<table>
<thead>
<tr>
<th>Intro to Honors Research Class Projects</th>
<th>Intro to Honors Research Class Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td></td>
</tr>
</tbody>
</table>

Huntsville's Hidden History, vol. 2

Capps Brown
David Holaway
Ryker Quiones
Evan Jarvis
Andrew Thigpen

See next page for additional authors

Follow this and additional works at: https://louis.uah.edu/honors-101-fall22
[Part of the History of Science, Technology, and Medicine Commons, Public History Commons, Social History Commons, and the United States History Commons](https://louis.uah.edu/honors-101-fall22)

Recommended Citation
Brown, Capps; Holaway, David; Quiones, Ryker; Jarvis, Evan; Thigpen, Andrew; Wilson, Kelton; Pinckard, Christopher; Burkes, Ethan; Fitzgibbons, Noah; Griggs, Abigail; Smith, Isaac; Tussey, Cecelia; Canning, Patrick; O'Neill, Evan; Sargent, Owen; Butts, Alyssa; Durham, Blaire; Smith, Mimi; Deutsch, Brandon; Kennah, Aidan; Meadors, Jacob; Howard, Ethan; Kincaid, Finn; Thrasher, Owen; Patel, Vraj; Rizvi, Cameron; and Ruse, Nicholas, "Huntsville's Hidden History, vol. 2" (2023). *Intro to Honors Research Class Projects*. 18.
https://louis.uah.edu/honors-101-fall22/18

This Book is brought to you for free and open access by the Intro to Honors Research Class Projects at LOUIS. It has been accepted for inclusion in Intro to Honors Research Class Projects by an authorized administrator of LOUIS.
Authors
Capps Brown, David Holaway, Ryker Quinones, Evan Jarvis, Andrew Thigpen, Kelton Wilson, Christopher Pinckard, Ethan Burkes, Noah Fitzgibbons, Abigail Griggs, Isaac Smith, Cecelia Tussey, Patrick Canning, Evan O’Neill, Owen Sargent, Alyssa Butts, Blaire Durham, Mimi Smith, Brandon Deutsch, Aidan Kennah, Jacob Meadors, Ethan Howard, Finn Kincaid, Owen Thrasher, Vraj Patel, Cameron Rizvi, and Nicholas Ruse

This book is available at LOUIS: https://louis.uah.edu/honors-101-fall22/18
HUNTSVILLE’S
Hidden History
Volume 2
In loving memory of Frank Nola Sr., a father and a NASA veteran through and through. He worked as an electrical engineer on several NASA projects in Huntsville throughout his lifetime, from Mercury to the Space Shuttles to everything in between. Additionally, he created the Power Factor Controller device that reduced energy cost by such a degree that he was the first to receive the U.S. Congress Excaliber Award. Like many of the people, places, and discoveries held within this issue, Frank Nola Sr. was a hidden gem in the annals of Huntsville's history.

Cover image, “A Look Inside,” was painted by Mimi Smith, a freshman Aerospace major on the Women's Soccer team.

Artist Note:
“This cover art was inspired by the Saturn V rocket which sits in the front of Huntsville’s own Space and Rocket Center. The drawing was complete after referencing many sketches of the original structural design of the rocket itself and being able to see the rocket in person. I knew that this landmark was what needed to be put on the front of the magazine seeing that it is the first thing you see when arriving in Huntsville from the interstate. The abstract moon was inspired after the Blue Moon which occurred weeks before I started designing the cover. It adds a pop of color but also allows me to incorporate more elements regarding the rocket.”
HUNTSVILLE’S Hidden History
Volume 2

Special Thanks
To Our Generous Sponsors

NOLA • VANPEURSEM
ARCHITECTS, PC

We couldn’t do this without
those working at the UAH Archives
in Salmon Library

Love & Gratitude
to our advisor and mentor,
Dr. Susan Friedman

Editor/Designer
Ethan Trapolino
Table of Contents

The Lustron Corporation ... 8
Capps Brown, David Holaway, Ryker Quinones

The Merrimack Mill Village ... 12
Evan Jarvis, Andrew Thigpen, and Kelton Wilson

Dr. Harold Wilson .. 14
Christopher Pinckard, Ethan Burkes, Noah Fitzgibbons

The Apollo Telescope Mount .. 16
Abigail Griggs, Isaac Smith, Cecelia Tussey

Ira F. Collins .. 18
Patrick Canning, Evan O’Neill, and Owen Sargent

The Redstone Test Stand .. 22
Alyssa Butts, Blaire Durham, Mimi Smith

Frances “Fannie” S. Cabaniss ... 24
Brandon Deutsch, Aidan Kennah, Jacob Meadors

Fearn, Donegan, & Co. ... 26
Ethan Howard, Finn Kincaid, and Owen Thrasher

Dr. Eleanor Hutchens .. 28
Vraj Patel, Cameron Rizvi, Nicholas Ruse
On September 2, 1945, aboard the deck of U.S.S. Missouri, the Imperial Japanese government formally surrendered to Allied forces: the war was over, and it was time to rebuild. With the end of World War II, American G.I.’s were free to return home; however, what would they return home to? For 16 years prior, the American housing market suffered severe economic contraction. Because of the Great Depression, most banks could barely remain afloat, let alone finance loans. When Japan bombed Pearl Harbor on December 7, 1941, America was pulled into the second World War. At the same time, she was also pulled out of her debilitating Great Depression, because the war promoted economic growth and mass-industrialization. Nevertheless, the housing market continued to shrink. Men were off to fight, and resources were allocated to the war effort, not home-improvement projects. When victory was finally achieved, the situation reversed. Troops were returning to America without homes to return to. In order to remedy this, a relatively new government program was implemented. That program was the Reconstruction Finance Corporation, or the RFC. The main duty of the RFC was to re-allocate materials from wartime production to housing production. One of the many ways this was accomplished was by investing in startup companies that presented unique solutions to the housing crisis. In the early post-war years, America required a precipitous number of homes in a relatively short period of time, and the Lustron corporation helped fill that need perfectly.

