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DETECTION OFPULSE CODE MODULATED SIGNALS
WITH ADAPTIVE DECISION CIRCUITS

Chapter |

INTRODUCTION

This paper studies the detection of coded pulse type signals in
the presence of noise or jamming signals. A decision circuit compares
the noisy signal to a threshold to determine whether or not a pulse was
sent. The average probability of ervor is reduced if an adaptive threshold
is used instead of a constant threshold; this improvement may be interesting
in the reception of command and guidance signals, detection of coded
radar signals and other applications, especially those involving transmissions
where high data rates are important. The threshold is a function of the
sequence of pulses and the predicted noise. The principle of adaptive
threshold is explained in Chapter Il. Chapter |1l and Chapter |V provide
two examples of adaptive threshold.

In Chapter |ll, a pulse code modulated signal mixed with RC noise
is detected with a threshold device. It is shown that the average proba-
bility of error in the detection is reduced when the noise is sampled befor
detection and the threshold level varied accordingly.

In Chapter |V, a pulse code modulated signal mixed with white
nomal noise is first filtered with a RC network and then detected with a
threshold device. It is shown that the average probability of error in the
detection is reduced when the filtered signal, which is a function of the
noise and also the previous sequence of pulses, is sampled before detection
and the threshold level varied accordingly. The gain in average probability
of error, the optimum width of the pulse and the optimum RC of the filter

are also determined.




In Chapters V and VI, an integrator is used during the interval of
time where a pulse may be present. An adaptive integrator is investigated
whereby the noise is sampled before integration , so that the "expected"
value of the noise during the interval of integration can be computed by
correlation technique; then a "corrected signal" equal to the unknown
signal minus the "expected" value of the noise, is integrated.

In Chapter V, a pulse code modulated signal mixed with RC noise
is processed through an integrator and then detected with a threshold device.
It is shown that while a standard integrator already reduces the average
probability of error in the detection, an adaptive integrator reduces the
average probability of error considerably more.

In Chapter VI, the pulse code modulated signal mixed with RC noise
is (1) detected by a linear detector, (2) integrated by a standard or adaptive
integrator and (3) detected by a threshold device. The problam is much
more complex because the linear detector is a non linear device, the pro-
bability distribution does not remain normal and the superposition principle
does not apply. It is shown that the variance of the signal before threshold
detection is considerably reduced when an adaptive integrator is used, which
of course means a smaller average probability of error.

Chapters VII and VIII are the experimental verification of Chapter |V.
Chapter VII explains the block diagram of the experimental set up. The pure
signal, a train of rectangular pulses, is mixed with white noise, then filtered
with an RC network, and finally is detected with a constant or with an
adaptive threshold. The errors in the detection are determined | y comparing
the detected signal to the original pure signal in a coincidence circuit. The
errors are counted to compare the constant and adaptive threshold. Chapter VII|
discusses the measurements and give the experimental results. Special circuits
are described in Appendix D.

Chapter IX is both the review and the conclusion of Part |. It compares

the adaptive schemes discussed in Part |.




The Appendices A, B, and C concern the evaluation of the average
probability of error of Chapter 1V. Appendix A shows that the double integral
which represents the average probability of error in the case of adaptive thres-
hold can be condensed into one integral. Appendix B explains the computation
of the average probability of error using a digital computer. Appendix C gives
a technique to expand the average probability of error as a power series.

Appendix E compares the RC filter and the integrator for constant or
adaptive threshold and for RC type or white noise. It completes and correlates

the results of Chapters 111, IV, and V.




Chapter ||

pETE_CTET\"JEJ_F A PULSE CODE MODULATED SIGNAI

Ihe input of the receiver, s, (t), is the sum of a binary code
|
represenred by a frai I random pul‘;(:s (one for a pui;v, Zero rorr puise),
and of a random noise, n, (t). The origin of time is chosen such that the
pu\ut:s may be present only in the interval of time mT <t ml + KT where
T is the pseudo period, KT is the width of the pulse, an )
positive, negative or zero. The instantaneous amplitude of the trair
rectangular random pulses, shown in Figure 11-2, is defined by p. (t).
p. (1) Yy V for mT t ml + KT
| (14
p. (t 0 elsewhere f
|
where V is the amplitude of a pulse and ¥ is a random variable: 7
m
if the mth pulse is present and ¥ o otherwise. The set of probabiliti
m
of Y does not depend on m fora stationary process, The capacity of the
m .
binary channel is maximum when the probabilities of zero and one are eq

This interesting case is assumed here
P() 0) = P(y 1)=1/2 11-2)
m m

Tt

The inputs of the threshold detector are marked X and D.
the detector is a pulse if and only if X > D while the detector
This occurs once every pseudo period at time t =mT + KT. D
threshold level. Denote the output of F by s(t) and consider the detection

of the random pulse defined by m = 1; since the detector is un

time r] T+ KT, . . is the only value of s(t) which matters in the
constant threshold detection; there X = 5] and D DC A/2. whe

is the constant threshold level and A is the value of s. when the
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The noisy signal s, is the sum of three terms,

where r. is the residual voltage at time t] due to the previous (known)

]

sequence of random pulses, n is the noise at time ?], Y. A is the unknown
random pulse starting at time t T. The detector must determine whether the
pulse is present or not (Y, = 1 or 0)
\

The sampled signal, M"‘.) 5}', at time f]. before the unknown random

pulse is the sum of 2 terms, s,* =r.* + n,* |-4)
| ] |

where r.* is the residual voltage at time t.* due to the previous (known)

| ]

sequence of random pulses, n.* is the noise at time t,* and t.* T+ KT =-K*T

where 1 K* <K

\

In general (r, + n,) and (r, + n,)* are correlated so that (r, + n,) can

1 l | by ;

be partially predicted from the knowledge of s.*. Let (r, + n.)' be the predicted

value for (r. + 1 2 Since (r, 4 nx'% is equivalent to a noise it

‘ x
to compare the corrected signal sl - (r‘ : n1 )' rather than the actual to the
constant threshold D =D _. = A/2. However, this is exactly the same a paring

-

the actual signa . to an adaptive threshold D DA A/24 ri+n . It will
be proved that (r, + n,)' p* 5) *, where p* isa constant; (r, + n can b
obtained by using a sampler-holder; the sampled value s.* decreases to

from the time t.* to the time t

| 1
The input random noise, n.(t), is defined by its probability density distri-
i

bution, f(n.), and its autocorrelation function, R. (7). The aut rrela
i i

obtained from the power density spectrum and vice-versa, since they are a Fourier

transform pair. For example, Figures 11-3 a, 11-3 b, and |1-3 ¢ show the probability
density distribution, the power density spectrum and the autocorrelation function of

normal white noise, respectively.
he flow graph of Fig. |1-4 show the two type of errors which oc in the
¢ G Yl

threshold detection of the noisy signal, s

| -

(1) Type 1: O is sent, 1 is received
T . Vg A 2 :
(2) lype <: | 1s sent, U is received

N
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The technique ou ed in this chapter is applied on specif

\/ \ n

in Chapter Ill and 1V, V and VI. In Chapters |Il and |V, the signo

V ar VI, a corre

compared to an adaptive threshold, while in Chapters V and

signal ) is compared to a constant threshold.




Chapter |11

i - EUECT_'ON OF A PULSE CODE MODULATED SIGNAL

IN PRESENCE OF RC NOISE

[11-1 Statement of the Problem

The input signal consists of rectangular random pulses mixed with RC
normal noise and the receiver is either a constant threshold detector or ar
adaptive threshold detector. The block diagram of the receiver is shown i
Fig. ll=1 where the transfer function of F is unity since no filter is used;
therefore, s, (1) s(t), n.(t) = n(t), etc.

Given the average power of the emitter and the characteristics of the
noise, it is shown that the average probability of error in the detection of
pulses is considerably reduced when an adaptive threshold is used. -4 ' T '

T

The normalized autocorrelation function of RC noise is p(r) = e

where B is a coefficient proportional to the bandwidth of the RC ¢ d

is called normalized bandwidth;

through a RC network, the output is a RC noise with normalized aut

_;'T|

T
function pl(T) d : The i
| ) (T € an . " ne input
r Rz !
completely defined by the following independent variables: signa

ratio, S./N., normalized width of the pulse, K, the normalized
| |

of the noise, B, and the set of probabilities for pulse and no puls

convenient to assume that the input resistance of the receiver is «

introduce three independent variables: the amplitude of a pulse

”

power of the signal, P , and the variance of the noise, o
S

Assuming equal probabilities for pulse and no pulse, i.e.

