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D E T E C T I O N  O F  P U L S E  C O D E  M O D U L A T E D  S I G N A L S  
WITH ADAPTIVE DECISION CIRCUITS 

Chapter  I  

INTRODUCTION 

This  paper  s tud ies  the  de tec t ion  of  coded  pulse  type  s igna ls  in  

the  presence  of  no ise  o r  jamming s igna ls .  A dec is ion  c i rcu i t  compares  

the  noisy  s igna l  to  a  threshold  to  de te rmine  whether  or  no t  a  pulse  was  

sen t .  The  average  probabi l i ty  o f  e r ror  i s  reduced  i f  an  adapt ive  threshold  

i s  used  ins tead  of  a  cons tan t  th reshold ;  th i s  improvement  may be  in te res t ing  

in  the  recept ion  of  command and  guidance  s igna ls ,  de tec t ion  of  coded  

radar  s igna ls  and  o ther  appl ica t ions ,  espec ia l ly  those  involv ing  t ransmiss ions  

where  h igh  da ta  ra tes  a re  impor tan t .  The  threshold  i s  a  func t ion  of  the  

sequence  of  pu lses  and  the  pred ic ted  no ise .  The  pr inc ip le  of  adapt ive  

threshold  i s  expla ined  in  Chapter  I I .  Chapter  I I I  and  Chapter  IV provide  

two examples  of  adapt ive  threshold .  

In  Chapter  I I I ,  a  pulse  code  modula ted  s igna l  mixed  wi th  RC noise  

i s  de tec ted  wi th  a  threshold  dev ice .  I t  i s  shown tha t  the  average  proba­

b i l i ty  of  e r ror  in  the  de tec t ion  i s  reduced  when the  noise  i s  sampled  before  

de tec t ion  and  the  threshold  leve l  var ied  accord ingly .  

In  Chapter  IV,  a  pulse  code  modula ted  s igna l  mixed  wi th  whi te  

normal  no ise  i s  f i r s t  f i l t e red  wi th  a  RC ne twork  and  then  de tec ted  wi th  a  

threshold  dev ice .  I t  i s  shown tha t  the  average  probabi l i ty  o f  e r ror  in  the  

de tec t ion  i s  reduced  when the  f i l t e red  s igna l ,  which  i s  a  func t ion  of  the  

noise  and  a l so  the  prev ious  sequence  of  pu lses ,  i s  sampled  before  de tec t ion  

and  the  threshold  leve l  var ied  accord ingly .  The  ga in  in  average  probabi l i ty  

o f  e r ror ,  the  opt imum width  of  the  pulse  and  the  opt imum RC of  the  f i l t e r  

a re  a l so  de te rmined .  



In  Chapters  V and  VI ,  an  in tegra tor  i s  used  dur ing  the  in te rva l  of  

t ime  where  a  pulse  may be  presen t .  An adapt ive  in tegra tor  i s  inves t iga ted  

whereby  the  noise  i s  sampled  before  i  n tegra t ion  ,  so  tha t  the  "expec ted"  

va lue  of  the  noise  dur ing  the  in te rva l  o f  in tegra t ion  can  be  computed  by  

cor re la t ion  technique ;  then  a  "cor rec ted  s igna l"  equa l  to  the  unknown 

s igna l  minus  the  "expec ted"  va lue  of  the  no ise ,  i s  in tegra ted .  

In  Chapter  V,  a  pulse  code  modula ted  s igna l  mixed  wi th  RC noise  

i s  p rocessed  through an  in tegra tor  and  then  de tec ted  wi th  a  threshold  dev ice .  

I t  i s  shown tha t  whi le  a  s tandard  in tegra tor  a l ready  reduces  the  average  

probabi l i ty  of  e r ror  in  the  de tec t ion ,  an  adapt ive  in tegra tor  reduces  the  

average  probabi l i ty  of  e r ror  cons iderab ly  more .  

In  Chapter  VI ,  the  pulse  code  modula ted  s igna l  mixed  wi th  RC noise  

i s  (1)  de tec ted  by  a  l inear  de tec tor ,  (2)  in tegra ted  by  a  s tandard  or  adapt ive  

in tegra tor  and  (3)  de tec ted  by  a  threshold  dev ice .  The  problam is  much 

more  complex  because  the  l inear  de tec tor  i s  a  non  l inear  dev ice ,  the  pro­

babi l i ty  d i s t r ibu t ion  does  no t  remain  normal  and  the  superpos i t ion  pr inc ip le  

does  not  apply .  I t  i s  shown tha t  the  var iance  of  the  s igna l  before  th reshold  

de tec t ion  i s  cons iderab ly  reduced  when an  adapt ive  in tegra tor  i s  used ,  which  

of  course  means  a  smal le r  average  probabi l i ty  of  e r ror .  

Chapters  VII  and  VII I  a re  the  exper imenta l  ver i f ica t ion  of  Chapter  IV.  

Chapter  VII  expla ins  the  b lock  d iagram of  the  exper imenta l  se t  up .  The  pure  

s igna l ,  a  t ra in  of  rec tangular  pu lses ,  i s  mixed  wi th  whi te  no ise ,  then  f i l t e red  

wi th  an  RC ne twork ,  and  f ina l ly  i s  de tec ted  wi th  a  cons tan t  o r  wi th  an  

adapt ive  th reshold .  The  e r rors  in  the  de tec t ion  a re  de te rmined  by  compar ing  

the  de tec ted  s igna l  to  the  or ig ina l  pure  s igna l  in  a  co inc idence  c i rcu i t .  The  

e r r o r s  a r e  c o u n t e d  t o  c o m p a r e  t h e  c o n s t a n t  a n d  a d a p t i v e  t h r e s h o l d .  C h a p t e r  V I I I  

d i scusses  the  measurements  and  g ive  the  exper imenta l  resu l t s .  Spec ia l  c i rcu i t s  

a re  descr ibed  in  Appendix  D.  

Chapter  IX i s  bo th  the  rev iew and  the  conc lus ion  of  Par t  I .  I t  compares  

the  adapt ive  schemes  d iscussed  in  Par t  I .  



The Appendices  A,  B,  and  C concern  the  eva lua t ion  of  the  average  

probabi l i ty  of  e r ror  o f  Chapter  IV.  Appendix  A shows tha t  the  double  in tegra l  

which  represen ts  the  average  probabi l i ty  of  e r ror  in  the  case  of  adapt ive  th res ­

hold  can  be  condensed  in to  one  in tegra l .  Appendix  B expla ins  the  computa t ion  

of  the  average  probabi l i ty  of  e r ror  us ing  a  d ig i ta l  computer .  Appendix  C  g ives  

a  technique  to  expand  the  average  probabi l i ty  o f  e r ror  as  a  power  se r ies .  

Appendix  E compares  the  RC f i l t e r  and  the  in tegra tor  for  cons tan t  o r  

adapt ive  threshold  and  for  RC type  or  whi te  no ise .  I t  comple tes  and  cor re la tes  

the  resu l t s  o f  Chapters  I I I ,  IV,  and  V.  



Chapter  I I  

DETECTION OF A PULSE CODE MODULATED SIGNAL 

The  b lock  d iagram of  a  PCM rece iver  which  cons is t s  o f  a  f i l t e r ,  F ,  

fo l lowed by  a  threshold  de tec tor ,  TD,  i s  shown in  F igure  11-1 .  

The  input  o f  the  rece iver ,  s .  ( t ) ,  i s  the  sum of  a  b inary  coded  s igna l  

represen ted  by  a  t ra in  of  random pulses  (one  for  a  pu lse ,  ze ro  for  no  pulse) ,  

and  of  a  random noise ,  n .  ( t ) .  The  or ig in  of  t ime  i s  chosen  such  tha t  the  

pulses  may be  presen t  on ly  in  the  in te rva l  o f  t ime  mT <t  <mT + KT where  

T i s  the  pseudo per iod ,  KT i s  the  wid th  of  the  pu lse ,  and  m i s  an  in teger  

pos i t ive ,  nega t ive  or  zero .  The  ins tan taneous  ampl i tude  of  the  t ra in  of  

rec tangular  random pulses ,  shown in  F igure  11-2 ,  i s  def ined  by  p .  ( t ) .  

p .  ( t )  =  y  V for  mT < t  <mT +  KT 
i  m 

p .  ( t )  =  0  e l sewhere  ( l l - l )  

where  V is  the  ampl i tude  of  a  pulse  and  y  i s  a  random var iab le :  y  =1  
m m 

i f  the  mth  pu lse  i s  p resen t  and  y  =  o  o therwise .  The  se t  o f  probabi l i t i es  
m 

of  y m  does  not  depend  on  m for  a  s ta t ionary  process .  The  capac i ty  of  the  

b inary  channel  i s  maximum when the  probabi l i t i es  o f  zero  and  one  a re  equa l .  

This  in te res t ing  case  i s  assumed here  

P(y  =  0)  =  P(y  =  1)  =  1 /2  ( | | -2 )  
mm 

The inputs  of  the  threshold  de tec tor  a re  marked  X and  D.  The  ou tput  of  

the  de tec tor  i s  a  pulse  i f  and  only  i f  X >  D whi le  the  de tec tor  i s  un lashed .  

This  occurs  once  every  pseudo per iod  a t  t ime  t  =  mT +  KT.  D i s  ca l led  

threshold  l eve l .  Denote  the  output  of  F  by  s ( t )  and  cons ider  the  de tec t ion  

of  the  random pulse  def ined  by  m =  1 ;  s ince  the  de tec tor  i s  un lashed  on ly  a t  

t ime  t^  =  T +  KT,  s  ( t^ )  =  s^  i s  the  on ly  va lue  of  s ( t )  which  mat te rs  in  the  

cons tan t  th reshold  de tec t ion ;  there  X =  s  and  D =  D~ =  A/2 ,  where  D r  

i s  t h e  c o n s t a n t  t h r e s h o l d  l e v e l  a n d  A  i s  t h e  v a l u e  o f  s ^  w h e n  t h e  n o i s e  i s  n u l l .  





Fig. II-2 t Train of Randoa Pulsos 

t Probability Dansity Distribution of Honsal Whita Noiaa 

Fig. II-3 b t Powar Dsnslty Spactrua of Horaal Whita Nolso 



The noisy  s igna l  s^  i s  the  sum of  th ree  te rms ,  

s ]  = Tj  +  n^  +  Y 1  A (11-3)  

where  r^  i s  the  res idua l  vo l tage  a t  t ime  t^  due  to  the  prev ious  (known)  

sequence  of  random pulses ,  n^  i s  the  noise  a t  t ime  t^ ,  y^  A is  the  unknown 

random pulse  s ta r t ing  a t  t ime  t  =  T .  The  de tec tor  mus t  de te rmine  whether  the  

pulse  i s  p resen t  o r  no t  (y^  =  1  o r  0 )  

The  sampled  s igna l ,  s ( t^*)  =  s^* ,  a t  t ime  t^*  before  the  unknown random 

pulse  i s  the  sum of  2  te rms ,  s^*  =  r^*  +  n^*  (11-4)  

where  r^*  i s  the  res idua l  vo l tage  a t  t ime  t j*  due  to  the  prev ious  (known)  

sequence  of  random pulses ,  n^*  i s  the  noise  a t  t ime  t j*  and  t^*  =  T +  KT -K*T 

where  1  <  K* <  K 

In  genera l  ( r^  +  n^)  and  ( r^  +  n^)*  a re  cor re la ted  so  tha t  ( r^  +  n^)  can  

be  par t ia l ly  pred ic ted  f rom the  knowledge  of  s^* .  Le t  ( r^  +  n^) 1  be  the  pred ic ted  

va lue  for  ( r^  +  n^) .  S ince  ( r^  +  n^)  i s  equiva len t  to  a  noise  i t  i s  advantageous  

to  compare  the  cor rec ted  s igna l  s^  -  (r^  +  n^) '  ra ther  than  the  ac tua l  s^  to  the  

cons tan t  th reshold  D =  D^_ =  A/2 .  However ,  th i s  i s  exac t ly  the  same as  compar ing  

the  ac tua l  s igna l  s^  to  an  adapt ive  threshold  D =  =  A/2  + (r^  +  n^) ' .  I t  wi l l  

be  proved  tha t  ( r^  +  n^) '  =  p*  s^* ,  where  p*  i s  a  cons tan t ;  ( r^  +  n^) 1  can  be  

obta ined  by  us ing  a  sampler -holder ;  the  sampled  va lue  s^*  decreases  to  p*  s^*  

f rom the  t ime t j*  to  the  t ime t^  .  

The  input  random noise ,  n . ( t ) ,  i s  def ined  by  i t s  p robabi l i ty  dens i ty  d i s t r i ­

bu t ion ,  f (n . ) ,  and  i t s  au tocor re la t ion  func t ion ,  R.  (T ) .  The  au tocor re la t ion  i s  

ob ta ined  f rom the  power  dens i ty  spec t rum and  v ice-versa ,  s ince  they  a re  a  Four ie r  

t ransform pa i r .  For  example ,  F igures  11-3  a ,  11-3  b ,  and  11-3  c  show the  probabi l i ty  

dens i ty  d i s t r ibu t ion ,  the  power  dens i ty  spec t rum and  the  au tocor re la t ion  func t ion  of  

normal  whi te  no ise ,  respec t ive ly .  

The  f low graph  of  F ig .  11-4  show the  two type  of  e r rors  which  occur  in  the  

t h r e s h o l d  d e t e c t i o n  o f  t h e  n o i s y  s i g n a l ,  s ^ :  

(1 )  Type  1 :  0  i s  sen t ,  1  i s  rece ived  

(2)  Type  2 :  1  i s  sen t ,  0  is  rece ived  
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Errors  of  the  f i rs t  type  occur  when both  y^  =  0  and s^ >  D 

Errors  of  the  second type  occur  when both  y^ =  1 and s^  <  D 

In  the  case  of  constant  threshold  (denoted by the  subscr ip t  C)  the  average  

probabi l i ty  of  er ror  depends  only  upon s^  and can be  obta ined by in tegra t ion of  

the  probabi l i ty  densi ty  of  s^ ,  f (s^) .  The average  probabi l i ty  of  er ror  of  the  f i rs t  

type  is  then 

E l c = P ( s 1  >  D )  ( 1 1 - 5 )  

and the  average  probabi l i ty  of  er ror  of  the  second type  is  

E 2 C  =P( S l  < D) (11-6)  

The average  probabi l i ty  of  er ror  of  the  f i rs t  type  or  of  the  second 

type  in  the  detec t ion a t  constant  threshold  i s :  

E c  =P( r i  =  0)  E ] c  + P  (y  1  = 1)  E 2 C .  ( | | - 7 )  

In  the  case  of  adapt ive  threshold  the  average  probabi l i ty  of  er ror  

depends  on both  s^  and s^*;  for  a  given s^*,  the  average  probabi l i ty  of  

er ror  is  obta ined by in tegra t ion of  the  condi t ional  probabi l i ty  densi ty ,  f (s  1  / s^*) .  

The average  condi t ional  probabi l i ty  of  er ror  of  the  f i rs t  and second type  are  

respect ively  

E ,A ( s l * ) = P («1 >  D I  . , • )  (11-8)  

E 2A ( S 1* ) =  P(s ] >D|s 1 *)  ( | | -9 )  

The average  condi t ional  probabi l i ty  of  er ror  of  the  f i rs t  or  second type  is  

E A < S 1*)  =  P ( r i  =  0 )  E 1A +  p ( y i  =  1 }  E 2A ( S 1* }  < I M 0 > 

T h e  average  probabi l i ty  of  er ror  of  any type  for  any s^* is  obta ined 

by averaging E^Sj*) :  + 0 o  

f ( s l * ) E A ( s l * ) d s l *  

-OO 



The technique  out l ined  in  th i s  chapter  i s  appl ied  on  spec i f ic  examples  

in  Chapter  I I I  and  IV,  V and  VI .  In  Chapters  I I I  and  IV,  the  s igna l  s^  i s  

compared  to  an  adapt ive  th reshold ,  whi le  in  Chapters  V and  VI ,  a  cor rec ted  

s igna l  s^  i s  compared  to  a  cons tan t  th reshold .  



Chapter  Ml  

I I I  -  DETECTION OF A PULSE CODE MODULATED SIGNAL 
IN PRESENCE OF RC NOfSF 

l l l - l  S ta tement  of  the  Problem 

The  input  s igna l  cons is t s  o f  rec tangular  random pulses  mixed  wi th  RC 

normal  no ise  and  the  rece iver  i s  e i ther  a  cons tan t  th reshold  de tec tor  or  an  

adapt ive  threshold  de tec tor .  The  b lock  d iagram of  the  rece iver  i s  shown in  

F ig .  11 — 1  where  the  t ransfer  func t ion  of  F  i s  un i ty  s ince  no  f i l t e r  i s  used ;  

therefore ,  s^( t )  =  s ( t ) ,  n . ( t )  =  n( t ) ,  e tc .  

Given  the  average  power  of  the  emi t te r  and  the  charac te r i s t ics  of  the  

no ise ,  i t  i s  shown tha t  the  average  probabi l i ty  of  e r ror  in  the  de tec t ion  of  

pu lses  i s  cons iderab ly  reduced  when an  adapt ive  threshold  i s  used .  - J j |  T |  

The normal ized  au tocor re la t ion  func t ion  of  RC noise  i s  P(T)  =  e  ̂  

where  (3  i s  a  coef f ic ien t  propor t iona l  to  the  bandwidth  of  the  RC noise  and  

i s  ca l led  normal ized  bandwidth ;  more  prec ise ly ,  i f  a  whi te  no ise  i s  f i l t e red  

th rough a  RC ne twork ,  the  output  i s  a  RC noise  wi th  normal ized  au tocor re la t ion  

-§M 
T 

func t ion  P(T)  =  e  and  (3  =  .  The  input  s igna l  i s  

comple te ly  def ined  by  the  fo l lowing  independent  var iab les :  s igna l  to  noise  

ra t io ,  S . /N. ,  normal ized  wid th  of  the  pu lse ,  K,  the  normal ized  bandwidth  

of  the  no ise ,  |3 ,  and  the  se t  o f  probabi l i t i es  for  pu lse  and  no  pu lse .  I t  i s  

convenien t  to  assume tha t  the  input  res i s tance  of  the  rece iver  i s  one  ohm and  to  

in t roduce  th ree  independent  var iab les :  the  ampl i tude  of  a  pulse ,  V,  the  average  
2 

power  of  the  s igna l ,  P^ ,  and  the  var iance  of  the  no ise ,  cr j  .  

Assuming  equa l  p robabi l i t i es  for  pu lse  and  no  pu lse ,  i . e .  P(y  =  0)  =  

? ( /  =  1)  =  1 /2 /  the  average  power  of  the  t ra in  of  random pulses  i s  
2  2  P  

P $ = ;  hence ,  V =  ( l l l - l )  

2 2 
The no ise ,  n ( t ) ,  has  zero  mean  and  var iance  a .  ;  hence ,  a .  i s  the  

i  i  
average  power  of  the  no ise .  Therefore ,  the  input  s igna l  to  noise  ra t io  i s  
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Si Ps 
FT = ^ (111 -2) 

i 

and the probability density is 

2 2 
1 -n / 2 a. 

f(n) = e . (,,,-3) 
\/2it a. 

i 

The autocorrelation function of the RC normal noise, n(t), is 

IT I 

R(T) = n(t) n(t + T) = a.2 p(T) = a.2 e T (III-4) 

The choice of the dependent variables V and a. is arbitrary; 
V '. V ' 

only the ratio — is important. — can be expressed in terms of signal 

to noise ratio: ' ' 

V 2 Si 
o7 K" FT (lll"5) 
i i 

In order to find the average probability of error in the threshold 

detection of s(t) at time t] = T + KT, the probability density of s^ = s(t = T + KT) 

must be obtained, but first p(t = T + KT) = p] must be defined. 

III-2 Average Probability of Error for Constant Threshold 

Since the noise is symmetric and the rectangular pulses are independent, 

the best choice for the constant threshold, D-, is V/2. The signal s.(t) = s(t) 
c i 

is compared to the threshold at the time t^ = T + KT and s.(t^) = s(t^) = s^. 

Using formulas (11-5) and (11-6), the average probability of error of the 

first type E^ (0 sent, 1 received) and the average probability of error of the 

second type (1 sent, 0 received) are respectively: 

E1C = P(S1 >V/2' = °) = p(n! > V/2) (111-6) 

E2C x P(s1 < V/2, ri = ') = p(ni < "V/2) (111 -7) 
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The average  probabi l i ty  of  er ror  for  constant  threshold  is  then:  
CD 

00 

E =  1 /2  E +  1 /2  E =  —1 J e-*2/2a? dx = — 1  J e" X  / 2  dx 
C  ' C  2 C  v/STa.  V/2  v^T" V/2a.  

(111-8)  

then Ec = I [ V/2ct. ] (111-10) 

I I I -3  Average Probabi l i ty  of  Error  for  Constant  or  Adapt ive  Threshold  

In  the  case  of  constant  threshold  there  is  no  need for  sampl ing before  detec t ion;  

however ,  the  average  probabi l i ty  of  er ror  in  the  detec t ion is  the  same,  wi th  or  wi thout  

sampl ing,  i f  the  sample  i s  not  used to  modify  the  threshold  or  the  s ignal .  I t  i s ,  therefore ,  

poss ib le  to  es tabl ish  a  genera l  formula  for  the  average  probabi l i ty  of  er ror  for  a  given 

threshold  level  D,  constant  or  adapt ive .  

Since  s^  and s^* are  not  independent ,  the  average  probabi l i ty  of  er ror  in  the  

detec t ion of  s^  depends  upon s^*,  and the  average  condi t ional  probabi l i ty  of  er ror ,  

E(s^*) ,  can  be  def ined.  The average  probabi l i ty  of  er ror  E for  any s^* can be  obta i  

by  averaging E(s^*) :  

f ( $ 1 *)  E(s^*)  d S ] * (111-11)  

This  computa t ion of  the  average  probabi l i ty  of  er ror  i s  a lways  correc t  whether  

the  threshold  i s  constant  or  adapt ive .  

The received random pulses  are  rec tangular  and no memory type  network is  

used before  detec t ion;  therefore ,  the  s ignal ,  s ( t ) ,  i s  jus t  equal  to  the  noise ,  n( t ) ,  

dur ing the  t ime in terval  be tween random pulses :  

s ( t )  =  n( t )  for  nT +  KT < t  <  (n  +  1)T 



This relation is satisfied at the time tj* of sampling 

s(t = t1*) = s1* = n(t = t1*) = n1* (111-12) 

t ] * = T + KT - K*T where 1 > K* > K 

At the time t^ of detection, and assuming additive noise 

sft^s s] = n] + y^V (111-13) 

t ]  = T  +  K T  

When s^* is known and used to modify the threshold, the average 

pr o b a b i l i t y  o f  e r r o r  c a n  b e  r e d u c e d .  T h e  r e l a t i o n  b e t w e e n  s ^  a n d  s ^ *  i s  

expressed in terms of conditional probability density f(s^ / s^*). The average 

conditional probability of error can be expressed in terms of the first moments, 
2 -

s ^ ,  s ^ * ,  t h e  v a r i a n c e s ,  ( s ^  -  s ^ ~ )  ,  ( s ^ *  -  s ^ * )  ,  a n d  t h e  a u t o c o r r e l a t i o n  

coefficient, p*. Here, 

(S, -"^")Z = (s,*-^)2 = a,2 (111-14) 

( s 1 - s ] ) ( s 1 - s 1 * )  ( .  -  .  )  ( s , *  -  y O  n ,  n , *  
and p* = - 2 = 2~ O11"15) 

/(,, -^)2 (s,*-T^)2 °i °i 

Therefore, p* is simply the autocorrelation coefficient between the 

noise, n^* , at the time of sampling and the noise, n^ , at the time of the 

detection. The normalized autocorrelation of the noise is defined in paragraph 

^ - P I T 

... i / \ n(t) n(t + T )  111-1 as P ( T )  =  — ^  =  e 
a. 
i 

n i * n i  
Therefore, p* = ^— 's obtained from P(T) by letting 

a. 
i 

-EVRVI t  +  T = t ^ = T + K T  a n d  t  =  t ^ *  =  t ^  +  K T  -  K * T  r e s u l t i n g  i n  p * =  e  '  

_ e"pK* (MI-16) 



[(S, -Tp - p*(Sl* -S]*)j 2 

5 5 
, 2o (1 - p* ) 

f(s,/s.*)= : e 1 (111—17) 

1  ^ / r ~ 7  2 T T  A .  '  1  -
i 

where the bar above a letter denotes averaging. 

In terms of n^ and n^* , f(s^/s^*) is 

A1 " ̂  "1 
-(n. - p* n.*)2 

5 2 
i 2a. (1 - p* ) 

f(s /s *) = —-! == e (111-18) 
~2 

2tt a. y/1 - p*' 
i 

The average conditional probability of error of the first and second 

type, in the detection of s^ , knowing the sampled signal s^* before 

detection, are denoted E^(s^*) and ^C^l*) resPect've'y• E,cV> 

and ^2C^S1*^ °re exPresse<^ ^y formu'as similar to formulas (11-8) and 

(H-9): 

ElC(,r) = P [<"i > V/2) | n,*] (111-19) 

E2C(s1*) = P [<«, < -V/2) | n,-] (111-20) 

Eic(sT)=/<"/,f(s/si*)dsi 2 
nl=V/2 -(n, - P* n 1 *) 

f 00 2a 2 (1 -p*2) 
E (s *)= / e dn 
IL I / J J- J w/2 ' 

V2ir a. yi-p* 7 

After the change of variable t = 
n. - p* n* 

a. /1 - p* 
2 



E,c<sr> = 
y/2 IT / 00 -t2/2 , V/2+P*n, 

e at , where x = 

r. JT-

which is simply E^(s^*) = I 
V/2+ p*n^* 

(111-21) 

o v 1 - p1 

with the notation of paragraph 111-3. 

E2C(S1*) " 
1 

n, = V/2 . * »2 
1 -(n1-p*n1*) 

TK 

2tt a. y/1 -
i 

-ao 
2a (1 - p* ) 

2, dnl 

and after the change of variable t = 
-(n] - p*n]*) 

E 2 C ( s r ) = |  

a. /l -p* 

V/2 + p* n/ 
-22) 

r; 

The average conditional probability of error of the first or the second 

type in the detection of s^ knowing s^* is defined as E^(s^*) which is 

obtained as the average of E^(s^*) and E2^.(s^*): 

Ec(Sl*) = 1/2 I 
V/2 - p* n]* 

- a. v 1 -

+ 1/2 1 

V/2 + p* n. 

- a . /V-

(111-23) 

The average probability of error of the first or the second type in the 

detection of s^ , for any s^* , is defined as E^ and is obtained through 

averaging of E^(s^*) with respect to s^*; since s^* = n^* by formula (111-12), 

it results: 
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+ oo 

Ec = 
V/SoJ 

- 00 \/2lT 
1/2 I 

f v/2 " P*^' 

a. O. y/1 " P*2j 

+ 1/2 I 
V/2+ p*n]* 

- a. /l - P* -
drij* 

(111-24) 

Fortunately, the double integral can be condensed into a single integral, 

be cause 
+ oo 

1 2 /9  2  
e-v/2a 

\Z2tT a 

as shown in Appendix A . 

a + bv _ , r  dv = I : 

:/ l + b2j 

(111-25) 

Hence, E^. = 1/2 I ,5 1 + 1/2 
C 2ct. 1 ' 

1 J 

V 
2 a. 

= I rv 1 

' 2a. 
(111-26) 

1 j 

which is identical to the result obtained in paragraph 111 —2, without sampling. 

This shows that the average probability of error for constant threshold can 

be obtained directly or by averaging E^(s^*) , when s^* is not used to vary 

t h e  t h r e s h o l d .  I n  o t h e r  w o r d s  w h e t h e r  s ^ *  i s  k n o w n  o r  n o t  i s  i r r e l e v a n t  i f  s ^ *  

is not used to vary the threshold. 

The average probability of error for adaptive threshold, E^ , can only 

be ob t a i n e d  t h r o u g h  a v e r a g i n g  t h e  a v e r a g e  c o n d i t i o n a l  p r o b a b i l i t y  o f  e r r o r  E ^ ( s ^ * )  

because the threshold varies with s^*. Since s^ and s^* are related, s^ can 

be partially predicted from s^* and the threshold varies accordingly. The 

adaptive threshold is 

Da = V/2 + g (s 1 *) (111-27) 

where g(s^*) is a function of s^* chosen such as to minimize the average 

probability of error in the detection. 



• 
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The  average  condi t iona l  p robabi l i ty  o f  e r ror  in  the  de tec t ion  wi th  an  

adapt ive  threshold ,  ,  of  a  s igna l ,  s^  ,  knowing  the  sampled  va lue  before  

de tec t ion  s^*  ,  is  denoted  by  E^(s^*)  which  i s  ob ta ined  f rom the  formula  for  

Ec( s i* )  ( formula  111-23)  s imply  by  rep lac ing  V/2  by  V/2  +  g(s^*) .  

E  ( s  • )  =  1 /2  I 
V /2+g(s 1 *)  -  p*n ] *- 1  

r .  / l -

+ 1/2 I 
V /2  -  g(s j*)  +  p*  n .  

r .  / l -

The cor rec t ive  func t ion  g(s^*)  i s  chosen  such  as  to  min imize  the  average  

probabi l i ty  of  e r ror ,  E A .  The  average  condi t iona l  p robabi l i ty  of  e r ror ,  E^(s^*) ,  

i s  min imum for  

9 (s  1  *)  =  p*  S j*= p*  n^*  

th i s  resu l t s  f rom the  compar i son  be tween  the  wel l  known inequal i ty  

l (u , )  <  1 /2  l (u ,  +  A) + 1 /2  I (u j -  A) 

and  formula  (111-28) .  

(111-29)  

(111-30)  

E^  i s  the  average  of  E^(s^*)  wi th  respec t  to  s^*  ,  E^  =  E^s / ) ;  

when g(s^*)  =  p*n^*  not  on ly  E^(s^*)  i s  min imum for  every  s^*  bu t  a l so  

i t  i s  a  cons tan t ,  and  there  i s  no  need  for  fur ther  averag ing .  Af te r  rep lac ing  

g(Sj*)  by  p*n^*  in  formula  ( I I I -28) ,  

E a- W) - V 2  I  
V  

- 2 a  ? /A 
+ 1/2 I 

V 

- 2 a .  / l  -  p . * 2 .  
i  r  

(111-31)  

(111-28)  

E A =  1  
V 

- 2a. JV- P* 2 -

(111-32)  



where p* can be replaced, using the formula (111-16): 

E 

A " ' .2a. /, - e"^PK* 

(111-33) 

The physical interpretation of the choice g(s^*) = p*n^* is 

straightforward. The adaptive threshold at time t^ is obtained by combining 

formulas 111-27 and 111-29 and 111-16: 

Da = V/2+ p*n]* = V/2 + n]* e (|||-

- P f r , -

T (111-34) 

The corrective term is the output of an RC network of time constant 

T/p discharged from the initial value n * at time t * to the value 
n /j. t + \ 

the sampling time the sampler-holder behaves as a zero-memory network but 

during the holding time the sampler-holder behaves as an RC network and the 

RC time constant of the sampler-holder must be e^ual to T/p , RC = T/p. The 

schematic of a sampler-holder is given in the experimental chapter, Ch. VII. 

The time of sampling and of detection have to be slightly modified in a practical 

model because the electronic components do not operate instantaneously. 

111 —4 Minimization of the Average Probability of Error 

The minimum average probability of error for constant threshold for a 

given input signal to noise ratio can be obtained. The average probability of 

error is of the form l(x) which is monotonic decreasing and is minimum when x 

is maximum. 

The average probability of error for constant threshold given by formula 

(111-26) can be expressed in terms of the signal to noise ratio using the formula (III 
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Ec = V 
2a. 

= I  
TT/n7 

\ '  i  
2  K 

(111-35)  

Therefore ,  decreases  when  K decreases ;  i f  the  phys ica l ly  

rea l izab le  min imum of  K i s  .  1 ,  the  minimum a t ta inable  average  probabi l i ty  

o f  e r ror  a t  cons tan t  th reshold  i s  

Crn in  
(111-36)  

where  E~ .  denotes  the  phys ica l ly  rea l izab le  min imum of  E- .  
Cm in  C 

The  average  probabi l i ty  o f  e r ror  for  adapt ive  threshold  i s  g iven  by  

formula  (111-32)  and  can  a l so  be  expressed  in  te rms  of  input  s igna l  to  noise  ra t io :  

E A =  1  

2  a .  / l - e ^  

S. /N.  
I I  

2 K ( l - e - 2 P K * )  

(111-37)  

The  average  probabi l i ty  o f  e r ror  i s  min imum when the  product  2K(1  -  p* )  =  

-2  RK* 
2K(1  - e  ^  )  i s  min imum which  requi res  tha t  bo th  K and  K* be  min imum.  

S ince  the  sampl ing  must  be  made  before  the  unknown s igna l ,  K* mus t  be  less  

than  K.  Assuming  aga in  tha t  K =  .1  i s  the  phys ica l  min imum and  tha t  the  

sampl ing  can  be  made  jus t  before  the  unknown s igna l ,  E^  i s  min imum for  K =  K* =  =  . 1  

and  i s  g iven  by  
"A min  

5  S . /N.  
r  i 

-

(111-38)  

E .  .  is  a  func t ion  of  6  and  increases  when  6  decreases .  
A min  r  r  

-5  Compar i son  Between  Adapt ive  and  Cons tan t  Threshold  

The  rece ived  s igna l ,  a  t ra in  of  random rec tangular  pu lses  mixed  wi th  

RC noise  i s  def ined  by  (1)  the  s igna l  to  no ise  ra t io ,  S . /N.  /  (2)  the  normal ized  



bandwidth, (3 , which determines the normalized autocorrelation function of 

the noise and (3) the relative width of the pulses, K. The probabilities of 

pulse and no pulse are assumed equal and the average power of the emitter 

(not the amplitude V of the pulses) is assumed constant. 

The average probability of error at constant threshold is a function of 

S./N. and K (formula HI-35) and is minimum when K is minimum (say K = . 1) 

min 'S g'ven ^ formula 111-36 and is function of S./N. only. 

The adaptive threshold detector is defined by the time of sampling, i.e. 

K*, and the law of prediction = V/2 + p* n^* . The average probability 

of error for adaptive threshold, E. , is a function of S./N. , (3 , K and K* 
M I 

(formula 111-37). The average probability of error is minimum when K* = K and 

K is minimum (say K=.l). E. . is given by formula 111-38 and is a function 
' A min ' 

o f  S . / N .  a n c l  P -

It is especially interesting to compare the minimum average probabilities 

of error for constant or adaptive threshold, E- . and E. . respectively. 
C min A min 

(" log.n E- . ) and (- log.n E. . ) are plotted instead of E- . and 
10 C min *10 A min r C min 

E. . which are very small numbers. The maximum of - log.~ E is the 
A min ' *10 

minimum of E. Fig. Ill-l shows (- log.A E_ . ) versus S./N. for a useful 
*10 C min r i 

range of S./N.. Fig. III-2 shows (- log.n E. . ) versus S./N. for K= K* 
r i 10 A min' r i 

and different values of (3 . The average probability of error is smaller for an 

adaptive threshold than for a constant threshold; the smaller (3 is , the larger is 

the improvement. The reduction in the average probability of error can be expressed 

by a gain in decibels, G = - 20 log^ (E^/E^.). G is a function of S./N. °nd 

p. Fig. III-3 shows G versus S./N. for typical values of p. 
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Chapter IV 

THRESHOLD DETECTION OF PULSES MIXED 
WITH WHITE NOISE, RC FILTER 

IV—1 Statement of the Problem 

Rectangular random pulses mixed with white noise are detected by a 

receiver which consists of an RC filter and a threshold detector. The block 

diagram is shown in Fig. 11-1 where F is now a RC filter. The received 

rectangular random pulses are defined as in Chapter II: pulse and no pulse 

equally probable, pseudo period T, width KT, amplitude V, and average 
2 

power Ps = V K/2 . The input noise is normally distributed and white, 

i.e. the power density spectrum is a constant denoted by q/2. The RC 

network is defined by the dimensionless variable y = T/RC. The average 

probability of error in the detection of the filtered signal with a constant 

threshold is a function of P^ , r) , J , K and y. The average probability 

of error in the detection of the filtered signal with an adaptive threshold is a 

function of P^ , 1 , T , K , y and K* , where K* measures the relative 

distance between sampling and detection. 