Lustron soon emerged as the predominant name in the housing industry. Its history began in 1946 with the general manager of the Chicago Vitreous Enamel Products Company, Carl Strandlund. While searching for steel to produce gasoline stations, he soon realized that dealers were more eager to allocate their limited resources to the housing crisis. This appealed to his entrepreneurial nature. In collaboration with Morris H. Beckman, architect and MIT graduate, the design for the first Lustron home
was drafted. From the start, the plan aimed to fit all the modern conveniences people came to expect into a space slightly more than 1,000 square feet and would be produced at a rate of 100 units daily with a retail price of $7,000. With that initial proposal in hand, Strandlund approached the Reconstruction Finance Corporation for initial funding. Despite numerous setbacks, the required capital was achieved, and the first Lustron house was released to the market in 1948. Initial sales were high due to promises of low-maintenance and fast-construction. However, speedy construction was something they failed to deliver on.

Despite the preliminary estimate of 150 hours, it took nearly 350 hours to construct each individual house. As the company grew, deeper issues emerged within the fabrication system itself. Despite following in the footsteps of Ford and General Motor Company, Lustron was continuously tormented by manufacturing issues. In fact, far from the initial proposal of 100 units a day for only $7,000 per unit, Lustron only managed to produce 27 units a day with a retail price of $9,000 at peak production. This meant they couldn’t produce enough houses to break even, and the company collapsed as a result. Since Lustron failed to deliver on what they had promised, the Reconstruction Finance Corporation filed foreclosure action against
the company in 1950. In its three years of operation, Lustron only managed to produce around 2,700 homes spread all throughout the nation. One such home was built in Huntsville, a historical monument to the post-WWII housing crisis and resultant suburban boom.

The Lustron House in Huntsville, Alabama was built in 1948, and it sported all of the unique benefits that came to define Lustron’s prefabricated houses. For example, it contained a combination dishwasher and clothes-washer in the kitchen, this being one of Lustron’s primary selling points. While the machine was not particularly good at either of those functions, it helped sales, nevertheless. The houses themselves were made out of porcelain-enameded steel, so they were highly resistant to rust, corrosion, and most forms of weather damage. Therefore, they were incredibly long lasting, but it did lead to some issues. Since steel has high thermal conductivity, the houses struggled with temperature regulation, particularly in climates with extreme weather, such as in north-western states. Lustron anticipated this and included a complex heating system in the walls, but the electricity required to heat the house was quite expensive, and it was still slow to heat. In general, the houses would last quite a long time, but the fundamental issues with their design led to many Lustron homes being demolished soon after the company faced foreclosure. Despite the company’s lack of success, Harvie Jones, a well-known architect in Huntsville, was interested in these odd, prefabricated abodes. Throughout his career, he carried out an in-depth study of the Lustron home built in Huntsville, and much that is known about it is a result of his dedicated efforts. Mr. Jones attempted to construct a thorough record of its history until it was demolished in the late twentieth century, a few decades after it was first constructed. In fact, Mr. Jones even contacted various Lustron owners and attempted to catalog some of the remaining homes. Due to his efforts, the history of the Lustron Corporation has been illuminated for future generations.

To reiterate, The Lustron corporation represents an important facet of American history, as well as Huntsville’s past. While it was not an altogether successful company, it is still important to remember and learn from, for, upon closer inspection, it provides insight into the economy of the time and the housing market in particular. While the remaining homes serve as a memorial to a failed attempt at the prefabricated housing industry, they more importantly represent Carl Strandlund’s dream of the automated factory production of homes. His vision for the Lustron corporation has been carried on in many ways into our modern era, in projects such as the mobile home, and, more recently, 3D printed homes, and it is important to never forget where that dream originated.
Tracy Pratt, known as “Huntsville’s First Citizen,” brought much industrialization to Huntsville in the hopes that the city would be the center of the American South’s textile industry. Merrimack Mill was one of Pratt’s best attempts at turning Huntsville into this industrious center, as it became one of the country’s largest textile mills while operational. Merrimack Mill was built by the Merrimack Manufacturing Company in Huntsville as they sought to expand their business into the South. The mill began its operations on July 9, 1900, with 700 employees and 25,000 spindles. A few years later, the mill had an additional mill building and had over 90,000 spindles. With the new building and more spindles for workers to use, the mill had become an international competitor in the textile industry. The mill ran as a top competitor in the industry until the Great Depression forced the mill to close its doors in 1937, and the mill stayed closed until 1939. After the mill reopened, business wasn’t as good as before; after reaching a low point the mill was sold to M. Lowenstein & Company of New York in 1945. M. Lowenstein & Company then renamed Merrimack Mill to the Huntsville Manufacturing Company. In the following years, the Huntsville Manufacturing Company ran very successfully and once again reached its original competitive stature in the textile industry. The mill ran for decades until the eventual decline of the domestic textile industry came about due to the increase of foreign imports of cloth. These foreign imports alongside strict government regulations caused many mills to close in the United States of America around this time. Huntsville Manufacturing Company was eventually sold in 1988 to Spring Industries of South Carolina and closed just a year later. Huntsville’s oldest textile mill was demolished on August 26, 1991. The land was given to the city of Huntsville and is now a historic district that includes Merrimack Hall, Merrimack Park, and the Merrimack Soccer Complex.