Py =1) 1/2, the average power of the train of random pulses

s 2P
3 V K ‘ 3
r’l e hence, V = e

~

" 3 2
The noise, n(t), has zero mean and variance ¢. ; hence

’

average power of the noise, Therefore, the input signal to noise

more precisely, if a white noise i

| to noise

r m and




S P
| S
N 2
i 0.
i
and the probability density is
2 2
1 -n /20,
f(n) e e '
2n o,
i

& |T|

) e — 2 : * A ;
K(T) nt) nit+ 1) = o, p(T) o, e
i i
The choice of the dependent variables V and o, is arbitra
]

\

only the ratio — is important. — can be expressed in terms of sigr
o, o

g ! i
to noise ratio:

V 2 - i
x K N
i I

In order to find the average probcbilif'/ of error in the thre
detection of s(t) at time t T + KT, the probability density

must be obtained, but first p(t = T + KT) Py must be defined.

I11-2 Average Probability of Error for Constant Threshold

Since the noise is symmetric and the rectangular pulses are
c is V/2. The signa

is compared to the threshold at the time tl T+ KT and s.(t.)

the best choice for the constant threshold, D

1

Using formulas (I1-5) and (11-6), the average probability of er

/

first type E,(_ (O sent, 1 received) and the average probability of err

second type E (1 sent, O received) are respectively:

"2C

naependent

function of the RC nomal noise, n(t), is

(111-2)
(11-3)
(11-4)
ry;
11
(111-5)
id
t=14

’




The average probability of error for constant threshold is then:
@
- 2 3 2
E.=1/2E _+1/2E 02 i I : k.
4 Y. _— e ax — ¥ !
5 1C ogiie : et
/2na, V/2 /2w V/20.
! |
~ @ (111-8)
: / ] _,.? 2
For short notation, let |{u,] / —_—e T odx; (111-9)
W
vy 2m
ther LC v 2Ji‘ (111-10)

I11-3 Average Probability of Error for Constant or Adaptive Threshold

In the case of constant threshold there is no need for sampling before detection;
however, the average probability of error in the detection is the same, with or without
’ ge p y ,
sampling, if the sample is not used to modify the threshold or the signal. It is, therefore
ossible to establish a general formula for the average probability of error for a given
) ge | Y
threshold level D, constant or adaptive.

Since s, and u}' are not independent, the average probability of error in the
| (

detection of 5\ depends upon 3]' , and the average conditional probability of error,
E(s]"‘), can be defined. The average probability of error E for any s.* can be obtained
'Dy averaging E",1
+
E f(s]‘> E(sl*) dsl* (1-=11)

This computation of the average probability of error is always correct whether
the threshold is constant or adaptive.

The received random pulses are rectangular and no memory type network is
used before detection; therefore, the signal, s(t), is just equal to the noise, n(t),

during the time interval between random pulses:

s(t) n(t) for nT + KT t< (n+ 1T

!




This relation is satisfied at the time t.* of sampling

l

1

st =t.*)=s.*=nt=t.*)=n,* (111=12)

t]‘ =T 4+ KT - K*T where 12> K* > K

At the time H of detection, and assuming additive noise

: & & L Y.V (11=13)
>(f]) s1 n, 1]\ [ )

t].T¢KT

When s.* is known and used to modify the threshold, the average

]
probability of error can be reduced. The relation between s, and Ji' is

expressed in terms of conditional probability density f(s] / 8 *). The average

conditional probability of error can be expressed in terms of the first moments,
. - =2 . =2 {4

Sy s]*, the variances, (s, = s]) . (s]* - s]*) , and the autocorrelation

coefficient, p*. Here,

SE, 2 2 ‘

(s, =5 & 5 T, = (111 =14)

| ) (s] | ) o, 1] )

-s.) (s, -s,* -5, ) ¥ - ) N, N

T a0y P e P T AL gl 1 S

and p —— = = T B (11=15)
/‘ P )2 - o,
v S] _)] \S S] ) |

Therefore, p* is simply the autocorrelation coefficient between the

noise, n]“ , at the time of sampling and the noise, ny s at the time of the
detection. The normalized autocorrelation of the noise is defined in paragraph
ARSINGS ageite 2
n(t) n(t + 1) T
IHi=1 as p(r) - e
S
B n,
Therefore, p T 2 is obtained from p(r) by letting
o,
|
- t. - =
/ ‘ EET S 5 A '
t+1 =t T+ KTand t b=t 4 KT = K*T resulting in g
- K* (111-16)
e




l(JI —SI)—' 5 =
2
] 20i (1-p*)
.(5] 2 iy f‘-»:f——-';— € (=1
2m 1 - p*

where the bar above a letter denotes averaging.
In terms of n, and n*, f(s,/5,*) is

-(n, = p*n,*)

The average conditional probability of error of the first
|

type, in the detection of Sy 7 knowing the sampled signal s.* before

detection, are denoted E. -(s.*) and E,~(s,*) respectively.
’ il 1 2C*1 bbb

and E2C(:,l‘ ) are expressed by formulas similar to formulas (||
(11-9):
" P | 'w] V 2)‘(\]
P ( P jm -V/2) | n
2 =, ] ] J
0
f f(s,/s.,*) d
. H A W
‘ /2

After the change of variable t ’




which is simply E. -y [ —

with the notation of pa

and after the change of variable t= ——ouu——

| ditional probability of error of t

type in the detecti f»'wwiﬂg :] is defined as
the average of E, .(s,*) and E,~(s,%):

G | L

obtained

probability of error of the first or the

Q1

detectionof s, , forany s , is definedas E . aond i

n }CEp(,‘LT O S5 ; Since

|

averaging of o

it result

|-2
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The average nditional probability of error in the det
adaptive threshold, D, . of a signal, Sy s knowing the sampled value before
M
detection s.* , is denoted by EAns]') which is obtained from the formula for
|

EC(S]‘\ (formula 111-23) simply by replacing V/2 by V/2 + g(s,*)

. 2 gws]')— gn]*"t IT\,’E-\’,«,I", ";\l“
E 6,%) /2 | — (+ 12 || ———————— (111-28)

1 - p* ] o. v 1 -p*

The corrective functior g(sl‘) is chosen such as to minimize the average
probability of error, E,. The average conditional probability of error, E, ) 7

is minimum for
gls,*) By = p% n." (111-29)

this results from the comparison between the well known inequality

i 2 (v, + &) +1/2 I(y) - &)

and formula (111-28)

E is the average of E, (s,*) with respect to s.? f
A AV F I ATA LA
when g(s,*)= p*n,* notonly E,(s,*) is minimum for every s.* buf
‘ \ A'l
it is a constant, and there is no need for further averaging. After replacing

g(’s]') by p*n,* in formula (I11-28),

E | | 11=-32)




p* can be repla i, using the formula (I11=16):

v |

A |
A pr—— |
7R K* |
- 20, -’I—ez"K -
: Y
The physical interpretation of the choice g(s,*) p*n.* is
) i g

1

straightforward. The adaptive threshold at time t] is obtained by combining

formulas |11-27 and 111-29 and |l =16:

D V/2+4+ p*n,* V/2 + n,* e ! [11-34)

A ' ] ' ]
The corrective term is the output of an RC network of time constant

T/B discharged from the initial value n]‘ at time r]‘ to the value

- 4 - F ®)
,(T‘ I )

n 2 at time t, , and it is obtained at the output of a

1 ]

sampler-holder which samples the filtered noise s(t) at time t

the sampling time the sampler-holder behaves as a zero-memory network but

during the holding time the sampler-holder behaves as an RC network and the
RC time constant of the sampler-holder must be equal to T/B , R( I/B. The
schematic of a sampler-holder is given in the experimental chapter, Ch. VII.
The time of sampling and of detection have to be slightly modified in a practical

model because the electronic components do not operate instantaneously.

