) exp.(jk_.z) + L A

m X

mn
n m

for a hard scatterer, where ¢ denotes the meridiar
or the y-z plane) of the scatterer. The expansion
determined by Egs. (10) or (11). The operator

replaced by

A A - . L *
where cosy =U - r. To apply the point-matching meth
assumed that only a finite number of terms of the se
Eq. (9) are necessary to retain for good approximati

summations of Egs. (9) - (11) may then be replaced

is an integer. Similar to the point-matching n
problems, (N - m) points, namely: (r, , €, A
| | L

are chosen around the meridian contour of the scatterer

e

N—m" ¢

these points Egs. ind (11) are satisfied.

linear algebraic equations which can be solved for (

coefficients A »f each Eq. (10) and (11) is forme

mn

isional

N-m

and at

where N

’




( m
(2) (kr) P (cosf) A
n

for a soft scatterer and

1{cosYy

for a hard scatterer, where q=1, 2, =--- (N

between the radial vector and the normal at point (i
q

The expansion coefficients A can be obtained easily |

mn

using Eq. (12) or (13). The series of Eq. (4)

Due to the asymptotic behaviour of the Bessel functior

truncated for m where J (k p ) 1, or approxi

m X max

where p is the maximum value of p of the sca
max ‘

practice, it is only necessary to solve a finite numbe:r

Furthermore, one computer program is applicable to
equations. When all the A 's of dominant

mn
scattered wave and the scattering properties ar

utilizing Eq. (9).

is the unglc
(See Fig. 2).
mputer

practice.

series can be

k p +6,

X" mMax

herefore, in

f equations.




ELECTROMAGNETIC WAVES SCATTERE PERFECTLY CONDUCTING
BODIES

In the previous section, it is seen that ' limensional accoustic
problems can be reduced to the simple forms i two-dimensional case if the
scatterer has rotational symmetry. Similar results for the three-dimensional
electromagnetic problems were achieved, t formulation is more
complicated. The present analysis is also start ving the tangential
components of the incident wave into cylindri by means of Eqs. (4) - (6).
And the scattered fields are expressed in tem al solutions. The

TE and TM incident waves are considered sepa 15 follows:
A. TE incident plane wave.

Considering that the incident plane wa irized with the electric

field perpendicular to the plane of incidence, t the incident wave function

may be written as

y exp. | ¢ + k_: (14)

Observe that this is transverse electric to z. vlindrical modes, the

tangential components of this incident field in t itterer's coordinate system

are given by
(o)
.m 4

-exp. (ikzz) L |

m=0 ™

@
(jk_z) cosa L

m=1

where Eqgs. (3), (5) and (6) have been applied 3 4). Since the scatterer
is not uniform in the z-direction, the scattered fi " t be a pure TE
wave, but can be expressed by the superpositior E and TM waves., A
more convenient way to obtain an expression f field is the

superposition of TE and TM_ waves in spheri ystem, where
" r




TE and TM_ denote the transverse electric anc the transverse magnetic
r r

with respect to the r-direction. Conventionally, the TE and TM outgoing
I I

waves are generated by constructing the magnet I electric vector potentials

respectively in the following forms:

where G (r,8)=ki :“‘2) (kr) P m(n.o'.(ii, I ind | 's are

mn n n mn
constants to be determined by boundary conditi Z is the intrinsic

impedance of the medium. The expansion coefficient ind b are
mn mn

of the same physical units due to the introducti ' Eq. (18) which
shows convenience in the latter applications. pla f incidence
is the x-z plane, the choices of cos m¢é and - ire shown as in
Egs. (17) and (18).

With the assumed form of the magneti ric vector potential,

the r, 8, and components of the scattered « tr field can be derived

/

’

eosily as shown in text books. Using the deri xpressions for the r

8, and ¢ components in Eq. (3), it can be shov t the v components

of the scattered electric field are given by

lcos(®@ -a)/rsinBl m G




where , = kr, and the limits of the summations are the same as those in

Eqs. (17) and (18). The boundary conditions require E + E *~0 and

s . 2
E'+ EV = 0 at the surface of the conducting body, it follows that

mn

@ oG
'3 '(-i r sin@)m

n=m d,
exp.(iklz) B

(=i/0In(n+ 1) sin(p - a)(G

mn

cos(®@ -a)/r sin@Jm G
mn mn

g ] |
exp.(]L:Lz) cosa e ]m‘ mJ ( ‘\p) L.; pZ

at the meridian contour of the rotational symmetric body. Observe that

these two equations are valid for all m except that when m = o, the

last equation does not exist. As in accoustics, the series expressions for

the incident waves can be truncated for M where JM(L:Apmw) ¥e
Hence, there are only a finite number of Eqs. (21) and (22) necessary

in practical applications. Again, in order to utilize the point-matching
technique, the infinite summations of Eqs. (19) - (22) are replaced by finite
summations with limits from n=mto N, where N is an integer. Since
Egs. (21) and (22) must be satisfied simultaneously, 2(N-m) points are
chosen along the meridian contour of the scatterer where these two equations

hold. A system of 2(N-m) simultaneous algebraic equations with 2(N-m)

unknowns for each m are formed:

0G

mn

N
n)_:m(—| r sin8)m & o




(=i/n(n+ 1) sin(6 - a) G

1+ lcos(B=0a)/rsin®IlmG b
mn mn

~

= lexp. (iklz) cos @ €

where (r , 8 ) is a point at the meridian contour of the body, a is the
q q
angle o evaluated at the point (r , 6
q

for m #0;q=1,2, .... N, and a : 0 for m =0, Similarly,
or
these systems of equations represented by Eq. (23) can be solved numeri-
cally for the expansion coefficients a and b by a computer without
mn

difficulty. The program must run (M + 1) times,

TM incident plane wave.

The analysis of the scattering of a TM plane wave is quite similar
to that of a TE plane wave. The incident wave is polarized with the
electric field parallel to the plane of incidence. Let the normalized

electric field vectoral function be given by

A N e \ .71
(=X cos 4 Z sin ) exp. Ljlk X
o (o} X

Using Egs. (3) = (6), one obtains the tangential componen
scatterer's coordinate system of the incident field suc
i
E, =~-cos 6 exp.(jk z) 2
o &xp-(ik_z)

o ’m
m=]




T =exp. (jk_z) ! [jcos® cosal '(k p)-sinb sinal
v y 4 { o] m X O m
m=o

Again, it is convenient to express the scattered fields by the superposition

of outgoing TE and TM_ waves in spherical coordinate system. As in
r r

the TE case, these outgoing TE. and TM_ waves can be derived from the
r r

magnetic and electric vector potentials which are given by

G cos md
mn

A .
' b ZG_ _ sinm
n mn

m=1 m

where the symbols are as previously given. Note that due to the difference
in polarization of the incident waves, the choices of cos m¢ and sin m¢
in Eqs. (27) and (28) are different from those of Eqs. (17) and (18). Following
the steps as stated in the TE case, from Eqs. (27) and (28), and utilizing
Eq. (3), one can derive the ¢ and v components of the scattered electric
fields which are given by

) G

i/r sin @) m

imG




The boundary conditions are the same as before, i

ey BB D

( O

: . b
and EVl } Ev =0 at the surface of the conducting body. The point-

matching technique is used to evaluate the expansion coefficients A and bm

The coefficient evaluation procedure is the same as in Section 4A, a system of

2(N-m) LN for m

n’

0 ] inhomogeneous algebraic equations with 2(N-m) [N for m = 0]

unknowns are formed for each m. They are

N

L.

1 ) >

| mn
L e

.

(i/0)lsin(B=a) n(n+1)G "

mn

- Lcos(6=0)/rsinBlmG b
mn mn

- "exp.(ikzz) ]m ;m i cos@ cosal

where (rq . q) is a point at the meridian conto

the angle a evaluated at the point (r , 6 ), ¢

form # 0; while q=1, 2, .... Nand b for m =0, Similarily,

on

Eq. (31) can be solved for @ 's and b 's by a computer and in practical
mn mn '

applications, only a finite number of m is considered.




3, NOSE ON SCATTERING

In the case of nose on scattering, i.e., =0, the problems
O

are simpler. Under this condition, the right hand sides of Eqs. (4) -

(6) are reduced to 1, cos¢, and sin¢ respectively. Egs. (12), (13),
(23) and (31) are reduced to only one system of equations, i.e.,

m =0 for Eqs. (12) and (13), m =1 for Eqgs. (23) and (31)

Hence,

in each case, it is necessary to evaluate only one system of equations

Note that in the electromagnetic scattering problem, two cases are

the same except with a phase of 90 degrees difference in space. Both

v
cases are reducable to those formulated by Schultz et al.




6. THE SCATTERING CROSS-SECTIONS.

In accoustics, the normalized total scattered power can be

defined as

where Q is the solid angle. Using the orthogonal relationships, of
the spherical harmonics, the integrations of Eq. (32) are easy to

perform and the total scattered power is given by

|2 r (n+m)
sz 1 (n = ';:X,

_1h @ e

i
u A

mn

At large distances, the factor Ihn(z) (kr) | can be replaced by

1/kr. Therefore, the total scattered power at large distances

from the scatterer is inversely proportional to the square of the frequency,
In the scattering of electromagnetic waves, the scattered fields

can be determined by Eqs. (17), (18) and (27), (28) for the TE and the

TM cases, respectively. The expansion coefficients a and b

are computed by the point matching method. For far field considerations,

it is convenient to express the scattered field in spherical components,

The ¢ components for both cases are given by Eqs. (19) and (29),

respectively. The 8 component for the TE case is given by

o




for the TM case. The r component is omitted since it is negligible
when compared with the 6 and ¢ components in the far field region.