The Village of Merrimack was extremely small and community-oriented. They had community sports teams such as the local Baseball and
Basketball teams. Housing consisted of duplex houses configured into rows in order to maximize the number of people able to live in the village. Most people worked either in the mill or in local shops fulfilling basic needs such as repair shops or grocery stores. In current times, the Merrimack Mill has been encompassed by Huntsville’s expanding borders; however, it was originally a separate entity. When the mill was first constructed, it employed around 700 people, but it reached its peak at a total of 1,500 employed. Workers would have to work the spindles and weavers for most of their time at the mill, this even included children. Even after the child labor laws in 1910 were put into effect, children continued working in the mill. It was not until the Joe Bradley school was opened that the amount of child workers declined. Working conditions in the mill tended to be very poor; employees worked high hours with average pay and were constantly exposed to danger. Poor ventilation caused workers to inhale a lot of dust and dirt, leading to a condition called “Brown Lung.” This disease would linger throughout the mill’s operation even with the addition of air conditioning. Workers were exposed to chemical and mechanical dangers as well. There are many reports of sudden amputations and even decapitation. People were said to have been scalped if their hair was pulled into the spindles. When injuries did occur, workers would try and settle their claims in court. Most workers would lose their lawsuits in counter-suits due to the “implied risk and danger” of working in such a mill. The Workers Compensation Law, active in 1920, finally allowed workers to fight back against the dangerous environment.

The Merrimack Village is a very unknown and distant place in current times, but at one point in time, it was known to many. To many people, it was an important place that could be called home. While being a factory town, The Merrimack Village continued to hold on to the very close and community-centered small-town values. It has a history that is unique to itself. The Merrimack Village, while seemingly small in the history of the world, was a major part of many people’s lives. So while the Merrimack Village may not have had a lasting impact on the world, it had a lasting impact on the lives of many and the history of Huntsville.
Dr. Harold Wilson
Christopher Pinckard, Ethan Burkes, Noah Fitzgibbons

Wilson Hall is one of the buildings on campus that is surrounded by a rich history. Unfortunately, much of which is forgotten to the greater University of Alabama in Huntsville (UAH) Student Body. It is the hope of our group that the research on Wilson Hall, more importantly the man whose namesake it bears, will shed light on UAH’s history of science, race, and the difficult road that led us to where we are today.

Harold J. Wilson was born in 1939 in Huntsville, Alabama. During this time Alabama was still in a segregated state and many of the opportunities available to Wilson’s white peers were not available to him. Although much of his early life is unknown, we can infer his experiences as an African American in the American South from a well-documented history of segregation and the Civil Rights movement. Wilson first appears in our records in the late 1950’s where he attended Alabama A&M University (AAMU), a local and prominent Historically Black Colleges or University (HBCU). During his time at AAMU Wilson found a passion for biology and graduated with a Bachelor of Science in Biology in either 1959 or 1960. Driven by his passion for knowledge Wilson enrolled at Iowa State University in their Master’s program in Cell Biology. Wilson graduated from Iowa State in 1963 where he then moved to the University of Arizona to obtain his Ph.D. in Biological Sciences. Finally, Wilson moved to Ithaca, NY, to complete his postdoctoral studies at Cornell University in the electron microscope lab. Before returning to Alabama, Wilson briefly moved across the Atlantic Ocean to the Netherlands to work at the University of Nijmegen (known today as Radboud University Nijmegen) for reasons unknown.

In the aftermath of integration many colleges and universities in the South felt pressured to higher African American faculty. UAH was not excluded from this necessary change and hired its first two African American professors in 1972. Dr. Wilson was hired as the first African American professor of biology at the university alongside Lee E. Williams who was hired as an associate professor in the History Department. The story was important enough to be on the front page of The Exponent, the on-campus student newspaper. This was a critical moment in UAH history as it shifted into a new...
era of racial equality.

Despite the challenges presented to Dr. Wilson, he quickly became a UAH celebrity and a Huntsville icon. During his tenure at the university, he became the Biology Department Chair in 1974 and eventually the Dean of the College of Science in 1984. Dr. Wilson was also incredibly involved in the student life at UAH, becoming the advisor for the Kappa Alpha Psi Fraternity for 10 years. He was also known to make frequent appearances at student events. Additionally, Dr. Wilson founded and became the first director of the Alabama Space Grant Consortium (ASGC), which is still a prominent figure in the local area. He was also a member of the Alabama Academy of Science as well as being named a Personality of the South in 1972, 1973, and 1976. Throughout his time at UAH Dr. Harold Wilson gained the admiration and respect of not only the student body but also his fellow faculty and the local Huntsville community.