I11-4 Minimization of the Average Probability of Error
ol s A L Wel Y
The minimum ay je probability of error for constant threshold f
given input signal to 1 ratio can be obtained. The average pi
error is of the form |(x) which is monotonic decreasing and is minimum when x

is maximum,
The average probability of error for constant threshold given by f

(111-26) can be expressed in terms of the signal to noise ratio using the formula (111-5):
g




N
o

\/ / s N
- y , i ( 0
t | x| = | / . (1H1=335)
C L0, \ P\
i J
Therefore, E_. decreases when K decreases; if the physically
realizable minimum of K is .1, the minimum attainable average probability
of error at constant threshold is
B o | | - s T (111-36)
Cmir / =T
’ N,
\ | |
where E_. . denotes the physically realizable minimum of E ..
Cmin {

The average probability of error for adaptive threshold is given by

\ 1

formula (111-32) and can also be expressed in terms of input signal to noise ratio:

l Vv ] / % I
E t—— S | e e———————— (111=37)
| / | ~
A - 58 K / 28k
20, | - ¢ J L v 2K(1 = ¢ )
|
; 2
The average probability of error is minimum when the product 2K(1 = p*")
-2RK* . ‘
2K(1 - e 1S Inimu which requires that both inda | be minimum,
Since the sampling must ade before the unknown signal b must be |
piing g '
than K. Assuming again that K .1 is the physical minimum and that the
sampling can be made just before the unknown signal, [A is minimum for K= K* = .1
r 55S./N 1
g i i
and is given by e —_—— (111-38)
A Min 2
P typlog=rei]
E . is a function of B and increases when B decrease
A min
-5 mparison Between Adaptive a onstan reshold
IHI1-5 Comparis Adaptive and Constant T} id
The received signal, a train of random rectangular pulses mixed with
RC noise is defined by (1) the signal to noise ratio, S./N. , (2) the normalized

| |




bandwidth, B , which determines the normalized autocorrelation function of
the noise and (3) the relative width of the pulses, K. The probabilities of
pulse and no pulse are assumed equal and the average power of the emitter
(not the amplitude V of the pulses) is assumed constant,

The average probability of error at constant threshold is a function of
Si/Ni and K (formula H1-35) and is minimum when K is minimum (soy K = .1)
EC S is given by formula 111-36 and is function of SI’ Ni only.

The adaptive threshold detector is defined by the time of sampling, i.e.

K*, and the law of prediction DA = V/2 + p* n,* . The average probability

]
of error for adaptive threshold, EA , isa functionof S,/N, , B , Kand K*
i i
(formula 111-37). The average probability of error is minimum when K* = K and
K is minimum (say K= .1). EA R is given by formula 111-38 and is a function

of Si/N' and B.
i
It is especially interesting to compare the minimum average probabilities
of error for constant or adaptive threshold, EC i and EA Lk respectively.

A min) are plotted instead of EC T and

EA 28 which are very small numbers. The maximum of - log]O E is the

minimum of E. Fig. Ill=1 shows (- Ioglo EC min) versus S, /N, for a useful
: :

C | ’ *
Amin) versus S f\i for K=K

and different values of B . The average probability of error is smaller for an

(= log]OEC min) and (- Iog]0 E

range of S,/N.. Fig. Ill=2 shows (= log]O E
| |

adaptive threshold than for a constant threshold; the smaller B is , the larger is

the improvement. The reduction in the average probability of error can be expressed

by a gain in decibels, G - 20 |og]0 (EA/'EC). G is a functionof S,/N, and
|

B. Fig. llI-3 shows G versus Si/N' for typical values of B.
[

21




Y

-
1
- oo oo —r——————t——a———
|
....... LLLELEL]
| 4
|
FARGARESANGEEEN 4 < L] I W

Fig, III-1 : Probability of Errer versus Signal te Noise Ratio, Constant

Thresheld and RC Neise




B0 T O O e ' ......................
| 1 A(min) Y
)] ’
, e e B
Vi B- 2.5 ! 7 V. !
J |
8  ANENE , .,59—5
/
!
? | =8
1
6
21
/
4
3} 7.
'
] //
2 4
IRr e dmmsamamSEmEmSESmSEsEESsES
| l,'/'
 JERY.
1 2 3 L 3 34_/7“i
Fig. III-Z : Probability ef Error versis Signal to Noise Ratio, Adaptive
Threshold and RC Noise for S = 2.5, 5, 8




a%¢ibel

100

e

’
| f/
b 1 4
: f
{ /
| j
|
hO ;,
= /
! ,l
{
f
/
20 ; /
£
v{ !
190 4.!
D i kidill i
1

Fig, I11-3

RC Noise,

.

o <
= 2,5, 5 and

z"
' 4
r Av'\
,’!j;_‘f - 4
g
r &
(I
}/
A
,"‘:
A ,//f .
L4
’ 4
Ll
e
o ;j.- 8
’/
Y 1 153 HEH 1
3 3 g

8.G= « 20 log,, (
10

E

A

I~
-

)

’

——),

8, /N,

A

: Reduction of the Probability of Error by Use of an Adaptive Threshold.




Chapter |V

THRESHOLD DETECTION OF PULSES MIXED
: ';‘ﬂﬁ{ WHITE NOISE, RC FILTER

IV=1 Statement of the Problem

Rectangular random pulses mixed with white noise are detected by a
receiver which consists of an RC filter and a threshold detector. The block
diagram is shown in Fig. I1-1 where F is now a RC filter. The received
rectangular random pulses are defined as in Chapter |l: pulse and no pulse
equally probable, pseudo period T, width KT, amplitude V, and average
power Ps \/QP\ 2 . The input noise is nomally distributed and white,
i.e. the power density spectrum is a constant denoted by 1/2, The RC
network is defined by the dimensionless variable y= T/RC. The average
probability of error in the detection of the filtered signal with a constant
threshold is a function of P, n, T, Kand y. The average probability
of error in the detection of the filtered signal with an adaptive threshold is a
functionof P, n, T, K, yand K* , where K* measures the relative
distance between sampling and detection.

The filtered signal, s(t), is detected at time t = T + KT. Between
t=KT and t =T, s(t)is the sum of the noise n(t) and of the residual voltage
due to the random pulses already detected; therefore, the sampling of s(t) ir

this interval of time determines the noise before the unknown signal is received.

The time of sampling is defined by t =T 4 KT = K*T where K* > K. A short

notation is used for th ise and the signal at the time of detection

= Kl=1 nit=t.)=n (t=t.)=¢$
t=T+ KT | ( ]) 1 ] |
and at the time of
t=T+ KT =-K*=¢.* n(t=t.*)=n* s(t=t.*)=s*

25




26

The following problem is solved: the input signal consists of a train
of rectangular random pulses mixed with white nomal noise. Given the average
power of the train of pulses, PS , and the power density of the noise, n, and
the frequency of transmission, 1/T , find the optimum choice of RC filter and
T - LT M i,
pulse width (i.e. y and K) to minimize the average probability of error in the
threshold detection. Consider the case of constant and adaptive threshold and
compare the average probabilities of error.
The average power of the white noise over all the range of frequency is
‘ g 1 Y
infinite; hence, the average probability of error cannot be defined as a function
of the input signal to noise ratio which is zero. Fortunately, P , n, and T
s
appear only as a factor Q PT/ n; therefore, the problem reduces to: given
. ¢
Q , find the combination of K and y which minimizes the average probability
of error where Q is similar to a signal to noise ratio and is called fictitious
signal to noise ratio.
In order to find iverage probability of error in the threshold detection
of s(t) at time hh=t+l [, the probability density of s s(t = T + KT) must

]
be obtained, but first the effect of the filter must be determined.