The filtered signal, s(t), is detected at time t = T + KT. Between 

t = KT and t = T, s(t) is the sum of the noise n(t) and of the residual voltage 

due to the random pulses already detected; therefore, the sampling of s(t) in 

this interval of time determines the noise before the unknown signal is received. 

The time of sampling is defined by t = T + KT - K*T where K* > K. A short 

notation is used for the noise and the signal at the time of detection 

t = T+ KT = t] n(t = t ) = n s(t = t ) = s 

and at the time of sampling 

t = T+ KT - K* = t * n(t = t *) = n* s(t = t *) = s * 
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The fo l lowing  problem is  so lved:  the  input  s igna l  cons is t s  o f  a  t ra in  

of  rec tangular  random pulses  mixed  wi th  whi te  normal  no ise .  Given  the  average  

power  of  the  t ra in  of  pu lses ,  ,  and  the  power  dens i ty  of  the  noise ,  r \  f  and  

the  f requency  of  t ransmiss ion ,  1 /T  ,  f ind  the  opt imum choice  of  RC f i l t e r  and  

pulse  wid th  ( i . e .  y  and  K)  to  min imize  the  average  probabi l i ty  of  e r ror  in  the  

threshold  de tec t ion .  Cons ider  the  case  of  cons tan t  and  adapt ive  threshold  and  

compare  the  average  probabi l i t i es  o f  e r ror .  

The  average  power  of  the  whi te  no ise  overa l l  the  range  of  f requency  i s  

in f in i te ;  hence ,  the  average  probabi l i ty  o f  e r ror  cannot  be  def ined  as  a  func t ion  

of  the  input  s igna l  to  no ise  ra t io  which  i s  ze ro .  For tuna te ly ,  P  ,  r)  ,  and  T 

appear  on ly  as  a  fac tor  Q  = P s T/  q  ;  therefore ,  the  problem reduces  to :  g iven  

Q ,  f ind  the  combina t ion  of  K and  y  which  min imizes  the  average  probabi l i ty  

o f  e r ror  where  Q is  s imi la r  to  a  s igna l  to  noise  ra t io  and  i s  ca l led  f ic t i t ious  

s igna l  to  noise  ra t io .  

In  o rder  to  f ind  the  average  probabi l i ty  o f  e r ror  in  the  threshold  de tec t ion  

of  s ( t )  a t  t ime  t^  =  t  +  KT,  the  probabi l i ty  dens i ty  o f  s^  =  s ( t  =  T +  KT)  mus t  

be  ob ta ined ,  bu t  f i r s t  the  e f fec t  o f  the  f i l t e r  mus t  be  de te rmined .  

IV-2  Effec t  o f  the  RC Fi l te r  on  the  Noise  

The  e f fec t  o f  the  RC f i l t e r  on  the  power  dens i ty  spec t rum,  the  au tocor re la t ion  

and  the  probabi l i ty  dens i ty  of  the  input  no ise ,  n . ( t ) ,  a re  eas i ly  ob ta ined .  S ince  the  

ne twork  F  i s  l inear ,  the  probabi l i ty  dens i ty  remains  normal ;  hence ,  the  probabi l i ty  

dens i ty  of  the  f i l t e red  noise  i s  comple te ly  def ined  by  i t s  f i r s t  and  second moments ,  

m 1  and  n^ .  Only  n^  and  n^*  ,  the  va lues  of  the  noise  a t  the  t ime of  de tec t ion  

and  a t  the  t ime of  sampl ing ,  a re  impor tan t .  S ince  the  noise  i s  s ta t ionary ,  the  moments  

do  not  depend  upon t ;  therefore ,  

m 1  =~n[ t )  =  rV|"=  n j*  ( IV-1)  

2 2 2 
and  m 2  = n( t )  =  n ]  = n^  (IV-2)  



G.(f) and Gp(f) are, respectively, the power density spectrum at the 

input and the power density spectrum at the output of a linear network defined 

by a transfer function, F(f) (here f is the frequency). For a RC filter, 

F(f) = ! . The power density spectrum at the input, G. , is a 
1 + j 2it f RC ' 

constant since the noise is white, G. = n/2. The power density spectrum, 

Gj. , at the output of the filter, F , is simply the product of the power density 

spectrum at the input by the square of the modulus of the transfer function. 

G. = | F(f) |2 G.(f) ^ r (IV-3) 
R ' 1 + (2TT f RC) 

The autocorrelation function is the Fourier cosine transform of the power density 

spectrum (Wiener's theorem). Therefore, the autocorrelation at the output of 

the filter is 

R(x) =V2 / +°° C°S "T 2 df = * e"M/RC (IV-4) 

~ 00 1 + (2 TT RC f) 

The autocorrelation R(T) is by definition 

R(T) = n(t) n(t + T) (IV-5) 

The mean square value of the noise is obtained by letting T = 0 in formulas 

(IV-4) and (IV-5) 

R(o) = n(tr= n/4RC (IV—6) 

The normalized autocorrelation function of the noise, P(T ), is 

P(t) = = e"'T,/RC (IV—7) 

The response of the RC filter to a unit impulse is e jhe 

output of a network is obtained by convolution of the input with the impulse 

response. Therefore, 



+ CD -  ( t  -  T )  

/ \ 1 
n : ( T )  J£— e  dT 

+ CD -  (t  -  T) 

nf t )  =  !  n .(T)  e  R < ~ CJT ( IV-8)  
- CD 

The input  no ise  has  zero  mean .  Subs t i tu t ing  n . ( t )  =0  in  formula  IV-8  

y ie lds  n^F)  =  0 .  ( IV-9)  

F ina l ly ,  the  f i r s t  and  second moments  a re  ob ta ined  by  combin ing  formula  

IV—1 wi th  formula  IV-9  and  formula  IV-2  wi th  formula  IV-6 .  

r r i j  =  =  n } *  = 0  ( IV-10)  

m 2 = ^ 5 = Y ^ =  n / 4 R C  ( I V - 1 1 )  

The  var iance  for  n^  and  n^*  i s  

0 2 =  m 2 - w ] 2  =  n / 4 R C  ( I V — 1 2 )  

A  normal  p robabi l i ty  dens i ty  remains  normal  a f te r  pass ing  th rough a  

l inear  ne twork;  therefore ,  the  probabi l i ty  dens i ty  for  n^  o r  n^*  i s  o f  the  

form 2  
-  n 

f (n)  =  —— e 2 °  ( IV-13)  
\ /2Tr  a  

IV-3  Effec t  o f  the  RC Fi l te r  on  the  Random Sequence  of  Pulses  

The  RC f i l t e r  changes  the  shape  and  the  wid th  of  the  pulses .  The  ampl i tude  

increases  in  a  sequence  of  over lap ing  pulses  because  the  in i t i a l  charge  of  the  

condenser  i s  increas ing  every  t ime .  A sequence  of  random pulses  can  be  cons idered  

as  the  superpos i t ion  of  ind iv idua l  pu lses  s ta r t ing  a t  t ime  (mT)  where  m is  an  

in teger ;  thus ,  i t  i s  suf f ic ien t  to  s tudy  a  s ing le  pu lse  wi thout  in i t i a l  charge  of  the  

capac i tor .  



29 

Consider  a  rec tangular  pulse  of  ampl i tude  V occur ing a t  t ime t  =  0;  

the  ins tantaneous  vol tage ,  e . ( t )  ,  is  def ined as  e . ( t )  =  V for  0<t< KT and 

e . ( t )  =  0  e lsewhere .  The pulse ,  e . ( t )  ,  is  appl ied  to  a  RC network wi thout  

in i t ia l  charge  and the  output  pulse  i s  def ined by e( t ) .  I t  i s  eas i ly  shown that :  

e ( t )  =  V(1 -  e~*/ R C )  for  0  <_ t  <_KT ( IV-14)  

_  t - K T  

and e( t )  =  V(1 -  e" K T , / R C )  e  R C  for  KT <_ t  ( IV-15)  

The maximum e( t )  occurs  a t  t ime KT and is  equal  to  

e( t  =  KT) =  V(1 -  e  K T / / R C )  =  A (IV-16)  

I f  the  input  rec tangular  pulse  or ig inates  a t  t ime t  =  mT ins tead 

of  t  =  0  ,  this  corresponds  to  a  t rans la t ion of  e . ( t )  by  mT;  e . ( t )  becomes 

e . ( t  -  mT).  Therefore ,  the  output  vol tage  is  a lso  t rans la ted  by mT;  e( t )  

becomes e( t  -  mT) which is  denoted by e  ( t )  for  a  more  convenient  nota t ion.  
m 

e  ( t )  =  0  for  t<  mT ( IV-17)  
m — 

e m ( t )  =  V (1 -e"  - m T ) / R C )  for  mT <  t  <  mT +  KT ( IV-18)  

e m ( t )  =  V (1 -  e"  K T / R C )  e "  1  ~ m T )  "  K T ) / R C  formT+KT<f ( IV-19)  

The maximum of  e  ( t )  occurs  a t  t ime mT +  KT and is  again  equal  to  A.  
m 

The output  of  the  f i l te r  to  a  random pulse  y  V is  y  e  ( t )  ,  which 
m mm 

is  def ined by mul t ip ly ing formulas  IV-17,  IV-18 and IV-l9  by y  (y  was  
m m 

def ined in  Chapter  I I ) :  

y  e  ( t )  =  0  for  t  <  mT ( IV-20)  
mm — 
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rm em^ = rm V^' " e ^ ' mT)/,RC) for mT < t < mT + KT (IV-21) 

r e (t) = y V(1 - e~ KT/RC) e" 1 (t " mT) " KT1/RC 
m m m for mT + KT < t (IV-22) 

The maximum of y e (t) occurs at time mT + KT and is equal to Y A. 
mm ^ m 

A filter is said to have a n-step memory if the output becomes zero 

n pseudo periods after removal of the input. Assuming a two-step memory, 

the filtered random sequence of pulses, p(t) , during the interval of time 

KT < t < T + KT is obtained by superposition of y ^ e ^ (t) , Y ®q(0 and 

r, e](t) 

p(t) = r_, e_|(t) + yoe0(t) + r1 e,(t) 

em(t) is defined by one of the formulas IV-20, IV-21 and IV-22 for 

w h i c h  t  i s  i n  t h e  p r o p e r  r a n g e .  T h e  i n d e x  m  i s  e q u a l  t o  - l , 0 a n d l .  

To obtain the noise at the time of sampling, t^* , and at the time of 

detection, t^ , the variable t in formula (IV—23) is replaced by tj* and 

- T (1 - K*) - T(2 - K*)-

t^ , respectively: 

p(t1*) = p)* = V(l -e"KT/RC) V +  r - l e  
RC 

and 

P(t1) = P1 = V(1 -e -KT/RC 
r ,  + r  e " T / R C  +  y  e - 2 T / ^  O -| 

(IV-23) 

(I V—24) 

(I V—25) 

It is convenient to express p^* and p1 as functions of the normalized 

autocorrelation function of the noise, p("r)= e ' T (formula IV-7). Let 

P(t = T) = p = e ^ and p(r = K*T) = p* = e ^ 



Then 

p ,*= V ( 1 p I  p  * l r o  P + r . ,  P 2 ]  =A-  [ r o P + r . , P 2 ]  ( iv-26)  

and P l  = v( i  -  P K )  l r ] +  r o p+r_ l P 2 ]  = A 1^!  +  r o P +r_ 1 p 2 ]  ( IV-27)  

1V-4 Average Probabi l i ty  of  Error  

Assuming addi t ive  noise  

V =  n i* +  "p"  ( V +  r - i p 2 )  < I V " 2 8 )  

s ,  =  n ,  +  A(r 1  + r Q p + r_ ] P 2 )  ( iv-29)  

Since  s^  and s^* are  not  independent ,  the  average  probabi l i ty  of  er ror  

in  the  detec t ion of  s^  i s  a  funct ion of  s^*;  th is  average  condi t ional  probabi l i ty  

of  er ror  i s  denoted by E(s^*)  which is  the  average  of  the  average  condi t ional  

probabi l i t ies  of  er ror  of  the  fi rs t  and second type  Ej( s ^*)  and E2(s^*) .  The 

average  probabi l i ty  of  er ror  in  the  detec t ion of  s^  for  any s^* is  denoted by 

E which is  obta ined by averaging E(s  1  *)  wi th  respect  to  s^*,  tha t  i s ,  wi th  

respect  to  n^*,  y  and y^ success ively .  The threshold  level  of  the  detec tor  

i s  denoted by D.  Two types  of  threshold  level  a re  inves t igated:  constant  threshold ,  

D^. ,  and adapt ive  threshold ,  D^.  The di f ferent  average  probabi l i t ies  of  er ror  

def ined above are  a  funct ion of  D;  therefore ,  the  subscr ip t  D is  added to  a l l  the  

average  probabi l i t ies  of  er ror  def ined previously ,  for  example  E^s^*) ,  E^(s^*) ,  

Ep,  e tc .  E 1 D (s^*)  and E^^is^*)  are  obta ined by in tegra t ion of  the  condi t ional  

probabi l i ty  densi ty  f (s^  |  s^*)  which must  be  determined.  

The condi t ional  probabi l i ty  densi ty  of  two normal ly  d is t r ibuted random 

var iables ,  and x^  ,  is  expressed by a  welI  known formula  as  a  funct ion of  

the  var iances  and ,  and the  autocorre la t ion  coeff ic ient  p^ .  
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f ( X ]  |  x 2 )  =  
20-p ] 2  )  

p12 

2 i t  1 -  p 1 2 2  

where  P 12 

(x ]  -  x ]  )  (x 2  -  x 2 )  

(x 1  "  x ]  ) 2  (x 2  -  x 2  ) 2  

x 2 -x 2  

• 2  

( IV-30)  

In  th is  formula ,  le t  

s i  = x i  
= x 2  

and note  tha t  

S ]  -s 1  = n ]  = n( t  =  t j  

a n d  

v  -V =  V =  n <'-V> 

2 
a l  -  a 2  "  n l  "  n l *  -  a  

n,  n  

P 12 
1 1  =  p( T  = f ]  ~ f !*)  =  

- & 1 - V )  
RC 

— r.* = P ( IV-31)  

n ,  n  
1  1  

Then f(s^  / s^*)  = 

-  "P* n !*)  

—2 T 
2a (1  -  p* Z )  

2 tt a  y i  -

(IV-32)  

Also ,  f (s ,  U,*)  = f (n ,  |  n,*)  =  f (n , |  S ] *)  
1  I 1  1  I  1  ( IV—33)  

The average  condi t ional  probabi l i ty  of  er ror ,  E^(s^*)  ,  in  the  detec t ion 

of  s^  wi th  a  threshold  D and knowing s^* is  evaluated  next .  Given s^* and 

y  and y  ,  the  average  condi t ional  probabi l i ty  of  er ror  of  the  f i rs t  type  (0  sent ,  
o  -1  

1  received)  i s :  



E1D^S1*^ ~ p ^S1> D| S1*1 (IV—34) 

The inequality can be expressed as a function of n^ by using formula 

IV-27 with y1 = 0. 

E ID (S I* )  =  PLN I>D - A(rop + r_iP2) I  SJ* ]  (IV—35) 

The conditional probability density f(n^/s^*) is given by formula IV-33 

E , D < s r >  =  

-(n-p*ni*)2/2a2(l -p*2) 

2tt a y 1 - p*^ 

n, = D - A (T oP + r_, P2) 

dn^ (IV-36) 

After the change u = 
n. - p*n * 

vT-

oo 
EID<S,*> = e X //2 dx = l(u lD) 

ID 

(IV-37) 

U1D = 

o  - A ( r o p + r _ 1  P  )  - P *  n  *  

/l - v/T-i 

(IV—38) 

Given s^* and y^ and y_^ , the average conditional probability of 

e r r o r  o f  t h e  s e c o n d  t y p e  ( 1  s e n t ,  0  r e c e i v e d )  i s :  

E2D(«r> = pls!< D | s,*] (IV-39) 
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=  ? l n }  < D -
'1 

E 2D ( s 1*)  

n  =  D -  A -A(rop + y_1p2) - (n1 - p *n 1 *) 2  

~~7 T l o 2a (1 - P*z) 

2rr  a  y /1  -

(IV-40)  

dn^ (I  V—41)  

Af ter  the  change u  =  -
/  n ,  -  p* n ,  

E 2D ( S 1* '  7 o '  y - l^  " /  6  ^ d u - ' (u 2 D )  (IV42)  

2D 

A  -D + A ( y o p + y _ l P  )  p *  n , *  

' 2D + ( IV—43)  

/1  - / l  -

Given s^* ,  i .e .  n^* ,  y^ and y  ^ ,  the  average  condi t ional  

probabi l i ty  of  er ror  of  the  f i rs t  or  second type  is  :  

E D ( s 1*)  =  1 / 2 E m(s 1 *)  + V2 E o n (s / )  ID 1 2D 1 
( IV-44)  

=  1 /2  l (u 1 D )  +  1 /2  l (u 2 D )  ( IV—45)  

The average  condi t ional  probabi l i ty  of  er ror  of  the  f i rs t  or  second type  for  

g iven y^  and y  ^ but  for  any n^* is  obta ined by averaging ( IV-45)  wi th  respect  

to  n  ̂  * .  

ED<ro ' y-l> " 

+ CO * 2 / 0  2  -n  *  /2a  
e  1 

-  oo 
\72tT 

i ( u lD )  +  1  ^ U 2D^ dn } * (IV-46)  
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I f  and U2p are  funct ions  of  n^* ,  the  double  in tegra l  can be  condensed in  

a  s imple  in tegra l  as  expla ined in  Appendix  A,  resul t ing  in  :  

E D<'o '  *-!> =  ] / 2  1  

d -  A(r o p+ y^pV 
+ 1/2 I 

a  - d  + A ( r o p + r _ l P 2 ) "  
(IV-47) 

The average  probabi l i ty  of  er ror  of  any type ,  for  any n^* ,  and any /  T ^ /  

i s  obta ined by averaging the  average  condi t ional  probabi l i ty  of  er ror ,  

E D^O '  ̂ -1^ '  W ' ^  r e s P e c * *°  a n c '  ^  ]*  

ED = 1/8 Z I 
r o = o, i  y_ 1  = o ,  l  

r D-A(y Q p + r_ 1 p 2 ) - j  ( -a - d +A (ro p+ y^p 2 ) - )  
+  i  (IV-48) 

IV-5 Choice  of  the  Threshold  for  the  Minimum Average Probabi l i ty  of  Error  

The threshold  D is  chosen to  make the  average  probabi l i ty  of  er ror  minimum; 

two cases  are  considered:  constant  threshold  and adapt ive  threshold .  

Given Sj*  ( i .e .  n^* ,  y^ and y_^) ,  the  average  condi t ional  probabi l i ty  

of  er ror  of  the  f i rs t  or  second type  is :  

E D ( S l *)  =1/2  l (u l n )  +  1 /2  | ( U o n )  
ID'  2D (I V—49) 

Since  l (x)  i s  monotonical ly  decreas ing,  the  sum l (u^)  +  I tu^)  where  

u ^  +  U 2  =  C  =  C o n s t a n t ,  i s  m i n i m u m  w h e n  u ^ = U 2 = C / 2 .  

A 
Therefore ,  s ince  +  °2p 

of  er ror  i s  minimum when u^  = 

formulas  IV-38 and IV-43,  y ie lds  

/ i  -  p2 

,  the  average  probabi l i ty  

2  a  y  1 -  p 2  

= u^ .  Subst i tu t ing 
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D-A(r o P +  y_ 1 p 2 ) -p*n 1 * A-D + A(y  p+y  p 2 )+p*n *  
UD y ;  " = — (I V—50) 

* /1  -  p* a  / 1  -p* 2  2a  -  p* 2  

The equa l i ty  i s  sa t i s f ied  when  

D = Da = A/2 + A(rQp + r_,p2) + p* nj* (IV-51) 

Using  formulas  ( IV-26)  and  s^*  =  p^*  +  n^*  

Da = A/2 + p* S]* (IV—52) 

Assuming  tha t  the  threshold  leve l  can  be  var ied  as  a  func t ion  of  the  sampl ing  

s igna l  s^*  ,  is  the  opt imum threshold  (a t  t ime  t^ )  and  i s  named adapt ive  

th reshold .  

The  phys ica l  in te rpre ta t ion  for  the  choice  of  the  cor rec t ive  te rm p*  s  *  

i s  s imi la r  to  the  one  of  paragraph  I I I -3 .  The  cor rec t ive  te rm i s  the  ou tput  o f  an  

"RC ne twork"  of  t ime  cons tan t  RC,  d i scharged  f rom the  in i t i a l  va lue  s^*  (here  

_  V y >  

s l*  ̂ n l* )  a t  t i m e  V t o  t h e  v a , u e  n i*  e  R C  a t  t ime  t ]  and  i t  i s  

ob ta ined  a t  the  ou tput  o f  a  sampler -holder  which  samples  the  f i l t e red  noise  s ( t )  

a t  t ime  t  =  dur ing  the  ho ld ing  t ime the  sampler -holder  behaves  as  an  RC 

ne twork  and  the  RC t ime cons tan t  o f  the  sampler -holder  mus t  be  equa l  to  the  RC 

t ime  cons tan t  o f  the  RC f i l t e r .  Again ,  the  exper imenta l  t imes  of  sampl ing  and  

de tec t ion  (Ch.  VII )  a re  s l igh t ly  d i f fe ren t  f rom the  theore t ica l  va lues .  



Replacing D by in E^(s^*) (formula IV-44) and replacing subscript 

^ ^ ^or s^ort notation yields 

ed. (sI*) = eA(sI*)= 1 
A 

(IV-53) 

L 2a /1 - p*2 J 

Since this expression does not depend on s^* , further averaging is not 

necessary. The average probability of error of the first or second type for any 

Sj* is, in the case of adaptive threshold, 

E A =  W > =  1  

- 2 a yr-

(IV—54) 

If the threshold level cannot be varied, the best choice for D is D = A/2 

when p is small; otherwise, D is slightly higher. The constant threshold is 

denoted by D^. and the subscript D^. is replaced by C in the average probabilities 

of error for constant threshold. Since (s^*) = E^^*) is a function of s^* , it 

must be averaged with respect to n * oncf then y and y . in order to obtain the 
I  o  - I  

average probability of error of the first or second type for any s^* at constant 

threshold, D^. E^ = E^. is obtained by substituting D = = A/2 in formula 

(IV-48) C 

= '/8 I I < 
ro=o,i r_,=o,i 

A 
TV l + 2(yop+y_lPz) + I ^ h - 2 ( r o p + r . l P 2  

(IV-55) 

or E 
c - 1 / 8  ^  J - *  1  ^ ~ r r l 1  +  2  ̂ r 0 p +  r - i p 2 ^ )  y  = 0 , 1  y  . = 0 , 1  r =  1 ,  - 1  l  a  I  °  1  /  

o -1 

(I V—56) 



PsT 
In terms of the dimensionless variables Q = , y and K, the average 

probability of error for adaptive and constant threshold are respectively: 

ea = 

Ec = 1/8 Z Z Z I 
r o =0,1  y=o ,  i  r=  i - i  

S G S T  (1V.57) 

Ky yrT^J 
v^Q 7T (1 -e"Ky) [l + 2t(yQe"y+r_, e' 

^~ (IV-58) 

The VT comes from the choice of equal probability for pulse and no pulse. 

1V-6 Choice of the Numerical Values for the Variables 

The average probability of error for adaptive and constant threshold are 

expressed in formulas (IV-57) and (IV-58), respectively. Both depend upon the 

fictitious signal to noise ratio, Q, the relative width of the pulse, K, and the 

inverse of the time constant of the filter, y = T/RC. 

The numerical values for the fictitious signal to noise ratio Q are chosen 

such that the average probability of error remains in the range of interest in telemetry 
-3 -7 

or radar, say 10 < E < 10 , resulting in the following values for Q, Q = 15, 

10, 25 , 30, 35. Since it is advantageous to use small values for K, let K = .1, .3, 

Let ym.p(K) be the value of y which makes the average probability of error minimum 

for a given K. Although ymjn(K) varies widely with K, fortunately, Ky^.^flC) 

varies little. Therefore, it is convenient to take u = Ky as variable instead of y. 

The values for u are in the range .1 < u < 2.0 since this insures a variation of y 

far below and far above y . (K), for any choice of K. 
'min* ' 

The average probability of error for adaptive threshold depends not only on 

Q, K and u = Ky, but also on K*. It is clear that the average probability of 



error decreases with K* , so that K = K* is the optimum choice. Therefore, 

the comparison between adaptive and constant threshold is made for K* = K; 

that is, sampling just before the unknown signal. 

The numerical values used for Q, K and u = Ky are tabulated below. 

1.75, 1.85 , 2, 2.5, 3, 5 , 7, 10, 15 , 25. 

where the index i, j and m correspond to the place in the list, for example: 

0^ = 15, Kg =.5, si, etc. 

IV-7 Computation of the Average Probability of Error 

The average probability of error for adaptive and constant threshold, given 

by formulas (IV-57) and (IV-58), are computed for all the numerical values of 

Q = Q. , K = K. and u = u^ tabulated in paragraph IV-6. Since all possible 

combinations of Q. , K. , and um , (5 x 3 x 21), must be used, three successive 

variations are needed: m varies first, then j , then i. 

Given a set of numerical values Q. = Q.' , K. = K.' , u = u 1 , K* = K.1 

i i j j mm 
the average probabilities of error after replacing Ky by u in formulas (IV-57) and 

Q. = 15, 20, 25, 30, 35 

K.= .1, .3, .5 

um = .1, .4, .6, .8, 1, 1.15. 1.25, 1.35, 1.45, 1.55, 1.65, 

(IV-58), are: 

(1) For adaptive threshold 

-u 

W  ' u m , > - 1  ^ (IV-5 9) 
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(2) For constant threshold 

E C ( Q . " , K  " U  • ) = !  I T  1 / 8  I  
1 r^o,i ilj.0,1 

-u 
m 

^7 VT" (1 + 2t(roe-u/K+ ^ e-VK} 

(IV-60) 

00 2 r* 
where l(x) = / _i_ e"f /2 dt = .5 -/ —L e"^2 

X 

___ , e dt 
v 2rr -7 0 \/ 2 ir 

The average probability of error are linear combinations of integrals 

l(x.) where x. assumes numerical values. The computer must evaluate the 

definite integrals |(x) for any x; therefore, the computer computes and stores 

I(Xj) for a large number of values x = x. and the intermediary |(x) are obtained 

by interpolation. (See Appendix B). 

Since l(x > 6.35) is quite negligible, I (x) is computed only for discrete 

values of x = x. = i(.005) where i assumes every integer value in the range 

1 < i < 1272. 

To simplify the notation, let 
oo 

l(xi> =/ ~L e ' /2 dt = '(') (IV-61) 
J v 2 u 
i(. 005) 

An iteration formula can be used: 
r°° 2 

l(°) —j —— e"' //2 dt = .50000000 (IV-62) 
o \/2tt 

( i +  1 )  ( . 0 0 5 )  

l(i + 1) = |(i) J _L e-'2/2 df 

i(.005) v7ir 

(IV-63) 
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. ( i+l ) ( .005)  

The smal l  def in i te  in tegra l  1 —t /2 
e  dt  is  evaluated  as  

i ( .005)  
y/^TT 

a  sum,  us ing Simpson technique as  expla ined in  Appendix  B.  

I f  0  <  x  <  6 .35,  then | ( i  +  1)  <  l (x)  <  | ( i )  where  i  i s  the  in teger  

obta ined by t runcat ion of  ^  ,  i  =  Tr  (  ^  ).  Since  l ( i+l )  and I( i )  

a re  very  c lose ,  | (x)  can be  obta ined by l inear  in terpola t ion.  

I f  x  >6.35,  then l (x)«0 

If  x  <  0  ,  then l (x)  =  .5  + l ( |x | )  

If  x  >  0  ,  then I (x)  =  l ( |x |  )  

( IV-64)  

( IV—65)  

( IV-66)  

and 

l ( | x | )  -  l ( i )  "  1 1  ( i )  ~  I  ( i  +  1 )  ] '  " 0  "  1 )  

r  I  x  I  
where  i  =  Tr .  j —+ .00001 

(IV—67)  

+  1 and the  symbol  Tr .  means  t runcat ion.  

IV-8 Interpre ta t ion of  the  Computed Resul ts  

The average  probabi l i ty  of  er ror  for  adapt ive  threshold ,  E .  ,  is  a  funct ion 
p s T 

of  Q = —-— and u =  Ky ;  the  average  probabi l i ty  of  er ror  for  constant  threshold  

P T 
i s  a  funct ion of  Q = -j^— ,  K and u  =  Ky.  and E^.  were  computed in  paragraph 

IV-7 for  the  var ious  Q.  and u^  tabula ted  in  paragraph IV-6 and are  now plot ted  

versus  Q.  Since  the  average  probabi l i t ies  of  er ror  a re  very  smal l  numbers ,  i t  i s  

convenient  to  p lo t  a r , d ~ '°9 J Q  E q  ins tead of  E^ and E^. .  The minimum 

of  E^ and E^.  correspond to  the  maximum of  - log^ E^ and - log^ E^,  respect ively ,  
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depends  upon Q and Ky.  Fig .  IV-1 shows- log^ versus  Q 

for  Ky =  .  1 and Ky =  .5(K* = K) .  For  constant  Ky,  - log^ E^ increases  about  

l inear ly  wi th  Q;  for  example ,  i f  Ky =  .  1,  - log^ E^« .226 Q + .89:  for  a  

g iven value  of  Q,  - log^ E^ decreases  when Ky increases .  Therefore ,  the  average  

probabi l i ty  of  er ror  

(1)  decreases  exponent ia l ly  when Q increases  a t  constant  Ky.  

(2)  decreases  when Ky decreases  a t  constant  Q.  

Assuming that  Ky =  .  1 is  the  physica l  minimum for  Ky,  E^ is  minimum for  

Ky =  .  1 .  The value  of  the  minimum decreases  when Q increases  and denoted 

E A ( K y = . l , Q ) = E A m . n ( Q )  

E^.  depends  upon Q,  K and y  = u /K.  The inf luence  of  the  choice  of  

the  RC f i l te r  on  the  average  probabi l i ty  of  er ror  for  constant  threshold  i s  demonst ra ted  

in  Fig .  IV-2,  which shows the  var ia t ion  of  "I°9^q versus  y  =  T/RC for  constant  

Q and constant  K.  Typical  va lues  are  used for  Q.  and K •  Q.  = 15,  Q.  = 35 and 
i  I i  i  

K .  =  .1 ,  K.= .3 ,  K.= .5 .  Each curve  - IoqE-versus  y for  q iven Q.  and K.  
I I I  1 0  C  '  |  

presents  a  maximum for  a  speci f ic  value  of  y  =  y m j n  (K.  ) j  the  corresponding 

minimum averaqe  probabi l i ty  of  er ror  i s  denoted E~ .  (Q.  ,  K.) .  The minimum r  '  C  m i n  i  •  j  
average  probabi l i ty  of  er ror ,  E^ (Q. ,  K.) ,  depends  upon both  Q.  and K.  ,  

forgiven K the  minimum decreases  when Q increases ;  whereas ,  forgiven Q,  

the  minimum decreases  when K decreases .  

The opt imum value  of  y ,  y m j p (K.  ) /  where  the  minimum average  probabi l i ty  

of  er ror  for  g iven Q.  and K.  occurs ,  depends  only  upon K.  (not  Q. ) .  Both  y  .  
i  |  j  i  ' m i n  

( K . )  a n d  K .  v a r y  i n v e r s e l y  a n d  w h i l e  y ^ . ^  ( K .  )  v a r i e s  w i d e l y ,  t h e  p r o d u c t  K .  

y  .  ( K .  )  v a r i e s  l i t t l e .  F i g .  I V - 3  s h o w s  t h e  v a r i a t i o n  o f  y  .  ( K )  a s  a  f u n c t i o n  o f  
m i n  |  m i n  

K;  therefore ,  th is  curve  determines  the  opt imum RC f i l te r  for  each choice  of  the  pulse  

width .  I f  K=. l  is  the  physica l  minimum of  K,  E^.  .  (Q,  K=.1)  = E~ .  (Q)  
C min C min x  '  

is  the  smal ler  minimum of  E^.  versus  y  forgiven Q and any rea l izable  K,  the  

corresponding value  of  y  is  y  =  y m j n  (K =  .  1)  =  12.5 .  



V^KT 
Fig. IV-1 : Probability of Error for Adaptive Threshold versus Q « f using 

an Analog Computer (White Noise and RC Filter) 



Fig. IV-2 s Probability of Error for Constant Threshold versus y » T/RC 

(Whit# Noise and RC Filter) 



IT 
flit XT"? » CfaaiM tf Ky w«u I far Canstant Threshold, using 

RC 
« iMdag Canputar (Vhlta Mm and RC Filtsr) 
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The minimum average  probabi l i ty  o f  e r ror  a t  cons tan t  th reshold  i s  (Q)  

where  K =  .1  and  y=12.5 .  Fig .  IV-4  shows - log . - .  E-  .  (Q)  increases  about  
'  10 C min  

l inear ly  wi th  Q(- log . n  E_ .  (Q)sr  .185Q+ .87) ,  which  means  tha t  E_  .  (Q)  
10  C min  C  min  

decreases  exponent ia l ly  when  Q increases .  

The  minimum average  probabi l i t i es  o f  e r ror  for  adapt ive  and  cons tan t  th reshold  

forg iven  Q and K and  the  cor responding  y  =  y  .  (K)  were  ob ta ined  graphica l ly  
min  

f rom the  la rge  number  of  E (Q.  ,  u  )  and  E-  (Q.  ,  K.  ,  u  )  t abula ted  in  paragraph  
A i m  i  j  m  

IV-6 .  Ident ica l  resu l t s  can  be  obta ined  by  us ing  the  ca lcu lus  of  var ia t ions ;  th i s  fo l lows  

next  in  paragraphs  IV-9  and  IV—10.  

IV-9  Minimiza t ion  of  the  Average  Probabi l i ty  of  Er ror  for  Adapt ive  Threshold  

Us ing  ( IV-57) ,  the  average  probabi l i ty  of  e r ror  for  adapt ive  threshold  i s  

E  , [ ^q  ^ h  - e " K y ^  
/ i<y  / l  -e" 2 K * y "  

Since  l (x)  i s  monotonic  decreas ing ,  E^  decreases  when  the  product  

y//^~ (}—f 1 increases, i.e. when Q increases for fixed K, K* and 

A7/i - e - 2 K *y 
^ |  ^  _  e  ~  K y )  

y  or  when  the  func t ion  g  =  — increases  for  f ixed  Q .  