The scattering cross-section in a particular direction ( ) can be

defined by

’

A (
s p

where lES(R,

and R is the distance between the observation point and the origin.

The total scattered power is given by

. T
|E. |9)dQ
Substituting Egs. (19) and (32), or (29) and (33) into Eq. (34), and
noting that the orthogonal relationships of the trigonometric functions and
m m

AT ]
S " |- Wb el T

(n+m) !

—(;——mﬂ(nil)

yields.

N, M
Pr—(Z“Z)
m=0

where the asymptotic values of the spherical Bessel |
lim o
r—=oh exp. (=jkr) / kr
n

lim ¥ ‘
e)\p. 1—'L{‘




hGVe been vsed, 1. (35) is valid for both the TE and a T\ 56

of course, the values of a and b are different. The total
mn mn

scattering cross tion is defined as the ratio of the tof

power to the incident power density. Thus,

N,M
) :—(2"72) ‘ J1.2n(n+1)(n+m)!/(2n 4 ! T4 | |2: (38)

t . m | mn

4 Ot -

In this formulation, the expansion coefficier re §

'

ittering | , 1N fact

porfionol to 1/Zk, hence, the t ytal sc

expressed in forms of 1/k




F EXAMPLE.

To demonstrate the accuracy of the point-matching method for
this application, the scattering of a plane wave by a conducting sphere will
be considered. The good agreement between the approximate solutions

and the exact answers shows that the boundary conditions are approximately

satisfied when applying the point-matching chhnique,6'7
Consider the plane wave E' = -x exp.(jkz) scattered by a perfectly
conducting sphere of radius a. Since S 0 and =68, Eq. (31) is

reduced to a quite simple form, In Table |, the expansion coefficients

a and bn , calculated by the point-matching method, are compared

with those of rigorous solutions for ka = 1. The electromagnetic field
satisifes the boundary conditions exactly at three points for the three-point
approximation, while the field satisfies the boundary conditions at four
points for the four-point approximation. The chosen points in these cal-
culationsare r=a, 8= 0, 90°, and 180° for the three-point approximation;
r=a, 68=0, 60°, 120°, and 180° for the four-point approximation. Note

that the points of € = 0° and 8 = 180° give the same algebraic equation. If

the point r=a, 6 = 0° is chosen, the solutions satisfy the boundary conditions

at the point r=a, 6= 180° automatically. Therefore, the three-point appro-

ximation has a system of four equations and the four-point approximation has a

system of six equations only. Of course, if neither 0° nor 180V is
chosen, the situation is the same as discussed previously. One should note
that degenerate equations may arise in other cases.

The exact solutions in Table | are obtained by assuming that the

magnetic and electric vector potentials for the scattered field are given by

=
s
A°=% T a G, cos¢
n

in

(40)
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respectively. The scattered field obtained from Eqs. (39) and (40) plus
the incident field satisfies the boundary conditions exactly at r =a.
The good agreements of the four-point approximation with the exact
solutions reveals that the boundary conditions are satisfied quite well

by the point-matching technique.

21




8. DISCUSSION.,

It was shown that the scattering by rotational symmetric bodies in
accoustics is quite similar to the two-dimensional problems as those discussed
by Yee5 and Mullin et o|.4 For each cylindrical mode of the incident wave,
a corresponding scattered field can be obtained by the point-matching method,
similar to the solution of the two-dimensional problems except the Hankel
functions are replaced by the spherical Hankel functions. One can easily
convince himself that the validity of the point-matching method for each cylin-
drical mode is the same as those in the references (4] - [6]. That is, the
method works well and gives acceptable numerical results to bodies of smooth
meridian contour which are not gross perturbations from the <:irculor,d and at
low frequencies, the boundary conditions are satisfied around the meridian
contour of the body as shown in Figs. 5 and 6 of references [5]. Obviously,
this method is not applicable to needles or dishes. Of course, all these
statements for the applicability of the point-matching method are valid when
applied to the superposition of the cylindrical modes, i.e. to the scattering
by rotational symmetric bodies.

Returning to the electromagnetic problems now, for each cylindrical
mode of the incident wave, the same situation arises except that two tangen-
tial components of the electric field satisfy the boundary condition simultane -
ously. The applicability of the point-matching method for each component
is the same as in accoustics. It can then be concluded that the same statements
for the applicability of the method are valid for scattering of electromagnetic

waves by perfectly conducting bodies of rotational symmetry.

22
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Fig. 1 - The scatterer and the incident wave

in the cartesian coordinate system.
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Fig. 2 - (a) The unit vectors v and ¢ of the scatterer's coordinate
system and the cartesian coordinate system,

(b) The unit vectors u and v of the scatterer's coordinate
coordinate system and the cartesian coordinate system

LA rotational view of (a) .
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