IV-2 Effect of the RC Filt n the Noise

The effect of the RC filter on the power density spectrum, the autocorrelation
and the probability density of the input noise, ni(t), are easily obtained. Since the
network F is linear, the probability density remains normal; hence, the probability
density of the filtered noise is completely defined by its first and second moments,
m, and m,. Only n, and n,* , the values of the noise at the time of detection

.

and at the time of sampling, are important. Since the noise is stationary, the moments

do not depend upon t; therefore,

and m. = n(t) n, n]" (1V=2)




G.(f) and C:fwt"/ are, respectively, the power density spectrum at the
| . /
input and the power density spectrum at the output of a linear network defined

by a transfer function, F(f) (here f isthe frequency). For a RC filter,
The power density spectrum at the input, G. , isa
|

constant since the noise is white, G, = n/2. The power density spectrum,
i

G]c , at the output of the filter, F , is simply the product of the power density

spectrum at the input by square of the modulus of the transfer function,

- : 2 n/2 o
L;f I F(f) ’ Gl(f) - % (1V-3)
1+ (2« f RC)
The autocorrelation function is the Fourier cosine transform of the power density
spectrum (Wiener's theorem). Therefore, the autocorrelation at the output of
the filter is
o I | D
OS5 T I R Ko
R(r) = 7 2/ — df = x> @ (IV-4)
y TINE e i 4RC '
- @ 1 + (27 RC f)
The autocorrelation R(r) is by definition
R(r) =n(t) n(t+ 1) (IV=5)

The mean square value of the noise is obtained by letting T = 0 in formulas
(IV-4) and (IV-5)

: 2 ;
R(e) =n(t) = n/4RC (1V=-6)

The normalized autocorrelation function of the noise, p(Tt), is

, R(r) -lx1/RC
).~
; o & 2a 2 : -t/RC .,
The response of the RC filter to a unit impulse is = e . The

NG

output of a network is obtained by convolution of the input with the impulse

response. Therefore,




@ -t =-7)

n(t) = / ni(r) _ﬁé— e RC dr

o ¢ ¢
+ @ -t -7)
WD=/ n.(r) W]‘ I (1V-8)
- oD

The input noise has zero mean. Substituting n—l(F) =0 in formula IV-8
yields n(t) = 0. (1V=9)
Finally, the first and second moments are obtained by combining formula

1IV-1 with formula 1V-9 and formula 1V-2 with formula IV-6.

m, =n, =n, =0 (1Vv-10)
i i n/ 4RC (IvV-11)
2 1 1
The variance for n, and n]* is
02: m, =m . = n/ 4RC (IV-12)

2 1

A normal probability density remains normal after passing through a
linear network; therefore, the probability density for n, or n]* is of the

form ”

e (1v=13)

IV-3 Effect of the RC Filter on the Random Sequence of Pulses

The RC filter changes the shape and the width of the pulses. The amplitude

increases in a sequence of overlaping pulses because the initial charge of the

condenser is increasing every time. A sequence of random pulses can be considered

as the superposition of individual pulses starting at time (mT) where m isan

integer; thus, it is sufficient to study a single pulse without initial charge of the

capacitor.

28
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Consider a rectangular pulse of amplitude V occuring at time t = 0;
the instantaneous voltage, e.(t) , is defined as e.(t) =V for 0< t< KT and
| I
ei(f) =0 elsewhere. The pulse, e.(t) , is applied to a RC network without
]

initial charge and the output pulse is defined by e(t). It is easily shown that:

e(t) = V(I - e—'/RC) for 0 < t <KT (IV-14)
_ t=KT

and  e(t) = V(1 5 RC) e "C for KT < t (IV-15)

The maximum e(t) occurs at time KT and is equal to

olt=KT)=V(1 -o— KI/RCy _ A (IV-16)

If the input rectangular pulse originates at time t = mT instead
of t =0 , this corresponds to a translation of e.(t) by mT; e,(t) becomes
I |
ei(t - mT). Therefore, the output voltage is also translated by mT; e(t)

becomes e(t - mT) which is denoted by em(f) for @ more convenient notation.

e (t)=0 for t<mT (IV=17)
m -

e M)=V(-e (t - mT)/RC, formT<t<mT+ KT  (IV-18)

e )=V (- KRGy AR eKIRC o aTo KT< (IV-19)

The maximum of em(t) occurs at time mT + KT and is again equal to A,

The output of the filter to a random pulse YmV is i em(t) , which
is defined by multiplying formulas V=17, IV=18 and IV-19 by i (ym was
defined in Chapter I1):

Yy e (1) =0 for t < mT (1vV-20)
m m -
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Y e M=y V(-e~ (t - mT)/RC

) for mT < t< mT4+ KT (IV-21)
m m Y

i _ .~ KI/RC, = [(t - mT) - KT} /RC
Tm ®m®) =7, V(I -0 i for mT+ KT<t (1IV-22)

The maximum of Ym em(f) occurs at time mT + KT and is equal to YmA.
A filter is said to have a n-step memory if the output becomes zero
n pseudo periods after removal of the input. Assuming a two-step memory,
the filtered random sequence of pulses, p(t) , during the interval of time
KT <_ t< T + KT is obtained by superposition of 7_] e_](t) y 70 eo(f) and
Y, e,
Pi) = ¥ ;e +7_eqt)+7, e, (t) (1V-23)

em(f) is defined by one of the formulas 1V=20, 1V-21 and IV-22 for
which t is in the proper range. The index m isequalto -1, Oand 1.
To obtain the noise at the time of sampling, t.* , and at the time of

]

detection, f] , the variable t in formula (1V-23) is replaced by t]* and

oo respectively:

. -T(1 - K*) - T(2 - K*)

-KT/RC | RC RC
e ) )’oe + Y

p(f]*) = p]* =V(l - 1€ J (Iv-24)

-

and

-KT/RC) [ (1V-25)

IAC- e—2T/RC}

p(fl):p,I :V(] -e Y] - ol

It is convenient to express pl* and Py s functions of the normalized

autocorrelation function of the noise, p(1) = e-IT I/RC (formula IV-7). Let

p('r =T)= p=e_yand plr = K*T) = p* =e")'K




Then

K
V(1 -p") 2 A 2.

* —_—_— s = 4 ¥
P* = o [yop\ Yy p ] > Ly p Y0} (IV-26)

K 2 2
and P = V(1 - p )l7]+ 7Op+r_]p ] = A [71f70p+7_]p | (1V=27)

IV-4 Average Probability of Error

Assuming additive noise

A & A 2
S] =n* 4+ o (70p + Y_Ip ) (1vV-28)
s, = Al ) 2) (IV-29)
by Wi o R

Since 5 and s]* are not independent, the average probability of error

in the detection of 5) is a function of s]*; this average conditional probability
of error is denoted by E(s]*) which is the average of the average conditional
probabilities of error of the first and second type E](s]*) and Ez(s]*). The

average probability of error in the detection of s, forany s.* is denoted by

] 1
E which is obtained by averaging E(s]*) with respect to s.*, that is, with
respect to n]*, L and N successively. The threshold level of the detector
is denoted by D. Two types of threshold level are investigated: constant threshold,

DC' and adaptive threshold, D The different average probabilities of error

A*
defined above are a function of D; therefore, the subscript D is added to all the
average probabilities of error defined previously, for example ED(SI*), E]D(s]*),
& * - : . o
ED, etc, E]D(Sl ) and EZD(S] ) are obtained by integration of the conditional
probability density f(s] | s]*) which must be determined.
The conditional probability density of two normally distributed random

variables, X) and Xo 1 is expressed by a well known formula as a function of

the variances 7, and 9y and the autocorrelation coefficient

P12°
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2
- ] !(“1 ""1)) 7"2)
¥ Y i
| 2(1 - p, 2\[ o, - g, 1J
fx, | x,) = e (1V-30)
/ / 2
vV2n o, V1 =p
] 12
¢ (x]-;_])(x2—§)
where p]z —
— —_2
V ()\l —x]) (.xz—xz)
In this formula, let
5] XI J‘I X2
and note that
s] -s] =n = n(t tl) 51‘ -5 n n(t f] )
2 - BSigy § i Ja
o, o n, n o
and
ne N -“1—_,] )
£ : N -
Py S Ta—— p(T - f] —f]') = e p* (1v=-31)
PR B
3 n] ! -(n, -p*n ‘)2
X 1
] 202(1 Iy, )
Then f(s]/s]*) = e P (IvV-32)
Abat ! Y |
\/Zn o vV1-p*
Also, f(s]|s]‘) f(n, [n,*) = fin, | s,*) (1V-33)

The average conditional probability of error, ED(S]‘ ) , in the detection

“

of s, with a threshold D and knowing ) is evaluated next., Given s]* and

] prabinad
Y and Y e, the average conditional probability of error of the first type (0 sent,

1 received) is:




ElD(s]‘) = P lsI > D s]‘ (IvV-34)

The inequality can be expressed as a function of n, by using formula
|

IV=27 with ‘/] = 0,

A = | * L N . > . \_r
E]D(s]) P[n] D At;op Y 1 f ) s (1V-35)

The conditional probability density ftnI s,l‘) is given by formula |V-33

_@®
" =
| -(n - p* ”‘l‘ )2 20 (1 - p'z)
E,.(s,*) = - e dn (1V-36)
i) e —_—— ]
V2r o1 -p'L
2
n,= D-A(r p _P)
o p‘n]‘
After the change u
/" 2
o | - p*
@
/ g, | b
E]D(S] ) / o dx |(U]D) (Iv-37)
“1D
2 *
D-A(Yop*/_lp) —p nl
UID = ; (|V-38)
o V1 =-p* | - 2
vV1-p o P