Ky 

I f  Q ,  K and  y  a re  g iven ,  g  i s  maximum for  the  minimum of  K*,  which  

i s  K* =  K,  s ince  K* >  K.  (The  sampl ing  must  be  made  before  the  unknown s igna l  

s ta r t s . )  

When K =  K*,  the  express ion  for  g  i s  s impl i f ied  

y r  (1 - e ' K y )  =  /2 (1  -e ' K y )  

AT /l - e"2Ky J Ky(l+  e" K y )  



Fig. 17-4 t Minimi Probability of Error for Constant Threshold versus 
V^IT 

Q • 9 «ing an Analog Computer (Whito Noise and RC Filter) 
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The der ivat ive  of  g  wi th  respect  to  Ky is  negat ive;  hence ,  g  is  minimum 

for  the  smal ler  poss ib le  u  =  Ky.  When Ky tends  to  zero ,  g  tends  to  one  by appl i*  

ca t ion of  L 'Hospi ta l ' s  ru le :  

u  (1  +  e  U )  

Physica l ly ,  va lues  very  c lose  to  1 can  be  a t ta ined 

u =  Ky =  .3  corresponds  to  g  =  v/  .992 

u =  Ky =  .  1 corresponds  to  g  =  sj .998 

IV-10 Minimizat ion of  the  Average Probabi l i ty  of  Error  for  Constant  Threshold  

The minimum of  the  average  probabi l i ty  of  er ror  for  constant  threshold ,  

^ r  mSri®'  w a s  obta ined graphical ly  in  paragraph IV-8 for  d i f ferent  Q v* m i  n  
and K.  Fig .  IV-4 shows - log  n  E .  (Q)  versus  Q for  K=. l .  

Iu  min 
I t  i s  not  poss ib le  to  minimize  ( formula  IV-58)  d i rec t ly  by the  ca lculus  

of  var ia t ions ;  however ,  E^.  can  be  replaced by a  power  ser ies  of  (u  -  UQ )  where  

u  =  Ky and UQ = 1 .6  and then minimized.  

E „ . I U  1 / 8  I  
r=°- 1  vw l  +  2t( r o e" y +r _ | e" 2 y ) |  

Using again  the  inequal i ty  

l (x)  < 1/2 [ | (x+A)+ l(x -A)]  

i t  fo l lows tha t  

E c >  | [ o ]  

where  a  = V&sTT (1 -  e~ K y )  

>/Ky~ 

(IV-68) 

( IV—69)  

( IV-70)  

( IV—71)  



The minimum of 1(a) is easily shown to occur at Ky = 1.26. 
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Because of the factor 1 + 2C(yQe ^ + y ^ e , the minimum of the 

average probability of error for constant threshold occurs for Ky > 1.26. When 
1 26 K is small, the minimum occurs very close to Ky = 1.26 because y = —— 

l\ 

is large and e ^ and e ^ are negligible. When K is large, the minimum 
1 26 occurs for Ky well above 1.26, because y = —p— is small and e ^ and 

-2y K 

e 7 cannot be neglected. 

The problem is to minimize the sum of 8 transcendental integrals, the 

limits of which are complicated functions. 

The solution is to develop the integrals in a series. Taking advantage of 

the fact that the maximum occurs for a rather limited range of u = Ky, the integrals 

are developed into a power series of z = (u - UQ) about the point UQ = 1.55. 

Assuming one step memory, the average probability of error for constant 

threshold is 

E<- = Z Z 1/4 I 
— -1,1 

VG- ST ( i  - e - K r )  y e-y) 

n/KF 

where 

and a. 
(m) 

= Z Z '/4 P(r , t, z) 

r=o,i f«-v 4 

P(y ,  t ,  * )  = / L  a : '  
m=o 

(m) m 

(IV-72) 

(IV-73) 

(IV-74) 

j = 1, 2, 3, 4, represents the four combinations of y^ and f 

z = (u - uQ) 

,m 

- d u 
m 

I l0(u, K, j) ] 

in which 1(0) = 

00 -r/2 
e dt 
7? 

(IV-75) 

(IV—76) 

(IV-77) 
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and <Mu, K, j) = N/rg~ v'^~ (1 " e ] (1 + 21 r e^K) (IV-78) / ° 

V u 

The procedure to obtain the coefficients is described in Appendix C 

for one step memory; for a two-step memory the calculations are even more complex. 

Since the value of u for which is minimum is not too far from UQ = 1.6,  

the series converges rapidly with four terms giving a good approximation. When E^. 

is expressed as a fourth degree polynomial, the minimum of E^. is the real root of a 

third degree polynomial. For a given fictitious signal to noise ratio Q and width 

of pulse K, the value of u which minimizes E_, u . (K), and the minimum of 
min 

E_ , E- . , can be obtained. Fig. IV-5 shows u . (K) versus K and Fig. IV-6 
C L min min 

shows -log^Q E^. mjn(K = *1) versus Q, resulting from the series approximation. The 

agreement with the exact results of paragraph IV-8 is surprisingly good considering 

that the approximation 

(1) is for one step memory, 

(2) contains only four terms 

IV —11 Comparison Between Adaptive and Constant Threshold 

The average probability of error in the detection of rectangular pulses mixed 

with white noise, using an RC filter followed by a threshold device, has been obtained 

for the case of a constant threshold and of an adaptive threshold. 

In the adaptive scheme, the sum of the noise and residual voltage due to the 

previous pulses is sampled just before the signal is received and the threshold level 

modified accordingly. 

It is shown that the minimum average probability of error for adaptive threshold 

depends only upon the product u = Ky and decreases with Ky. Hence, given the 

average power of the emitter, the average probability of error is the same for different 

widths of pulses if Ky is maintained constant. The plots are made for Ky = .1 and .5 



IT 
yig. IV-5 | Optimal Choiot of Ij • Torino 1 for Constant Thrash old, using an 

RC 
Analog Ceapntor (Whita Moist and RC Filtor) 



Minimum Probability of 

using Sorios Expansion 

t Fig. Tf-6 Error for Constant Thrashold Torsos Q • 

(Whito Hoiso and RC Filtor) 
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For  the  case  of  cons tan t  th reshold ,  the  average  probabi l i ty  of  e r ror  i s  

min imum for  some Ky >  1 .26 .  I f  K i s  smal l ,  the  min imum occurs  for  Ky 

near  1 .26 ;  however ,  i f  K i s  l a rge ,  the  min imum occurs  for  Ky wel l  above  1 .26 .  

For  each  va lue  of  Q  ,  the  minimum average  probabi l i ty  of  e r ror  for  cons tan t  

th reshold  and  adapt ive  threshold  a re  compared .  The  ga in  in  dec ibe ls  due  to  the  use  

o f  adapt ive  threshold  i s  shown in  F igure  IV-7 .  



Reduction of tho Probability of Error 

(White Nolle and RC Filter). G - - 20 

by Use of on Adaptive Threshold. 

Io«10 (W 

v-7 > 



Chapter  V 

THRESHOLD DETECTION USING STANDARD OR ADAPTIVE INTEGRATION 

V—1 Sta tement  of  the  Problem 

Rectangular  random pulses  mixed wi th  RC normal  noise  a re  detec ted  by a  

receiver  which consis ts  of  an  in tegra tor  and a  constant  threshold  detec tor ,  TD.  

The block diagram of  the  receiver  i s  shown in  Figure  V- l .  

Two types  of  in tegra tor  a re  compared:  the  s tandard  in tegra tor ,  I ,  and 

the  adapt ive  in tegra tor ,  1^  .  The s tandard  in tegra tor ,  I ,  has  input  s . ( t )  and 

output  s ( t ) :  ^  

—L- /  s. ( t )  d t  for  mT <  t  <  mT + KT 

.<0 - { ^ ' (v_„ 

) e lsewhere  

The adapt ive  in tegra tor ,  1^  ,  samples  the  noise  n . ( t )  a t  t ime t*  =  T 

( jus t  before  the  unknown s ignal )  and the  sampled noise  n . ( t  =  t*)  i s  used to  

correc t  the  s ignal  s . ( t )  d u r i n g  the  in terval  of  in tegra t ion T< t<  T + KT.  

The output  of  the  adapt ive  in tegra tor  i s :  

-X- J s . . (0  for  mT <  t  <  mT + KT 
,A„) . ^ -T <V-*> 

0  elsewhere  

where  the  index A s tands  for  adapt ive  in tegra t ion:  s .^( t )  i s  the  correc ted  input  

of  the  in tegra tor  and s^( t )  i s  the  correc ted  output  of  the  in tegra tor .  

Consider  the  detec t ion of  the  unknown random pulse  in  the  in terval  

J  < t  <  T +  KT,(m =  1) .  Since  the  detec tor  i s  unlashed a t  t ime t^  =  T +  KT 

only ,  s ( t j )  =  s ]  (° r  s A ( f ] )  =  i s  t h e  o n , y  v a , u e  o f  w h i c h  m a t t e r s  i n  

the  constant  threshold  detec t ion and 





• I 
T +  K T  

s ( t  =  t i )  = s i  =  kT ^  s : ( t )  d t  

/ T +  K T  

sA(t  = tl>-sAl " KT ^ siA(,)  dt  

The input  s ignal  i s  def ined exact ly  as  in  paragraph l l l - l .  The independent  

var iables  are  the  s ignal  to  noise  ra t io ,  S . /N.  ,  the  normal ized width  of  the  

T I T I pulse ,  K,  the  normal ized autocorre la t ion  of  the  noise ,  p . ( - r )  =  e  ,  

and the  se t  of  probabi l i t ies  of  pulse  and no pulse ,  P(y  =  0)  =  P(y =  1)  =  1 /2 .  

Again ,  i t  i s  convenient  to  in t roduce a  few dependent  var iables :  the  ampl i tude  

of  a  pulse ,  V,  the  average  power  of  the  s ignal ,  P  ,  and the  var iance  of  the  
2 s  

input  noise ,  a .  .  The probabi l i ty  densi ty  of  the  noise  n( t )  i s  

2 /o  2  -n  /2a  
f(n) ! e 

v/2F a. 

v r  s i  The ra t io  of  the  ampl i tude  to  the  var iance  is  —— = /  jq— (V—3) 
i  i  

and the  autocorre la t ion  funct ion of  the  RC normal  noise  i s :  

- g _ | T  
2 T 

R.(T)  =  n . ( t )  n . ( t  +  T)  =  a .  p .(-R)-a .  e  (V-4)  
i  i  

The  s tandard  in tegra tor  e l iminates  some of  the  noise  by f i l te r ing and 

therefore  reduces  the  average  probabi l i ty  of  er ror  in  the  detec t ion.  The adapt ive  

in tegra tor  e l iminates  considerably  more  noise  by us ing predic t ion bes ides  f i l te r ing,  

resul t ing  in  an  even smal ler  average  probabi l i ty  of  er ror .  



V-2 Effect  of  the Standard Integrator  1 

Given a  random pulse ,  y^ V a t  t ime T + KT, the output  of  the network I 

T+ KT 

• s  Pj = "~j<T~ *1 V dt  = y^ V.  Similar ly  given a  random noise ,  n . ( t ) ,  

rJ+ KT 

the output  n ]  of  the network I i s  n ]  = J  n.( t )  d t .  Since l i s  

l inear ,  the noise  remains normal;  n .  is  normal  and completely determined by i ts  
2 mean zero and i ts  var iance,  .  

Assuming addi t ive noise ,  the input  to  the network I i s  s . ( t )  =  n.( t )  +  p.( t )  

and the output  is  s( t )  =  n( t )  +  p( t ) .  The s ignal ,  s( t ) ,  is  detected a t  t ime t  = T + KT 

therefore ,  the s ta t is t ic  propert ies  of  s( t  =  T + KT) = s^ =  n 1  + y^ V,  (and hence of  n .  

must  be obtained.  Since integrat ion is  a  l inear  process ,  the  probabi l i ty  densi ty  

dis t r ibut ion remains normal  and the probabi l i ty  densi ty  of  s 1  ,  f(s^)  is  completely 
2  determined by i ts  f i rs t  moment ,  s^ ,  and i ts  var iance,  s^ -  s^ =  .  

~T + KT T + KT 

s i  =  kt^ s i ( t )  d t  =  4r^ fy(0+ T 1  V)dt  (V-5)  

y T + K T  ^ T + K T  

^"= y  J  y, V dt  = V (V-6)  

s ince n7^t)  =  0  

The s ignal  s^ is  t ranslated so that  the new variable  has  zero mean:  

x ]  =  - « 7  < v " 7 )  

r \  =  r l  V ' h e n C e  T + KT 

X1 =  s l  '  "7 =  TT ̂  n i ( t )  d f  ( v ' 8 )  

Note that  is  independent  of  y^ ,  i . e .  whether  or  not  a  pulse  is  

received.  
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2 ~~2 
The  var iance  of  s^  ,  ,  is  equa l  to  

2 ? 2 =T7 -7 
a l  =  5 1 -  S 1 =  w  • X 1 (V-9) 

T +  KT T +  KT 

2 1 
= ^ 0  W I n. ( t )  n . ( t ' )  d t 1  dt  (V-10) 

T T 

T +  KT T +  KT 

2 ~~7 1 and  a  =  x  =  
K T 

n . ( t )  n . ( t ' )  d tdf  (V- l l )  

Note  tha t  n . ( t )  n . ( t ' )  =  R. ( t '  -  t )  the  au tocor re la t ion  of  the  input  no ise ,  

2 
With  the  changes  of  var iab le  t  =  u  +  T and  t '  =  u '+  T,  a^  becomes  

KT KT 
2 1 <7,  =  ~~T~2 

K T 
R. (u  -  u ' )  du  du '  

o  o  

Let  u  -  u '  =  T 

KT KT-u '  
2 

a i  =  = 7272 / du' / Ri<T>dT <v-,2> 
K I , 

o -u '  

a f te r  breaking  the  f i r s t  in tegra l  in  two in tegra l s  

KT o  KT 

J" du 1  J~ R.( - r )dT +  J" du '  

o  -u"  o  

KT-u '  
2 1 

al = "TT 
K T 

R.(T)  d T  (V-13)  
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The a reas  of  in tegra t ions  a re  shown be low 
u '  

and  

Changing  the  order  of  in tegra t ion  y ie lds  

KT 

— - T = KT -  u '  

2  1  
a l  "  Y~2 

KT 
R.(T)  dT  

-KT 

KT KT KT- t  

du '  +  R- ( t )  dT du 1  

J J 1  J 
-  T O O 

where  the  l imi t s  a re  de te rmined  by  the  a reas  of  in tegra t ion .  

The  l imi t s  can  be  ob ta ined  mathemat ica l ly ,  wi thout  a  graph;  

(1 )  i f  dT i s  in tegra ted  f i r s t ,  us ing  0  <  u  <  KT and  u  -  u '  =  t  ,  i t  fo l lows  

-u '  <  t  < -u '  +  K (or  -u '  <  t  < 0  and  0  <  t< -u '  +  KT)  

(2)  i f  du '  i s  in tegra ted  f i r s t ,  us ing  -u '  <  t  < 0  and  0  <  u '  <  KT,  

i t  fo l lows  - t  < u '  <  KT ;  s imi la r ly ,  us ing  0  <  t  < -u '  +  KT and  

o  <  u '  <  KT, i t  fo l lows  0  <  u 1  < KT-t .  

The f i r s t  in tegra l  o f  formula  V-14  i s  eas i ly  in tegra ted ,  resu l t ing  in  

KT 

(KT -  T )  R (T)  dT  (V-15)  a l  =  
*2" j 

(V-14)  

K T 

I t  i s  convenien t  to  use  the  d imens ionless  var iab le  u  =  t /T 

^  K 2 2 
Then a = —*-

K -
(K -  u)  R. (u)  du  (V-16)  

2  f  , T '  R.(t )  =  a .  e  
i  i  

;  hence ,  R. (u)  =  o?"  e  for  u  >  0  

K 

and  ~ j ( K - u ) e " ^ U  d u  
K 

o 

(V—17)  
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r K  

Using J Ke du= (1 - e P^ ) and 
o 

K  r . - P K  . " P K  f "  - p u  ,  K e  1  
J  " u e  d u = — p —  +  ^  

P P 

"l2 = a!2 "TT-T [Kp + e"Kp -1 ] (V-18) 
K p 

KB + e"PK-l 
Let p= 2[—£ TT—K ] , which is always smaller than one; therefore, 

K 
2 the integration reduces the variance of the noise by a factor }J ; a. becomes 

2 2 1 
al = P ai • 

V-3 Effect of the Adaptive Integrator, 1^ 

The noise does not vary instantaneously and the noise, n.(t), during the 

time interval of integration (T < t < T + KT) is related to the noise, n.(t = T) = n.*, 

just before integration. The expected or predicted value of the noise at time t 

(T < t < .T + KT) is n.* p.(t - T) where p.("r) is the normalized autocorrelation 

of the noise. The signal, s.(t), at time t can be corrected by subtracting the 

expected value of the noise, n.* p.(t - T). The corrected signal, s.^(t), is 

integrated and the corrected output of the adaptive integrator, s , is 
I r\ 

T + K T  

S1A = ~KT~ J [ Si(t) " pi(t " t) ni* 1 dt (V"19>) 

T + K T  —  T + K T  

S1A = KT J  *7^df~~i<T T ) d t  (V-20) 

S1A " riV 
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The variance of is obtained as in paragraph V-2; letting 

*1A = S1A ~ S1A ' then °1A2 = x1A 

T+ KT 
1 /<», '1A " "j<T~ tV (n; W " Pj ~ T) nj*) dt 

T+ KT -£ (t - T) 

xia = TT I <ni « "e T ",*) df 

(V-21) 

and 
T + KT T + KT 

1 
-e.(t-T) 

a , A  = X 1 A  
(n. (t) - e n.*) (n.(t') - e T n.*) dt df 

- T )  
T | 

(V-22) 

The first double integral is broken into four double integrals; the first 

double integral was evaluted in the case of constant threshold and the three 

remaining integrals are equal; thus, two out of the three integrals cancel each 

other • 

nA " J1 " J2 " J3+ J4 (V-23) 

.T + KT T + KT 

J1 " ~T~T 
K T 

n(t) n(t') dt dt1 = a.' (Kp + e"KP-l) 
' K p 

(V-24) 

T+KT T+KT -J5(t-T) -j3(f-T) 

J, = J3 = J4 = -7~Y / / n* e T e T dt df (V-25) 
2 K TV J 

2 2 1 
n* = a/ and -j 

I l\ I *• -pr- (V-26) 



a . = n = a. 

K P K p 

2 _ 2 [2KB - 3 - e~2KP + 4 e"KP 

(V-27) 

(V-28) 

V-4 Comparison Between Standard and Adaptive Integration 

The RC input noise, n. , is defined by its autocorrelation, 

o 2 T 2 
R.(T) = a. e , i. e. by its variance, a. , and p. The variance after 

1 1 1 2 2 standard adaptive integration at time t^ are respectively and 

which are given by formulas V-18 and V-28. 

When a rectangular pulse of amplitude V is received, the amplitude 

at the input of the threshold detector at time t^ is V, whether an integrator 

is used or not. The signal-to-noise ratio at the input of the threshold detector 

at time t^ increases when an integrator is used because the power of the 

signal remains constant while the power of the noise decreases. The increase in 

the signal to noise ratio due to the integrator is best expressed as a gain in 

decibels. 

Let (S./N.), (S/N), (S/N). be the initial signal to noise ratio, the 
I I A 

signal to noise ratio after a standard integrator and the signal to noise ratio 

after an adaptive integrator, respectively. Then 

G = +2° l09JirRr!=+20 Io9io (oi2/oi2) 

i i j 
(V-29) 

GA = +20 10910 

(S/N)A 

757̂  
= + 2 0  l o g 1 0  ( a . 2 / a ] A 2 )  ( V - 3 0 )  



where G and are  the gain in  s ignal  to  noise  ra t io  in  decibels ,  for  

s tandard and adapt ive integrator ,  respect ively.  G and G.  do not  depend 
M 

on the input  s ignal  to  noise  ra t io  and they decrease when Kj3 increases .  The 

var ia t ion of  G and G^ versus K(3 i s  plot ted in  Fig.  V-2 showing that  G^ 

is  considerably larger  than G.  

Since integrat ion is  a  l inear  process ,  the  noise  remains normal;  therefore ,  

the  average probabi l i ty  of  error  in  threshold detect ion with a  constant  level ,  

V/2,  of  random pulses  of  ampli tude V mixed with noise  of  var iance,  a  ,  is  

l (V/2a)  where ao 

I  ( x ) = /  _ L  e " / 2  d t .  
x  

The average probabi l i ty  of  error  without  integrator ,  with s tandard 

integrator  and with adapt ive integrator  are  respect ively 

Eq  = I (V/2 a . )  (V-31)  

E,  =  \ ( V / 2 a ^ )  (V-32)  

E | A  = l (V/2a 1 A )  (V-33)  

Since the average probabi l i t ies  of  error ,  E q  ,  ,  and E^ ,  are  

very small  numbers ,  i t  i s  convenient  to  plot  instead - l°9^o E q  ,  ~ '°9^q E|  

and - log 1 0  E^.  Fig.  V-3 and Fig.  V-4 show the logari thms of  the probabi l i t ies  

of  error  versus  V/2 a .  forgiven Kp.  Fig.  V-3 is  for  Kp=.2 and Fig.  V-4 

i s  f o r  K P  = 2 .  

The average probabi l i ty  of  error  is  a  very non l inear  funct ion of  the 

s ignal- to-noise  rat io;  therefore ,  the advantage of  an adapt ive integrator  before  

threshold detector  is  even more apparent  in  terms of  reduct ion of  the average 

probabi l i ty  of  error  than in  terms of  increase of  the s ignal  to  noise  ra t io .  





Fig. V-'3 i Probabilities of error versus V/2C[ For KyQ « .2 j (1) without 

Integrator (-log E ), (2) with Standard Integrator (-log E.), (3) with 
1U O 1U X 

Adaptive Integrator (-log^E^) 



Fig. V-4 t Probability of Error rmrraa V/2 for IyQ • 

tor (- log10*0)f (2) with Standard Integrator 

Adaptive Integrator (-

2 t (1) without Integra-

(- log^j), (3) with 



Chapter  VI  

LINEAR DETECTOR, INTEGRATION, AND ADAPTIVE INTEGRATION 

VI-1  Sta tement  of  the  Problem 

Rectangular  random pulses  (modula ted  or  not ) ,  mixed wi th  RC normal  

noise  are  detec ted  by a  receiver  which consis ts  of  a  l inear  de tec tor ,  an  

in tegra tor  and a  threshold  detec tor .  The block diagram is  shown in  Fig .  VI-1 .  

I t  i s  convenient  to  remove the  dccomponent  of  the  noise  (n^)  before  in tegra t ion.  

The in tegra tors  I  and 1^  ,  the  threshold  detec tor ,  TD,  and the  input  s ignal ,  

s . ( t ) ,  a re  exact ly  as  in  Chapter  V.  

The l inear  detec tor  H has  for  input  

s . ( t )  =  n . ( t )  +  y( t )  V (VI-1)  

where  y( t )  =  y  for  nT <  t  <  nT +  KT 
n  

and y  is  a  random var iable  which takes  the  values  0  or  1 wi th  equal  
n  

probabi l i t ies .  

For  output ,  H has  s^( t )  
s .  ( t )  i f  s . ( t )  >  0  

where  s  ( t )  =  h(s . ( t )  )  =  (  
0  i f  s  ( t )  <  0  * V I " 2 '  

o x  — 

The s tandard  in tegra tor ,  I  ,  and the  adapt ive  in tegra tor ,  1^  ,  are  

compared.  The def in i t ions  and nota t ions  are  the  same as  in  paragraph V-l  

except  tha t  the  inputs  to  the  in tegra tors  a re  now S Q ( t )  and s Q ^( t )  ins tead 

of  s . ( t )  and s j^(0» 

The problem is  very  complex because  the  receiver  is  non- l inear ;  therefore ,  

only  the  average  probabi l i ty  of  er ror  of  the  f i rs t  type  (0  received,  1  detec ted)  i s  

inves t igated .  I t  i s  shown that  a l l  the  moments  of  the  noise  are  reduced by 

in tegra t ion so  that  the  average  probabi l i ty  of  er ror  of  the  f i rs t  type  in  the  constant  

threshold  detec t ion is  cer ta in ly  smal ler .  





VI-2 Effect of the Linear Detector 

The noise, n.(t), at the input of the linear detector is defined as RC 
' 2 , ? 2 type noise with 0 mean and variance, a. (n.(t) = 0, n.(t) = a. ), and the 

autocorrelation, R.(t). It is necessary to obtain the first moment, m = n (t), 
2 1 J 2 ° ° 

the variance a = n (t) - n (t) and the autocorrelation R (t) of the noise 
o o ' o o 

at the output, ng(t), of the linear detector. 

f n.(t) for n.(t) > 0 
n (t) = h(n (t) = { ' ' (VI-3) 

0 for n.(t) < 0 
I i 

Let f(n.) be the probability density of n.(t), then 

/

+ oo 

f(n.) h(n.) dn. (VI-4) 

-oo 

where the index t has been dropped since the noise, n.(t), is stationary. 
2 ' 

f(n.) is normal with mean zero and variance a. . 
• i 

By definition, 
2/9 2 + 00 -n. /2a. 

i i 
n = / h [ n. ] — dn. (VI-5) 
o J I /-* I -oo v 2ir a. 

i 

2/o 2 ^-oo -n. /2 a. 
i i a. 

= n. dn. = 1— (VI-6) 
J ' \/2Tr a. ' yj 2tt 

o I 

2/9 2 9 

/

oo -n. /2a. 2 
2 e ' 1 a* 

n. — dn. = —— (VI-7) 
' yTZT a. ' 2 

O I 

Therefore, the variance at the output of the linear detector is 

2 

"o= "7 - "7 = "i2*1/2" -3408 ai2 (V!-8) 
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The input  noise  is  of  type RC; therefore ,  i t  is  def ined by an exponent ia l  

autocorrelat ion funct ion:  

RJ(T) = CTJ e T  = a . 2  p.(T )  (VI-9)  

where P.(T)  is  the  normalized autocorrelat ion funct ion.  

The autocorrelat ion a t  the output  of  the l inear  detector ,  R (T) ,  is  by 

def ini t ion:  

RO(T= t ,  - t 2 )=n o ( t 1 )n o ( t 2 )  (VI-10)  

For  a  more convenient  notat ion,  le t  x] = n.f t j )  and x 2  = n.( t 2 ) .  Then f (x ]  ,  x 2 )  

is  the joint  probabi l i ty  densi ty  of  n . ( t^)  and n.( t 2 )  and 

_+ CD 
R 0 (T  =  t 1" t2^=  j f  f ( x ] '  x 2 )  h ( x i )  h ( x2^ d x i  d x2 

-co 

f ( x j /  x 2 )  i s  normal  and can be expressed as  a  funct ion of  the autocorrelat ion 

coeff ic ient ,  p .  ,  of  x^ and x 2 :  

"  '  2  ( x , 2 +  x 2 2  -  2 P . X ,  x 2 )  

1 (  "  P i  '  ̂  
f ( x l  '  x2 }  =  TV 6  (V- 1 2 )  

(x }  -  x ]  )  (x 2  -  x 2 )  "y I T  I  
where p.  =  e  (VI-13)  

\M x i  -xj) 2  ( x2^) 2  

Since the joint  probabi l i ty  densi ty  is  normal ,  Pr ice  method [  16]  

can be used.  The funct ion h(x)  is  d i f ferent ia ted unt i I  5  -funct ions are  

obtained;  in  this  case,  one must  obtain the second der ivat ive of  h(x)  

2 
11x7 = h<2) = 5 (VI-14) 
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where 6 is the well known 6-function and x. is or x^, 

Using Price theorem, 

32ro(T) 
+ 00 

9P: 
= JJ h(2)(x) h(2)(x) 

1 2 2 
(x + x -2p x xj —  ^  + x 2  - * p  X  X  J  

2(1 -p ) a. 
e dx dx (VI —15) 

i -oo 

(2), 
which is immediately integrable since hv^(x^) and h®(x2) are 6-functions 

Price [16] shows that 

2 

R fr) = 4 A- p.2 _1 p. + p. cos (-p.) (VI-16) 

R CO = 
a. 
i 

~2P h 1 - p h i  - p h i  
i o T T "] / T x I -e + e cos (-e ) (VI-17) 

where p. = e 

" P h i  
T and t = t1 - t2 , (VI-18) 

R^(0) is obtained by substituting t = 0 in formula (VI-17) 

-? a* R (0) = n = 
o o ~7~ (VI-19) 

It is convenient to express the autocorrelation at the output of the half 

wave linear device in series form, using the result of Davenport [3] . 

2 
D / \  a i  ,  ,  t t  1 2 1 4  1 6  .  
R„(t) - "2V < U?P\ + ?P\ +TTpi +-85"P; +"••) (VI*2°) 

2 1 2 and approximately Rq(t)«: a. {-j- + ,25p. + ,07958p. ) (VI-21) 



-PM 

where p. = e T and T = t] -

The approximate value of Rq(0) is obtained by substituting T = 0 ,  i .  e .  

p. = 1, in formula (VI-21); 

Ro(0)« o.2 (l/2ir + .25 + .07958) 

(VI-22) 

RQ(0) o.2 (.48873) 

The approximate value of the variance is 

9 2 

2 —7 a* 
o = n - n = R(0) - J— 
o o o v 2ir 

"D2 ® o.2 (.48873 - l/2ir) = a.2(.32958) a.2(.33) (VI 

The approximation of formula (VI-17) by formula (VI-21) is best for small 

values of p. , i. e. large value of T, but it is still very good at the limit when 

p. = 1, (T = 0) as shown by comparing the exact variance (formula VI-8) and the 

approximate variance (formula VI-23). 

VI-3 Effect of a Standard Integrator on the Variance 

The noise, n (0/ at" output of the linear detector is integrated during 

the time from t = mT to t = KT where m is an integer. The output of the 

integrator is defined by 

1 /~ * 
n(0 = J n (t) dt for mT< t< mT + KT 

mT 

Consider the detection of the first random pulse; the threshold detector is 

unlashed only at time t = t.^ = T + KT; therefore, the only important value of the 

output of the integrator is for t = t^ and 
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T+ KT 

n(t,)-n, - ̂  n (t) dt (VI-24) 

The first moment of is easily obtained 

T+ KT 
— 1 
nl " KT n (t) dt = n 

o o (VI-25) 

The second moment n^ is 

T + KT T + KT 

1  2 2  
KT 

J" / nQ(t) no(f) dt dt' (VI-26) 

The variance of n^ (output of the integrator at time t^) is 

2  ?  — '  
T + KT T + KT 

1 

= n '  =  7 7  
nQ(t) nQ(f) dt dt' - nQ (VI-27) 

T T 

T + KT T + KT „ 
<• — 1 bince n = —75—* 0 7? n dt dt' , the two terms can be o 

condensed into one double integral resulting in 

T + KT _ T + KT 
2 1 

KT 
ai =TO [n (t) n (t1) - n ] dt dt' 

00 o (VI-28) 

T ~T 

The integral can be expressed in terms of 

vo(0 - nQ(0 " nQ / where VQ(t) is the noise minus its dc component 

and is called dc filtered noise. The mean of v (t) is zero by definition 

no(t) no(t,) - no " v0(f) (VI-29) 



2  i  - T + K T  T + K T  
a n d  a  = - y ^  !  v  ( t )  v  ( f )  d t  d t '  ( V I - 3 0 )  

1  K  j  T  T  ° °  

Physical ly ,  th is  means  tha t  the  var iance  a t  the  output  of  the  in tegra tor  

a t  t ime t .  i s  the  same whether  V ( t )  or  n  ( t )  i s  in tegra ted;  tha t  i s ,  whether  
I o  o  

the  dc  component  of  the  input  to  the  in tegra tor  i s  removed or  not .  The proof  

i s  qui te  s imple .  Let  

r  T + KT 

V W JT Vo ( , ) d t  ( V | - 3 ' )  

2 
The var iance  of  )  > s  obta ined immedia te ly  

1  - T + K T  

~^T(t )  d t  =  0  (VI-32)  

_  — 7  .  . T + K T  . T + K T  
C T v ,  = V 1  I f  J T  V Q ( t )  v o ( f ) d t d t '  ( V I  

2 2 
Hence,  =  cr^  ,  which was  to  be  shown.  

Since  in tegra t ing n^( t )  or  VQ ( t )  i s  equivalent ,  VQ ( t )  i s  chosen because  

the  mathemat ics  i s  s impl i f ied .  In  o ther  words ,  the  block diagram VI —1 b  i s  

preferred  to  the  block diagram VI-1  a .  

The autocorre la t ion ,  Yq (T)  ,  of  VQ ( t )  i s  s imply  expressed in  terms of  

the  autocorre la t ion ,  R (T) ,  of  n  (T): 
o o  

YQ(T) = VQ ( t )  VQ ( t  +  T)  =  (n Q ( t )  -  n Q )  (n Q ( t  +  T)  -  n Q )  (VI-34)  

Y ( T )  =  R ( T )  -  n  (VI-35)  
o  o  o  

The approximate  value  of  v q (T)  i s  obta ined by subst i tu t ing formulas  

Vl-6and VI-21 in  formula  VI-35,  resul t ing  in  



~  B I T I  -  2 B  I T I  

Yo(T) = a.2(.25 e T + .07958 e T ) (VI-36) 

2 . . 2 
a. is given in terms of a by formula VI-23; therefore, 

-  P h J  - 2 P I  t I  

• M = a 2 L .7587 e T + .2415 e T J (VI -37) 

usual: 

The normalized autocorrelation of vQ(t), ( f )  (t), is defined as 

* ( T )  f n W  

Vt) = Y15T = T- (v>-38) 
o a 

o 
- P H  —  2 g I  T  I  

0OM = L .7587 e ^ + .2415 e ^ J (VI-39) 

2  
The variance, (formula VI-30), is now expressed in terms of 

<*>g(t). 

2 2 1 ,T + KT T + KT 
al =CTo TX3 JT JT ^0(t " f) dt df (VI-40) 

K T 

which reduces to a simple integral as shown in paragraph V-3. 

KT 
ai = °Q ~2~2 J (KT - t) 0q(t) dT (VI-41) 

K T T 

and after (1) replacing 0q(t) by its value of formula (VI-28) and 

(2) using the dimensionless variable u = t/T, 

CT12 = CTO2 4" Jo (K-") (.75873 e_Pu + .24152 e"2Pu) do (VI-42) 
K 
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I t  was  shown in  paragraph V-2 that  

K 
r  ( K - u )  e  6 u  d u  = — i — *  ( K 8  +  e " K Q - l )  ( V I - 4 3 )  

K KB 

Changing p  in to  2p,  

K 
—J" JQ (K -  u)  e  2 ^ U  du =—(2KB + e  2 K '  -1)  (VI-44)  
K  2 K B  

2 
CTj i s  obta ined by subst i tu t ing formulas  (VI-37)  and (VI-38)  in  (VI-36)  

° 1 2  =  C T o 2  [ -75873 ^  ( | < B  +  e -SK_ ] )  +  _ 2 4 1 5 2 _l  ( 2 K p  +  e -2KP_ ] } ]  (VI-45)  

K B 2K B 

Af ter  grouping the  terms,  

^ 2 =  ^ o 2  •  . ' 2 0 7 6  1  ( V I  - 4 6 )  
K p  K B kV -

-  = 3? .  ,m» (VI-47)  
In P  KB KB 

VI-4 Effect  of  an  Adapt ive  In tegra tor  on  the  Var iance  

The input  and output  of  the  l inear  detec tor  are  n . ( t )  and n ( t ) ,  respect ively .  