Despite Dr. Wilson’s personal success there were still issues within the university involving racial discrimination. In 1989, UAH was sued for violating the national Title VI Agreement. Title VI protects members of racial minorities from discrimination in the workplace and in hiring practices. UAH was sued under this clause because of its lack of new African American faculty. Dr. Wilson, being one of the first African American professors hired back in 1972 as well as being the Dean of the College of Science since 1984, was summoned to court to testify in the case. During his testimony Dr. Wilson was questioned on his knowledge of UAH’s discriminatory hiring practices. Dr. Wilson asserted that he had no direct influence over the advertising and hiring of UAH faculty, claiming that the only involvement he and his staff had in the hiring process was approving the candidates that had already gone through the hiring process in the Vice President’s Office and the Academic Affairs Office. Dr. Wilson’s testimony shed light on the practices that UAH used to divert hiring new racially diverse faculty members. The Title VI lawsuit of 1989 led to a positive change in the UAH hiring process and much of that is credited to Wilson’s testimony.

Shortly after the lawsuit was settled, Dr. Wilson unfortunately passed away. He died suddenly on January 3, 1991, in his Huntsville home from an apparent heart attack. His untimely passing affected Huntsville immensely and the University grieved the loss of one their most respected faculty members. To honor Dr. Wilson’s legacy, the College of Science and Engineering building was renamed Wilson Hall in 1993. In the front lobby hangs a portrait of Dr. Wilson along with a plaque laying out many of Dr. Wilson’s great accomplishments. A scholarship was also funded in his honor to grant financial aid to underrepresented minority students. Despite Dr. Wilson’s sudden death, his life serves as a lesson in dedication, perseverance, and respect. Dr. Harold J. Wilson was a mentor to countless students and always sought to better the lives of others in any way possible. It is with respect we remember Dr. Wilson and his legacy of excellence.
On May 14, 1973, the last Saturn V rocket launched into orbit to deliver Skylab, the United States of America’s first space station. Attached to Skylab was a large scientific instrument known as the Apollo Telescope Mount (ATM). The Apollo Telescope Mount held several different telescopes, with each being used to attain high quality images of the Sun for scientific study. The ATM was an integral part of the space station’s experiments, and Skylab was an important step in the development of human habitation in space. However, the ATM’s history has been largely unacknowledged despite the significant impact that it had on the future of space exploration. Much of the data gathered by Skylab and the resulting glory of the program was a direct result of the work done by the Apollo Telescope Mount.

The Apollo Telescope Mount served as a solar observatory attached to the outside of Skylab. The ATM was designed and constructed by NASA, specifically the Astrionics Lab at the Marshall Space Flight Center, located in Huntsville, Alabama. The main objective of the ATM was to observe the Sun and its behavior. It was well known that the Sun was a critical source of energy and a major part of the solar system, but there was still much to learn about its structure and behavior. The use of the Apollo Telescope Mount produced unprecedented quality images of the Sun and revealed information about the Sun that had previously been impossible to gather, making it the cornerstone of Skylab’s experiments and purpose.

The ATM was attached to Skylab with a corresponding control panel located in the command module of Skylab, requiring astronauts to manually change the direction of each telescope. This in-depth use of the device allowed astronauts to work on improving their command of scientific equipment in space, which was one of the major objectives of the mission. The main purpose of Skylab was to study the effects of prolonged time spent in space on the human body and use the new opportunity that the space station provided to pursue new avenues of scientific study. Skylab notably paved the way for the current International Space Station. It allowed both scientists and civilians alike to look forward to the future for further projects in space and consider the idea of expanding space exploration beyond the Moon. Skylab was infinitely more important than the 24 weeks it spent crewed. Its success and the
remarkable experiments performed on it expanded humanity’s horizons regarding how space could be explored and what could be gained from that exploration, and an essential part of that success was a result of the Apollo Telescope Mount’s contributions.

The Apollo Telescope Mount was composed of eight different telescopes. The three X-ray telescopes and three ultraviolet telescopes observed light on the X-ray and ultraviolet regions of the electromagnetic spectrum, and the two hydrogen-alpha telescopes observed the Sun in intricate detail, capturing phenomena like solar flares. The telescopes were mounted on the outside of Skylab, and so astronauts operated the ATM via the control panel in the command module. The telescopes had to be aimed at a desired point manually, which required astronauts to maintain accuracy and stability despite the fast velocity of Skylab. Once images were captured and stored on the film in the telescopes, a spacewalk was required to replace the used film with fresh film. Astronauts would leave Skylab in pairs to retrieve and replace telescope film throughout the mission, providing them with cutting edge experience on working with equipment in space and retrieving valuable information about the Sun for study.

The majority of experiments involving the ATM were performed by the second crew of Skylab, Alan L. Bean (Commander), Jack R. Lousma (Pilot), and Owen K. Garriott (Scientist), as the first crew focused on repairing damage sustained to Skylab during its launch. The second crew launched on July 28, 1973, for Skylab, and were transported by a Saturn IB rocket. Garriott was responsible for operating the ATM’s control panel within Skylab, which included aiming each telescope and taking images.