Given s]* and G and AT the average conditional probability of

error of the second type (1 sent, 0 received) is:

E2D(s]*) = . PAS.< D] %] (1IV=-39)

] ]




2
Pln] <D =~ Ahop FYP ) n]‘ (IvV-40)
2 .
/’ n=D-A —A(;OF, 4 ,_l( ) -(01 - n] )
E2D(Sl*) - /1/' M e . e %70 = p™) dn, (1vV-41)
/2 o/ 1 =p*
- @
'.] p* n]' \
After the change u - — \
% ’!
o | - kil
~ Q0 & ’
EZD(SI" A /O & 1_]) e du |lu2D) (1V42)
ik
2
A-D+A(rep 7_lp) f n]'
Usp bo— (IvV-43)
// ; / ;
v 1=-p? ov1-=-p?
Given s]* A n]‘ 2 S and Y.y the average conditional
probability of error of the first or second type is:
ED(S] ) L?ElD(s]‘) + 1/2 E2D<s] ) (IV-44)
1/2 l(u]D) + 1/2 I('uzD) (1vV-45)

The average conditional probability of error of the first or second type for

given Ty and Y _, but forany n.* is obtained by averaging (IV-45) with respect

] ]

Sz
R / PR L i) + 10,0 dne

# = — U (" n
D (o] -] \7‘”— o 2 ]D 2D‘ ]

(1V-46)
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If Yip and Upp are functions of n]* , the double integral can be condensed in
a simple integral as explained in Appendix A, resulting in:
y A : 2
D—A(rop~ Y_\P ) A-D‘A(Yop~7_]p )
ED(Yo ’ 7_]) =1/2 | + 1/2 | (1IvV-47)
o o
ke J J
The average probability of error of any type, for any n* o and any Yo 1Yy
is obtained by averaging the average conditional probability of error,
ED(}’O A 7_]), with respect to ‘ro and Yy
2 2
S [ [OArp 1y ADsAprT D
Ey=1/8 Z / | J + | | |(1vV-48)
Ve I g %y o | : ]

IV=5 Choice of the Threshold for the Minimum Average Probability of Error

The threshold D is chosen to make the average probability of error minimum;
two cases are considered: constant threshold and adaptive threshold.

Given s]* (i.e. n]* e A and ‘/_I), the average conditional probability
of error of the first or second type is:

ED(s]*) =1/2 I(UID) + 1/2 |(u2D) (1V-49)

Since I(x) is monotonically decreasing, the sum l(u]) + I(u2) where

up + Uy = C = Constant, is minimum when U =u,= C/2,
Therefore, since UiptYp = Bt , the average probability
/ 2
g ] "'p
f is mini h = = 4 = Substituti
of error IS minimum when UID = Uppn = - = uD . oubstituting
20 \/] el

formulas 1V-38 and IV-43, yields
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D-Alrp+Y_ip)-p*n, A-D+A(rp+Y_1p )+ p*n A
vy = - - (1V-50)
o \/]_p-tr2 0\/]—p*§ 20\/ _p*2

The equality is satisfied when

D=D,=A/2+ AJ p + 2) A TR (Iv=51)

= " - )op 4 )’_]p + P n]
Using formulas (1V~-26) and s]* = p]* 4 nl‘
D, = A/2 + p*s,* (IV=52)

A ]

Assuming that the threshold level can be varied as a function of the sampling

signal s]* 4 DA is the optimum threshold (at time t]) and is named adaptive

threshold,
The physical interpretation for the choice of the corrective term p* s]*
is similar to the one of paragraph 111-3. The corrective tem is the output of an

"RC network" of time constant RC, discharged from the initial value s.* (here

1
o
y RC . alis
s]* #n]*) at time f]* to the value n]* e at time t] and it is
obtained at the output of a sampler-holder which samples the filtered noise s(t)

at time t = f]*; during the holding time the sampler-holder behaves as an RC

network and the RC time constant of the sampler=holder must be equal to the RC

time constant of the RC filter. Again, the experimental times of sampling and

detection (Ch. VII) are slightly different from the theoretical values.
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Replacing D by DA in ED(s]*) (formula 1V-44) and replacing subscript
DA by A for short notation yields

Since this expression does not depend on s]* , further averaging is not
necessary. The average probability of error of the first or second type for any

s,* is, in the case of adaptive threshold,

1

s.*)= | (IV-54)

(
P AVl , R,

«
“2 V1 =-p*

If the threshold level cannot be varied, the best choice for D is D = A/2
when p is small; otherwise, D is slightly higher. The constant threshold is
denoted by DC and the subscript DC is replaced by C in the average probabilities

of error for constant threshold. Since ED (s]*) = EC(s]*) is a function of s]* . 1
must be averaged with respect to n]* and then 70 and 7_] in order to obtain the
average probability of error of the first or second type for any s]* at constant

threshold, D E = E_. is obtained by substituting D=D . =A/2 in formula

& ..B C C
(I'v-48)

C

\

B 2 A 2
|[-2—(] + 2(70P+ 7_]P )) + | 5—(1'2(Yop+ Y_]P ) \

;e 7‘
° |

! :O,] Y_]:OI] " % !
(IV-55) J
\ 3 ‘ 3
or EC= 1/8 Z E/_: 7 441 l{%{ 1+2 Uy p+ 7_]p2)] : (1v-56)
7 =0,1y_=0,1 t=1,-1 L o / J
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PT
In terms of the dimensionless variables Q = —%— , y and K, the average
probability of error for adaptive and constant threshold are respectively:
[ QVZ (1-¢ ) "'
Ey=1]| ——— — | (1V-57)
— \/;)’ \/] - e- K Y‘j
= -2
Y VR VT (- [1e 2 e 4y ™)
EC =1/8 Z " b I
YO:O,I Y_]:O,l =14 vKy (IV-58)

The Z comes from the choice of equal probability for pulse and no pulse.

IV=6 Choice of the Numerical Values for the Variables

The average probability of error for adaptive and constant threshold are
expressed in formulas (IV-57) and (IV-58), respectively. Both depend upon the
fictitious signal to noise ratio, Q, the relative width of the pulse, K, and the
inverse of the time constant of the filter, y =T/RC,

The numerical values for the fictitious signal to noise ratio Q are chosen
such that the average probability of error remains in the range of interest in telemetry
or radar, say 10_3 O 10-7, resulting in the following values for Q, Q =15,
10, 25, 30, 35. Since it is advantageous to use small values for K, let K=.,1, .3, .5.
Let Ymin(K) be the value of y which makes the average probability of error minimum
for a given K. Although ymin(K) varies widely with K, fortunately, Kymin(K)
varies little. Therefore, it is convenient to take u = Ky as variable instead of y.
The values for v are in the range .1 < u < 2,0 since this insures a variation of y
far below and far above ymin(K), for any choice of K,

The average probability of error for adaptive threshold depends not only on

Q, K and u =Ky, but also on K*. It is clear that the average probability of




error decreases with K* , so that K = K* is the optimum choice. Therefore,
the comparison between adaptive and constant threshold is made for K* = K;
that is, sampling just before the unknown signal.

The numerical values used for Q, K and u = Ky are tabulated below,

Qi =15, 20, 25, 30, 35
Ki: o Vi Wy A
U_=,l, .4, .6, .8, 1, 1.15. 1.25, 1.35, 1.45, 1.55, 1.65,

m
1.75, 1.85, 2, 2.5, 3, 5, 7, 10, 15, 25.

where the index i, j and m correspond to the place in the list, for example:

IV-7 Computation of the Average Probability of Error

The average probability of error for adaptive and constant threshold, given
by formulas (IV-57) and (1V-58), are computed for all the numerical values of
Q= Qi s K= Ki and u = v tabulated in paragraph 1V=6. Since all possible
combinations of Qi ’ Ki , and vy (5 x 3 x 21), must be used, three successive
variations are needed: m varies first, then | , then i,

Given a set of numerical values Qi = Qi' : Ki = Ki' 'V = um' , K* = Ki'

the average probabilities of error after replacing Ky by u in formulas (1V-57) and
(IvV=58), are:

(1) For adaptive threshold

Q' ,u )=l VAT VT 1-e (1V-59)

I
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(2) For constant threshold

L Tk, gt ) i '
Q' Kt V=L L 2 8| vaT vT 1o 1426 e/ Ky y
[ | m Y201 yy=01 t=1,1 i /e A
m

The average probability of error are linear combinations of integrals
I(xi) where x, assumes numerical values. The computer must evaluate the
definite infegrclzls I(x) for any x; therefore, the computer computes and stores
l(xi) for a large number of values x - X, and the intermediary |(x) are obtained

by interpolation. (See Appendix B).