The dc  component  of  n  ( t )  i s  removed and the  dc  f i l te red  noise  is  ca l led  V ( t ) ,  
o  o  

exact ly  as  in  paragraph VI-3 .  

Consider  again  the  detec t ion of  the  f i rs t  random pulse ,  i .  e .  the  pulse  which 

may be  present  in  the  in terval  T < t  <T+ KT.  The dc  f i l te red  noise  does  not  vary  

ins tantaneously;  consequent ly ,  the  dc  f i l te red  noise ,  v  ( t ) ,  dur ing the  t ime in terval  

of  in tegra t ion (T < t  <T+ KT) is  re la ted  to  the  dc  f i l te red  noise  jus t  before  

in tegra t ion,  v^( t  =  T)  = V Q *.  If  the  dc  f i l te red  noise  i s  sampled a t  t ime t*  =  T,  



Vq* is known and the expected value of the dc filtered noise is (p^(t - T) 

where $q(t) is the normalized autocorrelation function of V (t) and given by 

formula VI-39. 

The noise, VQ(0/ at time t(T < t < T + KT) can be partially eliminated 

by subtracting the expected value of the noise. The corrected noise is called 

voA(0 = vo(t) - 4>Q(t - T) (VI -48) 

The input of the integrator, VQ^(t), and the output, >*A(0/ are shown in the 

block diagram VI-2. 

vA(,)=TT IT v0Aw dt <v|-49> 

Again, since the threshold detector is unlashed only at time 

t =tj = T + KT, the only important value of ^A(t) is 

1 r T + KT 

Vl) = vlA=Krl VoA(t) dt (VI"50> 
T 

The first moment of v is desired 
lA 

— i P T + KT_ 
v i A = l a J T  v o A ( , ) d t  ( v 1 " 5 ' )  

v o A ( t )  i s  o b t a i n e d  u s i n g  f o r m u l a  ( V I - 4 8 ) :  

VoA(t) = ̂  " *o(t " T) (Vl "52) o 

(for a given value of t, (t - T) is just a coefficient) 

Since VQ(t) = \T* = 0, VqA(t) = 0 it follows that = 0 (VI-53) 





Since = 0, the variance of the noise at the output of the integrator 

at time t^ is equal to the corresponding second moment: 

2 
c i a 2 = ^ 7 - ^ = ^ 7  ( v , - 5 4 )  

2  7  1  . T + K T  . T + K T  
alA = V1A (t) = ^7Z7 L L VoA(t) voA(,,) dt dt' 

l\ 

Formula VI-52 is used to expand the integrand 

VoA(t) VA(r) = (vo(0 ' 0o(t " T) V)("o(t,) ' *o(t' " V } (V'"56) 

VQA(0 v0A^^ = - vjt) V/ <f>Jf - T) o o o o o 

1 

1 - "1 

.T + KT „T + KT 

(VI-57) 

-V (t1) v * <p (t - T) + v * (p (t - T) <6 (t1 - T) 
o o ^o o o ' 

2 
Therefore, (t) is the sum of four integrals 

a , A 2 «  = J ,  - J 2 - J 3 + J 4  ( V I - 5 8 )  

,  T + K T  T + K T  
where J1 = Z7Z7 JT JT Vo(t)vo(f')dt dt' (VI-59) 

K 

Formula (VI-59) is identical to formula (VI-30); therefore, 

J , = a . 2  ( V I - 6 0 )  

J 2 =  L L *0(t' "T)v0(f)vdt'dt (v|-61) 
K I 

T  +  K T J  +  K T  

J3 = T~2 ~ T) Vo(t') Vq* dt' dt (VI-62) 
K 

T + KT T + KT —r 

J4 = 7X3 JT JT *o(t " T) 
' 

T) V dt' dt (V,"63) 
K I 



From the definition of autocorrelation, 

V (t)v * = a 2 0 (l- - T) (VI-64) 
o o o o 

v (t')v * = a  2 4, (t' -T) (VI-65) 
o o o o 

v"*5 = tT 2 (VI -66) 
o o 

After substituting formulas (VI-64) and (VI-65) and (VI-66) in 

^2 ' J3 ' anc* J4 respectively, 

,  T  +  K T T  +  K T  2  

J2 = J3 = J4" JT JT °o *0 (t" * T) *o(t " T) dt' * (VI-67) 
K 1 

1 pT + KT 

L e t J = T r a o J ^  4 , Q ( t - r ) d t .  (VI-68) 

Then Jj = J2 = J3 = (J)2 (VI-69) 

After substituting (VI-60) and (VI-69) into (VI-58), 

^ ( t ) = 0 ) 2 - ( J ) 2  ( V I - 7 0 )  

(pQ(t - T) is replaced by formula (VI-67) and after the change of 

variable, u = —=r^- , 

. K 
o p [" __Q_ -8u 0.1£. -23u I 

j = —  |  j ^ . 7 5 8 7  e  +  . 2 4 1 5  e  J d u  

o 

After integrating and grouping the terms, 

J = [.8795 - .7587 e"KP - .1208 e"2KP ] 

(VI-71) 

(VI-72) 
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(0  /  g iven by formula  (VI-70) ,  can  be  expressed in  terms of  

the  in  i t ia l  var iance  before  detec t ion,  a.2  ,  by us ing formulas  (VI-47) ,  (VI-23)  

and (VI-72) .  

j  = ^j_  ( .5048 -  .4355 e" K t 3  -  .0693 e" 2 K  3  )  

a lA 2 ( t )  = ^  
.5796 .5  e" K 3  .0398 e" 2 K 3  .5398 
"1<F~ + + 7TT 

K P K 8  K" p 

.  (.5048 -  .4355 e~ K 3  -  .0693 e" 2 K f )  ]  

(VI-73)  

VI-5  Higher  Moments  a re  a lso  Reduced by In tegra t ion 

Before  in tegra t ion,  the  noise  i s  s ta t ionary ,  a f ter  in tegra t ion,  the  noise  

i s  non s ta t ionary .  Only  the  moments  a t  the  t ime of  de tec t ion,  t^  =  T,  are  

impor tant .  The nth  moments  a t  t  =  t^  for  s tandard  and adapt ive  in tegra tor  a re  

respect ively ,  

v i  

and 

T + K T  T  +  K T  T +  K T  

A ••••; m"74' 

V n 
1A (KT) 

n I. 

T+KT T+KT .T+KT 
- • J T  — \  W-75) 

I t  was  shown in  paragraph VI-3  and VI-4  that  the  var iance  of  the  noise  a t  

t ime t^  decreases  when an  in tegra tor  i s  used.  The decrease  is  grea ter  for  an  

adapt ive  than for  a  s tandard  in tegra tor ;  th is  resul t  can  be  expressed by an  inequal i ty :  

vo 2 ( t , ) >  7 > v]An (VI-76) 

The inequal i ty  (VI-76)  can be  extended for  h igher  moments :  

i 
' i  

n ,  .  n n  
Vo v' > V' 1A 

(VI-77) 
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us ing  bas ic  proper t ies  o f  au tocor re la t ion  func t ions  and  mul t ip le  in tegra l s .  

The  inequa l i ty  ( t )  > V- | n  i s  shown f i r s t .  The  genera l ized  au to­

cor re la t ion  func t ion  

R n ( t l  '  * 2 " ' '  W  

i s  maximum a t  t^  =  -  t^  ( the  or ig in  of  t ime  i s  a rb i t ra ry) ;  tha t  i s  

vo(tl)vo(t2> "-W < 

Subs t i tu t ing  the  inequa l i ty  (VI-79)  in  formula  (VI-74)  i t  resu l t s  

.T  +  KT T  +  KT T +  KT-
v . n £  1  

1 'W)n JT JT — JT Von(ti)d,r--dtn 

and  af te r  in tegra t ion ,  

V n  * V n ( t , )  

(VI-78)  

(VI-79)  

(VI-80)  

(VI-81)  

which  was  to  be  proved .  

I t  r emains  to  be  shown tha t  V^ n  <;  n  .  Let  n  =  3  to  s impl i fy  

the  mathemat ics .  By def in i t ion ,  

V oA ( t )  = V o ( t )  '  V '  T )  V c  

Therefore ,  

for  T  <  t  <  T +  KT (VI-82)  

V oA ( t l  V oA (V V oA ( t 3> =  W W W 

•V W Vo(Wl "T) " V W W *o(,2"T> 

rVW#?rTI + V v 0 ( t 3> ^o ( t i  - T > - T > 

(VI-83)  

o  2  

+ vo* W *o(t2 " T) *o(t3 " T> + V W *o(t3 " " T) 



84 

"  V 3  * o ( t l  "  T )  * o ( , 2  '  T >  * o ( t 3  *  T >  

After combining the integrals, 

3 T + KT T + KT T + KT 
V 1 A = ^ J J t  J t  J t  w  W  * 1  d , 2 d t 3  ( V I " 8 4 )  

= 7 ^  '  
T + KT T + KT 

1 " V ̂ 2 JT JT [  V W ] Cvo^3>" V *0VT>] dt2 dt3 

(VI-85) 

"(J)3 

where J is an integral given by formula (VI-72) and 

V3 < V* (VI-86) 

which was to be shown. By extension, 

v1An < v1n (VI-87) 

and finally < Vj" < V " (VI-88) 

VI-6 Reduction in Average Probability of Error and Variance due to an 
Adaptive Integrator 

The receiver consists of a linear detector and an integrator. When the 

input of the receiver consists only of normal type RC noise (0 received), three 

cases are compared: no integrator, standard integrator and adaptive integrator. 

The nth moments are denoted respectively by v "(t) , v," and v. . ° . Let 
o 1 1A 

f(vo), f(Vj), f(v^) be the probability density at the input of the threshold 

detector for the three cases. The corresponding average probabilities of error 

of the first type are 

Eo = I f(vo)dvo ' E1 = L f<V d^l ' 



,A 

^1A = » ^V1A ^V1A ' resPective,y w^ere D is the 
threshold level. 

Since the linear rectifier is a non linear network, the probability 

densities f(vQ), f(v^), ^(v^) are no* normal and quite difficult to obtain. 

However, the inequality Eq > > E^ follows directly from the inequality 

von(t) > Vin > V1An for any n; in other words, integration, and especially 

adaptive integration, reduces the average probability of error. 

Although the average probability of error of the first type is not defined 

completely by the variance and the mean, the reduction of the variance gives 

an idea of the reduction in average probability of error. The input variance of 
2 

the noise, a. , serves as a reference; the variance after detection is 
2  1 2  2  

a = .33 rr. ; the variance after standard integration is a given by formula 
' 2 VI-47 and the variance after adaptive integration is a given by formula 

2 2 
VI-73. and are function of the product K3, that is, the width 

of the pulse and the autocorrelation functions of the RC type input noise. 
2 2 2 

°o °1 G1A 
Fig. VI-3 shows the normalized variances, —, —j— , and —*—/ 

a. a. a. 
i i i 

versus Kf3. The variance of the noise is considerably reduced by the use of 

adaptive integration especially for small values of K3. 





Chapter  VII  

VII -  OPERATION OF THE BLOCK DIAGRAM OF THE EXPERIMENTAL SET UP 

VII—I In t roduc t ion  

Chapter  VII  and  chapter  VII I  a re  the  exper imenta l  ver i f ica t ion  of  

chapter  IV;  chapter  VII  expla ins  the  b lock  d iagram shown in  F ig .  VII—1 whi le  

chapter  VII I  p resen ts  the  exper imenta l  resu l t s .  The  th reshold  i s  adapt ive  or  

cons tan t  depending  upon whether  the  double  swi tch  SW (SW1 and  SW2)  i s  

on  "Adp"  or  on  "Ct" .  The  b lock  d iagram s imula tes  ( I )  the  product ion  of  the  

noisy  s igna l ,  (2)  the  rece iver  wi th  RC f i l t e r  and  threshold  de tec tor  and  (3)  

the  de tec t ion  of  e r rors .  

The  pseudo  per iod  of  the  random t ra in  of  pu lses  i s  T  and  the  wid th  of  

the  pulses  i s  KT =  K ( .  1)T where  K i s  an  in teger  be tween  1  and  5 .  Prec ise  
m m 

t iming  i s  p rovided  by  a  p i lo t  c lock  which  d iv ides  the  pseudo per iod  T in to  

ten ths  and  serves  as  a  t ime re fe rence ;  s igna ls  for  sampl ing  and  de tec t ing  can  

be  obta ined  anywhere  be tween  the  c lock  s igna ls  by  us ing  two s lave  pulse  

genera tors  wi th  ad jus tab le  de lay ;  the  or ig in  of  t ime  i s  as  in  F ig .  11-2 .  The  

per iod ic  t ra in  of  pu lses  o f  wid th  K ( .1 )T  and  per iod  T i s  t ransformed in to  
m 

a  random t ra in  of  pu lses  by  random ga t ing  .  

The noisy  s igna l  i s  the  sum of  the  t ra in  of  random rec tangular  pu lses  

and  of  whi te  no ise .  In  the  case  of  adapt ive  th reshold ,  the  sampler -holder  

cor rec t s  the  threshold  leve l  by  an  amount  equa l  to  the  expec ted  noise  a t  the  

t ime  of  de tec t ion .  

The  e r ror  counter  cons is t s  o f  a  co inc idence  c i rcu i t ,  which  compares  

the  t rue  s igna l  (no ise less  random pulse)  to  the  de tec ted  s igna l ,  and  of  a  counter  

which  counts  the  number  of  non-co inc idences ,  i . e .  er rors  in  the  de tec t ion .  

VII—2 Block  Diagram Components  

The  bas ic  components  used  in  the  b lock  d iagram of  F ig .  VII— 1  a re  

e i ther  espec ia l ly  des igned  or  s tandard .  The  espec ia l ly  des igned  equipment  

cons is t s  o f  a  p i lo t  c lock ,  s ix  preampl i f ie rs ,  th ree  samplers  (one  of  which  i s  
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P 6 'sG2 S G 2 
°SG2 

P 6 
°P6  

S G 2 
°P6  

Fig .  VI1-1  Block  Diagram of  the  Exper imenta l  Se t  Up.  



a sampler  holder) ,  one binary source,  seven summer amplif iers  (one of  which 

is  a  component  of  the sampler  holder)  and one absolute  value network.  The 

s tandard equipment  consis ts  of  an electronic  comparator ,  three generators ,  a  

white  noise  generator  and an electronic  counter .  

Throughout  this  chapter ,  the  components  are  descr ibed in  terms of  the 

mathematical  operat ions performed.  The circui ts  for  special ly  designed com­

ponents  are  given in  Appendix D;  for  the  s tandard components  the reader  is  

referred to  manufacturer ' s  l i terature .  

Vll-2a Pi lot  Clock 

The pi lot  c lock behaves as  a  ten s tep rotary switch which progresses  by 

one s tep every t ime a  pulse  is  appl ied a t  the input .  The rotary switch connects  

the nth output  to  a  posi t ive dc vol tage (  + 8  v)  and the nine other  outputs  

are  a t  the ground.  When a  pulse  is  appl ied a t  the input ,  the  (n + l ) th  output  

becomes +8 v while  the nth output  becomes zero.  

A pi lot  generator  provides  a  per iodic  t ra in  of  pulses  of  per iod T/  10 to  

dr ive the pi lot  c lock;  the shape of  the input  pulse  is  arbi t rary.  The or igin of  

t ime is  chosen as  in  Fig.  11-2 and the ten outputs  of  the  pi lot  c lock are  labeled 

KQ,  K ]  K^. The output  is  a  per iodic  t ra in  of  rectangular  pulses  of  

width T/10 and per iod T;  the  pulses  appear  in  the intervals  of  t ime 

mT < t< mT + .1  T,  where m is  an integer .  The output  is  ident ical  to  

t h e  o u t p u t  K q  e x c e p t  t h a t  t h e  t r a i n  o f  r e c t a n g u l a r  p u l s e s  i s  t r a n s l a t e d  b y  . I T .  

The pulses  appear  in  the intervals  of  t ime mT + .  1 T < t  < mT + .2  T.  Similar ly  

the outputs  . . . .  are  obtained successively by t ranslat ion as  shown in  

Fig.  VII—2. 

The pi lot  c lock divides  each per iod T into tenths;  the  outputs  K^,  

Kj  . . . .K 9  of  the pi lot  c lock are  successively posi t ive for  one tenth of  a  

per iod and can be used to  synchronize the receiver  and the error  detect ing 

circui t .  
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VI1—2b Preampl i f iers  

The noisy  rec tangular  pulses  of  the  pi lo t  c lock are  t ransformed in to  

noise less  rec tangular  pulses  us ing preampl i f iers ,  PI ,  P2,  P6.  Each 

preampl i f ier  has  severa l  inputs  lp^  ,  lp^  ,  Ip^.  e tc .  and one  output  Op as  

shown in  the  schemat ic  d iagram of  Fig .  VII—3.  The output  Op is  equal  to  

V p  vol ts  (V p  i s  an  adjus table  constant )  i f  one  or_more  of  the  inputs  a re  more  

than 1 .5  vol t .  I f  one  pulse  of  width  . IT  (of  ampl i tude  not  necessar i  ly  

constant  but  a lways  larger  than 1 .5  vol t )  i s  appl ied  to  one  input ,  the  output  

i s  a  rec tangular  pulse  of  width  .1  T and of  ampl i tude  Vp vol ts .  More  

genera l ly ,  i f  j  consecut ive  pulses  ( j  *  1 ,  2 ,  3 . . .  .5)  of  width  . IT  and of  

ampl i tude  larger  than 1 .5  v are  appl ied  to  j  inputs ,  the  output  i s  a  

rec tangular  pulse  of  width  j  ( .1  T)  and of  ampl i tude  Vp vol ts .  The noise  

between pulses  a t  the  input  i s  e l iminated by the  1 .5  vol t  threshold  level .  

In  the  present  appl ica t ion,  j  i s  equal  to  one  or  two.  The ampl i tude  of  the  

o u t p u t  r e c t a n g u l a r  p u l s e s  a r e  r e s p e c t i v e l y :  V p ^  =  2 . 5  v ,  V p 2  =  4 ' 5 v ,  V P 3  9 v '  

V p4 = 2 .5  v ,  V p 5  = 8  v ,  and V p 6  = 4.5  v .  

Vl l -2c  Samplers  and Sampler-Holder  

The schemat ic  d iagram of  a  sampler  i s  shown in  Fig .  Vl l -4a .  The 

exact  c i rcui t  of  the  sampler  i s  g iven in  Appendix  D;  however ,  the  schemat ic  

c i rcui t  d iagram of  Fig .  VII—4b i s  suff ic ient  to  analyze  the  mathemat ica l  

opera t ions  of  the  sampler .  

The input ,  the  output  and the  control  te rminal  of  the  sampler  a re  

denoted respect ively  by I ,  O and C .  The sampler  behaves  as  a  swi tch  
s  s  s  

control led  by the  control  te rminal ,  C^.  Let  VC1 and VC2 be  two dc  

vol tages ,  where  VC1 is  smal ler  than any input  vol tage  and VC2 is  la rger  

than any input  vol tage  (VC1 < I <  VC2);  then (1)  i f  =  VC1 the  sampler  

i s  an  open swi tch ,  O = O and (2)  i f  C = VC2 the  sampler  i s  a  c losed swi tch ,  
s  s  

o  =i  .  
s s  



(a)Preamplifier v*th one Input 

F1 o. '/TT-^ • Schematic THat*r*am of a r^eamrl ifier 
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*0. 

-2 .« .6 .« ( t / T )  

Fig. VII-^- a : Schematic Diagram of a Sampler * 

s  Transistor 
NPN 

R» 

Fig. VII-4 b : Schematic Circuit of a Sampler 

* Fig. VII-4 a corresponds to the operation of the sampler S (see coincidence 

circuit) for an error of the first type (0 sent, 1 detected) 



Two samplers  a re  used in  the  block diagram of  Fig .  VII-1:  the  random 

gate ,  RG,  and the  sampler ,  S .  The input  of  S ,  1^ ,  var ies  between 0  and 

+ 4 .5  v  and the  control  vol tages  on the  gate ,  C^,  a re  VC1 = 0  and 

VC2 = + 6  v .  When =  VC1 = 0  the  t rans is tor  of  Fig .  VII—4b behaves  as  

an  open swi tch  and the  output  is  zero  s ince  i t  i s  connected to  the  ground 

through the  low impedance res is tor  R ' ;  when = VC2 = +  6  v ,  the  t rans is tor  

behaves  as  a  c losed swi tch  and 0<.  =  1^.  The opera t ion of  the  random gate ,  

RG,  is  ident ica l  except  for  the  numerica l  va lues :  (1)  the  input ,  l D  —, var ies  
RG 

between 0  and 2 .5  v  and (2)  the  control  vol tages  on C n / ^ are  VC1 = 0  
RG 

and VC2 = + 4 .5  v .  

The schemat ic  d iagram of  a  sampler-holder  i s  shown in  Fig .  Vl l -5a .  

The sampler-holder ,  SH,  consis ts  of  a  sampler ,  a  memory device  

(capaci tor  C )  and an  ampl i f ier  as  shown in  the  schemat ic  c i rcui t  d iagram of  

Fig .  Vl l -5b.  The input  I o f  the  sampler-holder  i s  ha l f  of  the  output  of  A ,  
_  s( t )  2  

, e G * ' sH =  2— '  a n C '  C a n  a s s u m e  a n y v a ' u e  between -  10 v  and +  10 v .  

The control  of  the  sampler-holder  i s  b inary:  C c u  i s  equal  e i ther  to  +  10 v  or  
JH 

t o  - l O v .  T h e  i n p u t s  o f  t h e  a m p l i f i e r  A 7  a r e  u .  = C c u  a n d  u  =  -  1 0  v  
1 /  SH 27  

and the  one-s ide-gain  of  A7 is  about  uni ty .  The sampler-holder  has  two s ta tes :  

(1)  When =  + 10 v ,  the  sampler-holder  i s  sampl ing;  O^ -  -  10 v  by 

formula  VII—4 and the  t rans is tor  conducts  because  both  the  col lec tor  and the  

base  are  posi t ive  wi th  respect  to  the  emit ter  ( l c u >-  10 v) ;  the  t rans is tor  
SH 

behaves  as  a  c losed swi tch  and the  charge  of  the  condenser  C '  by the  summer  

ampl i f ier  A2 connected to  l^  can be  considered ins tantaneous  because  the  

output  impedance of  a  summer  ampl i f ier  i s  very  smal l ;  therefore ,  the  vol tage  

° S H  f o l l o w s  c l o s e l y  t h e  v o l t a g e  ' S H '  ° S H  =  l $ H  =  ( 2 )  W h e n  C $ H  =  - ) 0  

the  sampler-holder  i s  holding;  ^27 =  ^ s ince  ident ica l  vol tages  are  appl ied  on 

u j^  a n d  u 27» therefore ,  the  t rans is tor  does  not  conduct  because  the  emit ter  i s  

negat ive  wi th  respect  to  the  base .  The condenser  C '  d ischarges  i t se l f  on  the  

res is tance  R'  ( the  output  impedance of  A7 is  negl ig ib le)  and O s h  decays  

f rom i t s  in i t ia l  va lue  to  zero  wi th  a  t ime constant  R 'C '  .  



Sampler-Holder 

Gate 
< *— holding -> 

sampling 

Fiq. VII-5 a : Schematic Diagram of a Sampler-Holder* 

"SH 

'SH 
- - ^ NPN 

R* -- C* 
u17 

U27 
A7 

°27 < r 

- 10v' 

Fig. VII-5 b : Schematic Circuit of a Sampler-Holder 

* In Fig. VII-5 *. the filtered aignal s(t) la sampled during the interval 

.8 T to t*t) m .95 T and a(t • t*^ ) • a*^ 



For example, if C$ = + 10 v for t < t ̂  

C. = - 10 v for t > t (i)* 

where t^y* is the end of the sampling interval, -J-

1^ = s(t) for any t 

and Oh = s(t) for t < t^ j* 

" ( t  _ t ( U *  } /  R '  c '  
0 ^  =  s ( t = t ' ) e  f o r  t  >  t ^  j  

In conclusion, the sampler-holder behaves as a zero-memory network 

during the sampling interval and as a RC network during the holding time, 

which includes the detection interval. 

VII—2d Binary Source and Random Gate 

The block diagram of Fig. VII—6 shows how the binary source controls 

the random gate. A message is stored in the form of binary digits in the binary 

source which is synchronized by the pilot clock to deliver one binary digit 

(1 or 0) every pseudo-period in the form of pulse or no pulse; a binary 1 in 

the nth pseudo-period is expressed by a pulse in the interval .8 T + (n - 1) T 

to .8 T + nT (the exact width does not matter). For a sequence of binary 0 

(every digit is zero), the binary source can be replaced by a ground. For a 

sequence of binary 1 (every digit is one), the binary source can be replaced 

by + 4.5 volts. The messages, i.e. the sequence of digits, can be completely 

random; however, recurring messages such as 111111 000000 

101010 1001001 are very useful to check the detection system; for 

example, to show that the average probability of error for adaptive threshold 

is independent from the sequential order of the digits. 

(*) 
t j  ,  t j *  ,  p *  d e n o t e  t h e o r e t i c a l  v a l u e s ;  t ^ j  , t^y* , p denote the 

corresponding experimental values. 





The binary  source  has  two funct ions :  (1)  i t  controls  the  random gate  

in  order  to  t ransform the  per iodic  t ra in  of  pulses  out  of  the  preampl i f ier  PI  

in to  a  random t ra in  of  pulses  which is  the  pulse  code modula ted  b inary  message;  

(2)  i t  provides  a  t rue  emit ted  digi t  (a l though not  the  t rue  emit ted  pulse)  to  

compare  wi th  the  detec ted  digi t  in  the  coincidence  c i rcui t  (A6) .  

The random gate ,  RG,  is  a  sampler  and,  therefore ,  i s  descr ibed in  

paragraph VIl -2c .  I t  works  as  a  swi tch:  the  output  i s  equal  to  the  input  i f  

the  gate  is  pos i t ive  (  +  4 .5  vol ts )  and the  output  i s  zero  i f  the  gate  is  zero .  

The random gate ,  under  the  control  of  the  binary  source ,  removes  

pulses  f rom the  t ra in  of  per iodic  pulses  coming f rom PI .  The random gate  

behaves  as  a  c losed swi tch  when the  binary  source  emits  a  d igi t  1  and as  

an  open swi tch  when the  binary  source  emits  a  d igi t  0 .  The output  O 
R G 

of  the  random gate  is  the  binary  s ignal  in  a  pulse  code modula ted  form.  The 

width ,  ampl i tude ,  and shape of  the  pulse  are  determined by the  preampl i f ier  

P1,  whi le  the  presence  or  absence  of  a  pulse  is  de termined by the  b inary  source .  

Vl l -2e  Summer Ampli f iers  

The summer  ampl i f ier  i s  a  dc  di f ferent ia l  ampl i f ier  whose  gain  G is  

control led  by feedback.  The schemat ic  d iagram is  shown in  Fig .  VII  —7.  The 

ampl i f ier  i s  complete ly  symmetr ic  and consis ts  of  two s ides  ,  side  one  and s ide  

two which are  denoted by the  subscr ip t  1  and 2 ,  respect ively .  The outputs  a re  

e i ther  0^  to  ground or  0^  to  ground or  0^ to  0^  .  A posi t ive  s ignal  on  one  

input  of  s ide  one  (u^ ,  v^ ,  w^ or  x^)  makes  more  posi t ive  and v ice-versa ;  

0^  and are  complementary .  The output  vol tages ,  0^  and 0^ ,  are  l imi ted  

by the  dc  supply  to  a  minimum of  - lOv and a  maximum of  +  10 v ;  however ,  

^1  ° r  ^2 can be  l imi ted  to  any value  in  the  range -  10 v  to  +10 v  us ing a  

l imi ter  (Zener  d iode)  in  the  feedback.  



Side Che 

U1 _ 
V1 _ 
W1 — 
X1 — 

A 

- ° i  

Side Two 

u 2 -
* 2 _  
w2 — 

Gain = G "X 
- °z 

- 1 0  <  0 t  =  G  C u i  +  v l  +  W 1  -  ( u 2  +  v 2 ^ ]  ^  +  1 2  

- 1 0  <  0 2  «  -  0 t  <  +  1 2  

( a )  L i n e a r  A m p l i f i e r  

u l _  

Side One ^1 
1 — 

*1_J 

u l _  

Side One ^1 
1 — 

*1_J c 1 

U 2 _  

Side Two V 2  —  G large • 

w2 — _ o2 

( b )  H i g h  G a i n  A m p l i f i e r  w i t h  T w o  L i m i t e r s  o n  

I f  U i  +  V 1  +  W i  -  ( 1 1 2  +  w 2 )  > 0  0 1  =  5  v  

If + vt + W j  - (ug + w2) <0 0j « - 3 V  

Fig. VII-7 J Schematic Diagram of a Summer Amplifier 
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The general equations for the differential amplifiers are : 

(1) no limiters 

0^ to ground = 0^ = G^u^ + v^ + w^ + Xj "(^2 + v2 >) J (VI1-1) 

0 2 . - 0 1  ( V I I - 2 )  

01 to 02 = 2 01 (v,l_3) 

- 1 0 v < ( ^ 0 1  o r  0 2 ^ ) < + 1 0 v  ( V I M )  

where G is the gain of the amplifier 

(2) two limiters on (lower limit - LOj, upper limit + UOj) 

(VII-4) becomes 

-  L ° i <  ° i <  +  U O ]  ( V „ - 5 )  

(3) two limiters on 02 (lower limit - L02 , upper limit + U02) 

(VII-4) becomes 

- L 0 2 < 0 2 < + U 0 2  ( V I I - 6 )  

The voltage gain, G , is limited to 30 for linear operation but may be 

made much larger to perform logic operations. In the block diagram of Fig. VII-1 

the differential amplifiers are denoted by Al, A2, A3, A4, A5, A6. Al, A2, 

A3 and A6 are linear low gain amplifiers ; A4 and A5 are high gain amplifiers 

with voltage limiters on 02 . When the output of the amplifier is between Ol 



(or  02)  and the ground,  the gain is  G which is  cal led one s ide gain;  when 

the output  of  the amplif ier  is  between Ol  and 02,  the gain of  the amplif ier  is  

2G which is  cal led double  s ide gain.  

The equat ions for  the output  of  a  high gain amplif ier  with two l imiters  

on C>2 are  obtained af ter  replacing G by 0 0  in  formulas  (Vll- l ) ,  (VII-2) ,  

(VII-3)  and (VII-6) :  

(1)  l fUj+ Vj +  Xj C u2 +  V2^)> 0 '  

then 0 2  = -L0 2  (VII-7)  

(2)  If  u j  + v,+ w t+ - (u 2  + v 2 J <  O ,  

then 0 2  = +U0 2  (VII-8)  

(3)  O,  = -  0 2  

Since several  amplif iers  are  used in  the block diagram of  Fig.  Vl l - l ,  a  

second subscr ipt  is  necessary to  denote  the number of  the amplif ier .  For  example,  

u^  means:  input  u ,  s ide 1 ,  amplif ier  5 .  

VII  —2f Absolute  Value Network and Coincidence Circui t  

The absolute  value circui t ,  ABS ,  which is  shown in Fig.  Vl l -8a,  has  

two inputs ,  1^^ and l^^  /  a n c* o n e  output ,  O^.  Since the inputs  of  ABS 

are  the outputs  of  the different ia l  amplif ier ,  AG ,  they are  equal  and opposi te :  





'ABI  "  '  'AB2 (VII-10)  

Because  of  the  d iodes ,  the  output  O^g is  equal  to  tha t  one  of  the  two 

inputs  which is  pos i t ive  :  

l f , A B ,  > 0 '  ° A B  =  , A B 1  

l f  'AB2 > 0  '  °AB" 'AB2 

(Vl l - l l )  

The two formulas  (Vl l - l l )  and (VII-12) ,  which def ine  ABS can be  

condensed in to  one  :  

°AB "  ' 'ABI '  "  '  AB2 '  (VII-12)  

The coincidence  c i rcui t  shown in  Fig .  VII-8b consis ts  of  a  di f ferent ia l  

ampl i f ier ,  A6,  an  absolute  c i rcui t ,  ABS,  and a  sampler ,  S .  The inputs  of  A6 

are  (1)  the  t rue  b inary  d igi t  coming f rom the  binary  source  and (2)  the  detec ted  

binary  d ig i t  coming f rom the  comparator ;  the  binary  d ig i t  zero  and the  b inary  

d ig i t  one  are  represented respect ively  by no-pulse  and by a  pulse  of  ampl i tude  

+  5  v .  If  the  binary  d igi ts  on  the  inputs  of  A6 are  ident ica l ,  the  outputs  of  A6 

and ABS are  zero;  i f  the  binary  d igi ts  on  the  inputs  u^  and A6 are  

di f ferent ,  the  outputs  of  A6 are  O. ,  = + 6 .7  v  and O n ,  =+ 6 .7  v and the  
1 0  —  Z o  —  

output  of  ABS is  +  6  v  ( taking in to  account  the  vol tage  drop in  the  diodes  of  

the  rec t i f ier ) .  The t rue  b inary  d igi t  appears  in  the  in terval  (n  -  1)  T +  .8  T to  

(n)  T +  .8  T;  the  detec ted  binary  d igi t  appears  in  the  in terval  t^ j  to  1 .6  T ,  

where  t ^  is  the  detec t ion t ime.  Since  the  t rue  b inary  d ig i t  and the  detec ted  

binary  d ig i t  do  not  over lap  complete ly ,  they are  compared only  dur ing some of  

the  in terval  of  over lap  ,  more  precise ly ,  be tween .3  T and .4  T;  the  sampler  



S is  used for  th is  purpose .  The sampler  S  is  control led  by the  preampl i f ier  

P5 and behaves  as  a  c losed swi tch  in  the  in terval  of  t ime nT +  .3  T < t  <  nT +  4  T 

and as  an  open swi tch  e lsewhere .  

Dur ing the  in terval  of  t ime nT+ .3T <t  <nT+ .4  T,  the  output  of  the  

sampler  S  is  e i ther  zero  or  +  6  v :  i t  i s  zero  i f  the  nth  emit ted  d ig i t  and the  

nth  detec ted  digi t  a re  ident ica l  and i t  i s  6  v  i f  they are  d i f ferent .  Outs ide  

of  th is  in terval  of  t ime,  the  output  of  the  sampler  i s  zero .  

For  every  er ror  in  the  detec t ion,  a  pulse  (ampl i tude  6  v ,  width  .1  T)  

appears  a t  the  output  of  ;  this  pulse  ac t ivates  the  counter ,  CNT,  which 

counts  the  errors  in  the  detec t ion of  b inary  d ig i ts  mixed wi th  whi te  noise ;  i f  

the  f requency of  the  binary  d igi ts  and the  dura t ion of  the  exper iment  a re  measured,  

the  average  probabi l i ty  of  er ror  in  the  detec t ion can be  determined.  

VI1 —2g Elect ronic  Comparator  

The e lec t ronic  comparator  uni t ,  E .  C.  ,  is  made by Elect ronic  Associa te  

Inc .  The block diagram of  the  e lec t ronic  comparator  i s  shown in  Fig .  VII  —9.  

The input  i s  | ^  and the  outputs  a re  and C 2  which are  complementary;  

tha t  i s ,  i f  one  is  5  vol ts ,  the  other  is  0  vol t  and v ice-versa .  The comparator  

possesses  two logic  controls  :  la tch  and unla tch .  When + 5  vol ts  a re  appl ied  on 

the  la tch  terminal ,  the  input  of  the  comparator  i s  v i r tua l ly  d isconnected and the  

outputs  and remain  in  the i r  previous  s ta te  independent ly  of  the  input .  