All three members of the crew performed at least one of the three spacewalks to gather and replace film, with Garriott being present on all three. The second crew spent approximately 59 days and 11 hours in space, setting a new record for the longest time consecutively spent in space and breaking the record set by the previous crew. After the second crew’s departure, the third and final crew arrived at Skylab, residing there from November 16, 1973, to February 8, 1974, breaking the record for the longest time consecutively spent in space once more.

Once the final crew left Skylab, the space station became an unoccupied hull. There were plans for a possible fourth mission to Skylab, but they never came to fruition. Skylab was left to circle Earth until its orbit eventually decayed to the extent that it broke apart in Earth’s atmosphere in 1979. Its debris scattered across the Indian Ocean and parts of Australia, but no one was harmed. Many of these pieces are currently on display in several Australian museums.

Despite Skylab and the Apollo Telescope Mount’s short lifespans, they accomplished their objectives of studying the effects of human habitation in space and made groundbreaking insights into both space science and the study of the Sun. Beyond that, the projects laid out the foundations for the modern-day International Space Station and inspired many to envision a future of more advanced space travel and research. These advancements firmly establish the importance of the ATM to all of humankind and will forever serve as a testament to the skill and determination of engineers in Huntsville, Alabama, the birthplace of the Apollo Telescope Mount.
Ira F. Collins was a man born in Boone County, Kentucky, in January of 1841. Aside from that, not much is known about his life in Boone County. The next thing that is known about Collins is that he became a photographer based in Huntsville, Alabama. He married his wife, Melissa Jennie Cropper Collins, on January 23, 1871, at the age of 30. At the beginning of their marriage, his wife was a housewife, but she too eventually became a photographer. Melissa and Ira had a child together, Sidney Earl Collins, on June 12, 1878. Their son went by Earl, and he too eventually became a photographer, working with his father. The family lived at 432 Oak Avenue in Huntsville. Additionally, while Collins often used the fear of the death of one’s loved ones to coerce people to have photographs taken, so people would have a photograph to remember their loved ones by, there appears to be no surviving pictures of him or his family, which is quite ironic.

Ira Collins was a photographer in the early stages of Huntsville, with him being born at about the same time Huntsville was founded. Collins is responsible for many of the photographs of early Huntsville, as he was the most prominent photographer in the area at that time. Many attractions, such as the Monte Sano hotel, can be seen in his photographs. While most of his money was made from taking photographs of individuals, he clearly also enjoyed, likely more so, taking photographs of the scenery of Huntsville.

Ira Collins owned a photography studio in Huntsville between the years 1872 to 1912. His studio was considered to be the greatest photography studio in Huntsville throughout its operation. His studio was named “Huntsville Photography Studio” and was located at 112 ½ Washington Street which is one of the main roads running through historic Huntsville. In his studio, Collins would have various photographs all for sale displaying different areas of Huntsville and the Monte Sano area. He sold these pictures mostly as cabinet card pictures, which are pictures about the size of
an index card, for 25 to 30 cents (five to seven dollars in modern day money). Collins would also take personal photographs of the people of Huntsville for a raised price. These pictures were of the individual who ordered them and were taken with various backgrounds and scenes. Collins’ studio ran for almost forty years until his eventual passing.

During this time taking pictures was not an easy feat. Many steps had to be taken to ensure a good picture was taken. Collins was known for his work doing portraits in a studio as well as around Huntsville taking landscape pictures. In order to take these photographs, he would have to use thick paper similar to cardstock in order to help let the photos settle. The photographs were taken by using a light sensitive material that would capture light when exposed to it. The camera would open its lens for a fraction of a second to expose the paper to the light. Collins would have had to use chemicals like silver nitrate and other chemicals in order to ensure the quality of the picture.

Collins was well known for his landscaping pictures. Many of the first pictures of Huntsville were taken by Collins. In order to make the images many photographers of the time would carry around portable dark rooms. Any light could ruin the picture so keeping this was crucial. Collins sold these photographs alongside his portraits in his studio.

Collins used many methods of advertising in order to draw people into his store. One of his advertising methods was printing flyers or having the name of his store in the local newspaper. His advertisements were used to get his name out to the people of Huntsville and make them aware of his business. Another method he used was to complement the people of Huntsville and make himself appear friendly and trustworthy. He would almost be pleading to take people’s pictures which made them think highly of themselves. Another method of advertising Collins used was to post his best pictures of people in his front window. This created a type of popularity contest inside of Huntsville since many people wanted to be in the window.
His last method used involved Collins almost threatening others by saying things like “if your child died tomorrow, would you have a picture to remember them by?” This would make people want to get photographs of their loved ones, making Collins a major profit. Collins used any way possible to get his business out to the general public.

Collins is attributed with having one of the first ever pictures of Helen Keller and Anne Sullivan. Helen Keller was a blind and deaf author and Anne Sullivan was her guide and best friend in life. Collins took his photograph of Helen Keller in August of 1887 when Keller was about seven years old. His picture is one of the most sought-after pieces of Helen Keller’s history.