Since I(x >6.35) is quite negligible, 1(x) is computed only for discrete

values of x = X, = i(.005) where i assumes every integer value in the range
1< 1<%,
To simplify the notation, let
@
r(/- /
Ix,) = / e % ) (IV-61)
o VZn
i(.005)

An iteration formula can be used:

@

~ 2
) ols . aasiat i ® o o . saconnen (1IV-62)
-’0 \‘?TT——
(i + 1)(.005)
[ | 2 2
IG + 1) = 10) =/ s (PR 5 (IV-63)

Zi(.005) V4™
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21

(i+1)(.005)
2
——1-— e-' /2 dt
\zn

The small definite integral is evaluated as

i(.005)

a sum, using Simpson technique as explained in Appendix B.
If 0<x<6.35, then I(i+ 1) < I(x) < I(i) where i is the integer

obtained by truncation of 1—83—, i=Tr (—865—). Since I(i+ 1) and I(i)

are very close, 1(x) can be obtained by linear interpolation.

If x >6.35, then I(x)=0 (1V-64)
If x < 0, then I(x) = .5 + I(|x|) (IV-65)
If x>0 , then I(x) = I(|x]) (1V-66)
and
: vt i of el 5 o0
I x]) = 16) = @) =16+ 1) ] —oo8 ~ 0 - 1| (1vV=-67)
L * ]

where i = Tr, ;—I&Sl— + .00001| + 1 and the symbol Tr. means truncation.

IV-8 Interpretation of the Computed Results

The average probability of error for adaptive threshold, EA , is a function
PT

s
n

and u = Ky ; the average probability of error for constant threshold

PT
is a functionof Q = qL , K and u=Ky. EA and EC were computed in paragraph

OfQ:

IV-7 for the various Qi and v tabulated in paragraph |V=6 and are now plotted
versus Q. Since the average probabilities of error are very small numbers, it is
convenient to plot --Iog]o EA and -log]o EC instead of EA and EC. The minimum
of EA and EC correspond to the maximum of -Iog]O EA and -Iog]o EC, respectively.




EA depends upon Q and Ky. Fig. IV=-1 shows -Iog]o EA versus Q

for Ky=.1 and Ky = .5(K* = K). For constant Ky, -IOg]O EA increases about
linearly with Q; for example, if Ky = .1, —log]0 EA'..:;',.226 Q+ .89: fora

decreases when Ky increases. Therefore, the average

given value of Q, _lOQIO EA

probability of error
(1) decreases exponentially when Q increases at constant Ky.
(2) decreases when Ky decreases at constant Q.
Assuming that Ky = .1 is the physical minimum for Ky, EA is minimum for

Ky = .1. The value of the minimum decreases when Q increases and denoted

Ey(Ky=.1, Q)=E

" "A min

EC depends upon Q, K and y =u/K. The influence of the choice of

the RC filter on the average probability of error for constant threshold is demonstrated
in Fig. IV=2, which shows the variation of —|oglO EC versus y = T/RC for constant

Q and constant K. Typical values are used for Qi and K, : Qi = 15, Qi =35 and
I

Ki:.l, Ki:.3, Ki .5. Each curve -log]0 EC versus y for given Q, and K,
' |

presents a maximum for a specific value of y = A (Ki ); the corresponding
minimum average probability of error is denoted EC min(Qi ’ Ki ). The minimum
average probability of error, EC &1 <Qi’ Ki), depends upon both Qi and Ki ’
for given K the minimum decreases when Q increases; whereas, for given Q,
the minimum decreases when K decreases.

The optimum value of y, vy (Ki ), where the minimum average probability

min

of error for given Qi and Ki occurs, depends only upon Ki (not Qi)' Both s

(Ki ) and Ki vary inversely and while Y (Ki ) varies widely, the product K,
I

ymin(Ki ) varies little. Fig. IV=3 shows the variation of Yero (K) as a function of
K; therefore, this curve determines the optimum RC filter for each choice of the pulse
width. If K= .1 isthe physical minimum of K, EC min(Q' K=.1)= EC -l (Q)

is the smaller minimum of EC versus y for given Q and any realizable K, the

corresponding value of y is y = Yiaka (K=.1)=12,5.
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The minimum average probability of error at constant threshold is EC o Q)
where K = .1 and y=12.5. Fig. IV-4 shows —Iog]O EC o (Q) increases about
linearly with Q(-Iog]O EC SR (Q)~ .185 Q + .87), which means that EC Zae (Q)

decreases exponentially when Q increases.

The minimum average probabilities of error for adaptive and constant threshold

for given Q and K and the corresponding y =y (K) were obtained graphically

min

from the large number of EA (Qi - um) and EC (Oi A Ki 3 um) tabulated in paragraph

IV-6. Identical results can be obtained by using the calculus of variations; this follows

next in paragraphs 1V-9 and 1V-10.

IV-9 Minimization of the Average Probability of Error for Adaptive Threshold

Using (IV-57), the average probability of error for adaptive threshold is

-

JO v 2 (l -e—Ky)

EA:I ——
{ V4 Ky V1-e R°Y

Since I(x) is monotonic decreasing, E, decreases when the product

A

- Ky
\'T(] e ) increases, i.e. when Q increases for fixed K, K* and
-2K*
\/K)’ \/] -@ K Y

V4 I8 (l —e—Ky)

y or when the function g = increases for fixed Q.

\/ Ky v —e_jK 4

If Q, K and y are given, g is maximum for the minimum of K*, which

is K* =K, since K* > K. (The sampling must be made before the unknown signal

starts.)
When K = K*, the expression for g is simplified

g_\T (1—e—Ky) A /2(]—e—Ky)
- S A e
v Ky < S v Ky(l+ e_Ky)




<1og 1B (min.)
~
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The derivative of g with respect to Ky is negative; hence, g is minimum
for the smaller possible u = Ky. When Ky tendsto zero, g tends to one by appli-

cation of L'Hospital's rule:

/ e -V
lim. 4 2 (1 ® 3 = |
u-‘O\/ u(l+e—u)
Physically, values very close to 1 can be attained

u= Ky = .3 corresponds to g v .992

u=Ky=.1 corresponds to g = /.998

IV-10 Minimization of the Average Probability of Error for Constant Threshold

The minimum of the average probability of error for constant threshold,
C min(Q' K), was obtained graphically in paragraph V-8 for different Q
and K. Fig. IV-4 shows —log]O EC min(Q) versus Q for K= .1,

It is not possible to minimize EC (formula 1V-58) directly by the calculus

of variations; however, EC can be replaced by a power series of (u - uo) where

u =Ky and Vg = 1.6 and then minimized.

f P Ck _KY / - =" W
ZZZVB. vaQ VZ (1-e 142ty e 4y e )| av-68)

:01 11101 P=1,- ¥ K)’ : J

Using again the inequality

1) < 1/2 [x+0) + 1(x =A)] (1V-69)
it follows that
EC > | [a] (1v=70)
VST (1 -e™)
where a = areen (1v-71)
v K)’




The minimum of I(a) is easily shown to occur at Ky = 1.26.

r e—2y) , the minimum of the

average probability of error for constant threshold occurs for Ky > 1.26 When

Because of the factor 1 + Zf(YOe—y + Y

K is small, the minimum occurs very close to Ky = 1.26 because y = K26
is large and e’ and e_2y are negligible. When K is large, the minimum
occurs for Ky well above 1.26, because y = 1.26 is small and ¢ and

K

-2
e <’ cannot be neglected.

The problem is to minimize the sum of 8 transcendental integrals, the
limits of which are complicated functions.

The solution is to develop the integrals in a series. Taking advantage of
the fact that the maximum occurs for a rather limited range of u = Ky, the integrals

are developed into a power series of z = (u - u,) about the point u, = 1.55.