The unla tch  terminal  overr ides  the  la tch  terminal ;  therefore ,  when -  2 vol ts  a re  

appl ied  on the  unla tch  terminal ,  the  input  vol tage  regains  control  of  the  comparator .  

When the  comparator  i s  unla tched the  correspondence between input  and output  i s  as  

fo l lows:  

C 

C 

< .5  

*  .5  
C 1  = + 5v 

C 2  = Ov 

C ]  = Ov 

C 2  = + 5v 
(VII-

(VII-





In  the block diagram of  Fig.  Vl l - l ,  the comparator  is  la tched al l  the 

t ime except  (1)  a t  the t ime of  detect ion where the input  1^ is  control led by 

the summer amplif ier  A4 and (2)  a t  the t ime of  reset  where the input  1^.  i s  

control led by preamplif ier  P4.  The input  of  the comparator  (1^)  is  protected 

against  large vol tages  by two diodes which short  c i rcui t  the  input  for  vol tages  

outs ide of  the al lowed range,  -  .6  v to  4- .6  v .  

VII  —2h Pulses  Generators  

Three pulse  generators  (one pi lot  pulse  generator  and two s lave pulse  

generators)  are  used in  the block diagram of  Fig.  VII— 1 .  

The pi lot  pulse  generator  provides  per iodic  pulses  a t  the input  of  the 

pi lot  c lock.  The shape of  the  pulses  is  not  important  and a  cer ta in  amount  

of  f requency dr i f t  i s  to lerable  because the pi lot  c lock insures  a  proper  sequence 

of  control  s ignals  for  a  wide range of  f requency.  

The pi lot  c lock and the preamplif iers  PI  to  P6 provide control  s ignals  

only a t  the discrete  t imes mT, mT + .  1 T,  mT + .2  T,  e tc . ,  or  more general ly ,  

only a t  the discrete  t imes m +p( . l )  T.  where m and p are  integers .  I t  

i s  necessary to  control  the intervals  of  t ime for  sampling and for  detect ion 

accurately anywhere in  the pseudo-period.  For  this  purpose,  s lave pulse  

generators  are  used.  

The schematic  diagrams of  the s lave pulse  generators  SGI and SG2 

are  shown in  Fig.  VII-10.  When a  rectangular  pulse  is  appl ied to  the input ,  

1^ ,  of a  s lave pulse  generator ,  SG,  the output ,  O^Q /  is  a  delayed rectangular  

pulse  whose delay,  width,  zero level  and ampli tude are  adjustable .  Using a  

s lave control  generator ,  any desired rectangular  pulse  can be obtained during 

the pseudo per iod.  

The input ,  I^q2 '  SG2 ' s  connected to  the output  of  P6 and the 

output ,  SG2 determines the desired sampling interval ;  the zero 

level  and the ampli tude of  O502 a r e  chosen for  a  proper  control  of  the 

sampler-holder ,  SH.  
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SGI 

L 
The four adjustments for SGI and SG2 are t 

SGI SG2 

Delay .05 T 0 

Width .05 T .15 T 

Zero setting 0 - 10 v 

Amplitude 5 v 20 v 

Fig. VII-10 : Sbhematic diagram of the slave pulse generators, 9G1 and 3G2 



The input ,  I^ Q J  /  of  SGI  is  connected to  the  output  of  P2 and the  

output ,  /  of  SGI  determines  the  des i red  detec t ion in terval ;  the  zero  

level  and the  ampl i tude  of  a r e  chosen for  a  proper  control  of  A5.  

VII  —2i  Swi tch  SW 

The swi tch ,  SW, is  a  double  swi tch  used to  swi tch  f rom adapt ive  to  

constant  threshold .  In  the  posi t ion  "Adp" :  (1)  SW1 connects  the  sampler  

holder  to  u^  s °  that  the  output  of  A3 is  the  adapt ive  threshold  and (2)  

SW2 connects  the  condensator  C^ in  para l le l  wi th  C 1  ,  making the  t ime 

constant  of  the  f i l te r  RC =  R(C^ +  C^)  for  adapt ive  threshold .  In  the  posi t ion  

"Ct"  :  (1)  SW1 connects  u^  to  the  ground so  tha t  the  output  of  A3 is  the  

constant  threshold  and (2)  SW2 disconnects  making the  t ime constant  of  the  

f i l te r  RC =  RC^ for  constant  threshold .  

Vl l -2 j  Whi te  Noise  Genera tor  

The random noise  genera tor  i s  manufactured by Genera l  Radio  ( type  

1390-B) .  I t  i s  used to  del iver  whi te  noise  of  normal  d is t r ibut ion on a  band­

width  0  to  22 Kcs ,  which is  a  large  bandwidth  in  compar ison of  the  

inverse  of  the  width  of  a  pulse .  The maximum open c i rcui t  output  i s  more  than 

two vol ts  and the  spect ra l  vol tage  densi ty  wi th  2  vol t  output  i s  about  2 .4  

mil ivol ts  for  one-cycle  band.  The output  impedance is  less  than 900 ohms 

which is  smal l  compared to  the  input  impedance of  the  ampl i f ier  A1.  

VII—2k Elect ronic  Counter  

The e lec t ronic  counter  i s  manufactured by Hewlet t -Packard  Company 

( type  5245L)  which is  a  high f requency genera l  purpose  e lec t ronic  counter  

tha t  measures  f requencies  f rom 0  to  50 Mcs,  per iods  f rom 1 second to  10 

seconds  and per iod average  from 10 to  100,000 per iods .  The e lec t ronic  

counter  i s  used to  count  the  pulses  coming from the  coincidence  c i rcui t  (one  

pulse  for  each error  in  the  detec t ion)  for  a  dura t ion of  severa l  hours .  
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VI1 ~3 Choice of  the Sampling Time,  The Detect ion Time and the Holding Network 

The experimental  model  of  Fig.  VII-1 differs  s l ight ly  from the mathematical  

model  of  chapter  IV because the response of  the  electronic  components ,  a l though 

fast ,  is  not  instantaneous.  

The experimental  sampling t ime f inishes  a t  t ime t  =t^* and t^* = .95 T 

instead of  a t  the theoret ical  value,  t*  = T,  because the sampling must  be  terminated 

before  the s tar t  of  the  unknown pulse  and a  safety margin is  necessary.  

The experimental  t ime of  detect ion is  a t  the end of  the pulse;  however ,  i t  

cannot  be def ined exact ly  (as  the theoret ical  t ime was)  because the detect ion is  not  

instantaneous.  For  example,  i f  the  width of  the pulse  is  .2  T,  the detect ion takes  

place at  a  t ime t^  in the interval  1 .15 T to  1 .2  T instead of  the theoret ical  value 

t ]  = 1.2 T.  

The opt imum adapt ive threshold,  D^,  a t  the t ime,  t^ ,  of detect ion is  ob­

ta i n e d by using formulas  ( IV-52)  and (IV-31)  and replacing ^  by t ,^ ,  t*  by f .* and 

p* by p(*):  

- ( tm  -  * n \ )AC 
° A  =  A / 2  +  S ( l*)  6  =  A / 2  +  P (* }  s ( l )  t  (V , M 5 )  

p(*)  is  not  precisely def ined because t^  is anywhere between 1 .15 T and 1 .2  T.  

e - .25 T/RC < p(.) = /<'(!) " V))/RC < 0 - .2  T/RC ( V M . , 6 )  

As an approximation,  le t  p(*)  =e * 2 2  (VI1—17) 

The opt imum adapt ive threshold,  D^(t) ,  a t  t ime t  anywhere during the 

interval  of  detect ion (1.15 T < t  < 1 .2  T) is  obtained by general iz ing formula 

(VI I -15):  

- ( t  -  t  *) /RC 
DA ( t )  = A/2 + s ( i*  e  K '  for  1 .15 T <t  < 1.2 T (VII-18)  

i~  The peak ampli tude A of  a  f i l tered s ingle  pulse  is  smaller  for  adapt ive 
than for  constant  threshold (RC larger) .  



On the  other  hand,  the  output  of  a  sampler-holder  a t  t ime t ,  af ter  sampl ing 

unt i l  t ime is  g iven by paragraph VI1-2  e :  

- ( t  _  f  * ) /R 'C '  
°H ( t )  °  s ( l* / 2  e  f o r f > t ( )*)  (VII-19)  

and a t  the  t ime t ^  of  detec t ion:  

V V d V 4 '  0 )  =  p ( i )  S ( 1 )  ( v , l ' 2 0 )  

The ot fput  of  the  summer  ampl i f ier  A3 (gain  2)  a t  t ime t  dur ing the  in terval  

of  de tec t ion is  

_( t  _  j-  * ) /R 'C '  
°1 3 (0  = A/2 + S (*  e  ( 1 )  for  1 .15 T < t  < 1 .2  T (VII-21)  

From compar ison between formulas  (VII-18)  ard  (VII-21) ,  i t  fo l lows tha t  the  

output  O.J^( t )  of  the  ampl i f ier  A3 can be  made equal  to  the  adapt ive  threshold  

d a (0 ,  as  des i red ,  dur ing the  detec t ion in terval  by  taking R'C '  =  RC:  

°13 ( t ( l ) )  =  °A ( t  = t ( l ) }  =  °A f o r  R , C ,  = R C  a n d  f  = t ( l )  ( V ! | - 2 2 )  

Since  the  output  of  P4 overr ides  the  output  of  A4,  EC is  sens i t ive  to  A4 

only  for  1 .15 T <  t  <  1 .2  T when,  both ,  EC is  unla tched and Op^ = 0 .  

Therefore ,  the  decis ion c i rcui t ,  which consis ts  of  A4 and EC,  compares  the  

output  of  A3 to  the  output  of  A2 ( i .e .  D(t )  to  s( t ) )  only  dur ing the  shor t  in terval  

1 .15 T <  t  <  1 .2  T.  For  a l l  pract ica l  purposes ,  th is  shor t  in terval  i s  an  ins tant  of  

t ime,  ^where  1.15 T <  t^  < 1 .2  T.  Thus  the  comparator  compares  =  

D A ( t  t o  s ( ] )  a s  desi red .  In  conclus ion,  the  exper imenta l  b lock diagram of  

Fig .  VII— 1 s imula tes  the  theore t ica l  b lock diagram of  Fig .  11-1  except  for  minor  

d i f ferences  due  to  the  nonins tantaneous  opera t ion of  the  e lec t ronic  components .  
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VI1-4 Analysis of the Experimental Block Diagram 

Vll-4o Outline of the Analysis 

The block diagram of Fig. VII — 1 can be divided into four subdivisions: 

(1) the clock system, (2) the generator of noisy signal and the decision circuit, 

(3) the unlash control and (4) the coincidence circuit and error counter. In each 

of the four subdivisions, the operation of each component versus time is analyzed 

for about one pseudo-period using (a) the description of the components of para­

graph VI1—2 and (b) the experimental sampling time and the experimental detection 

time (t^j and t^ respectively) defined in paragraph VI1—3. 

The following types of detection are considered successively: 

(1) The detection of one pulse (width KT = .2 T) mixed with white noise using an 

adaptive threshold detector (see VI1-4 b); 

(2) The detection of no-pulse, i.e. white noise alone using an adaptive threshold 

detector (see VI1-4 c); 

(3) The detection of one pulse (width KT = .2 T) mixed with white noi*e , using 

a constant threshold detector (see VI1-4 d); 

(4) The detection of no-pulse, i.e. white noise alone, using a constant threshold 

detector (see VI1-4 e). 

The analysis for a pulse width other than .2 T would be very similar. 

VII-4b Detection of One Pulse Mixed with White Noise Using an Adaptive 
Threshold Detector 

One pulse is emitted by the random gate during the interval of time 

T < t < 1.2 T and the switch, SW, of the block diagram of Fig. VII— 1 is on the 

position Adaptive Threshold (Adp). The detector either detects a pulse, which is 

a correct detection, or detects a zero, which is an error of type 2 (see Fig. 11-4). 

The block diagram of Fig. VI1-1 is decomposed into four elementary block 

diagrams: (1) the clock system; (2) the generator of noisy signal and the decision 



ci rcui t ;  (3)  the  unlash  control  and (4)  the  coincidence  c i rcui t .  These  are  analyzed 

success ively  in  paragraphs  VII-4B-1,  VII-4b-2 ,  VII-4b-3  and VII-4b-4 .  

Vl l -4b-1  The Clock System 

The c lock sys tem (which consis ts  of  a  per iodic  pulse  genera tor ,  a  p i lo t  c lock,  

a  group of  preampl i f iers  and two s lave  genera tors)  i s  used for  control  and synchroni­

za t ion.  

The funct ions  of  the  preampl i f iers ,  PI  P6,  and of  the  two s lave  

genera tors ,  SGI  and SG2,  are  shown in  Fig .  VI1—11 for  the  one  pseudo-per iod.  The 

detec t ion of  one  pulse  in  the  in terval  of  t ime T to  1 .2  T s tar ts  by  the  rese t  of  the  

e lec t ronic  comparator  in  ihe  previous  per iod,  a t  t ime t  =  .6  T.  

The c lock sys tem controls  ( la )  the  rese t  of  the  comparator  and ( lb)  the  

gat ing of  the  sampler-holder ;  i t  synchronizes  (2a)  the  genera tor  of  a  noisy  s ignal ,  

(2b)  the  unla tch  control  and (2c)  the  coincidence  c i rcui t .  

( la )  The c lock sys tem controls  the  rese t  of  the  comparator  by  the  preampl i ­

f ier  P4 which makes  the  input  of  the  comparator  pos i t ive  whi le  the  comparator  i s  

unla tched ( .6  T <  t  <  .7  T);  P4 is  pos i t ive  dur ing the  t ime .6  T <  t  <  .7  T which 

insures  tha t  the  comparator  i s  in  the  posi t ion  l c  >0 (C^ =5v,  C c  =0v)  when i t  i s  

la tched a t  t ime t  =  .7  T.  

( lb)  The c lock sys tem controls  the  sampler-holder  by  the  s lave  genera tor ,  

SG2,  which appl ies  +10 v  to  the  gate  dur ing the  sampl ing in terval  .8  T <  t  <( .95T = t^  

and which appl ies  -10  v  to  the  gate  dur ing the  holding in terval  t^^*< t  <  1 .8T) .  The 

opera t ion of  the  s lave  genera tor  and of  the  sampler-holder  a re  analyzed in  deta i l  in  

paragraph VII—2b and Vl l -2c ,  respect ively .  

(2a)  The t ra in  of  random pulses  represent ing the  binary  s ignal  i s  obta ined by 

gat ing the  per iodic  t ra in  of  pulses  produced by PI .  (See  paragraph VII—2d.)  

(2b)  The preampl i f iers  P2 and P3 synchronize  the  ampl i f ier  A5 which con­

t ro ls  the  unlash  of  the  comparator .  (See  paragraph VIl -2g. )  

2(c)  The preampl i f ier  P5 controls  the  gate  of  the  sampler ,  S ,  which syn­

chronizes  the  coincidence  c i rcui t  so  tha t  the  t rue  s ignal  coming f rom the  binary  
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source and the detected signal coming from the comparator are compared only 

during the interval of time .3 T < t < .4 T which is common to the two partially 

overlapping signals (see paragraph VI1-21). 

VII-4b-2 The Generator of Noisy Signal and the Decision Circuit 

The generator of noisy signal consists of a noise generator, NG, a random 

gate, RG, and a summer amplifier, Al. The random gate transforms the train of 

periodic pulses at the output of PI into a train of random pulses under the control 

of the binary source as explained in paragraph VII—2d. Throughout the paragraph 

Vll-4b, it is assumed that one pulse is received during the interval of time T < t < 

1 . 2  T ;  t h e r e f o r e ,  t h e  r a n d o m  g a t e  b e h a v e s  j u s t  a s  a  c l o s e d  s w i t c h ,  t h a t  i s  =  O p j -

The output 02^ to ^ of the summer amplifier Al is the sum of the white noise and 

of the pulse coming from PI. This output corresponds to the noisy input signal s.(t) 

of the theoretical block diagram of Fig. 11— 1. 

The decision circuit consists of the summer amplifier, A2, the sampler-

holder, S-H, the summer amplifier, A3, and the threshold detector, (A4 and EC). 

The input impedance of the amplifier A2 is so large that the RC filter can be con­

sidered unloaded. The output to 022 ^ corresponds to the filtered signal, 

s(t), of Fig. 11— 1. 

The sampler-holder is controlled by the control circuit and more precisely 

by the output of A7 which follows the output of the slave pulse generator, SG2, 

shown in Fig. VII-10. The operation of the sampler-holder was explained in para­

graph Vll-2c; the intervals of sampling and detection were determined in paragraph 

VII—3. The output of A3 is the adaptive threshold level D^(t) which is given by 

formula (VII—21). The differential amplifier A4 has a very high gain and two limiters 

(+2v and -2v); the output of A4, which is +2v if D^(t) > s(t) and is -2 v if D^(t) < s(t), 

is applied to the input of the electronic comparator, I , through a small resistance, c 
R4 (R^ is used for protection of both A4 and Ec). 



The comparator  i s  la tched by +5v on the  la tch  terminal  except  when the  

output  of  the  ampl i f ier  A5 of  the  control  c i rcui t  provides  -2v on the  unla tch  termi­

nal  which occurs  (1)  dur ing the  rese t  in terval  ( .6  T <  t  <  .7  T)  and (2)  dur ing the  

detec t ion in terval  (1„15T <t< 1.2  T) .  

The opera t ion of  the  e lec t ronic  comparator  i s  expla ined in  paragraph VII—2g.  

Dur ing the  rese t  in terval  ( .6  T <  t  <  .7  T)  the  comparator  swi tches  to  the  tes t ing  

s ta te  Cj  = 5  v ,  C^ = Ov,(or  remains  there)  because  both  (1)  P4 makes  I  pos i t ive  

and (2)  A5 unla tches  the  comparator .  Dur ing the  detec t ion in terval  (1 .15 T <  t^  < 

1.2  T)  the  comparator  i s  sens i t ive  to  the  output  of  A4 because  A5 unla tches  the  com­

para tor ;  two s i tua t ions  ar ise :  (1)  i f  s ( t  = t ( ] ) )  =s ( ] )  > D A  = A/2 + p(*)  n ( ] *,  then 

°24 ^  =  f ( l )^  0  a n d  c o m P° r ° tor  swi tches  to  the  detec t ing s ta te  =  5  v which 

means  a  pulse  has  been detec ted;  (2)  i f  s^  < D^ then C> 2 4  ( t  =  t ^  < 0  and the  

comparator  remains  on C^ = Ov;  no pulse  has  been detec ted  ( th is  i s  an  er ror  of  the  

second type .  The var ia t ions  of  the  output  vol tage  of  the  components  of  the  noisy  

s ignal  genera tor  and of  the  decis ion c i rcui t  versus  t ime are  shown in  Fig .  VII-12.  

VII—4b—3 The Latch and Unla tch  Control  

The la tching and unla tching of  the  comparator  i s  control led  by the  ampl i f ier  

A5.  The opera t ion of  the  comparator  was  expla ined in  paragraph Vl l -2g;  the  com­

para tor  i s  unla tched when the  output  of  A5,  O^,  is  negat ive  and is  la tched o ther­

wise .  

A5 is  a  high gain  ampl i f ier  wi th  two l imi ters  which l imi t  the  output  O^ 

between -2v and +10 v .  Using paragraph Vl l -2e ,  O^ is  equal  to  -2  v  when the  sum 

of  the  inputs  to  A5 (denoted by I )  is  pos i t ive :  

I f  ^  ~  u ]5  + v ]5  + w ]5  + ^ x 15 ^  ^2  =  EC is  la tched 

If  £  >  0/  C>2 =  -2v;  EC is  unla tched.  

The control  of  la tch  and unla tch  for  one  pseudo-per iod is  shown in  Fig .  

VII-13.  During the detect ion interval  (1 .15 T <t < 1.2 T),  v =0 =+5v-
15 SGI '  

at  t ime t  =  1 .15 T,  the  comparator  EC is  unla tched because  both  v  =  +5v and 
15 







Uj,- = +5v (the comparator was reset at t = .6 T). The comparator remains 

unlatched until T = 1.2 T if no pulse is detected; however, if a pulse is detected 

at time t,.x, ulc =C. becomes zero and the comparator is latched since v, g alone 
( I )  lo  I  1 3  

cannot unlatch it. The purpose of u^ is to prevent the detection of several pulses 

in one pseudo-period. 

During the reset (.6 T < t < .7 T) the comparator is unlatched by a +9v on 

whether (u^ = Cj) is zero or five volts. 

VII-4b-4 Coincidence Circuit 

The operation of the coincidence circuit was examined in detail in para­

graph VII—2f. Table VII— 14 shows the operation of the coincidence circuit and of 

the counter when one pulse is sent for the two cases: (1) no pulse detected (error 

of the second type) and (2) one pulse detected. 

VII—4b—5 Operation of the Block Diagram When One Pulse is Sent 

The main steps in the detection of one pulse mixed with white noise using 

a RC filter and an adaptive threshold are shown in Table VII-15 which condenses 

the main results of Tables VII— 11, VII —12, VI1—13 and VII— 14 into one table for 

easy reference. 

Vll-4c Detection of no Pulse Mixed with White Noise Using an Adaptive Threshold 
Detector 

No pulse is emitted by the random gate during the interval of time T < t < 

1.2 T; the detector either detects no pulse, which is a correct detection, or detects 

a pulse, which is an error of type 1. The switch, SW, of the block diagram of 

Fig. Vll-1 is on the position "Adaptive" (Adp). 

The clock system operates exactly as in paragraph VII—4b— 1. The output 

of the random gate is zero; therefore, the output of A1 is just the white noise and 



Compo­
nents  

One 

detec ted  

Zero  

detec ted  

(Error)  

ABS 

S 

Counter  

EC 

A6 

ABS 

S 

Counter  

Outputs  

°BS~ u 16 

°P5 =  C S 

C 2 ~ v 1 6  
°16 

°26 

°A = I° 1 6  

0 

Table  VII-14:  Operat ion of  the  Coincidence  Circui t  and the  Counter  
(One Pulse  Sent)  





the  output  of  A2 is  the  sum of  the  f i l te red  noise  and of  the  smal l  res idual  vol tage  

due  to  the  previously  detec ted  pulses .  The decis ion c i rcui t  and the  rese t  opera te  

exact ly  as  in  paragraphs  VII—4b—2 and VII—4b—3.  

The opera t ion of  the  coincidence  c i rcui t  and of  the  counter  i s  expla ined in  

paragraph VII—2f for  any poss ib le  case  and is  shown in  Table  VII-16 for  the  case  

of  no  pulse  sent .  Since  no pulse  is  sent ,  u^  is  zero  for  .6  T <  t  <  1 .6  T and in  

par t icular  dur ing the  coincidence  check (1 .3  T <  t  <  1 .4  T) .  

Vl l -4d Detect ion of  One Pulse  Mixed wi th  White  Noise ,  Using a  Constant  
Threshold  Detector  

One pulse  i s  emit ted  by the  random gate  dur ing the  in terval  of  t ime 

T <  t  <  1 .2  T;  the  detec tor  e i ther  detec ts  a  pulse ,  which is  a  correc t  de tec t ion,  

or  de tec ts  a  zero ,  which is  an  error  of  type  2 .  

The swi tch  SW of  the  block diagram of  Fig .  VII-1  i s  on  the  posi t ion  

"constant  threshold"  (Ct) ;  therefore ,  by  SW1 the  output  of  the  sampler  holder  

i s  not  used and by SW2 the  t ime constant  of  the  RC network is  reduced to  RC = 

RCp 

The opera t ions  of  the  c lock c i rcui t ,  the  genera tor  of  noisy  s ignal ,  the  

control  c i rcui t ,  the  coincidence  c i rcui t  and the  counter  are  ident ica l  for  constant  

or  for  adapt ive  threshold  and are  descr ibed in  paragraphs  Vl l -4b.  

In  the  case  of  constant  threshold ,  the  input  u^  of  A3 is  equal  to  zero;  

therefore ,  (1)  the  ampl i f ier ,  A4,  compares  D ( t )  =  A/2  to  s( t )  and (2)  the  com-
c  

para tor ,  EC,  detec ts  the  output  of  A4 a t  t ime t^ .  Together ,  A4 and EC compare  

D £ =A/2to  s ( t=t ( ] ) )=s ( ] ) .  

In  conclus ion,  the  detec t ions  of  one  pulse  mixed wi th  noise  us ing (1)  an  

adapt ive  threshold  and (2)  a  constant  threshold ,  a re  ident ica l  except  for  two 

points  (see  Table  VII-17) :  

a )  The sampler-holder  i s  not  used in  the  case  of  constant  threshold  detec t ion,  

b)  In  the  case  of  constant  threshold ,  the  decis ion c i rcui t  compares  =A/2 

to  s Q J ,  whi le  in  the  case  of  adapt ive  threshold  i t  compares  =  A/2 +  p(*)  s^  

to  s ( ] ) .  



122 

Compo­
nents Outputs . 5T 1 . 15T < 

'(0 K 
2T 1. 3T 1 4T 1. 

BS °BS = U16 0 or 5 v 0 0 0 0 0 

P5 °P5 = CS 0 0 0 0 6 v 0 

EC 

A6 

C2 = v16 

°16 

0 

n "6-7v 0 or 

0 

0 

0 

0 

5 v 

- 6.7v 

5 v 

-6.7v 

5 v 

-6.7v 

5 v 

-6.7v 

One °26 n +6-7v 0 or 0 0 + 6.7v +6.7v +6.7v +6.7v 

detected ABS o > II
 o
 

o
 0 or + 6.7v 0 0 + 6v + 6v + 6v + 6v 

(Error) S O s 0 0 0 0 0 + 6v 0 

Counter 0 0 0 0 0 0 1 0 

EC C2 = V16 0 0 0 0 0 0 

\ °,6 0 or - 6.7v 0 0 0 0 0 

Zero °26 0 or + 6.7v 0 0 0 0 0 
detected ABS o > II

 o
 

o- 0 or + 6 v 0 0 0 0 0 
S 0 0 0 0 0 0 0 

Counter 0 0 0 0 0 0 0 

Table VII — 16: Operation of the Coincidence Circuit and the Counter 

(No Pulse Sent) 



Adaptive Threshold Constant Threshold 

sw "Adp" "Ct" 

Time constant of filter RC = R(C] +C2) RC =RC] 

°13aM(l) p(*) sd) 0 

Output of A,, at t... 
°,3'°°23 ^ DA = A/2 + p(*> s(]* D = A/2 

c 

Output of EC at t^^ 0) if da< s(]) 

C , = + 5 v  C 2 = °  

0) I f  Dc < s(1) 

C1 = +5v C2 =0 

Error of the second type Error of the second type 

<2> ,fDA>S(l) 

C 1  = 0  C 2  = + 5 v  

(2) If Dc > s(1) 

C 1  = 0  C 2  =  + 5 v  

Correct detection Correct detection 

Table VI1 — 17 Comparison Between Adaptive and Constant Threshold During 
the Interval of Detection 
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Vll-4e  Detect ion of  no  Pulse  Mixed wi th  Whi te  Noise /  Using a  RC Fi l ter  and 
a  Constant  Threshold  Detector .  

The swi tch ,  SW, of  Fig .  VI1-1  i s  on  the  posi t ion  "Constant  Threshold"  £ t ) ;  

therefore ,  u^  =  0 and the  sampler-holder  i s  not  used.  By hypothes is ,  the  output  

of  the  binary  source  is  zero  dur ing the  in terval  .6  T to  1 .6  T.  I t  fo l lows:  (1)  the  

random gate  is  an  open swi tch ,  the  output  of  A1 is  jus t  the  whi te  noise  and the  

output  of  A2 is  the  sum of  the  f i l te red  noise  and of  the  res idual  vol tage  due to  the  

previously detected pulses; (2) the threshold detector compares s^ to = A/2 

as  in  paragraph VII—4d;  (3)  the  coincidence  c i rcui t  compares  a  zero  coming f rom 

the  binary  source  to  the  detec ted  s ignal  coming f rom the  comparator  (C2)  dur ing 

the  in terval  1 .3T <t  < 1 .4T.  If  a  pulse  is  de tec ted ,  which corresponds  to  an  

error  of  the  f i rs t  type ,  (1)  C 2  =5v for  t ^  < t  <  1 .6  T,  and (2)  C> 5  = +4.5  v  for  

1 .3  T <  t  <  1 0 4 T which ac t ivates  the  counter .  

VII  —5 Conclus ion of  Chapter  VII  

The exper imenta l  b lock diagram of  Fig .  VI1-1  consis ts  of  funct ional  b locks:  

c lock sys tem,  noisy  s ignal  genera tor ,  receiver ,  and error  de tec tor .  The opera t ion 

of  the  block diagram is  expla ined in  three  s teps  by consider ing (1)  the  bas ic  com­

ponents ,  (2)  the  funct ional  b locks  and (3)  the  complete  d iagram.  I t  was  shown that  

except  for  minor  d i f ferences ,  Fig .  Vl l - l  s imula tes  the  theore t ica l  b lock diagram of  

Fig .  11-2  as  des i red .  

In  chapter  VIII ,  numerica l  va lues  are  ass igned to  the  pseudo-per iod and 

the  RC f i l te r ,  and the  b lock diagram is  tes ted .  



CHAPTER VII I  

EXPERIMENTAL RESULTS 

VI11  — 1  In t roduc t ion  

Chapter  VII I  i s  the  cont inua t ion  of  Chapter  VII ;  the  purpose  of  

Chapter  VII I  i s  twofo ld :  (1)  numer ica l  va lues  a re  ass igned  to  the  fo l lowing:  

the  pseudo-per iod ,  the  t ime cons tan t  o f  the  f i l t e r  and  of  the  sampler -holder ,  

the  ampl i tude  V,  the  ga in  of  the  ampl i f ie rs ,  the  threshold  and  the  f ic t i t ious  

s igna l  to  no ise  ra t io ;  (2)  the  exper imenta l  average  probabi l i t i es  o f  e r ror  for  

cons tan t  and  adapt ive  threshold  a re  de te rmined  and  compared  wi th  the  

theore t ica l  resu l t s  o f  Chapter  IV.  

VI11-2  Choice  of  the  Pseudo-Per iod ,  T ,  and  of  the  Normal ized  Width  of  

the  Pulse ,  K.  

Al though most  t e lemet ry  sys tems  opera te  a t  ra ther  h igh  f requency ,  

they  can  be  s imula ted  a t  lower  f requency  us ing  t ime  sca l ing .  The  pseudo-

per iod ,  T ,  can  be  de te rmined  by  three  cons idera t ions :  (a )  i f  T  i s  shor t  

the  des ign  of  the  components  i s  more  d i f f icu l t ,  (b )  i f  T  i s  long  the  exper i ­

ment  i s  very  lengthy  and  (c )  the  bandwidth  of  the  noise  genera tor  mus t  be  

smal l  for  a  t ru ly  normal  d i s t r ibu t ion  but  s t i l l  l a rge  compared  to  1 /T  in  order  

to  s imula te  whi te  no ise ;  as  a  compromise ,  T  i s  t aken  equa l  to  500  ps .  

I t  was  shown in  Chapter  IV tha t  the  average  probabi l i ty  of  e r ror  for  

cons tan t  o r  adapt ive  threshold  i s  min imum for  K min imum;  however ,  K 

would  be  a t  leas t  .1  or  .2  for  a  prac t ica l  sys tem.  In  Chapter  VII I  a s  in  

Chapter  VII ,  K i s  t aken  equa l  to  .2 .  The  pulse  wid th  i s  then :  KT =  100  ps .  
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VIII -3  Choice  of  the  Time Cons tan t  o f  the  F i l te r  (RC)  and  of  the  Sampler -Holder  (R 'C 1 )  

The  t ime  cons tan t  o f  the  RC f i l t e r ,  which  i s  de te rmined  by  the  product  
KT 

Ky =  ,  is  chosen  to  min imize  the  average  probabi l i ty  o f  e r ror .  For  cons tan t  

th reshold  and  K =  .2 ,  the  opt imum va lue  of  Ky i s  Ky =  1 .25  by  F ig .  IV-3 .  

For  adapt ive  threshold  the  average  probabi l i ty  of  e r ror  i s  min imum for  the  minimum 

Ky (see  Paragraph  IV-9) ,  for  rea l izab i l i ty  Ky i s  t aken  equa l  to  .312 .  

The  va lues  of  the  t ime cons tan t  for  cons tan t  and  adapt ive  thresholds  fo l low:  

(1)  Cons tan t  Threshold  RC =  RC^ ,  Ky =  1 .25  ,  y  =  -^ r  =  6 .  25  

RCI=47=JS-=80^ <vi im> 

R =  1600 u  ,  C 1 = .05Mf (VI11-2)  

(2)  Adapt ive  Threshold  RC =  R(C^ +  C^)  ,  Ky =  .312  ,  y  =  ̂  = 1 .56  

R ( C 1 +  C 2 )  =  —= 320 M s  (VI11-3)  

R =  1600u,  C ]  + C 2 = .2m f  ,  C 2 = .  15  p  f  (VI11-4)  

The  var ia t ion  of  capac i ty  f rom C^ =  .05pf  to  C 1  +  C 2 = .2pf  

i s  cont ro l led  by  the  po le  SW2 of  the  swi tch  SW which  connec ts  C 2  = .  15pf  

in  para l le i  wi th  C^ .  

The  t ime  cons tan t  R 'C 1  of  the  sampler -holder  i s  equa l  to  the  t ime  cons tan t  

o f  the  RC ne twork  by  paragraph  IV-5;  therefore ,  R 'C '  =  320ps :  R '  =  1600u 

C '  =  .20  pf .  

VII I -4  Choice  of  the  Ampl i tude  V of  the  Pulse  and  of  the  Gain  of  A1 and  A2 

Since  the  ampl i tude  V of  the  rec tangular  pu lse  mus t  be  smal l  compared  

to  the  maximum ins tan taneous  ampl i tude  of  the  noise  bu t  mus t  be  la rge  for  

accuracy ,  V is  t aken  equa l  to  1 .65  vol t s .  
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In Chapter IV, s.(t) = n.(t) + p.(t) and s(t) is s.(t) after RC filtering; 

this corresponds to a gain one for both A1 and A2. The threshold detection 

which compares the filtered signal to the threshold level is unchanged if 

both the filtered signal and the threshold level are multiplied by the same 

factor; this means that the gains of the amplifier A1 and A2 are arbitrary. 

The gains of A1 and A2 are chosen small for linear operation of amplifiers, 

even when the noise has a large amplitude. The double gain of A1 is equal 

to one. The double gain of A2 is about 3. 4 and is adjusted for a peak amplitude 

A = 4 volts when the noise is null. The output of A2 (0^ to ^22) 's ca"ec* 

the filtered noise and denoted by s(t); because of the symmetry the voltage 

between 0^ ar,d the ground is s(t)/2 . 

VIII-5 Choice of the Constant and of the Adaptive Threshold Levels 

The constant threshold level, D^., which is the output of the amplifier 

A3 when the switch SW is on "Ct", was defined in Chapter VII as equal to 

A/2 where A is the peak amplitude of a single filtered pulse without noise. 

Since the gain of A2 is chosen to make A=4v, it follows that D^. = 2 v. 

The adaptive threshold level, D^(t), which is the output of the 

amplifier A3 when the switch SW is on "Adp", is defined by formula (VII-15) 

at the time t 
0) 

of detection: 

D 

A is proportional to (1 - e 

A 

..-0* 
-A/2.. (VI11-5) 

), therefore, for adaptive threshold 

* = .95 T, 
(1 -e"'312l 

A = 4 -—^— =1.495v. Substituting 1.495 v for A, t^ 

d) 

(1 -e —) 

1.17T and y T/RC = 1.56 gives 

Da = .748+ s(1)* e"(-22)(U56)= .748+ .709 s (VI11-6) 

Since the sampler-holder samples only one for the two sides of the 

r£ (1) 
amplifier A3, the output of the sampler is —— e 



therefore, (1) the gain of the amplifier A3 must be exactly two and (2) the 

input U22 of A3 must be equal to A/4= ,374v. 