Ira Collins died on September 6, 1919, at the age of 78 years old. He was buried in the Maple Hill Cemetery, alongside his wife, who had died about a year earlier, and eventually his son after his death in 1933.
As WWII came to a close, tensions within Germany were only rising. The use of Hitler’s “scorched earth” policy sowed fears among many German scientists that their work on the groundbreaking V-2 rocket would be destroyed in an effort to keep the research out of the hands of opposing war powers, so, in April of 1945, scientist and engineer Wernher von Braun ordered a group of scientists to seize countless blueprints and documents to be hidden, out of reach of the Nazi Regime. Under von Braun’s orders, 14 tons of documents were hauled away by truck and stowed in an abandoned iron mine. Shortly after the safety of the documents was ensured, von Braun and his team surrendered to United States of America (US) troops in the Tyrol mountain range and were transferred to the US for interrogation.

In the late 1940s, the US government made it their goal to confiscate and utilize German intellectual resources to be used in biological and chemical weapons for the Cold War. In an effort to better reach this goal, German scientists started to be brought to US military and research bases to work. The arrival of these German scientists to the US was a part of a secret intelligence initiative that was later referred to as “Operation Paperclip,” in which some 1,600 Nazi German scientists, technicians, researchers, and engineers were smuggled into the US and employed to contribute their theoretical and technological research to US space exploration and military efforts. The “paper clip” nomenclature comes from the paper clips that would have been used to covertly flag the files of those scientists with problematic Nazi affiliations so that they could be continuously monitored. Among the scientists taken to the US was Bernhard Tessmann, an engineer who previously headed the V-2 test facilities in Peenemünde, Germany. Tessmann’s work on large-scale structures first alerted von Braun to his presence, and the two began a close work relationship and friendship. They were a part of many of the same scientific circles while still working in Germany, and, interestingly, Tessmann was one of the scientists that von Braun tasked with hiding the all-important V-2 research from the SS, which speaks to the level of trust these men seemed to have had. Tessmann and von Braun both ended up in the US because of Operation Paperclip and maintained a close work and personal relationship throughout their lives. Though Tessmann originally arrived in Fort Bliss, Texas, he soon traveled, along with von Braun, to Huntsville, Alabama to begin working on the historic Redstone Test Stand.

In 1952, the Redstone Test Stand, a project that would test various rockets, engines, and launch vehicles, broke ground at the Ordinance Guided Missile Center, finishing up just a year later in 1953. Originally constructed as an interim test stand to be used during the construction of the permanent test stand at the Mar-
shall Space Flight Center, the Redstone Test Stand ended up remaining operational for much longer than intended. It was used to practice the launching of rockets, efficiency of engines, and durability of launch vehicles. The test stand accommodated approximately 362 static tests, including the Jupiter C sounding rocket, the Juno 1 Launch vehicle, and the Mercury Redstone launch vehicles. The Test Stand itself, made entirely of materials salvaged from the Redstone Arsenal, stands 75 feet tall and takes up 726 square feet at the base. Because the materials were salvaged, the Test Stand only cost approximately $25,000 to construct, which had a great savings compared to other NASA engineering projects of the time. Though only meant to be a temporary test stand in the interim of completion of its permanent counterpart, the Redstone Test Stand was instrumental in the development and testing of the Juno 1 and Mercury Redstone launch vehicles, which put the first US satellite into space and carried the first American astronaut into space respectively. Taking these breakthroughs into account, the Redstone Test Stand can be seen as directly impactful to some of the first US space exploration advancements.

It wasn’t until 1961 that the Redstone Test Stand was retired from use in favor of the permanent Static Test Stand at the Marshall Space Flight Center. Declared an Alabama Historic Civil Engineering Landmark in 1979 and a National Historic Landmark in 1985, the Redstone Test Stand was an important contributor to the advancements in rocketry and propulsion that were seen in the years preceding the US moon landing. The Redstone Test Stand remains an important, though often overlooked, aspect of Huntsville, Alabama, and United States history, and is a testament to the collaborative efforts of both American and German minds toward the technological advancement of our world.
Frances “Fannie” S. Cabaniss
Brandon Deutsch, Aidan Kennah, Jacob Meadors

Frances Cabaniss, daughter of Septimus Cabaniss, was born May 20, 1856, and worked for the Circuit Court of Madison County for 41 years. Frances Cabaniss commonly went by her nickname, Fannie. Fannie’s brother James Budd was the registrar for Madison County, following their father’s example, who was the first registrar for Montgomery County. However, tragically for Budd, he was diagnosed with epilepsy, as well as other forms of nervous diseases medicine could not cure. Fannie would go on to live with her brother for six years, taking care of him as his condition worsened. While living with her brother, Fannie would go on to study under him as an apprentice and learn how to run the registrar position. In 1895, due to his worsening condition, James Budd specially requested that Fannie take over his position in circuit court as the registrar; however, Chancellor Thomas Cobbs denied Fannie the position because he refused to appoint a female to public office. Thomas Cobbs believed that women should not hold public office or work in “skilled” working jobs. Luckily for Fannie, Thomas Cobbs did not hold his position for much longer. Only a few years later, William T. Simpson was appointed the new Chancellor of the Northern Alabama Circuit Court. Due to her apprenticeship under her brother, Simpson officially recognized her skill set and contributions to the court, believing her to be a suitable replacement for the chancery court clerk. This led to his official appointment of Fannie to the position of registrar in 1898, the first woman in Alabama to hold public office.