0o

0
Assuming one step memory, the average probability of error for constant
threshold is
T Ba ) ]|
Z 1/4 |‘ 3 2 (1+2ty e”)| (IV-72)
"011 2=-1, ' v W J
EC :Z Z 1/4 P(Yo i, =) (1v=73)
r:O 1 f=-1,) 4
where - '
Py , !,z =Z g m) m (1V-74)
2 m=0 l
i=1, 2, 3, 4, represents the four combinations of Yo and !
z=(u- uo) (Iv-75)
m
and Ol.(m) = { d I lo(u, K, {) ]J (1IV-76)
! du™

® _f2/2
in which 1(¢) = it || 8 (IV-77)
¢ v 2
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ond i, K, D a VRN ELLSET) 4oy VK (IV-78)

pr— o)

v U

The procedure to obtain the coefficients o_( ) is described in Appendix C
|
for one step memory; for a two-step memory the calculations are even more complex.

Since the value of u for which E_. is minimum is not too far from Yo 1,6;

the series converges rapidly with four fermscgiving a good approximation. When EC
is expressed as a fourth degree polynomial, the minimum of EC is the real root of a
third degree polynomial. For a given fictitious signal to noise ratio Q and width
of pulse K, the value of u which minimizes EC' Umin(K)’ and the minimum of

EC - EC min ¢ AN be obtained. Fig. IV-5 shows umin(K) versus K and Fig. IV-6

shows —Iog]O E

C min(K = .1) versus Q, resulting from the series approximation. The
agreement with the exact results of paragraph V-8 is surprisingly good considering
that the approximation

(1) is for one step memory,

(2) contains only four terms

IV=11 Comparison Between Adaptive and Constant Threshold

The average probability of error in the detection of rectangular pulses mixed
with white noise, using an RC filter followed by a threshold device, has been obtained
for the case of a constant threshold and of an adaptive threshold.

In the adaptive scheme, the sum of the noise and residual voltage due to the
previous pulses is sampled just before the signal is received and the threshold level
modified accordingly.

It is shown that the minimum average probability of error for adaptive threshold
depends only upon the product u = Ky and decreases with Ky. Hence, given the
average power of the emitter, the average probability of error is the same for different

widths of pulses if Ky is maintained constant. The plots are made for Ky = .1 and .5
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For the case of constant threshold, the average probability of error is
minimum for some Ky > 1.26. If K is small, the minimum occurs for Ky
near 1.26; however, if K is large, the minimum occurs for Ky well above 1.26.
For each value of Q , the minimum average probability of error for constant

threshold and adaptive threshold are compared. The gain in decibels due to the use

of adaptive threshold is shown in Figure |V-7,
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Chapter V

THRESHOLD DETECTION USING STANDARD OR ADAPTIVE INTEGRATION

V-1 Statement of the Problem

Rectangular random pulses mixed with RC nomal noise are detected by a
receiver which consists of an integrator and a constant threshold detector, TD.
The block diagram of the receiver is shown in Figure V-1.

Two types of integrator are compared: the standard integrator, 1, and
the adaptive integrator, |A . The standard integrator, |, has input SI“) and

output s(t): :

?]T"/ s, (t) dt formT < t < mT + KT
s(t) = mT (V-1)

0 elsewhere

The adaptive integrator, |A , samples the noise n.(t) ot time t* =T
I
(just before the unknown signal) and the sampled noise n.(t = t*) is used to
|
correct the signal si(t) during the interval of integration T < t < T + KIT.

The output of the adaptive integrator is:
t

_K']T_ f s.o(t) dt  formT < t< mT 4 KT

sy (1) = mT (V-2)

0 elsewhere

where the index A stands for adaptive integration: siA(t) is the corrected input
of the integrator and sA(t) is the corrected output of the integrator.

Consider the detection of the unknown random pulse in the interval
T < t< T4+ KT,(m=1). Since the detector is unlashed at time b= T+ KT
only, s(t‘) =3, (or sA(fl) = SAI) is the only value of s(t) which matters in

the constant threshold detection and
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! /
s(t = t]) = sl T si(r) dt
T
T+ KT
L v .
sA(f:f‘)AsAl T - s, (t) dt
The input signal is defined exactly as in paragraph 111-1. The independent

variables are the signal to noise ratio, S./N. , the normalized width of the
| |

T

ulse, K, the nomalized autocorrelation of the noise, p.(r e
’ ’ ’ }I ’

T

and the set of probabilities of pulse and no pulse, P(y =0)=P(y=1)=1/2.
Again, it is convenient to introduce a few dependent variables: the amplitude
of a pulse, V, the average power of the signal, F’S , and the variance of the

input noise, oiz. The probability density of the noise n(t) is

| -:12 20 2
f(n) e :
v ﬁ g,
|
2 5
The ratio of the amplitude to the variance is - P e NL (V-3)
i i
and the autocorrelation function of the RC normal noise is:
8 I
—_— 2 2 T
Ri(‘r): ni(f) ni(f$T):- o, pi(T) -0, e (V-4)

The standard integrator eliminates some of the noise by filtering and
therefore reduces the average probability of error in the detection. The adaptive

integrator eliminates considerably more noise by using prediction besides filtering,

resulting in an even smaller average probability of error.
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V-2 Effect of the Standard Integrator |

Given a random pulse, v,V at time T 4+ KT, the output of the network |

T+ KT

]

is Py = —K]— 7] iy Vdt = 7 V. Similarly given a random noise, ni(t),
T

T+ KT

§ 4

of the network | is e n.(t) dt. Since | is

the output n R ¢ :

]

linear, the noise remains normal; n, is nomal and completely determined by its
mean zero and its variance, o]

Assuming additive noise, the input to the network | is si(t) - ni(f) + pi(t)
and the output is s(t) = n(t) + p(t). The signal, s(t), is detected at time t = T + KT;
therefore, the statistic properties of s(t =T + KT) = s, =N+ }’]V, (and hence of nl)
must be obtained. Since integration is a linear process, the probability density

distribution remains normal and the probability density of s, , f(s]) is completely

determined by its first moment, s—] , and its variance, 5—17]-:7 = 012.
T+ KT T+ KT
5| = K—]T[ sl(t) dr:%/T‘ hi(r)+ YIV) dt (V=5)
T+ KT T+ KT
5 = é—TT n.() dt+%_T/ "\WVdt=y V (V-6)

since ?(f_) =0

The signal 5 is translated so that the new variable X] has zero mean:

X, =8 =8 (V-7)

[
I

~
<
-
o
3
0
o

x] = S] - S] :?T- W/ n;(f) dt (V-8)

Note that X, is independent of Yy i.e, whether or not a pulse is

received.
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The variance of s, , 012, is equal to x

1 ]

g, =§ -3 = (s] -GI) = X (V-9)

2 1 ' '
X, = —2-_2-/ ni(t) ni(f) dt' dt (V-10)

T+ KT T+ KT

- SRRy 1 '
and o, = X, = —--2?2 / / niitsniif') dt dt (V=11)
T T

Fay

Note that niM niit'i = Ri(t' - t) the autocorrelation of the input noise.

With the changes of variable t =u+ T and t'=u'+ T, o]2 becomes

el
g B // / R.(u = u') du du’
AR
o o
letu=-u'= 7
KT KT=u'
. : ; du' 3 R.(r) d (V-12)
o, = v 5 (r) dr -
K212 - :
o -u
after breaking the first integral in two integrals
KT o KT KT-u'
02——-2—2-1 /f du' [ R.(t)dr + [ du' ¢ R()djl
i 2 J & ; j U . iT TJ
o -u' o o
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The areas of integrations are shown below

' |
U (V)
2 ’

KT KT 3
T+U'=O‘g and r—b_:‘—‘\--—'r,KT—U'

oA ilne. o

Changing the order of integration yields

0" = =, o R@mdr At R du*
-KT -7 o o
where the limits are determined by the areas of integration.
The limits can be obtained mathematically, without a graph;
(1) if dr is integrated first, using 0 < v < KT and u - u' v , it follows
' < 7 << 4+ Kfor =u'< v <0 and 0< 1< =u' + KT)
(2) if du' is integrated first, using =u' < v < 0 and 0 < y' < KT,
it follows -t < u' < KT ; similarly, using 0 < v < -y' 4+ KT and
o < u' < KT, it follows 0 < ¢' < KT -.
The first integral of formula V-14 is easily integrated, resulting in

KT

o) = —m—u (KT = 1) R.(r) dr (V-15)