VI11 —6 Adjustment of the Fictitious Signal to Noise Ratio Q 

The numerical values of the fictitious signal to noise ratio Q are 

chosen exactly as in Paragraph IV-6 so that the theoretical and experimental 

results can be compared: Q = 15 and 25. Since, 

„  P s T  V 2 K T  
Q = = — 

by Paragraph IV-1 and that V, T and K are held constant, Q is determined 

by adjusting the white noise generator. When, 

Q . 1 5 t n « 4 j r =  ( 1 - * ) 2 < » - 5 0 0  1 0 " 6  = 9J "'"'vlts'/cyc'e 

-6 2 
When Q = 25, n=5.44 10 volts /cycle 

-Ky 
The peak amplitude of the output of A2 is A = V(1 - e ) where 

G is the overall gain of the amplifiers A1 and A2. Substituting the numerical 
4 

values for A, V, K and y, yields G^ = / ]  (  J ] 4 )  = 

2 2 2 
The mean square power of the noise at the output of A2 is = G^ a , 
2 where a is the variance of the noise when G^ = 1 and is given by formula IV-

< j 2  =  G  2 a 2 =  G t 2 3 ^ U = .361 105n volts2 

e T T 4RC 

Instead of measuring the power density, q, of the noise, it is more 

practical to measure the rms value of the noise at the output of A2. 

Q  =  1 5  ,  n  =  9 . 1  1 0  6  v o l t s ^ / c y c l e  ,  o ^  -  . 3 2 8  v o l t s ^  ,  a 0  =  . 5 7 3  v o l t  

Q =2 5 , n= 5.44 10 ^ volts^/cycle , = . 196volts^ , aQ = .443 volt 
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VIII-7 Error for Noise with Limited Bandwidth 

Since the average probabilities of error are rather small, the normal 

curve must be correct up to 6o at least; therefore, noise with limited band­

width and true normal curve was preferred to noise with large bandwidth and 

truncated normal curve to approximate the white normal noise. The variance 

for a limited bandwidth is smaller than for an infinite bandwidth; however, 

the error is small when the bandwidth is large with respect to 1/RC. 

The power density spectrum at the input of A1 is G. and the power 

density spectrum at the input of A2 is G^. The bandwidth of the noise is 

0 to f , then: 
c 

G. < 
i 

n / 2  

0 

Gf 

G j  n / 2  

1 + (2 fRC) 

= 0 

for 0< f < 22 Kc 

otherwise 

for 0< f< 22 Kc 

otherwise 

The variance at the output of A2 is 

f 

°e2 = 2GT2-£CGf df 

GT25^tan"' <2*RCfc> 

When f = ©6 , tan \2irRC f ) = tan ir/2; When f = 22 Kc, 
c c c 

tan ^ (2TT RC f )= tan \l 1.2) = 1.49. The error on the variance due to the 
c 

limited bandwidth is in per cent 
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(TT/2 - 1.49) 10o = 5% 
w/2 

However ,  the  bandwidth  i s  not  l imi ted  sharply  a t  22 Kc,  so  tha t  the  

er ror  i s  even less .  

VI11-8 Photographs  of  the  Signals  and of  the  Threshold  

The opera t ion of  the  exper imenta l  se t  up  is  observed on the  osci l loscope 

and is  recorded us ing a  polaroid  camera .  The osci l loscope is  t r iggered by the  

pi lo t  c lock a t  t ime t  =  .6T.  The random rectangular  pulse  i s  received (or  not  

received)  in  the  in terval  of  t ime T <  t  <  1 .2T.  The photographs  are  made for  

a  f ic t i t ious  s ignal  to  noise  ra t io  Q = 15.  

The three  cases :  (1)  pulse  wi thout  noise ,  (2)  noise  wi thout  pulse  and 

(3)  pulse  p lus  noise  a re  considered success ively:  (1)  Pulse  wi thout  noise :  in  

th is  case  s . ( t )  i s  a  rec tangular  pulse  and s( t )  i s  the  f i l te red  pulse .  Photo  VI11 — 1  

shows the  input  s ignal  s . ( t )  =  p . ( t )  (output  of  Al)  versus  t ime;  Photo  VIII - lb  shows 

the  f i l te red  s ignal  s ( t )  =  p( t )  (output  of  A2)  versus  t ime for  constant  threshold;  

Photo  Vl l l - lc  shows the  f i l te red  s ignal  s ( t )  =  p( t )  (output  of  A2)  versus  t ime 

for  adapt ive  threshold .  (2)  Noise  wi thout  pulse :  Photo  VI11-2 i s  for  constant  

threshold  (RC =  80 pis) .  Photo  VI11 -2a  shows the  noise  before  f i l te r ing,  s . ( t )  =  n . ( t ) ,  

versus  t ime.  Photo  VI11-2b shows the  noise  af ter  f i l te r ing,  s ( t )  =  n( t ) ,  versus  

t ime.  Photo  VIII -3  is  for  adapt ive  threshold  (RC =  320 pis) .  Photo  VIII -3a  shows 

the  noise  before  f i l te r ing versus  t ime and would  be  ident ica l  to  Photo  VI11-2a  

i f  the  noise  was  random.  Photo  VI11 -3b  shows the  noise  af ter  f i l te r ing,  s ( t )  =  n( t ) ,  

versus  t ime.  (3)  Pulse  p lus  noise :  Photo  VI11-4 is  for  constant  threshold .  Photo  

VI11 -4a  shows the  rec tangular  noisy  pulse ,  s . ( t )  =  n . ( t )  +  p . ( t ) ,  before  f i l te r ing.  

Photo  VIII  —4b shows the  noisy  pulse  af ter  f i l te r ing,  s ( t )  =  n( t )  +  p( t ) .  Photo  VI11 —5 

i s  for  adapt ive  threshold .  Photo  VIII -5a  shows the  rec tangular  pulse ,  s . ( t )  =  n . ( t )  

+  p . ( t ) ,  before  f i l te r ing and is  s ta t i s t ica l ly  ident ica l  to  photo  VI11-4a .  Photo  VI11-5b 

shows the  noisy  pulse  af ter  f i l te r ing,  s ( t )  =  n( t )  +  p( t ) .  
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Photo  VI11  —1 a :  Input  random rec tangular  pu lse ,  p . ( t ) ,  versus  t ime  

Sca les :  ver t ica l ,  1  sq  =  2v ;  hor izonta l ,  1  sq  =  50  f^s  

Photo  VII I - lb :  RC f i l t e red  random pulse ,  p ( t ) ,  fo r  cons tan t  th reshold  (K =  .2 ,  

KT/RC =  1 .25)  

Sca les :  ver t ica l ,  1  sq  =  2v ;  hor izonta l ,  1  sq  =  50  p-s  

Photo  VI11  — 1  c :  RC f i l t e red  random pulse ,  p ( t ) ,  fo r  adapt ive  threshold  (K =  .2 .  

KT/RC =  .312)  

Sca les :  ver t ica l ,  1  sq  =  2v ;  hor izonta l ,  1  sq=50^s  
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( b )  v  

2v 

0 

-2v 

2v 

0 

-2v 

•8T IT  1 .2T 1 .4T 1 .6T 

1.1T 1.3T 1.5T 

Photo  VI11  —2:  ( a )  Input  random noise  r  n. ( t ) r  versus  t ime ,  (b)  RC f i l t e red  random 

KT 
noise  ,n ( t ) ,  versus  t ime  for  cons tan t  th reshold  (K =  .2  ,  =  1 .25)  

Sca les :  ver t ica l ,  1  sq  =2v;  hor izonta l ,  i  sq  =50ps  

( • )  <  

( b )  

^ .6T .8T 
* A A 

0  -
W ' \  

V 

-2v J i  

2v 

0 

-2v 
•- .>5--

,8T IT 1.2T 1.4T 1.6T 

/v \J.Jw 

.7T •9T 1.1T 1.3T 1.5T 

Photo  VI11  —3:  ( a )  Input  random noise ,  n . ( t ) ,  versus  t ime ,  (b)  RC f i l t e red  random 
'  KT 

no ise ,  n ( t ) ,  versus  t ime  for  adapt ive  threshold  (K =  .2 ,  =  .312)  

Sca les :  ver t ica l ,  1  sq  =2v;  hor izonta l ,  1  sq  =50ps  
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Photo VI11 -4: (a) Pulse plus noise before filtering, s.(t), (b) pulse plus 

noise after filtering, s(t)»for constant threshold (K = .2, 

Scales: vertical, 1 sq = 2v; horizontal, 1 sq = 50 [is 

,6T .8T IT 1.2T 1.4T 1.6T 

Photo VI11 —5: (a) Pulse plus noise before filtering, s.(t), (b) pulse plus noise 

after filtering, s(t), for adaptive threshold (K = .2, 

= -312) 

Scales: vertical, 1 sq = 2v; horizontal, 1 sq = 50 [is 
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The RC t ime constant  of  the  f i l te r  i s  much larger  for  adapt ive  than for  

constant  threshold .  I t  fo l lows:  (1)  both  the  rms value  of  the  noise  and the  

maximum ampl i tude  of  the  pulse  af ter  f i l te r ing are  smal ler  for  adapt ive  than 

for  constant  threshold  and (2)  the  pulses  do  not  over lap  for  constant  threshold  

and over lap  for  adapt ive  threshold .  

In  the  case  of  adapt ive  threshold  the  threshold  is  the  sum of  a  constant  

vol tage  equal  to  hal f  the  peak ampl i tude  of  a  s ingle  f i l te red  pulse  and of  a  

correc t ive  term which takes  in to  account  the  res idual  dc  level  and the  expected 

value  of  the  noise .  The correc t ive  term is  obta ined a t  the  output  of  the  sampler-

holder  which performs as  shown in  Photo  VIII  —6.  Photo  VIII  —6a shows the  f i l te red  

s ignal  p lus  noise  s ( t )  versus  t ime.  Photo  VIII -6b shows the  output  of  the  sampler-

holder  versus  t ime,  i . e .  0^^( t )  of  Fig .  VII  — 1 .  0^( t )  fol lows s( t )  dur ing the  

sampl ing per iod .8T < t  < .95T,  and then decays  exponent ia l ly  dur ing the  

holding per iod .95T < t .  

• 
• 
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M 
U 

VIII-9  Measurement  of  the  Average Probabi l i ty  of  Error  

When the  detec ted  s ignal  d i f fers  f rom the  received s ignal  a  pulse  which 

ac t ivates  the  er ror  counter  appears  on the  output  of  the  sampler ,  S .  The number  

of  er ror  i s  measured for  a  t ime suff ic ient ly  long (severa l  hours)  to  assume that  the  

f requency of  er ror  i s  equivalent  to  the  average  probabi l i ty  of  er ror .  

Let  N^.  and be  the  number  of  er rors  occur ing for  a  dura t ion of  

H hours ,  for  constant  and adapt ive  threshold  respect ively .  

The pseudo-per iod is  T =  500 | i s  which means  tha t  2000 "0"  or  "1"  are  

received per  second,  the  exper imenta l  average  probabi l i t ies  of  er rors  for  constant  

and adapt ive  threshold  are  respect ively:  

N.  

and 

Ec = 

EA = 

2000 x  3600 x  H 

N 

2000 x 3600 x H 
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1.6T 

Photo VI11-6 Operation of the sampler-holder for a pulse mixed with noise: 

the upper curve is the filtered signal, the lower curve is the 

output of the sampler. 

Scales: vertical, 1 sq = 1 v; horizontal, 1 sq = 50 



Since  the  er ror  of  the  f i rs t  and the  second types  are  equal ,  the  errors  

a re  pract ica l ly  the  same whether  only  "1"  or  only  "0"  are  received.  

VIII  —10 Compar ison Between Exper imenta l  and Theoret ica l  Resul ts  

The exper imenta l  and the  theore t ica l  average  probabi l i t ies  of  er ror  

a re  compared in  Fig .  VI11-7.  The cont inuous  l ine  shows the  theore t ica l  

va lues  (minus  the  logar i thm of  the  average  probabi l i ty  of  er ror)  versus  Q,  

for  adapt ive  and constant  threshold;  the  check marks  show the  corresponding 

exper imenta l  va lues .  

The exper imenta l  average  probabi l i t ies  of  er ror  a re  somewhat  larger  

than the  theore t ica l  va lues .  The main  reasons  a re :  (1)  the  threshold  detec tor  

is  unla tched for  a  f in i te  in terval  of  t ime ra ther  than for  the  theore t ica l  zero  

dura t ion,  (2)  the  sampl ing terminates  a t  .95T ins tead of  T for  the  theore t ica l  

opt imum.  Other  causes  of  d iscrepancy are :  the  exper imenta l  normal  curve  is  

not  exact  for  la rge  vol tages ,  s l ight  unbalance  of  the  ampl i f ier  which makes  

the  er ror  of  the  f i rs t  and second type  unequal ,  smal l  dr i f t ,  smal l  in ternal  noise  

of  the  ampl i f ier .  The exper iment  i s  especia l ly  d i f f icul t  for  la rge  s ignal  to  

noise  ra t io  when the  average  probabi l i ty  of  er ror  becomes ext remely  smal l .  

More  work wi l l  be  done to  make the  measurements  more  accura te .  

In  conclus ion the  exper imenta l  resul ts  conf i rm the  theore t ica l  resul ts .  

The exper imenta l  average  probabi l i t ies  of  er ror ,  which are  somewhat  larger  

than the  theore t ica l  average  probabi l i t ies  of  er ror  (which is  jus t i f ied) ,  a re  

s t i l l  much smal ler  for  adapt ive  than for  constant  threshold  as  was  t rue  in  the  

theore t ica l  case .  
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Thoorotioal I (1) Constant Threshold, (2) Adaptiro Thrash old 

Rrporiaontal t • Constant Throshold, \ Adaptivo Throshold 



CHAPTER IX 

CONCLUSIONS OF PART I AND FUTURE WORK 

IX — 1  Review 

Par t  I shows  tha t  the  average  probabi l i ty  of  e r ror  in  the  de tec t ion  of  

pu lses  mixed  wi th  no ise  i s  reduced  when an  adapt ive  scheme i s  used .  The  

noisy  s igna l  a t  t ime  t j*  jus t  before  the  unknown random pulse  and  the  noisy  

s igna l  a t  t ime  t^  a re  more  o r  less  cor re la ted ;  therefore ,  us ing  cor re la t ion  

techniques ,  i t  i s  poss ib le  to  p red ic t  the  noise  anywhere  be tween  t^*  and  t^  .  

The  noisy  s igna l  can  be  cor rec ted  by  subs t rac t ing  the  pred ic ted  noise  (and  a l so  

the  res idua l  vo l tage  due  to  prev ious  pu lses ) .  In  the  threshold  de tec t ion ,  i t  i s  

exac t ly  equiva len t  to  (1)  compare  the  cor rec ted  s igna l  to  a  cons tan t  th reshold  

or  (2)  compare  the  s igna l  to  a  cor rec ted  threshold ;  bo th  techniques  a re  used .  

The  cor rec ted  threshold  which  i s  the  sum of  a  cons tan t  th reshold  and  of  the  

pred ic ted  noise  i s  denoted  adapt ive  threshold .  

Most  o f  the  s tudy  i s  fo r  pu lses  mixed  wi th  normal  no ise  e i ther  whi te  

( the  au tocor re la t ion  i s  a  5- func t ion)  o r  RC type  ( the  au tocor re la t ion  i s  a  

decaying  exponent ia l ) .  However ,  Chapter  VI  dea ls  wi th  non-normal  no ise ,  

s ince  the  normal  no ise  passes  th rough a  non- l inear  ne twork .  

An adapt ive  scheme can  be  used  whenever  the  au tocor re la t ion  

coef f ic ien t  be tween  the  sampled  s igna l  and  the  de tec ted  s igna l  i s  no t  nu l l .  

In  genera l ,  i t  i s  advantageous ,  bu t  no t  a lways  necessary ,  to  f i l t e r  the  s igna l  

because  th i s  increases  bo th  the  s igna l - to -noise  ra t io  and  the  au tocor re la t ion  

coef f ic ien t .  Two types  of  f i l t e r  a re  cons idered :  RC f i l t e r  (Chapters  IV,  VII  

and  Appendix  E)  and  in tegra tor  (Chapters  I I I ,  V ,  VI  and  Appendix  E) .  In  

Chapter  IV,  an  RC ne twork  i s  used  to  f i l t e r  the  pulses  mixed  wi th  whi te  no ise .  

The  ana lys i s ,  which  i s  per formed for  cons tan t  th reshold  and  for  adapt ive  threshold ,  

de te rmines  both  the  wid th  of  the  pulse  and  the  RC ne twork  which  min imize  the  

average  probabi l i ty  of  e r ror  for  a  g iven  f ic t i t ious  s igna l - to -noise  ra t io .  The  
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minimum average  probabi l i ty  of  e r ror  cor responds  to  the  maximum s igna l - to -noise  

ra t io  on ly  when the  process  i s  normal .  Ins tead  of  (1)  express ing  the  e f fec t  o f  

the  adapt ive  threshold  as  an  increase  of  the  s igna l - to -noise  ra t io  and  (2)  maximiz ing  

the  s igna l - to -noise  ra t io ,  the  opt imiza t ion  i s  per formed d i rec t ly  on  the  average  

probabi l i ty  of  e r ror  s ince  th i s  i s  a  more  genera l  t echnique .  In  Chapters  V and  VI ,  

an  in tegra tor  i s  used .  The  output  o f  the  in tegra tor  i s  the  in tegra l  o f  the  input  

on ly  dur ing  the  in te rva l  where  a  pulse  might  be  presen t  and  i t  i s  ze ro  o therwise .  

The  in tegra tor  i s  an  ac t ive  ne twork  which  increases  the  s igna l  to  noise  ra t io  more  

than  a  pass ive  ne twork .  When the  au tocor re la t ion  func t ion  of  the  noise  i s  no t  a  

S- func t ion  ( i . e .  except  for  whi te  no ise) ,  the  noisy  s igna l  can  be  cor rec ted  us ing  

an  adapt ive  in tegra tor  where  the  pred ic ted  va lue  of  the  noise  i s  sub t rac ted  

cont inuous ly  f rom the  noisy  s igna l  before  the  in tegra t ion  takes  p lace .  The  adapt ive  

in tegra tor  can  be  used  a f te r  a  l inear  ne twork  (Chapters  I I I  and  V)  o r  a f te r  a  non­

l inear  ne twork  (Chapter  VI) .  An adapt ive  threshold  cannot  be  used  behind  the  

in tegra tor  because  the  ou tput  vo l tage  before  de tec t ion  i s  a lways  zero  and  i s  no t  

cor re la ted  to  the  no ise .  The  s tandard  in tegra tor  and  the  adapt ive  in tegra tor  a re  

compared  wi th  the  RC f i l t e r  in  Appendix  E .  

IX —2 Conclus ions  

In  Chapters  I I I ,  IV,  V,  VI  and  Appendix  E ,  a  t ra in  of  rec tangular  pu lses  

mixed  wi th  noise  i s  de tec ted ;  the  noise  i s  e i ther  whi te  and  normal ,  o r  RC type  

and  normal .  

For  whi te  normal  no ise ,  the  fo l lowing  cases  a re  cons idered :  (1)  RC f i l t e r  

and  cons tan t  th reshold ;  (2)  RC f i l t e r  and  adapt ive  threshold  and  (3)  in tegra tor  and  

cons tan t  th reshold .  The  opt imum des igns  (min imum average  probabi l i ty  of  e r ror )  

a re  (a )  for  cons tan t  th reshold :  K =  .1 ,  RC =  .08  T ,  (b)  for  adapt ive  threshold :  

K =  .  1 ,  RC =  .32  T ,  +  p*  s^  * ,  (c )  for  the  in tegra tor  

s ( t )  =  - j^ -  f j  +  ^  s.( t )  d t .  The  logar i thm of  the  average  probabi l i t i es  o f  e r ror  

versus  the  f ic t i t ious  s igna l  to  noise  ra t io  a re  shown in  F ig .  E- l ,  for  the  opt imum 
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choice of K, RC, and the integrator. The average probabilities of error 

for adaptive threshold and integrator are equal and are smaller than those for 

constant threshold; the reduction in average probability of error, expressed in 

decibels, increases linearly with Q from 12 db for Q = 15 to 28 db for Q = 35. 

For RC type normal noise, the following cases are considered: (1) no 

filter and constant threshold, (2) no filter and adaptive threshold, (3) integrator 

and constant threshold, (4) adaptive integrator and constant threshold, (5) RC 

filter and constant threshold, (6) RC filter and adaptive threshold. The effect 

of the adaptive threshold is, as before, a reduction of the variance by 

/1 - p*2 . The adaptive integrator subtracts continuously the predicted value 

of the noise before the integration takes place. The three cases: RC noise and 

no filter, RC noise and standard integrator, RC noise and adaptive integrator are 

compared in Fig. V-2. The adaptive integration is especially advantageous for 

large autocorrelation of the RC noise (Kp small). For example: if Kp = .5, the 

signal to noise ratio for adaptive integrator is 12.4 db better than without 

integrator and 11 db better than with standard integrator; if Kp= 2, the signal 

to noise ratio for adaptive integrator is 8.4 db better than without integrator 

and 3.6 db better than with standard integrator. At the limit when p becomes 

oc , the RC noise becomes white noise, the autocorrelation becomes an impulse 

and nothing can be gained by an adaptive integrator. Instead of an integrator, 

an RC filter can be used with either a constant threshold or an adaptive threshold. 

For example, if Kp = 2, the optimum RC filter is defined by Ky = 1.4 for 

constant threshold and by Ky = 0.8 for adaptive threshold. The increase in signal 

to noise ratio in decibels for Kp = 2 are: (1) for RC filter and constant threshold 

2.88 db (Appendix E), (2) for RC filter and adaptive threshold 5.6 db (Appendix E), 

(3) for standard integrator and constant threshold 4.9db (Fig. V-2), (4) for 

adaptive integrator and constant threshold 8.4 db (Fig. V-2). The reduction of 

the average probability of error by use of an adaptive threshold without filtering 

is shown by Fig. III-3; the reduction of the average probability of error by use of 



a  s tandard  or  an  adapt ive  in tegra tor  and constant  threshold  i s  shown by Fig .  V-4;  

the  reduct ion of  the  average  probabi l i ty  of  er ror  by use  of  the  opt imum RC f i l te r  

and constant  or  adapt ive  threshold  i s  shown by Fig .  E-3 .  The s ix  sys tems inves­

t iga ted  are  l i s ted  in  order  of  decreas ing average  probabi l i ty  of  er ror :  (a)  no 

f i l te r  and constant  threshold ,  (b)  RC f i l te r  and constant  threshold ,  (c)  no  f i l te r  

and adapt ive  threshold ,  (d)  s tandard  in tegra tor  and constant  threshold ,  (e)  RC 

f i l te r  and adapt ive  threshold  ( f )  adapt ive  in tegra tor  and constant  threshold .  The 

advantage  of  an  adapt ive  in tegra tor  increases  wi th  the  s ignal  to  noise  ra t io ;  for  

example ,  i f  K(3 =  2 ,  the  average  probabi l i ty  of  er ror  decreases  by 32 db for  

V/2a .  =  2  and by 90 db for  V/2a .  =  3 .5 .  

In  Chapter  VI ,  the  use  of  an  in tegra tor  on  a  nonl inear  sys tem is  inves t i ­

ga ted .  The s ignal  to  noise  ra t io  i s  considerably  increased by an  adapt ive  

in tegra tor ;  the  ef fec t  on  the  average  probabi l i ty  of  er ror  i s  not  s t ra ight forward 

s ince  the  probabi l i ty  d is t r ibut ion is  not  normal .  

Chapters  VII  and VIII  a re  exper imenta l  check of  Chapter  IV.  Precise  

t iming is  obta ined by us ing a  dekat ron counter  and the  errors  a re  detec ted  by 

compar ing the  t rue  s ignal  to  the  detec ted  s ignal .  

IX-3 Future  Work 

Research ef for ts  to  date  were  mainly  concerned wi th  the  minimizat ion of  

the  average  probabi l i ty  of  er ror  in  te lemetry  us ing adapt ive  network and l inear  

c i rcui ts .  The fu ture  work wi l l  be  or iented  towards  (1)  appl ica t ion of  adapt ive  

detec t ion on radar ,  and (2)  use  of  non- l inear  networks  in  te lemetry  and radar .  

In  te lemetry ,  the  unknown s ignal  i s  located  in  a  known in terval  of  t ime 

so  tha t  sampl ing can be  used to  determine the  noise  before  detec t ion and the  

threshold  var ied  accordingly .  This  technique is  not  appl icable  in  radar  de tec t ion 

because  the  s ignal  can appear  everywhere  and any sample  would  be  a  mixture  of  

s ignal  and noise .  In  order  to  t ransform the  problem of  te lemetry  in  a  problem of  



APPENDIX A 

AVERAGING THE CONDITIONAL PROBABILITY OF ERROR IN THE THRESHOLD 

DETECTION OF PULSES 

A t ra in  of  random rec tangular  pu lses  mixed  wi th  normal  no ise  i s  f i l t e red  

through a  ne twork  F .  The  ou tput ,  s ( t ) ,  o f  the  f i l t e r  a t  t ime  t  =  T +  KT 

(S( t  =  T +  KT)  =  S j )  i s  de tec ted  wi th  a  threshold  de tec tor  of  th reshold  leve l  D.  

I f  the  t ime  cons tan t  o f  the  f i l t e r  F  i s  l a rge ,  the  pulses  over lap .  Thus ,  the  

ampl i tude  of  s^  depends  upon  whether  the  prev ious  s igna l  conta ined  a  pulse  

o r  no t ;  in  o ther  words ,  s^  depends  upon s (KT)  = S Q« More  genera l ly ,  the  

ampl i tude  of  the  unknown s igna l ,  s^ ,  i s  o f ten  re la ted  to  the  ampl i tude  of  a  

known prev ious  s igna l ,  s^* ;  therefore ,  the  average  probabi l i ty  of  e r ror  in  the  

threshold  de tec t ion  i s  a  func t ion  of  s^*  and  i t  i s  an  average  condi t iona l  p roba­

b i l i ty  of  e r ror  denoted  by  E(s^*)  and  

00 

where  
9(5 ,*)  

g(s^*)  i s  a  func t ion  of  s^* .  The  average  probabi l i ty  of  e r ror  in  the  de tec t ion  of  

s ^  f o r  a n y  p r e v i o u s  s ^ *  i s  o b t a i n e d  b y  a v e r a g i n g  E ( s ^ * )  w i t h  r e s p e c t  t o  s ^ *  

where  f ( s^*)  i s  the  probabi l i ty  dens i ty  of  s^* .  E(s^)  i s  a  double  in tegra l ,  

fo r tuna te ly  when  g(s^*)  i s  l inear ,  the  double  in tegra l  can  be  condensed  in  a  

s imple  in tegra l  us ing  the  fo l lowing  formula :  

J 
r + CO 

e  
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which is proved next. 

L.,J.  ,-W r" _!_ 
-® VTt to a +—- %/5rT 

J = r+" J- .-2/20V.5-J° + ̂ e-t2/2 dt) dv 
\/TnO v Jo y 

J  =  [ + " j l  e ^ / ^ r . s - r ^  _ L e - ' 2 / 2 d t - f a +  °  _ L  e - ' 2 / 2  * )  d v  

-°o \/7tJ o o V2 TT bv y/2 TT 

j = .5 - J, - j2 

+  ®  .  2  ,  2  .  . 2  
where J. = f _L /2° [ ° — ^ dt dv 

-co y/2tt a o v/2tt 

, r+°° 1 -v2/2a2 ra + "5~ 1 -t2/2 
°nd J2 = J ~ . 6 J bv 6 

bv 

dt dv 
n/Tt t  a y/T̂  

2 
J. = 0 because [ 0 —^— e * ^ dt is an odd function of v, 
1 o v/TrT 

Jj is simplified after the change of variable 

y = t - bv / a ^ 
V 

J 

+bv *\ 

J J L X / ^ . — 3  d y d v  
2 —oo o VTt t  a 

+ 00 a 

J 

• y2 + (b2 + 1) v2 + 2 byv v 

* C a2 a J 
1 5 

2 = J f • dy dv 
-co o VTrra 
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m 
Reversing the order of integration of J^ yields: 

= J 
~T~ 

- 1 / 2  
b +1 v + by 

° Le + D e 
y^Ti 

v/2Tr a 
dv dy 

The inside integral is evaluated immediately after the change of variable: 

W=4Z±L v+_iiz_ 

-1 /2  

"*• W 1 
r i 

\/b^ + 1 v + by yj: 
j 

dv = 
—cn \/2tt a 

fi 

- w 
1 T~ , l e dw = 

777  ̂ 77", 

has been reduced to a single integral: 

° /2rr 7b2 +1 

e 2(b + 1) dy 

Letting 

W 

t = y / y 7 7 7  -  t h e n  

- =  . 7  

^ e7 d, 

• 





APPENDIX B 

COMPUTATION OF THE AVERAGE PROBABILITY OF ERROR OF DETECTION 

B -1 Computer Program 

The average probability of error in a threshold detection is a linear combi-

of integrals of the type I J"g. / K , y "]. For example, the average 
io 

probability of error for constant threshold E^ is given in paragraph IV-8 for 

a two step memory: 

•c- I E E  W / £  
=o,1 y0= 0,1 Nio vl<7 

C^io -jq— , y , K is written as a product of two functions 
io 

S. S. 

9i r jc  ' y '  0  =  K tt-  ' y '  Kv wi(y) 
IO IO 

L  L ^ S ' °  / S'° V7^ 1 - e Ky 

where h^- ,y,Ky=/ — __ 
IO IO 

and W.(y) = 1 + 2 E (yq e ^ + y ^ e 

where E assumes the values 1 and -1, while y and y . assume the values 0 and 1 
o -1 

There are 8 possible values for W.(y), one for each combination of I, y^ and y ^ . 

It is necessary to obtain E- for a large number of combinations of S. / N. , 
C io io 

y. K. because the optimum combination of y and K for a qiven S. / N. is 
' io io 

desired. A Univac 1107 computer is used for all numerical computations. 

Given values for S. / N. , u, K, I ,  y  and v , , a numerical value is 
IO io o -1 

obtained for g.(S. / N. , y , K). 
i io io ' 
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'  ®i  ^ io  ̂  ̂ io  '  ̂  !  ' s  ^ e n  c o m P u f e c ^  a s  expla ined  in  the  next  

sec t ion .  For  a  g iven  combina t ion  of  S .  /  N.  ,  y  and  K,  there  a re  e igh t  
10  10  

va lues  for  I  g .  (S. q  /  N. q  ,  y  ,  K)  i and  E^.  i s  the  average  for  those  e igh t  

va lues .  

Tables  for  s ign i f ican t  va lues  of  S .  /  N.  ,  K and  /  are  read  in  the  
10  10  

computer .  Forg iven  S . q  /  N. q  ,  y  ,  and  K ,  the  computer  var ies  I  ,  and  

Y |  ,  success ive ly ;  the  va lue  ob ta ined  for  E^ .  i s  typed  toge ther  wi th  the  cor ­

responding  S .  /  N.  ,  K ,  and  y .  Then  the  computer  var ies  y  ,  K and  S .  /  N.  r  IO IO IO I 
success ive ly ,  resu l t ing  in  a  la rge  number  of  E_  for  each  S .  /  N.  ,  the  smal le r  

^  IO I  o  
of  which  cor responds  to  the  bes t  choice  for  y  and  K.  

I t  i s  necessary  to  compute  many va lues  of  E^ .  in  the  ne ighborhood of  the  

minimum of  E^ .  ,  in  order  to  loca te  the  minimum accura te ly .  S ince  the  minimum 

of  E_  occurs  in  a  smal l  range  of  u  =  Ky,  K i s  chosen  f i r s t  and  then  y  i s  var ied  
•  * u  1 1 c  v  Q P  i  1 . 1  +  K  1 . 6  in  the  range  1 .15  y^  <  y  <  .85  y^  where  y^  =  — 

IO 

B-2  Computa t ion  of  l (x)  

The  in tegra l  | (x )  =  1 

x /7n  

l (x)  =  .5  -  J(x)  where  J (x)  =  J* 

K  

- t 2 /2  
e  d t  i s  expressed  in  the  form 

- t 2 /2  
e  d t .  The  in tegra l  

vTrf  

J (x)  =  
>/2 t t  

- t 2 /2  
e  d t  i s  eva lua ted  by  Simpson ' s  t echnique ,  which  i s  one  of  

the  most  wide ly  used  and  s imples t  methods  of  numer ica l  in tegra t ion .  This  t echnique  

i s  deve loped  and  descr ibed  in  de ta i l  in  mos t  s tandard  ca lcu lus  and  numer ica l  ana lys i s  

re fe rences .  Therefore ,  we  wi l l  on ly  s ta te  the  ru le  and  expla in  how i t  was  incor ­

pora ted  in to  our  computer  p rogram.  

S impson ' s  Rule :  I f  f  i s  cont inuous  func t ion  in  the  in te rva l  [a  ,  b ] ,  i f  n  

i s  an  even  in teger ,  and  i f  r  =  [x  ,  x .  , . . . ,x  ]  is  the  regular  par t i t ion  of  
n  o  I n  



[a  ,  b J  in to  n  subintervals  then 

b  
[  f(x)  dx  =  [ f (x o )  +  4  f(x  1 )  + 2  f (x 2 )  

+  4  f(x  +  2f(x 4 )  +  . . .  + 2f(x n  _ 2 )  +  4 ^ x n  _ +  J  

For  the  purposes  needed in  th is  work,  i t  i s  necessary  to  have the  value  

of  the  in tegra l  

r b  — -* 2 / 2  * 
J STn e dt 
a  

over  each in terval  [a  ,  b  ]  such that  b  -  a  = .005 and 0  ^  a  ^  b  ^5 .0 .  Referr ing 

to  the  formula  s ta ted  in  Simpson 's  ru le ,  in  our  case  n  =  2  s ince  our  in terval  [a  ,  b  ]  

is  qui te  smal l  and th is  g ives  required  accuracy.  The f (x . ) ' s  needed for  evaluat ing 

1 -Xj  /  2 b  -  a  
in tegra l  a re  obta ined by evaluat ing f (x . )  =  e  for  x  =a;  x  =  —^— ;  

'  VTFT o  1 2  

x 2  = b .  Therefore ,  our  formula  s impl i f ies  as  fo l lows:  

J(x)  = —1— -—- (f(x Q )  +  4  *  f (x j )  +  f (x 2 )  j  
\ /2 t t  3 •  n  

.005 

VTn * 6 

i  r  i  

( f (x o )  +  4*  f(x , )  +  f (x 2 )  

V 2 TT 

r  mo 0( x o )  +  4  * f ( x i>  +  f < x 2 > 2  y j  

where  f (x . )  and x .  ( i  =0  ,  1 ,  2)  are  as  def ined above.  

The average  probabi l i t ies  of  er rors  in  the  detec t ion of  pulses  is  very  smal l  

for  a  usable  sys tem.  Therefore ,  the  in tegra ls  | (x)  are  des i red  for  a  very  large  

range of  x  ,  say f rom 0  < |  x |  < 6 .25.  For  la rge  value  of  x  ,  | (x)  i s  very  

smal l ,  for  example:  when x  =  5 ,  I (x)  =  .28665157 x  10~^ and when x  =  6 ,  

I (x)  =  .986588 X  10" 9 .  