Fannie officially held her title as court registrar for 35 years. During this time, Fannie would start to commonly refer to herself as F.S. Cabaniss. This was uncommon for the time as the only people who signed their initials during this time were government officials and authors. Due to having to view official documents, she was required to sign her initials, indicating that the correct authority to look at said documents. During 1910, the wage of the average working woman was around $120, however, Fannie soared far above that, making anywhere from $900 to $1,200 annually. Due to her position in the government, her pay compared to the average woman was almost ten times as large. In today’s money, Fannie’s average account balance could range from anywhere between $36,000 to $57,000.

Fannie’s great niece, Doctor Frances C. Roberts would go on to live with her for multiple years. During this time period, Dr. Roberts clearly was inspired by her great aunt, as she went on to pursue higher education, becoming the first woman to receive a Ph.D. in the field of History from the University of Alabama. Dr. Roberts eventually started to teach history when the University of Alabama Extension Center, better known today as the University of Alabama in Huntsville, first opened. Dr. Roberts also became the first head of department for the Arts and Humanities College at The University of Alabama in Huntsville (UAH). After working at UAH for multiple decades, the university decided to name the building that housed the musical department in her honor, naming it Roberts Hall. Dr. Roberts would go on to make Fannie’s
house into a historical landmark, and it is still here to this day.

Fannie retired in 1935 at the age of 79. Sadly, only a few years later, she passed away on June 18, 1937, at the age of 81. It was noted in her obituary that many lawyers would still recommend Fannie due to her extensive knowledge of court cases, even into her sixties and seventies.

Fannie was both the start and continuation of her family’s story. Following her father and brother, she rose to be registrar of the Madison County Circuit Court, despite what the world around her was telling her to do. Not only did she rise to a position no other woman living in her state had done, even after being unfairly rejected, but also she became one of the most well respected and recognized registrars around. She started a legacy as a woman defying the odds and rising to heights. She chose not to marry or have kids, but instead to take care of her sickly brother and her great niece. She was brilliant, caring, and took matters into her own hands.
Fearn, Donegan, & Co. was a prominent cotton shipping and supply company based in Huntsville, Alabama during the early-mid nineteenth century. The company was founded in 1837 by Thomas Fearn, James Donegan, and Thomas Lockhart. Originally, the company name included Lockhart’s name in its title. His name, however, was dropped later on. Throughout its 17 years of operation, the business flourished throughout the Tennessee Valley, buying cotton from various independent farmers and selling it to mainly overseas clients. They mainly shipped their cotton through New Orleans ports, and, as a result, they had a branch of the company there as well which was headed up by Thomas Lockhart. Unfortunately, however, the company was forced to liquidate its assets in 1854.

Fearn and Donegan both directed the Huntsville office, which was their main branch, while Lockhart was based in the New Orleans office where he managed shipments. Donegan was, along with Fearn, one of the few members of the company to stay with it throughout its entire span. He even instated his son as a higher up in the company after he was of age, despite him having been involved in the company since far before that in a non-official manner. Donegan held out as long as he could with the company, attempting to stabilize their finances as the number of buyers for their cotton plummeted. Finally, towards the end of the company he began transferring his assets and investment over to the newly formed Bank of North Alabama in Huntsville. After the company was liquidated, he found immediate success at the Huntsville bank, eventually becoming its president, most likely due to how similarly it operated to their original company. Fearn also stayed with the company as long as he financially could, remaining mostly in Huntsville. When the company liquidated, he moved to the bank of North Alabama in Huntsville as Donegan
do. He also found success there thanks to his experience from their original company, eventually becoming a director. Not much is known about Lockhart, except that he was an Irish farmer working out of New Orleans. After roughly four years of operations, Thomas Lockhart left the company with his share of the profits. After this, Fearn and Donegan decided to rename their company to “Fearn, Donegan, & Co.” There was no documentation on his whereabouts after he left, leaving nothing but speculation on what he did in his later life. Despite this, both his, Donegan, and Fearn’s founding and subsequent running of their company aided the American South and larger areas worldwide in times of economic trouble, providing livelihood and financial stability to many.

While in operation, the company acted as a “middleman” of sorts for the independent cotton producers of the Tennessee Valley. They were a cotton supply company, meaning that they bought cotton from partnered farms and arranged for it to be shipped and sold to eager businesses. As stated earlier, they accomplished this by moving their cotton primarily through ports in New Orleans. Most of their cotton was arranged to be shipped overseas, particularly to England, where it would be used to produce textiles in the then-booming industrial revolution. One of their major buyers, for example, was Brown Shipley Co. who operated out of Liverpool, England. Additionally, as they matured as a business, they took on a role closer to a bank. They gave out loans and financial backing to their struggling customers at rates similar to official banks of the time. This was crucial, as no farmer could guarantee a good harvest every year, meaning that partnered farms could survive a bad year with the help of a small loan.

Fearn, Donegan, & Co.’s ability to financially support smaller farmers and cotton producers in order to get their goods to the larger cotton market gave many of those small farmers more economic potential than they could have possibly had before. This raised not only Huntsville, but also much of the Tennessee Valley’s economic potential. They acted as a necessary part of a much larger process of exporting the South’s wealthiest crops to textile mills. Going beyond even that economic effect, much of their funds and investors originated from New England, New York, and even England’s Liverpool, allowing for a more widespread boost of the then booming cotton industry. Overall, their influence was definitely a net positive.
Dr. Eleanor Hutchens was a very influential part of The University of Alabama in Huntsville (UAH) and the greater Huntsville history, being one of the most important people in making UAH its own university. She was also a very accomplished woman who lived out her days to the fullest, touching many people with her grace and vibrant personality. This paper outlines her life, achievements, and impact.