In  order  to  obta in  l (x)  wi th  three  s igni f icant  d ig i ts ,  i t  would  be  necessary  

to  compute  J (x)  wi th  twelve  s igni f icant  d ig i ts ,  which is  impract ica l .  Therefore ,  

l (x)  i s  correc ted  by reading exact  values ,  ly(x) ,  in to  the  computer  f rom a  table  for  

x  =  x .  =  i ( .005)  where  ( i  -  1)  i s  a  mul t ip le  of  one  hundred for  1  <  i  <  701 and ( i -1)  

i s  a  mul t ip le  of  25  for  701 <  i  <  1272.  The incrementa l  va lues  of  J (x)  a re  computed 

wi th  e ight  d ig i ts .  S ince  the  greates t  number  of  in tervals  be tween two read in  values  

i s  one  hundred,  the  maximum loss  in  accuracy would  not  exceed three  d ig i ts .  This  

leaves  two ext ra  d ig i ts  to  account  for  er rors  inherent  in  the  Simpson formula .  

Let  J*(x)  be  the  computed value  of  J (x)  for  the  d iscre te  value  of  

x  =  x .  =  i ( .005)  where  i  assumes every  in teger  value  between 1 and 1272.  

Then I (x . )  =  l T (x . )  i f  ^ (x . )  exis ts ;  o therwise  J (x . )  =  J*(x . )and 

| (x . )  =  I (x .  1 ) -J (x . ) .  Final ly ,  1272 values  are  s tored for  I (x ; ) .  

I f  x  >  6 .35 ,  then l (x)~ 0  

I f  x  <  0  ,  then I (x)  =  .5  +  I (  |  x |  ) 

l ( | * l ) « l ( i ) - [ l ( i ) - l ( i  +  l )  ] [ ^ - 0 - 1 ) ]  

where  i  =Tr  v  ^ +  .00001^,  +  1 

f » x  2  i  - t 2 / 2  
The in tegra l  e  d t  can be  obta ined as  a  funct ion of  

X^ y /  2TT 

| (  \ x ]  | )  a n d  l ( | x 2 1 ) .  

x  2  
f  2  — —  e _ t  d t  =  ( s i g n  X j )  l ( | x 2 | )  -  ( s i g n  x ^ )  l ( | x 1  | )  .  

"X^ V 2TT 
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. APPENDIX C 

EXPANSION OF JLr / e' f  ^ dt IN POWER OF (u - u ) 
g(u) 1 

The average probability of error, E, in the threshold detection of pulses 

mixed with normal noise is a linear combination of integrals: 

n 
E = Z 

i=l 
C. I [g.(u)I (C-l) 

where C.'s are constants, l(x) = / CO 

V^2tt 

-t2/2 
dt, and g.(u) is a function of u. 

For example, if the amplitude of the detected signal is a function of the two 

previous random pulses, there are 8 combinations for y^ and y ^ and eight different 

functions f.(u). 

Given the f.(u) and the value for u, E can be computed;from the curve E 

versus u, the minimum of E and the value of u which makes E minimum can be read. 

Since the minimum of E cannot be obtained directly by the calculus of variations, 
n 

it is very convenient to develop l(f.(u)) into a series of u, so that E = I C. If f.(u)] 
1 i=l ' ' 

is a polynomial in u„ If the series converges rapidly for all the l[f.(u)], the 

minimum of the polynomial is easily obtained. An example for this technique follows. 

The probability of error for a constant threshold A/2 and a two step memory 

was obtained in paragraph IV—8: 

I  Z J, 
7-1=0,1 7o=0,l r =-1,1 

y / S Q - e - ^ )  
ycy 

1  + 2 t  ( r  e"y + r e"2y)| 
O -1 ! 

(C-2) 

where all the variables have been defined. 

Formula (C-2) can be developed as a power series, but to simplify the 

algebra, one step memory is assumed: 
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T n 

c - T y ' i 
C '— 4  r o =o, i  I  = - i , l  4  

$io  ys  (1  -  e  ^ y )  

/Ky io  
1 + 2t Y e"y 

o 
(C-3)  

rr— 78 
- ^ 1  1 -  e  

.  .  v  w i s  min imum for  Ky =  1 .25 .  The  minimum of  E_  occurs  
Nio  yKy -  x  C  

a  la rger  va lue  of  Ky because  of  the  fac tor  

for  

W =  1  + 2 t  Y  e  
o  

-y  

When K i s  smal l  ( for  Ky =  1 .25) ,  y  i s  l a rge  so  tha t  the  fac tor  W is  c lose  to  one ;  

when  K i s  l a rge  for  Ky =  1 .25 ,  y  i s  smal l  and  W is  no t  neg l i t ib le .  Therefore ,  the  

minimum of  E^ .  occurs  for  a  la rger  va lue  of  Ky.  However ,  the  va lue  of  u  =  Ky 

which  makes  E^  minimum remains  in  the  smal l  range  1 .25  <  u  <  2 ,  so  tha t  i t  becomes  

prac t ica l  to  deve lop  I [  g . (u) ]  (and  hence  E^)  in  power  of  u  about  the  poin t  u  =  u^  =  1 .6 :  

• W -  z , !  - s  I [ g i ( u ) 1  
m= 1 du  

(u  -  u Q )  
m 

m!  
u=u 

I t  i s  necessary  to  ob ta in  the  f i r s t  four  der iva t ives  of  I  [  g . (u) ]  .  Let  

g ( u )  1 - t 2 /2  
J fg(u) ]  =  /  e  d t ,  

o  

then  

(C-4)  

l [g(u) ]  =  .5  -  J[g(u) l  

Hence ,  the  der iva t ives  of  I  [  g (u)J  a re  the  der iva t ives  of  J f  g (u) ]  except  for  a  

change  of  s ign .  



2 
± l[g(u)I  =  ~  J[g(u)]  =  -g '  e" 9  / 2  

i 2  ,  2, ,  
~2 1  fa<")I  =  - fg"  -  (9 ' ) '  9 l  e ~ 9  2  

3 2 
I [g(u)I  =  - [g™ -  3gg 'g"  -  (g ' ) 3  +fe) 2 (g ' ) 3 ]  e" 9  / 2  

du 

4  
•J-7 I fg(u)I = -fg'"' - 4gg,g'" - 4(g')2g" - 3g(gM)2 + 6(g)2 (g')2 g" 
d u  9 ,  

+ 3g(g ' ) 4  -  g 3 g , 4 J  e" 9  2  

u /  \  i  d  g(u)  „  d  g(u)  where  g  =  g(u) ,  g '  =-~r~L/ 9 =— e t c .  
d u  d u 

Since  g . (u)  is  not  a  s imple  funct ion,  i t  i s  convenient  to  wri te  g . (u)  as  a  

product  of  three  fac tors  

g . (u)  =  x(u)  x(u)  w.(u)  

where  x(u)  -  /r- j— /8  (1 -  e  U ) ,  z(u)  =  u  ^ 2 ,  and w.(u)  =  1 or  1  +  2e  u  

v I N io  '  
-u /k  

or  1 -  2e .  The der ivat ives  of  g . (u)  can be  expressed in  terms of  x(u) ,  y(u) ,  

w.(u) ,  and thei r  der ivat ives  x ' ,  y ' ,  w' ,  x" ,  e tc .  

g '  =  x 'zw +z 'wx + w'xz  

g"  =  x  "zw + xz"w + xzw" +2x 'z 'w + 2z 'w 'x  +2w'x 'z  

Before  wri t ing  the  higher  der ivat ives  of  g(u) ,  we def ine  an  opera tor  "Perm [  ]"  

which means  permutat ion of  x ,  z ,  w and summat ion.  This  nota t ion d ivides  by three  

the  length  of  the  formulas .  

Using the  opera tor  "Perm [  J"  yie lds  



g 1  = Perm fx 'zw]  

g"  =  Perm [x"zw +2x 'z 'w]  

g" '  =  Perm [x ' "zw +  3(x"z 'w +x"zw' ) I  +6x 'z 'w '  

g""  =  Perm [x ' " ' zw +  4(x , "z 'w +x" , zw' )  +  6x"z"w +  12x"z 'w ' ]  

F ina l ly ,  x ,  z ,  w and  the i r  der iva t ives  a re  expressed  as  func t ions  of  the  

var iab le  u  and  the  parameters  S . Q /Nj o  and  K.  

X = /rj!2 Js (1  -  e" U ) ,  x '  =  / r j^  V8 e" u ,  x"=-x ' ,  x ' "  =+x '  
V IN|0 v is*\o 

_ ~ i  _  £  11 =  _ ^  z " i  _  _  ^  £  .hi  _  _  7  z  
/ Z  2 u '  2  u  '  2u  '  2 u  

w.  =  1  +  2a .  e  U / ^  where  a .  =  0 ,  0 ,  +1 ,  -1  

i  2o j  u /k  | |  1  |  hi 1  | |  im 1  m 
W i  =  ' !C  e  '  W i  =  ~  K  W i  '  w i  =  "  K  W i  '  W i  = " K  W i  

For  any  g iven  va lue  of  S . Q /^ j 0  a n c !  K/  the  coef f ic ien ts  of  the  power  se r ies  

can  be  obta ined .  The  procedure  i s  as  fo l lows:  

(D In  x ,  z ,  w,  and  the i r  der iva t ives ,  rep lace  K and  S .Q/M. q  by the i r  

ass igned  va lues  and  u  by  u^ .  

(2)  The  numer ica l  va lues  ob ta ined  for  x ,  z ,  and  w,  and  the i r  der iva t ives  

a re  subs t i tu ted  in  the  formula  g iv ing  g ,  g 1 ,  g" ,  g 1 " ,  g"" .  

(3)  The  numer ica l  va lues  ob ta ined  for  g ,  g ' ,  g" ,  g 1 " ,  g""  in  s tep  (2)  
d m  

are  subs t i tu ted  in  the  formulas  g iv ing  I fg . (u) ] .  
du m  1  

Once  the  power  se r ies  for  the  four  d i f fe ren t  I  fg . (u) ]  a re  ob ta ined ,  the  

power  se r ies  for  E^ .  r esu l t  immedia te ly  by  formula  (C-3) .  S ince  E^.  i s  a  polynomia l  



of  degree  4 ,  the  der iva t ive  of  E^_ i s  a  th i rd  degree  po lynomia l .  To  min imize  E ,  

a l l  tha t  i s  necessary  i s  to  f ind  the  roots  o f  a  th i rd  degree  po lynomia l .  

F igure  IV-5  shows u  .  (K)  versus  K (u  =  Ky)  and  Figure  IV-6  shows 
min  

- log i n  E^.  (K =  .1 )  versus  Q ,  obta ined  f rom the  ser ies  approximat ion .  These  
10  Cmin  

curves  a re  in  good  agreement  wi th  the  curves  of  F igure  IV-3  and  Figure  IV-4 ,  

respec t ive ly ,  which  resu l t  f rom a  d i rec t  computa t ion .  



APPENDIX D 

ESPECIAL CIRCUITS USED IN THE EXPERIMENT 

D- l  P i lo t  Clock  Ci rcu i t  

The  c i rcu i t  o f  the  p i lo t  c lock ,  shown in  F ig .  D1,  cons is t s  o f  a  decade  

counter  tube  (deca t ron  EZ10B,  Eles ta  Swi tzer land)  and  of  i t s  d r iv ing  c i rcu i t .  

The  deca t ron  i s  a  co ld  ca thode  gas  tube  and  the  a rc  moves  f rom one  ca thode  

to  the  next  every  t ime a  nega t ive  pulse  i s  appl ied  to  the  gu ide .  The  dr iv ing  

c i rcu i t  t ransforms  the  per iod ic  square  wave  coming  f rom the  p i lo t  genera tor  

in to  per iod ic  pu lses  of  more  than  100  v  ampl i tude  a t  the  ou tput  of  the  t rans­

former .  The  p i lo t  c lock  opera tes  cor rec t ly  for  f requenc ies  up  to  200  Kcs .  

D-2  Preampl i f ie r  

The  c i rcu i t  o f  a  preampl i f ie r  i s  shown in  F ig .  D-2 .  The  preampl i f ie r  

i s  used  in  two d i f fe ren t  ways :  (1)  A noisy  pu lse  i s  app l ied  on  I and  the  
V n  

output ,  Op,  i s  a  rec tangular  pu lse  of  wid th  .1  T ,  and  (2)  Two cont igous  

noisy  pu lses  a re  appl ied ,  one  on  lp^  and  one  on  lp^  and  the  ou tput ,  Op,  

i s  a  rec tangular  pu lse  of  wid th  .2  T .  The  ampl i tude  of  the  rec tangular  

pu lse  i s  de te rmined  by  the  Zener  d iode  Z .  The  t rans i s tor  Tr l  e l imina tes  the  

no ise  on  top  of  the  pu lse ,  whi le  the  t rans i s tor  Tr2  e l imina tes  the  noise  be tween  

pulses .  

D-3  Sampler -Holder  Ci rcu i t  

The  c i rcu i t  o f  the  sampler -holder  i s  shown in  F ig .  D-3 .  I t  i s  exac t ly  

the  same as  the  schemat ic  c i rcu i t  o f  F ig .  VII -5  b .  However ,  the  sampler -

holder  samples  no t  0^2  but  w ^ ' c ^  ' s  output  o f  an  emi t te r  fo l lower ;  

th i s  makes  the  charge  of  the  capac i tor  more  ins tan taneous .  I t  would  be  qu i te  

easy  to  inc lude  0 ' ^  in  the  feedback  loop  of  the  ampl i f ie r  A2,  but  th i s  in  no t  

necessary .  









D-4 Summer  Ampl i f ie r  

The  c i rcu i t  o f  a  summer  ampl i f ie r  i s  shown in  F ig .  D-4 .  I t  i s  a  t rans i s to­

r ized  dc  ampl i f ie r  and  i s  ana l ized  bes t  in  te rms  of  cur ren ts .  A comple te  sym­

metry  i s  necessary  to  avoid  a  dr i f t  wi th  tempera ture  var ia t ions ;  therefore ,  the  

res i s tors  a re  iden t ica l  and  the  t rans i s tors  more  or  less  matched ,  a t  leas t  in  the  

f i r s t  s t age .  The  ga in  of  the  t rans i s tor  i s  inverse ly  propor t iona l  to  the  input  

impedance ,  R,  ( la rge  wi th  respec t  to  the  input  impedance  of  the  t rans i s tor ) ,  

and  inverse ly  propor t iona l  to  the  feedback  res i s tance  (Pot  3 ) .  For  l inear i ty  

and  s tab i l i ty ,  i t  i s  advantageous  to  have  a  very  la rge  open  loop  ga in  and  to  

ad jus t  the  c losed  loop  ga in  by  vary ing  the  feedback  (double  po ten t iometer ,  

Pot  3 ) .  The  t rans i s tor  Tr5  works  as  a  cur ren t  source ;  i t  behaves  as  a  very  la rge  

impedance  and ,  thus ,  a l lows  a  h igh  common mode  re jec t ion ;  tha t  i s ,  insens i t iv i ty  

to  an  equa l  var ia t ion  of  u^  and  U£.  The  po ten t iometer ,  Pot  1 ,  i s  used  to  

ba lance  the  ampl i f ie r ;  i t  i s  ad jus ted  unt i l  0^  =  Oj  for  u^  =  U£.  The  po ten­

t iometer  Pot  2  i s  used  to  "zero"  the  outputs ;  i t  i s  ad jus ted  unt i l  0^  =  for  
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Fig. D-4 j Summer Amplifier Circuit 



APPENDIX E 

COMPARISON BETWEEN RC FILTER AND INTEGRATOR 

E- l  Whi te  Normal  Noise ,  RC Fi l te r  

I t  was  shown in  Chapter  IV tha t  the  peak  ampl i tude  of  the  pulse  a f te r  RC 

f i l t e r ing  i s  A =  A(1  +  7  e  y  + y  .  e  2 y )  where  A =  V(1  -  e  K y )  is  the  peak  
p  o  - 1  

ampl i tude  of  a  s ing le  pu lse  and  the  cor rec t ive  te rms  account  for  the  res idua l  

vo l tage  due  to  the  prev ious  pu lses .  When y  i s  reasonably  la rge  A^~ A.  The  

rms  va lue  of  the  noise  i s  o^ = /r\/ 4RC for  a  cons tan t  th reshold  de tec t ion .  

The  adapt ive  threshold  de tec t ion  i s  equiva len t  to  a  cons tan t  th reshold  de tec t ion  

where  (1)  the  res idua l  vo l tage  due  to  the  prev ious  pu lses  i s  removed and  (2)  the  

var iance  of  the  noise  i s  reduced  by  a  fac tor  /  «  where  p*  i s  the  au to-
/ l  -  p* 

cor re la t ion  coef f ic ien t  be tween  the  noise  a t  the  t ime  of  sampl ing  and  a t  the  t ime 

of  de tec t ion ;  the  equiva len t  rms  va lue  of  the  noise  i s  =  ^ / r ] /4RC j  ~-2Ky 

The  average  probabi l i ty  of  e r ror  in  the  de tec t ion  of  a  s igna l  o f  peak  ampl i tude  

A wi th  a  cons tan t  th reshold  D^ =A^/2  in  presence  of  normal  no ise  of  var iance  

2  .  c  o is  E ,  

• " 2/2 , 
E  =I (X)  =  '  -  (E- l )  

'  X y  2TT 
A 

where  X =  "2a"  and  i s  denoted  ha l f  peak  s igna l  to  rms  no ise  ra t io .  

The  ha l f  peak  s igna l  to  rms  no ise  ra t io  de te rmines  comple te ly  the  de tec t ion  

in  the  presence  of  a  normal  no ise .  The  subscr ip t  1C i s  used  for  whi te  no ise ,  RC 

f i l t e r  and  cons tan t  th reshold ;  the  subscr ip t  1A is  used  for  whi te  no ise ,  RC f i l t e r  

and  adapt ive  threshold :  
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X  _  A  v ( l  - e ' K y )  / 7 / T ( l  - e ' ^ )  

1 C  '  2 V T\ / 4 R c  S/W  

-Ky 

m 
m 
• 
• 
• 
• 
• 
• 
• 
m 
• 
• 
m 
m 

(E-2) 

X - A 
X1A ~T5 

V(1 - e~Ky) 

A 2 /TI/4RC /L - e"2Ky 

YR/T (I - E~KY) 2(1 -eKy) 

Ky v 1 - e 
Q 

Ky (1 +e"Ky) 

(E-3) 

E-2 White Normal Noise, Integrator 

It was shown in Chapter V that the amplitude of the pulse after integration 

is V at time T + KT and that the mean square noise is given by formula (V-15). 

In the case of white noise of power density T|/2 , the autocorrelation function is 

a 6-function (Fig. 11-3 c), R.(T) = T|/2 6(T). Substituting R.(T) = T]/2 6(T) 

in formula (V-15) yields the mean square noise at the output of the integrator. 

2 2 = 
KT 

2 ~T~2 J (KT " T) 6(t) dT 

K T o 
(E-4) 

The integral of 6(x) from -Kt to + KT is one by definition, but the 

integral form 0 to KT is only one half. Therefore, 

2 
°2 ' ~?i<T 

T1 
(E-5) 

The half amplitude to noise ratio for white noise and integrator is 

denoted by 

X -2 " 2a 
V = /Q (E-6) 

2 r *  2 J JKT 
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E-3  Compar i son  Between  RC Fi l te r  and  In tegra tor  for  Whi te  Noise  

The  average  probabi l i ty  o f  e r ror  for  whi te  no ise  and  cons tan t  th reshold ,  

E^ ,  is  approximate ly  

E ic  = , < X 1C> < E " 7 > 

where  i s  g iven  by  formula  (E- l ) .  The  exac t  va lue  of  E^  is  g iven  by  

formula  ( IV-58) .  The  average  probabi l i ty  of  e r ror  E^  is  min imum and  denoted  

by  ^Cmin  ^  w ^en  K=. l  and  y  =  12 .5 .  The  p lo t  o f  -  log  E^~ m j n (Q)  i s  

shown in  F ig .  IV— 1 .  

The  average  probabi l i ty  o f  e r ror  for  whi te  no ise  and  adapt ive  threshold ,  

E 1 A ' i s  

E 1A " I C X 1A> < E " 8 > 

where  X ] A  i s  g iven  by  formula  (E-3) .  E ] A  i s  min imum for  Ky min imum and  

denoted  by  E^^  (Q)  when Ky =  .  1 .  The  p lo t  o f  - log  E A m | n (Q)  is  shown 

in  F ig .  IV-1 .  

The  average  probabi l i ty  of  e r ror  for  whi te  no ise  and  in tegra tor  i s  

E 2  =  | ( x 2 )  < E " 9 > 

whe  re  X 2  =/Q as  g iven  by  formula  (E-6) .  

The  opt imum va lue  for  X ] ( =  i s  ob ta ined  by  subs t i tu t ing  Ky =1 .25  in  

formula  (E-2)  and  is  denoted  X, -
1C opt  

"•< ~ "-»»2 /5 ) (E-l I) 



The realizable optimum value for is obtained by substituting 

Ky = .3 in formula (E-2) and is denoted X. . 
1A opt' 

X1A oPr^ v/T^TVT^TT = -996^ (E-,2) 

and E.. . = r (.996x/Q" ) (E-13) 
I A  m m  

The average probabilities of error using an integrator or an adaptive 

threshold are theoretically equal. Indeed, it was shown in paragraph (IV-9) 

that the theoretical optimum for X, . is 
IA 

•PS Sic liny . /'" " * K,> - 1. 

KY 0 

Practically, any error in the switching on and off of the integrator will 

decrease X^. Finally, = .996 >/Q (E-14) 

The optimum average probabilities of error for white noise as a 

function o f  t h e  f i c t i t i o u s  s i g n a l - t o - n o i s e  r a t i o  Q  a r e  c o m p a r e d  i n  F i g .  E - l .  

Curve (1) is for constant threshold and curve (2) is either for adaptive threshold 

or integrator. 

E-4 RC Noise, RC Filter, Constant Threshold 

As in Chapter III the RC noise can be assumed to be white noise filtered 

by a fictitious RC network, R^. C^. The normal RC noise is defined by its auto-

-P|T 
2 T 2 

correlation function R.(T)  =  a. e where cr. is the variance of the 
i I i 

noise. Let r)/2 be the power density of the fictitious white noise. Using 

formulas IV-7 and IV-12 it follows; RFC,= -J- and a.̂ = . !} - . The block 
t t p i 4 R^Cj. 



: Probability of Error Ter.u* for Pulses mixed with White Noise 

(1) RC Filter, Constant Threshold, (2) RC Filter, Adaptive Threshold, 

(3) Integrator, Constant Threshold 

Fig. R-l 



diagram Fig .  E-2  represen ts  the  de tec t ion  of  rec tangular  pu lses  mixed  wi th  

RC noise  wi th  cons tan t  o r  wi th  adapt ive  threshold .  

Us ing  formula  IV-3  twice ,  the  power  spec t rum of  the  noise  a t  the  

ou tput  of  the  RC f i l t e r  i s  ob ta ined  

G f  =  
n/2 1 

1 +  (2 ft f  R c f )  1  +  (2 i r  f  RC) '  
(E-15)  

Therefore ,  the  var iance  of  the  noise  a t  the  output  o f  the  RC f i l t e r  i s  

°3 2 =C G f d f  (E-16)  

= / + co  n  l  
-00  

2  (1 + (2 tt f  R f C f )  )  (1 + (2 tt f  RC)  )  

,2  

— df  (E—17)  

n  j.+ Qo 
4 "  ((RC) 2  -  (R f C f ) 2  )  ~°°  

(RC) 2  

2 ,„,2 
( R f C f )  

L l + u * ( R C ) '  1  +  u 2  ( R f C f ) 2  

du 

Let  u  =  u  RC 

r +oo (RC)  ,  r + ao  1  j  
'-00 2—2du=RC'-a, , 2 

1  +  U (RC)  1  +  U 

RC / + a D  
-co  

1  +  u '  
du  

RC I  t an  ^ u  ] + °°  
-oo  

(E-18)  

= + it RC 
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Rc noise 

Ri(T} -cri 

—>~ 

.-/? V\n 

»l(t) 
RC FILTER 

s(t) 
THRESHOLD DETECTOR 

" 
RC FILTER THRESHOLD DETECTOR 

Random palses 
V. RC 

y**- E-2 * 

White noise 

RiD -\&T) 

FICTITIOUS FILTER 

w 

Random pulses 

• 
\ , RC FILTER THRESHOLD EBTBCTOR 
•±(t) 

RC FILTER 
s(t) 

THRESHOLD EBTBCTOR 

RC 

"K. S-2 b 

B-2 I Threshold detection of RC noise using an RC filter, (a) actual block 
diagram ; (b) equivalent block diagram 
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Hence' 2 nMRC-RC) • 
ct3 = : 2 Y~ = 4 (RC+R C ) (E"19) 
3 4it ( (RC)2 - (RfCf) ) (RC+RfCf) 

While the white noise passes through two RC network, the rectangular 

pulses passes only through one. Using y = T/RC , P = T/R^C^. and 

a.2=n/4(RfCf) = ̂ - (E-20) 

_«y 
the peak amplitude of the filtered pulse is as before V(1 - e ) (assuming 

non overlapping pulses, y >10), and 

2 

C32= . n . = —X- (E-21) 

The half peak signal to rms noise ratio for RC noise, RC filter and 

constant threshold is denoted by , 

w V(1 - e"Ky) V(1 - e"Ky) ; ' 
3 771 = —TT. v' + fVV 

3 i 
(E—22) 

VU KP/ Ky 
V(1 - e-Ky) 

2a7 
i 

The average probability of error for RC noise, RC filter and constant 

threshold is E^. For non-overlapping pulses (i.e. y > 10), 

e3 = I(X3) (E-23) 

A more general formula which takes into account the residual values of the 

two previous pulses can be obtained as in Chapter IV. 



E~ is a function of (1) the half peak signal to rms noise ratio at the input 
KT 

of the filter (V/2a.), (2) the product Ky = / i.e. the choice of 

the pulse width and the RC filter, (3) the product K(3 , i.e. the auto-
RC 

correlation function of the RC type noise, and (4) of y if is large 

enough to produce overlap. Fig. E-3 shows -log E^ versus V/2a. for 

K(3= 2 and Ky = 1.4 . 

E-5 RC Noise, RC Filter, Adaptive Threshold 

The autocorrelation function is the Fourier cosine transform of the 

power density spectrum (Wiener's theorem). Using formula (E —15), the auto­

correlation function at the output of the filter is 

R(T) = /  
+ 00 

-00 

n/2 
71 ( 1 + (2ir f RfCf) ) (1 + 2ir f RC) 

7y- cos COT df (E—25) 

4ir ( (RC) - (RC) ) 
j -1  

+ oo 
-00 

(RC)2 

TZ771 
(RfCfr 

1 + <J (RC) 1 + (RfCf) 
COS COT df 

4  ( ( R C r - ( R f C f D  

2  " l T  l / R f ^ - f  

( R C ) 2  e " ! T ' / R C  ( R f C P  6  

2(RC) 2(RfCf) 
(E-26) 

The normalized autocorrelation function is P(T), 

/ \ _ R(T) 
p(t)" "RR 

R C  e - i T l / R C - R f C f e - | - l / R f C f  

RC - RfCf 

(E—27) 





The au tocor re la t ion  coef f ic ien t ,  p* ,  be tween  s^*  and  i s  

obtained by replacing |T| by KT in P(T) 

-KT/RC -KT/R^C^ 
RC e  K T / R C  -  R f C f  e  

p* = — (E-28) 
RC -  R f C f  

Using  y  =  T/RC and  p  =  T/R^C^ ' ,  p*  becomes  

I e " K y - I e ~ K  - K y  - K  
p*= y I I  _  KjLf  l iS l i  (E—29)  

J_ -J [  Kp -  Ky 
y P 

As expla ined  in  Chapter  IV the  adapt ive  threshold  reduces  the  

var iance  of  the  noise  by  a  fac tor  ^ /~J  ^2  .  

The  equiva len t  ha l f  peak  s igna l  to  rms  no ise  ra t io  a f te r  f i l t e r ing  

the  RC noise  by  an  RC f i l t e r  and  us ing  an  adapt ive  threshold  i s  X^ ,  

X 3 X < =  -  ( E — 3 0 )  

V(1  -  e" K y )  / l  + M 
<y 

(E-31)  

2 o i  / ,  ( K p e ' K y - K y e ' K P ) 2  

K p - K y  



The average probability of error for RC noise, RC filter and 

adaptive threshold is and 

e4 = I(X4) (E-32) 

is a function of the same variables as E^. < E^ because 

X3 ( X .  =  )  >  X ~ .  T h e r e f o r e ,  t h e  a v e r a g e  p r o b a b i l i t y  o f  e r r o r  

yr? 

is reduced when an adaptive threshold is used as seen in Fig. E-3, which 

shows -log E^ and -log E^ versus V/2a.. 

The increase of signal-to-noise ratio in decibels is equal to twice 

the increase in half peak signal-to-rms noise ratio. In the case of RC noise 

and RC filter the increase of signal-to-noise ratio is a function of Ky, Kp 

and the type of threshold; let and be the increase in decibels for 

constant or adaptive threshold, respectively; then, 

X3 
Gg - 40 log)Q (y/20.) 

X4 
g 4 =  4 0  l o g i o  W 7 T * T  

For example, if K(3 = 2, G^ is maximum for Ky ^1.4 and equal to 2.88 db; 

G^ is maximum for Ky^.8 and equal to 5.6 db. Those results can be compared 

to the increase in signal-to-noise ratio using an integrator which is shown in 

Fig. V-2. The conclusions of the comparison between RC filter and integrator are 

part of Chapter IX, (Paragraph IX-2). 
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PART II  

Chapter  I 

DETECTION AND INFORMATION PROCESSING WITH ADAPTIVE DECISION CIRCUITS 

1 .  In t roduct ion 

A substant ia l  amount  of  the  work performed in  th is  repor t  depends  upon the  

ideas  and theorem of  decis ion theory .  Decis ion theory  t rea ts  in  a  genera l  way 

the  problem re la t ing  to  the  detec t ion of  s ignals  in  noise  and the  es t imat ion of  the  

s t ructures  of  s ignal  and noise .  The approach is  based upon the  fac t  tha t  in  tes t ing  

hypotheses  of  a l l  decis ions  involving doubt  and uncer ta in ty ,  var ious  cos ts  and 

r isks  a re  associa ted  wi th  them.  These  may be  measured in  any way appropr ia te  to  

the  problem a t  hand.  The cos t  could  be  a  funct ion both  of  the  t rue  hypothes is  and 

the  hypothes is  as  the  observer  decides  i t  to  be .  The condi t ional  r i sk  i s  the  average  

value  of  the  cos t  over  a l l  poss ib le  decis ions  the  observer  can make g iven a  

par t icular  hypothes is .  The average  r isk  i s  the  average  of  the  condi t ional  r i sk  over  

a l l  poss ib le  hypothes is .  Decis ion theory  assumes tha t  the  observer  wishes  to  decide  

in  the  way which wi l l  minimize  th is  condi t ional  or  average  r isk .  On this  assumpt ion,  

the  decis ion theory  shows us  how to  choose  a  decis ion ru le  for  process ing the  

received data .  This  decis ion ru le  wi l l  y ie ld  decis ions  which minimize  r isk  for  the  

par t icular  physica l  s i tua t ion and the  cos t  involved.  We have descr ibed the  

essence  of  the  decis ion theory .  Now we can proceed wi th  a  more  deta i led  s tudy 

of  th is  theory , in  par t icular ,  the  appl ica t ion of  th is  theory  to  the  binary  detec t ion 

problem.  

2 .  The Decis ion Problem 

In  order  to  determine the  decis ion problem,  a  loss  funct ion ^ (S ,  y)  is  ass igned to  

each combinat ion of  decis ion Y and s ignal  s  in  accordance  wi th  some pr ior  judgment  

of  the  re la t ive  impor tance  of  the  var ious  correc t  and incorrect  decis ions .  Each 

decis ion rule  may then be  ra ted  by adopt ing an  evaluat ing funct ion which takes  in to  

considera t ion both  the  probabi l i t ies  of  correct  and incorrect  decis ions  and the  losses  



assoc ia ted  wi th  them.  We may now s ta te  the  recept ion  problem in  the  fo l lowing  

genera l  te rms:  

Given  the  fami ly  o f  d i s t r ibu t ion  func t ions  F^v/S) ,  the  a  pr ior i  s igna l  

p robabi l i ty  d i s t r ibu t ion  a (  S) ,  the  c lass  o f  poss ib le  dec is ions  y,  and  the  loss  

func t ion  ^ ,  the  problem i s  to  de te rmine  the  bes t  ru le  6 (  y /v )  for  us ing  the  da ta  

to  make  dec is ions  .  The  dec is ion  y  i s  no t  res t r ic ted  to  a  f in i te  number  m of  

a l te rna t ives  

y  =  f r j ,  y 2 ,  . . .  v m )  •  

An inf in i te  number  may be  used  equa l ly  wel l .  In  fac t ,  the  ex tens ion  to  a  cont inuum 

of  poss ib le  a l te rna t ives  i s  a  mat te r  o f  re in te rpre ta t ion .  The  dec is ion  ru  le  s  ( r /v )  

which  used  to  be  a  d iscre te  probabi l i ty  d i s t r ibu t ion  must  in  th i s  case  be  in te rpre ted  

as  a  probabi l i ty  dens i ty  func t ion ;  i . e . ,  6 (  y /v)  dr  i s  the  probabi l i ty  tha t  y  l i es  

be tween  y  and  y +  dh,  g iven  v .  To represen t  a  nonrandomized  dec is ion  ru le ,  we  

in te rpre t  5 (y /v)  as  a  Dirac  £  func t ion .  Usua l ly ,  the  fami ly  of  d i s t r ibu t ion  

func t ions  i s  no t  g iven  d i rec t ly  and  must  be  found  f rom a  g iven  noise  d i s t r ibu t ion  

W(N)  and  the  mode  of  combin ing  s igna l  and  noise .  

Now le t  us  expla in  a  l i t t l e  about  the  no ta t ion  of  the  recept ion  s i tua t ion .  As  

shown in  F ig .  1 ,  a  dec is ion  y  i s  to  be  made  about  a  s igna l  S ,  based  on  da ta  v ,  

in  accordance  wi th  a  dec is ion  ru le  6  (y /v) .  Here ,  y  =  (y  ,  y 0  . . . .  y  ) ,  
I  2  m 

S  =  (S^ ,  S2  .  . .  .Sf^)  v=(v^ ,V2/  . . . .  v j  are  vec tors .  The  subscr ip t s  on  the  

components  o f  S  and  v  a re  ordered  in  t ime  so  tha t  S k  = S( t k ) ,  v k  = v( t k )  e tc . ,  

wi th  0  <  t .  <  t«  <  <  t .  <  <  t  <  T .  
— 1— 2— — k  — — m — 

In  F ig .  1  and  Fig .  2 ,  each  of  the  quant i t i es  S ,  N,  V,  y  can  be  represen ted  

by  a  poin t  in  an  abs t rac t  space  of  appropr ia te  d imens iona l i ty ,  and  the  occur rence  

of  par t icu la r  va lues  i s  governed  in  each  ins tance  by  an  appropr ia te  probabi l i ty  

dens i ty  func t ion .  Here  a (S) ,  W(N) ,  and  F^v/S)  a re  the  probabi l i ty  dens i ty  

func t ions  for  s igna l ,  no ise ,  and  the  da ta  v  respec t ive ly  when  S  i s  g iven .  These  

a re  mul t id imens iona l  dens i ty  func t ions  which  a re  d isc re te  o r  cont inuous  depending  
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on the discrete or continuous nature of the spaces and of corresponding dimension­

ality. 