Eleanor Newman Hutchens was born in the City of Huntsville on October 9th, 1919, to Susie and Morton Hutchens. Morton was a very successful real estate investor and owned one of the biggest real estate companies in Huntsville, the West Huntsville Land Company. Eleanor Hutchens was also a descendant of Thomas Bibb, the second Governor of Alabama. She lived in the house that Thomas Bibb built, growing up during the Great Depression in a wealthy home. At nine years old, she started her own newspaper with her friend, writing about heavy topics like the Lindbergh kidnapping. She would go on to graduate from Huntsville High School in 1936 and receive a Bachelors of the Arts in English and Greek from Agnes Scott College in 1940. While at Agnes Scott, she worked as their student newspaper editor. After graduating, she worked as a journalist from 1940 to 1950, going from Agnes Scott to Dekalb New Era and finally the Huntsville Times. There, she had her own column called “In This Corner,” where she wrote about bootleggers and World War II. During this time, she also began working towards her master’s in English Literature from the University of Pennsylvania, which she earned in 1944. After this, she went back to Agnes Scott to work as the Director of Alumni Affairs and Publicity from 1947 to 1954. The period afterwards marks the beginning of her time at UAH.
Dr. Eleanor Hutchens first taught at what is now UAH during the summer of 1955, while she was still working towards her Ph.D. in English Literature from the University of Pennsylvania. At this time, UAH was still only an extension of The University of Alabama as opposed to a full-fledged independent institution. She worked only for the summer semester before returning to Pennsylvania to complete her Ph.D. After completing her Ph.D., she was forced to return to Huntsville to sort out her recently deceased grandparents’ estates. There, she served as an assistant professor of English at UA’s Huntsville extension. It was quite a transition for Dr. Hutchens to go from the private college environment at Agnes Scott to a public one. She was taken aback by the abundance of bureaucratic inefficiencies and the lack of effort made to correct them. The registration process, as Dr. Hutchens recalls in a letter to A. Lawson, was intentionally inefficient so that the students’ complaints would result in more funding for the extension center.

In 1961, Dr. Hutchens was offered an associate professorship by her alma mater, Agnes Scott, which she gladly accepted. She was very happy there and planned to settle in Atlanta. Unfortunately, her father passed away in 1965, and she was forced to move back to Huntsville once again to take care of his estate, which proved to be a long-winded and complicated process. On the bright side, she was offered a full English professorship at UA’s Huntsville extension, which she accepted. Dr. Hutchens held several key leadership positions during this time and was one of the major driving forces behind establishing UAH as an independent institution. In 1967, she served as chairwoman of the faculty assembly, voicing their concerns to the university administration. In 1968, the UA extension center began working towards becoming an independent university, and Dr. Hutchens was the chairwoman of the committee whose job it was to oversee this entire process. She presented to the Southern Association of Colleges and Schools, playing a crucial role in accrediting UAH and granting it independence from Tuscaloosa. Also, during this time, she chaired a committee whose role was to select which subjects should be offered as majors at the soon-to-be-formed UAH. It was her job to oversee departmental evaluations and determine which programs of study UAH should offer. Dr. Hutchens played a critical role in early UAH history, ultimately laying the groundwork for what UAH is today. Her students loved her way of teaching and tenacious personality, and she clearly thought highly of her students and UAH as well. As she says in the Lawson letter,

"Most of the students I taught... were strongly motivated, pleasant to deal with, and responsive... I enjoyed my years at UAH... for I thought I was helping to build a strong academic institution that would continue to serve thousands of students every year long after I was gone." (5)

She played such a significant role at UAH that, in 1977, President Benjamin Graves asked for Dr.
Huntsville's Hidden History | 30

Hutchens to stand by him as he stepped down from the role. She also assisted in the selection of the next university president in 1988, providing several selection criteria such as that the candidate should hold a Bachelors in the humanities but a Ph.D. in the sciences or engineering. Dr. Hutchens retired from full-time teaching in 1979.

It should also be emphasized, however, that though Hutchens made a huge impact on UAH, the scope of her life went well beyond her academic career. She served on the boards of the Huntsville Public Library and the Huntsville Symphony. She taught Sunday school classes and served on the vestry of the Church of the Nativity, of which she was a member. She wrote two books in her lifetime, Irony in Tom Jones and Writing to Be Read, along with countless articles. She was also a member of a variety of cultural institutions, including the Historic Huntsville Foundation, the Huntsville Historical Society, the Botanical Garden, the Burritt Museum of Art, the Huntsville Museum of Art, and the Friends of the Huntsville Public Library.

In retirement, Dr. Hutchens continued to stay relatively active. She mentored, lectured, managed her estate, and was even a founding member of the Randolph School. She continued some part-time teaching at UAH in 1987, and also completed a program in Theology from the University of the South in 1987. She also played tennis, read Shakespeare, and watched “Seinfeld.” She continued living until 2016 with her lively wit and humor, touching the hearts and minds of those around her with a smile and a gleam in her eye.