3. Functions of Evaluation 

v7(s, r) is a generalized loss function, adopted in advance of any 

optimization procedure which assigns a loss, or cost to every combination of 

system input and decision (system output) in a way that may or may not depend on 

the system's operation. Actual evaluation of system performance is made by adopting 

an evaluation function <^*(^) which takes into account all possible modes of 

system behavior and their relat.ve frequencies of occurrence and assigns an overall 

loss rating to each system or decision rule. One obvious choice of £ is the 

mathematical expectation or average value of Cfi and it is on this reasonable 

choice that the present theory is based. 

The conditional loss rating JC (S, a) of a is defined as the conditional 

expectation of loss. That is, forgiven S, 

X.(s,s) = Ey/S Ofls, r (v) 1} 

=  J  d v / d r j ( s , r )  Fn(v/s) s(r/v) (i) 

r a 

where 

= generalized loss function 

F (v/S) = conditional probability density function of the observed 
quantity v given signal S 

5(y/v) = conditional probability density function of the decision / 
given v. 

Equation (1) can be applied to discrete as well as continuous spaces A. For the 

discrete space, the integral over A js to be interpreted as a sum and ^(y/v) as 



a probability, rather than as a probability density. 

However, when the signal distribution a(S) is known, we use the above 

information to rate the system by averaging the loss over both the sample and 

the signal distributions. The average loss rating £ (<*,&) of 5 is defined as 

the (unconditional) expectation of loss when the signal distribution is a(S). 

Z(o,&)  = E {JT(S, r)} 
v /  5  

= /ds f dv f dr 7 (s,r) a(S) Fn (v/s)6(y/v) (2) 

a r a 
3^ is usually a function which assigns to each combination of signal and decision 

a certain loss, or cost, which is independent of 6: 

3 = C (S, r) (3) 

However, a more general type of loss function is suggested by information theory. 

J? = - log P (S/y) (4) 

By substituting (3) into (1) and (2), we have 

Conditional risk y(S,6) 

r (S, 6) = y*dvFn(v/S) J dy C(S,y) S(y/v) (5) 

r a 

Average risk R( a, 6) 

R ( a, 6) = E {y (S, 6)} = (S) dS (6) 

Q 
or 

R(a, 5) = Jo(S) dS JJv Fn (v/S) y C (S,y) 6 ( y/v) (7) 

fi T A 



By subst i tu t ing (4)  in to  (1)  and (2) ,  we get ,  

Condi t ional  informat ion loss  h  (5 ,6)  

h  (S ,6)  =  - /dv  F n (v /S)  Jdy  [ log P (S/y)]6(  y /v)  (8)  

r a 
Average informat ion loss  H(a ,6)  

H(a ,6)  =  E (h  (S,  6)}  

= Jh(S,6)  o(S)  dS 

Q 

= -  /a(S)  dS /dv  F p  (v /S) /d  y [  log  P (S/r) ]  6  (y/v)  (9)  

n r a 
When S is  a  funct ion of  a  se t  of  random parameters  0  ,  frequent ly  i t  i s  the  

parameters  0  about  which decis ions  are  to  be  made ra ther  than about  S  i t se l f .  

S imi lar  to  Eqs .  (5)  and (6) ,  the  condi t ional  and average  r isks  for  th is  s i tua t ion may 

be  expressed as :  

r  ( e ,  s) = /dvF n lv /S(0)] J'd y  C ( 0 , y ) 6  ( y /v)  ( 1 0 )  

r a 

and 

R  5 ' e  =  J r * 6 ,  ^ 6 6  

fie 

= /  c(e) de /dv  Fn  lv/s (e) Wdy c (e, y) s(y/v)  

ne r  ^ 0.) 
Here  )"(0 ,  6)  and R (a ,  6)^  are  not  necessar i ly  the  same as  f (S ,  6) ,  R(  a ,6)  

above,  nor  is  the  form of  y  e i ther .  Not ice  that  the  cos t  funct ion C(  0 ,  y)  i s  

usual ly  a  di f ferent  funct ion of  0  f rom C [  5(0) ,  y  ]  a lso .  
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4.  Bayes  Sys tems  and  Minimax Sys tems  

Average  and  condi t iona l  loss  ra t ings  may be  ass igned  to  any  sys tem once  the  

eva lua t ion  and  cos t  func t ions  have  been  se lec ted .  We now descr ibe  two k inds  o f  

op t imum dec is ion  sys tems .  We cons ider  one  sys tem i s  be t te r  than  another  i f  i t s  average  

loss  ra t ing  i s  smal le r  for  the  same appl ica t ion  (and  c r i te r ion)  and  tha t  the  bes t  o r  

op t imum sys tem i s  the  one  wi th  the  smal les t  average  loss  ra t ing .  We ca l l  th i s  op t imum 

sys tem a  Bayes  sys tem.  A Bayes  sys tem obeys  a  Bayes  dec is ion  ru le  5* ,  where  6*  i s  

a  dec is ion  ru le  whose  average  loss  ra t ing  f lC i s  smal les t  fo r  a  g iven  a  pr ior i  d i s t r i ­

bu t ion  a  .  For  the  r i sk  and  informat ion  c r i te r ia  of  Eqs .  (7 )  and  (9) ,  we  have  

R* =  min  R(a ,8)  =  R ( a ,  8*)  Bayes  Risk  (12)  

and  

H* =  min  H(a ,8)  =  H(  a ,  8*)  Bayes  equivoca t ion  (13)  
8 

R* min imizes  the  average  r i sk  whi le  H* minimizes  the  equivoca t ion .  For  a  

g iven  ,  Bayes  dec is ion  ru les  form a  Bayes  c lass ,  each  member  o f  which  cor responds  

to  a  d i f fe ren t  a  pr ior i  d i s t r ibu t ion  cr (S) .  

When the  a  pr ior i  s igna l  p robabi l i t i es  a re  now known or  a re  only  incomple te ly  

g iven ,  a  poss ib le  c r i te r ion  for  op t imiza t ion  in  such  cases  i s  p rovided  by  the  Minimax 

dec is ion  ru le  8*^  which  i s  a  Bayes  ru le  assoc ia ted  wi th  condi t iona l  r i sk  f tS /5) .  

Roughly  speaking ,  the  Minimax ru le  i s  the  dec is ion  ru le  which  reduces  the  maximum 

r i sk  as  fa r  as  poss ib le .  The  Minimax dec is ion  ru le  8*  i s  the  ru le  for  which  the  
M 

maximum condi t iona l  loss  ra t ing  (S ,  8 )  ,  as  the  s igna l  S  ranges  over  a l I  
max 

poss ib le  va lues ,  i s  no t  g rea te r  than  the  maximum condi t iona l  loss  ra t ing  of  any  o ther  

dec is ion  ru le  8 .  

In  te rms  of  condi t iona l  r i sk  r ,  we  have  

Max r  (S ,  8*  )  =  Max Min  r (S ,  8 )  <  Max r (S ,S)  (14)  
S  S  8  "  S 

In  te rms  of  condi t iona l  in format ion  loss  h ,  we  may wr i te  

Max h  (S ,  8^)  =  Max Min  h  (S ,  8 )  <  Max h(S ,8)  (15)  
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We may a l so  express  the  Minimax dec is ion  process  in  te rms  of  the  resu l t ing  

average  r i sk .  

K A  r S * )  =  M a x  R *  ( a ,  5 * )  
M o  M a  

=  Max Min  R(a ,8)  06)  
a  8  

Thus  the  Minimax average  r i sk  i s  the  la rges t  o f  a l l  the  Bayes  r i sks ,  cons idered  over  

the  c lass  o f  a  pr ior i  s igna l  d i s t r ibu t ion  {  a  (S)  }  .  Geometr ica l ly ,  the  Minimax 

s i tua t ion  of  o  —* ,  6 -8^  R(<*\  5 ) -  R* M  (  6 q  ,  &y is  represen ted  

by  a  saddle  po in t  o f  the  average- r i sk  sur face  over  the  (  a  ,8 )  p lane  as  shown in  F ig .  3 .  

5 .  The  Average  Risk  for  Binary  Detec t ion  Sys tem 

In  b inary  de tec t ion ,  we  tes t  the  hypothes i s  H Q (no ise  a lone)  aga ins t  the  

a l te rna t ive  (s igna l  and  noise) .  Therefore ,  there  a re  on ly  two poin ts  y  =  (Y Q ,  Y^)  

in  dec is ion  space  A.  Le t  8  (  Y Q /V)  and  SFYJ/V)  be  the  probabi l i t i es  tha t  YJ and  

Y are  dec ided  g iven  v .  S ince  def in i te  te rmina l  dec is ions  a re  pos tu la ted ,  some 
o  

dec is ion  i s  a lways  made  and  therefore  

6  ( r /v )  +  6( r , /v )  = i  (17)  

Denot ing  by  S  the  input  s igna l  tha t  may occur  dur ing  the  observa t ion  in te rva l ,  

we  may express  the  two hypotheses  conc ise ly  as  H q  :  S £  and  :  S  £  Q y  

where  Q and  Q.  are  the  appropr ia te  non-over lapping  hypothes i s  c lasses .  I t  i s  
o  I 

now convenien t  to  descr ibe  the  occur rence  of  s igna ls  wi th in  the  non-over lapping  

c lasses  Q ,  by  dens i ty  func t ions  4 / (S) ,  4^(S) ,  normal ized  over  the  cor responding  

spaces ,  e .g .  

o  



JtO, (S) ds = 1 (19) 

Let q and P (= 1 - q) are the a priori probabilities that signal from and 

respectively will occur. The a priori probability distribution a(S) over the total 

signal space Q = Q +0. becomes 
o I 

a(S) = q CdjiS) + pfcf (S) (20) 

If there is only a single signal in class , then Eq. (20) becomes 

a ( S )  =  q  6  ( S - 0 ) + p 6  ( S - S j )  ( 2 1 )  

In this simple alternative situation and the more general case, we have 

J a (S) dS = 1 (22) 

For the one sided alternative case, we can assign a set of costs C (S, y )  =  

to each possible combination of signal input and decision. 

Let 

C < S f  1 '  V= S -a 

C ( S * f i  ;  y ,  ) =  C q  

C ( S £  Q , ,  y o )  =  C p  

C ( S €  Q , ;  r , )  =  c  ,  _  p  ( 2 3 )  

C and C. o are the costs associated with correct decision (success) 1 - a 1 - p v ' 
while Cq and Cp are associated with the possible incorrect decisions (failure). 

Physically, we require 

C > C. 
a 1 - a 

S > C1 - P (24) 



We can also postulate that 

C , - a  >  0  

C 1 - P - ° (25) 

The best we can expect here is that success may cost us nothi n9 

(C , _ = _ p = 0). Substituting Eq. (23) into Eq. (11), we see that 1 - a 
the integration over decision space A is replaced by an appropriate summation. 

Therefore, the average risk of Eq. (11) becomes 

R ( a, 5) = fdw ( 5 ( r/v) [q C, _ a Fn (v/0) + p Cp <f Fn (v/S)>s ) 

r 

+ S (r,/v) [p C , _ p <Fn(v/S)>s + q Ca Fn(v/0) 1 ) (26) 

where 

P Fn s = / a (S) Fn (v/S) dS 

= P (S) Fn (v/S) dS (27) 

q Fn (v/0) = / a(S) Fn (v/S) dS 

Q 
o 

= q Ju>a (S) Fn (v/S) ds 

s 
When S = S (p) these become 

(28) 

P <>n (v/s)> = P e) Fn lv/s (0)] de (29) 
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q Fn (v/0) = q ftdji) Fn Iv/S ( e )  ]  d e  (30)  

(31) 

There  a re  two poss ib le  c lasses  of  e r ror :  

Type  I :  Noise  —> s igna l  +  noise  

Type  I I :  s igna l  +  noise  —noise  

The  c lass  condi t iona l  p robabi l i t i es  o f  these  two types  of  e r ror  a re :  

a = J Fn (v/0) 6(r]/v)dv 

P =  J<F n  (v /S)>  6 (7 / / )  dv  

r 
Subs t i tu t ing  (31)  in to  (26)  and  us ing  re la t ion  (17) ,  we  ge t  

R = 1 C1 . a + P C1 - P + 1 a < Ca ' C1 - a' + P P ( CP " C1 " P* 

=  R o +  1  a < C a - C l  - a >  +  P P  < C p  "  C 1  _ p >  < 3 2 >  

where  

R o = q C l - a  +  p C l - p  ( 3 3 )  

Simi la r ly ,  the  condi t iona l  r i sk  cor responds  to  Eq .  (5)  and  becomes  

• (1  -  a ' )  C 1  _ q  + a '  C a  (S  =  0)  

r  (S)  

'  i l  -  P '  ( s ) l  +  P ' (S) C p  (S  £  0)  
(34)  

where  

= /Fn (v/0) 6 ( r,/v) dv = a (35) 

r 
P' = frn (v/s) 5 ( r /v )  dv  /  p (36)  

r 



6. Optimum Detection 

The optimum decision rule 6* (Bayes decision rule) can now be found. From 

Eqs. (26) and (17) we get 

R(a, 6) = qC, _a + PC, + / S (rQ/v) lp(Cp-C, -p) 

<Fn(v/s)>s - q ( Ca - C, _a) Fn (v/0) ] dv (37) 

The problem is to choose 6( 7q/V) and S(y^/v) in such a way as to minimize the 

average risk. For each v£• , both 8's must be positive and (equal to or) less 

than 1. The optimum choice of 8's is as follows: 

when p (Cp - C, _ p) <^Fn (v/S)^ > q (CQ - C, _ a) Fn(v/0) 

choose 6* ( Tj/v) = 1 

8* ( rQ/v) = 0 
} (38) 

when 

P <Cp - C1 - P> Fn<v/S)> < 1 <Ca - C, - a> Fn<V/°> 

choose 8* (y^/v) = 0 } (39) 
8* (r</v) = 1 

It is now convenient to introduce the generalized likelihood ratio. 

. P<F n(v/S)> 
= — (> 0) (40) 

q Fn (v/0) 

In the binary case, Eqs. (38) and (39) may be stated more compactly as: 
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Decide  y^  when  A >  K  
Decide  y  when  A-  <  K 

o  

where  

K =  
c  -  c  .  a 1 - a 

-  C 
>  0  (41)  

' P  "  - P  

K i s  ca l led  the  threshold  and  depends  on ly  on  the  preass igned  cos t s .  Thus ,  

the  Bayes  ru le  essen t ia l ly  amounts  to  a  d iv is ion  of  observa t ion  space  J in to  two 

reg ions  separa ted  by  the  v  sa t i s fy ing  the  equa t ion .  

A M  = K (42)  

In  genera l ,  the  opt imum de tec tor  i s  a  computer  which  processes  the  rece ived  

da ta  v  in  a  nonl inear  fash ion .  I t s  p rec i se  form depends  on  the  s ta t i s t i cs  o f  the  

background noise  and  s igna l  s t ruc ture ,  as  wel l  as  on  the  a  pr ior i  p robabi l i t i es .  

7 .  Detec t ion  for  a  pr ior i  d i s t r ibu ted  s igna ls  

From Eqs .  (40) ,  (41) ,  and  (42) ,  we  have  the  dec is ion  equa t ion  

A -
P <F n  (v /S)>  s  

q F n  (v /0)  

C a  ' C 1  -  a  

C P "  C ,  -  P 

(43)  

P  i s  the  a  pr ior i  d i s t r ibu t ion  of  rece ived  s igna l  S  in  a  s igna l  vec tor  space  Q.  

v  i s  the  rece ived  da ta  vec tor  in  vec tor  space  f 7  ,  and  i s  the  condi t iona l  

p robabi l i ty  d i s t r ibu t ion  of  v  g iven  S .  v  i s  t aken  to  be  the  sum of  s igna l  S  and  

noise  N .  A s igna l  i s  sa id  to  be  presen t  whenever  / \ ,  exceeds  some prese t  

th reshold  leve l  K.  The  va lue  of  K i s  dependent  upon  the  var ious  cos t s  involved .  

One  reasonable  assumpt ion  for  the  cos t s  a re :  

=  C 

1 - a 

P 

=  C 
1  -P  



With the above condition, K equals unity. An observer who makes a decision in 

this way is called an ideal observal. 

It is convenient to represent the received signal S(t) by an expansion of the form 

S(t) = T S <p (t) (44) 
k= 1 k * 

The are orthonormal on an interval which completely spans the interval 

(0,1) in which all the S(t) of interest are assumed to exist. Here we are interested in 

detecting single pulses received from a source which emits pulses of a constant shape 

but not necessarily with constant repetition rate. The received pulses need not have 

the same shape as the transmitted pulses. The set of <p^ (0 is a solution of the 

integral equation. 

T 2 J Rn (*, u) 0k (u) du = ok 0k(t) (45) 

o 

where 
0 < (t, u) < T 

k  = 1 /  2 ,  3 ,  

The Kernel R (t,u) is the autocorrelation function of the noise N(t). For example, 
1 1 

for band limited white noise, with frequency interval (- ) the auto­

correlation function of the noise is 

D ,. \ Kl sin 2tt fQ (t - u) 
"n "• *> • N 8 . ,  <46' 

o 

where 

f0 = "2T 
O 

is the separation of the equally spaced pulses. 
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Thus  the  in tegra l  equa t ion  (45)  becomes  

foe  

JR n  M) 0 k (u)  du  =  a k  4> k  ( t )  

Equat ion  (47)  i s  sa t i s f ied  by  the  se t  o f  func t ions  def ined  by  

(47) 

0 k  w  =  

s in  2TT f  ( t  -  k  T ) 

2 t  f  ( t  -  k T  )  
o o  

(48)  

where  k  =  0 ,  +  1 ,  +  2 ,  +  3  

The  6 k  ( t )  a re  or thogonal  over  the  in te rva l  { -co  ,  The  charac te r i s t ic  

va lues  of  the  in tegra l  equa t ion  a re  equa l  and  g iven  by  

2  N 
ak = No = 2T 

O 

The  noise  N( t )  can  then  be  wr i t ten  as  

N( t )  =  I  
k =  

s in  2 t t  f  ( t - k T  )  
o _  o y  

2 "  f „  ( f - k T J  o o  

(49)  

and  N (k  T )  =  n.  
o  k  

(50)  

The  va lues  of  N( t )  a t  the  sampl ing  ins tan ts  k- r^  a re  the  coef f ic ien ts  o f  the  

card ina l  func t ions  in  the  or thogonal  expans ion  of  N( t ) ,  ( -  °o<  t  <  ° ° ) .  

Now back  to  the  d iscuss ion  of  the  l ike l ihood  r a t io .  Assume (v /S)^ .  

and  F n (v /0)  a re  two N-var ia te  normal  d i s t r ibu t ions  wi th  the  same covar iance  mat r ices  

bu t  d i f fe ren t  means .  The  space  f 7  of  observa t ion  v  i s  N-d imens ionaI  vec tor  space .  

Thus  we  put  
N 

k  =  1  

< v k "  V  

< = 1 
N 

(2t t )  ~ T  
(51) 

a l  a 2 a N 
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Fn (v/0) 1 
N 

(2t t )  o ]  a 2  .  

1 
Z 

N 
I 

k = 1 

N 

<Vk " 0)4 

(52) 

Substitute Eqs. (51) and (52) into Equation (40), and we get 

A = <Fn<Vs)>s 

q Fn (v/o) 

= Exp -
q 

i ? (\-v2 , ? < \ - °>2 

*  k = i  k = , " 7 ^  

= — Exp. 
q 

N 

k = 1 a. 

N 
+ I 

k = 1 
vk -? o. 

J (53) 

It is more convenient mathematically and physically to express the likelihood ratio 

in terms of log/1 . The detection threshold for log /I is a monotonioally increasing 

function of -A . 

From Eq. (53), when the noise is Graussian, the log of the likelihood ratio is 

log A = l°g ^ - I j 2 
k = 1 a, 

k 

iN $k 

k = 1 Vk 7* 
k 

N 
= log A0 * E vk-j 

k = 1 a, 
(54) 

where 

and 

1 N Sk 
log A = log u - *• I 

o z . k = 1 a, 
k 

P u = — 
q 

(55) 



8. The adoptive circuit arrangement 

A proposed adoptive circuit arrangement is shown in Fig. 4. We know that 

the received signal can be expanded as: 

S(t) = T S 0 (t) (56) 
k= 1 k 

Therefore, the radative energy ratio of signal to noise can be optimized by 

passing the observed quantity v(t) through a time invariant linear filter systems. 

The linear filters have the impulses responses 0^ (- t). In any real system there 

are only finite number of K of these orthogonal filters. The output of each filter 

passes through an operational amplifier with a fixed gain of k . Then a 
°k 

summing circuit is employed to add all the components at the output of all the 

filter-amplifier units. Another term log A q should be added into the sum of 

this point. From equation (55) we know that 

S 2  

log /J = log u - I I —^ (57) 
° Z k = 1 a. Z 

k 

where u = — 
q 

2 since P, q, a^, and are known quantities. Therefore, log Aq is just a 

constant term. Thus the output of the summing circuit represents the log likelihood 

ratio. This then goes to an amplitude comparator which is controlled by the 

threshold bias K. The bias K is determined by the costs CQ , CP , q , and 

p. As mentioned before, one reasonable decision rule is let K = 1 . 

Therefore, the comparator produces a detected pulse when the output of the 

summing circuit exceeds that of the threshold bias K. Likewise, there will be no 

detected pulse when the output of the summing circuit is below the level of the 

threshold bias. 



Observa t ion  Decis ion  
Space  P  Space  A 

Fig .  1 -  Observat ion and decis ion space  

Signa l  
Space  Q 

Fig .  2  -  Signa l  Space  and  Noise  Space  







PART II  

CHAPTER II  

A LEARNING DETECTION PROCEDURE 

I .  In t roduc t ion  

The  procedures  for  de tec t ing  the  presence  o r  absence  of  a  s igna l  in  no ise  

have  been  s tud ied  ex tens ive ly  in  the  pas t  [ l  -  3] ,  These  dec tors  choose  a  

threshold  leve l  and  count  the  number  of  observa t ions  tha t  exceed  th i s  l eve l .  

On the  bas i s  o f  th i s  number ,  the  de tec tor  dec ides  whether  or  no t  there  i s  a  s igna l  

p resen t .  In  these  ear ly  inves t iga t ions  of  co inc idence  procedures ,  the  threshold  

was  chosen ,  on  the  bas i s  o f  in tu i t ion ,  to  be  the  mean  of  the  input  waveform 

under  no  s igna l  condi t ions .  This  choice  of  th reshold ,  in  genera l ,  l eads  to  a  

subopt imum procedure .  In  a  la te r  s tudy  14] ,  an  ana ly t ica l  and  more  sophis ­

t i ca ted  approach  to  the  subjec t  was  taken ,  and  opt imum coinc idence  procedures  

were  ob ta ined  for  weak  s igna ls  in  no ise .  The  opt imum coinc idence  de tec t ion  

procedures  choose  the  threshold  leve l  in  such  a  manner  tha t  i t  requi res  the  

min imum input  s igna l - to -noise  ra t io  to  insure  a  spec i f ied  informat ion  ra te  and  

e r ror  p robabi l i ty .  However ,  i t  mus t  be  emphas ized  tha t  a l l  o f  these  papers  

s tud ies  a  t ra in  of  smal l  pu lses  in  order  to  de te rmine  whether  there  i s  a  s igna l  

p resen t  o r  no t .  Moreover ,  the  threshold  i s  op t imum only  for  the  par t icu la r  

de tec t ion  problem for  which  i t  was  ob ta ined .  

In  th i s  inves t iga t ion ,  ins tead  of  a  t ra in  of  pu lses ,  on ly  one  la rge  pulse  i s  

s tud ied  in  order  to  de te rmine  whether  a  s igna l  i s  p resen t  o r  no t .  The  par t icu la r  

de tec t ion  scheme we a re  go ing  to  s tudy  i s  shown in  F ig .  1  .  The  threshold  of  

the  compara tor  I can  be  op t imal ized  due  to  the  learn ing  ab i l i ty  of  the  scheme.  

This  scheme learns  no t  on ly  the  charac te r i s t ic  of  the  no ise ,  bu t  a l so  the  s igna l  

to  no ise  ra t io .  Therefore ,  there  i s  a  poss ib i l i ty  tha t  th i s  scheme can  be  appl ied  

to  a  communica t ion  sys tem where  the  s igna l  i s  t ime-vary ing .  I t  i s  fo r  sure  tha t  

th i s  scheme can  be  appl ied  to  a  qua  s i - s ta t ionary  communica t ion  sys tem.  



I I .  T h e  D e t e c t i o n  S c h e m e  

As  shown in  F ig .  1 ,  the  input  of  the  de tec tor  cons is t s  o f  s igna l  p lus  random 

noise .  The  ga te  opens  on ly  a t  the  in te rva l  where  the  s igna l  pu lse  would  appear .  

Therefore ,  the  func t ion  of  the  ga te  i s  to  e l imina te  par t  o f  the  noise  which  i s  no t  

contamina ted  in  the  s igna l .  Now,  we only  cons ider  the  s igna l  p lus  no ise  combi­

na t ion  as  input  to  the  threshold  compara tor  I  dur ing  the  in te rva l  where  the  s igna l  

pu lse  would  appear .  We have ,  

i ( t )  =  s ( t )  +  n( t )  (1)  

where  i ( t )  =  input  t ime  func t ion  

n( t )  =  unknown random noise  

s ( t )  =  unknown s igna l  (may be  t ime  vary ing)  

The  ou tput  of  the  threshold  compara tor  I  i s  assoc ia ted  wi th  the  input  i ( t )  

by  the  fo l lowing  re la t ions :  

O j W  = / A  f o r i ( t ) ^  ( 2 )  

^  o  for  i ( t )  <  

O^(f )  i s  then  sen t  in to  the  idea l  in tegra t ing  c i rcu i t s .  The  ou tput  of  the  

idea l  in tegra tor  i s :  

° 2 ( 0 = J  O l ( t )  d t  (3)  
o  

S ince  the  dura t ion  of  the  pu lse ,  which  i s  be ing  inves t iga ted  i s  T .  Therefore ,  

the  in tegra tor  ou tput  a t  the  end  of  the  pulse  in te rva l  i s :  

r T 
°2 ( t )  =  j  0 , (0  dt  (4)  

o  

0 2 (T)  is  then  sen t  in to  the  compara tor  I I .  The  ou tput  O( t )  o f  the  threshold  

compara tor  I I  obeys  the  fo l lowing  re la t ion :  



/  1  when  0 0 (T)  ^  K 
O( i )  =  2  (5)  

^0  when 0 2 (T)  <  K 

The  va lue  of  K wi l l  be  de te rmined  la te r .  

I I I .  D e r i v a t i o n s  a nd  Calcu la t ions  

Let  us  assume tha t  the  s igna l  i s  quas i - s ta t ionary .  Tha t  i s ,  the  s igna l  

ampl i tude  does  no t  change  in  a  reasonable  length  of  t ime .  But ,  wi th in  a  long  

per iod  of  t ime ,  the  cons tan t  s igna l  ampl i tude  may change  f rom t ime to  t ime ,  

due  to  the  var ia t ion  of  t ransmiss ion  d i s tance  or  numerous  o ther  reasons .  Due  to  

the  same reasons ,  the  random noise  charac te r i s t ics  may change  f rom t ime to  

t ime ,  too .  Le t  us  inves t iga te  and  see  what  happens  when  a  ser ies  o f  pu lses  o r  non-

pulses  i s  sen t  a t  the  t ransmi t t ing  end .  We want  to  f ind  the  var iance  of  the  output  

OjCO of  the  in tegra tor .  

The  var iance  of  C^O")  i s  def ined  by  the  fo l lowing  equa t ion :  

7 2,„x\ rr\\2 
O2(T) = <b22(T)> - <b2(T)>2 (6) 

From Eq.  4 ,  we  know tha t  C^OO is  de te rmined  by:  

r T 
°2 ( T )  =  J  ° 1 ( S /  d t  ( 7 )  

o 

The  probabi l i ty  o f  e r ror  of  Oj ( t )  a t  the  output  o f  the  threshold  compara tor  

p C l ) =  p { n < f > 4 } = p - 1 }  

2 
n 
T 

1  [  e  2 °  dn (8)  

S 
2 

• a  

2 

where  a  =  var iance  of  the  noise  

Therefore ,  the  mean  va lue  of  C^CO is ,  
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<v>>= A T 1 o I 
2a , 

e dn 

2TT  

=  A T P C I  
(9) 

Hence, the square of the mean value is: 

<O2(T)>2 = A2TV(§) 

The mean square value of 0(T) is : 

2-A Y 0,(1,)dt, J o,(t2)dt2) 

J T 

J 
o o 

.T .T 

J<°i(ti)°i(t2)>d^ dt: 

~ J J ^2 ~ Vdtl "'2 
dt. 

o o 

(10) 

( 1 1 )  

= 2 J* (T - t)0o (t) d t 
o 1 

Substituting Eqs. 11 and 10 into Eq. 6, we get: 

°V) " <°22<T»> " <°2"-i>2 

- 2 j' (T - t> <t0 Wd,-A2T!P2(|) 

(12) 

0Q (t) can be determined from the bivariate normal density distribution 

function W( X, X ). We have, 
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S S 
1 1 

4>q^t) = J J A2 W(X , Xt) dx dx. 
— CO — 00 

(13) 

where 
j x 2 + x ;  - 2C(T) X X. 

W(X ,  xT)  = 2a [ 1  -  C ( T) ] 

2 T T 0 2  J \ ~ -

( M )  

C (T) 

Where C ( T) is the correlation coefficient. Eq. 13 can be expanded 

into a series in powers of C(T), [5] . 

• o , W - * 2 f  [ C M ]  
1 o v ! 

V 
(15) 

where 

s 

y2rr 
1 "*®kc^C-Ov (16) 

H^(X) are Hermite polynomials. We have 

H (X) = 1 

H,(X) = (X) 

H2(X) = (X)2 -1 

H3(X) = (X)3 -3(X) 

H4(X) = (X)4 -6(X)2 + 3 

H5(X) = (X)5 —10(X)3 + 15(X) 

H6(X) = (X)6 -15(X)4 + 45(X)2 -15 

H7(X) = (X)7 -21(X)5 + 105(X)3 105(X) 
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H„(X) = (X)8 -28(X)6 + 210(X)4 -420(X)2 + 105 
o 

H9(X) = (X)9 -36(X)7 + 378(X)5 - 1260(X)3 + 945(X) 

Now, Eq. 12 can be written as: 

o rT 2 2 2 / S n 
a O fT) = 2J (T"T) ^0lWdt-A T P (?> 

o 2 (17) 
co r (̂  ~ i  ̂ "1 

= A2[2jV.T)I [_ ^C(T) ]V 3t - T2 P2 (I) 
o o v ! 

for v = 0 

[C (,) f dr 
" o v ! 

2 ; (T -T) __ 
"o \7 2 IT (J 

-1 (J- 2 
r L_ e 1 dT 

(18) 

f»" 2 "S 
=  2  f  ( T - T ) P % f y  d r  

2 2 / S v 

T p 

Substituting Eq. 18 into Eq. 17, we get: 

T  f »  [ 4 ( v - l ) ( - | 5 - y ]  

o2(T) 
= 2A2 j (T - T)) E 

v = l 
[ C ( T )  J _v 

dT 
V 

(19) 
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• 
• 

The corre lat ion  coef f ic ient  C(T )  o f  the  random noise  i s  usual ly  in  the  

fo l lowing form:  

- P I TI  
C( t )  =  e  (20) 

where  P can be  determined from the  rece ived data  of  the  random noise .  

Subst i tut ing  Eq.  20  into  Eq.  19 ,  we  get ,  
2 

7  7 ' /  J  " J I t I  

2 W  \ )— 1 (  v  !  o  
(21)  

Since ,  

r  , T  v  - v P I  t I  ,  
j  ( T - T ) e  d T  

1 
TV 

[(T -  T )  e " M  t I /  + /  e" P v M  dr]  
o  o  

-TV f'1-" "fV •'M'1 ]T 

1 r f t  T  - P  vT ,  1  =  L p v T + e  - 1  j  
P  V  

Subst i tut ing  Eq.  22  into  Eq.  21 ,  we  get ,  

(22) 

2 Z J [* ( v - 1 ) ( t5- ) ]  [pvT + " P v T -

o2cr) 
2 A 

E 
V = 1  V  !  v 

(23)  
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A T 
A reasonable  th reshold  leve l  for  the  comparable  I I  i s  .  This  i s  a l so  

the  appropr ia te  va lue  of  K in  Eq .  5 .  Therefore ,  the  equiva len t  ou tput  s igna l  

to  no ise  ra t io  i s :  
AT 

= 

VN J 
O2(T) 

PT 
(24)  

[ [ i ^ ' ^CToV ]  [pvT + e~^ v T  - I  ]  ' 

1 /2  

V V 

A computer  program has  been  compi led  to  compute  Eq .  24  us ing  the  f i r s t  

t en  te rms  ( i . e .  f rom v  =  1 to  v  =  10)  as  an  approximat ion  of  (^- jq-y  •  The  
o  

accuracy  of  the  approximat ing  ca lcu la t ion  i s  wi th in  1%.  Fig .  2  i s  a  p lo t  o f  a  

fami ly  of  curves  of  s igna l  to  noise  ra t io  of  ou tput  v - jq - ^  versus  s igna l  to  noise  
o  

ra t io  of  input  us ing  pT as  a  parameter .  F igure  3  is  a  fami ly  of  curves  

which  p lo ts  (qq-y  versus  pT us ing  j  as  parameter ,  
o  

• 

IV.  Conclus ion  

For  a  g iven  communica t ion  sys tem,  the  pulse  in te rva l  T  i s  a l ready  a  

f ixed  va lue  des igned  to  meet  the  requi rement  o f  the  sys tem.  P i s  a  quant i ty  

which  we  can  read i ly  measure  a t  the  rece iv ing  end .  Therefore ,  the  on ly  unknown 

var iab le  of  Eq .  24  i s  the  input  s igna l  to  no ise  ra t io .  The  equiva len t  ou tput  

s igna l  to  noise  ra t io  can  be  expressed  as :  

V N /  
o 

AT 
T" 

O2(T) 
(25) 



The exac t  va lue  of  a -  can  be  measured  a t  the  in tegra tor  ou tput  
f  S  n  2  

02(T) .  Therefore ,  c a n  be  eas i ly  ca lcu la ted .  Thus ,  the  input  s igna l  
o  

to  noise  can  be  de te rmined .  This  means  tha t  the  de tec t ion  scheme i s  l ea rn ing  

a l l  t h e  t i m e  t h e  i n p u t  s i g n a l  t o  n o i s e  r a t i o .  I n  o t h e r  w o r d s ,  t h e r e  m u s t  b e  a n  

opt imum se t t ing  of  the  threshold  leve l  o f  compara tor  I .  The  opt imum se t t ing  

i s  de te rmined  by  the  learn ing  scheme such  tha t  i t  g ives  a  minimum var iance  

.  .  a t  the  output  of  the  in tegra tor .  I f  the  learn ing  process  i svery  fas t ,  
^2 '  '  

then  th i s  scheme can  be  appl ied  to  de tec t  the  t ime-vary ing  s igna l .  Conserva t iv  

speaking ,  the  scheme can  cer ta in ly  apply  to  quas i - s ta t ionary  s igna l  de tec t ion .  
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