It is convenient to use the dimensionless variable v = */T

R L
Then o, = —KT : (K = u) Ri(u) du (V-16)
o
"B 1+l
R.(1) = 0,2 e ! ; hence, Ri(u) = cvi2 e Pu for u>
] |
K
” 4 2.2 = -Bu
and O'.l = Ui ';2— ,/ (K - U) e du (V"]7)

»
T
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e K
Using 3 Ke Pu du= —K— (1 -e—B ) and
% P
—K_ Bud Ke_EK . e-BK i1
o e . P 5 S
o B B
2 2 2 -KB ; L1
0] :C'i —2——2- iKE + € f "'] J (V“8)
KB
KB + W)
Let p=2[ : T | , which is always smaller than one; therefore,
KB

the integration reduces the variance of the noise by a factor p
2 2

= po, .
1 i

; 0. becomes
i

o

V-3 Effect of the Adaptive Integrator, IA

The noise does not vary instantaneously and the noise, n;(f), during the
time interval of integration (T < t< T + KT) is related to the noise, ni(f: T)= ni‘ .
just before integration. The expected or predicted value of the noise at time t
(T<t<T +KT)is ni* pi(f - T) where pi(‘T‘) is the normalized autocorrelation
of the noise. The signal, si(f), at time t can be corrected by subtracting the

expected value of the noise, ni* p;(f - 7). The corrected signal, s.,(t), is

1A
integrated and the corrected output of the adaptive integrator, SIA 7 is
T+KT
R
= - - * ]| dt -
SIA = R - [si(t) p;(t=7)n*] d (V=19)
T+ KT ey T+ KT
— 1 L i i
T T
S.IA = Y.l Vv
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The variance of SIA is obtained as in paragraph V-2; letting
- L T th 2
T AT AL A =
T+ KT
XA " BT (ni (t) - p, (t- T) n.*) dt V-21)
T
T+ KT -B(t- 1)
| : T
x]A . T ¥ (nl (t) -e n, ) dt
T
and
,_T+ KT ‘_T KT T T (e
2 2 ] /': / T m 1 T a '
%A = XA :W/ (ni(r)-c ni)(ni(t)—e ni¥dtdr
T T (V=22)

The first double integral is broken into four double integrals; the first

double integral was evaluted in the case of constant threshold and the three

remaining integrals are equal; thus, two out of the three integrals cancel each
other ¢
il :
NA ”JI -J2—J3~ Jy (V-23)
T+ KT _T+KT
J : ‘f /F (t) n(t') dt dt' ) (KR =KP 1) (V=-24)
= / / n(t) n o, 34e - -
Lrextets/ ? b L ® g
T T
~T+KT T+KT -g(-T) -p(t'-T)
1 ™ SR T C (v-28
J2:J3=J4—7—2— n e e dfdf (/'23)
R Vil 4
T T
T+ KT -B(t-T) 8K
B | 2 1 / T ] -e P
* = —— / t = ( -
n o and o, e d 7K (V=26)
T
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e e T e e Bk i Sl 5, (V=&r)
KB KB
\
o2 2 [okp-3-072KP , 447 )
1A =9 22 V=)
K™
V-4 Comparison Between Standard and Adaptive Integration
The RC input noise, n. . is defined by its autocorrelation,
=
2 ", "3 : - 2 .
Ri(T) =0 e , i. e, by its variance, °.”, and B. The variance after
standard adaptive integration at time t, are respectively 012 and 01A2

which are given by formulas V-18 and V-28.
When a rectangular pulse of amplitude V is received, the amplitude

at the input of the threshold detector at time t. is V, whether an integrator

1
is used or not. The signal-to-noise ratio at the input of the threshold detector
at time f] increases when an integrator is used because the power of the
signal remains constant while the power of the noise decreases. The increase in
the signal to noise ratio due to the integrator is best expressed as a gain in

decibels.
Let (S'/Ni)’ (S/N), (S/N)A be the initial signal to noise ratio, the
i
signal to noise ratio after a standard integrator and the signal to noise ratio

after an adaptive integrator, respectively. Then

/N)] - PO,
|
1 J

G:+2O|og]o,8(%-)- 20 log, o (0./a,%) (V-29)
. I

-

S ] P 2 -
GA = 4+20 IOQIOLW)I 20 loglo(oi /%A ) (V-30)




where G and GA are the gain in signal to noise ratio i
standard and adaptive integrator, respectively. G and G
on the input signal to noise ratio and they decreas:

rsus KpP 1S plotte

.

o

variation of G and G[ v
A
is considerably larger than G,
Since integration is a linear process, the noise rer

the average probabilify of error in threshold detection wit!

V/2, of random pulses of amplitude V mixed with noise of
1(V/20) where @
I(x) = — e ' /% .
= e
X LN

The average probability of error without integrator,

integrator and with adaptive integrator are respectively

E I(V/20.)

o |

El = l(\/ﬁ?oi)
1\/ \

EI/\ I(v LO:‘

Since the average probabilities of error,
very small numbers, it is convenient to plot instead ~log, . E

and Fig. V=3 and Fig. V=4 show the logarithn

—|og]OEIA.
of error versus V’2oi for given KB. Fig. V-
is for KB=2.

The average probability of error is a

signal-to-noise ratio; therefore, the advantage of an adapti

threshold detector is even more apparent in tems of reduction of tl

probability of error than in terms of increase of the signal to noise

revt
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LINEAR DETECTOR, INTEGRATION, AND ADAPTI

VI=1 Statement of the Problem

Rectangular random pulses (modulated or not),
noise are detected by a receiver which consists of a linea
integrator and a threshold detector. The block diagram |
It is convenient to remove the dc component of the noi:
The integrators | and IA , the threshold detector, TD, andt nput signal,
V.

si(t), are exactly as in Chapter

The linear detector H has for input
s.(t) =n.(t) + YV (Vi-=1)
i i

where y(t) = Y. for nT< t<nT 4+ KT

and Y is a random variable which takes the values 0 or 1 with equa
n

probabilities.
For output, H has 55(t)
L !
(s, (t) if s.(t) )
| |

where s (t) = h(s.(t) ) \ : , (VI-2)

o i 0 if s (t) 0
The standard integrator, | , and the adaptive integrator, |, , are

compared. The definitions and notations are the same as in paragrap -
except that the inputs to the integrators are now s (t) and (t) instead
of s.(t) and s.,(1).
I iA
The problem is very complex because the receiver i n-linear; therefore,
only the average probability of error of the first type (0 received, 1 detected) i

investigated. It is shown that all the moments of the noise are reduced by

integration so that the average probability of error of the first type in the constant

threshold detection is certainly smaller.
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VI-2 Effect of the Linear Detector

The noise, n.(t), at the input of the linear detector is defined as RC
|

type noise with 0 mean and variance, 0,2 (n.(t) = 0, n. (1) = 0,2), and the
| | | |

auvtocorrelation, R.(t). It is necessary to obtain the first moment, m = nohi,
i o

g 2 —2 . A
the variance o = no(t) - no(f) and the autocorrelation R (t) of the noise
o

at the output, no(t), of the linear detector.

. for n.(t) > 0
n () = h(n.(t) ' (VI-3)
' for n.(t) < 0

Let f(ni) be the probability density of n,l(t), then

~+
no ,—,/ f(ni) h(ni) clni (Vi-4)

= Q0

where the index t has been dropped since the noise, n.(t), is stationary.
|

f(n.) is normal with mean zero and variance o,
i i

By definition,

Therefore, the variance at the output of the linear detector is

2
k@ (1/2=9=)= 3408 o2
i 2w [
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The input noise is of type RC; therefore, it is defined by an exponential

autocorrelation function:

Rb) =00 ' c.zpi(T) (V1-9)

I | |
where p.(r) is the normalized autocorrelation function.
i

The autocorrelation at the output of the linear detector, R (r), is by

o
definition:
RO(T ¥ f1 _f?.): no(f] "o t2 (V1-10)
For a more convenient notation, let X n_(r]) and Xo = ni(fz). Then F(x‘ p x2)
|
is the joint probability density of ni(t]) and ni(t2) and
~t @

RO(T = t‘ - t2) E f(xl, x2) h(x]) h(x2) dx] dx2 (VI-11)

il

f(x] . x2) is normal and can be expressed as a function of the autocorrelation

coefficient, P; of Xy and Xo?

- I 2 2

(x X = 25 X X )
[
] 201 _piZ) 0.2 ] 2 -1 o2
i
f(x.l ’ X2) = '2—11— e (VI‘]Z)
(x]-;) (x2-x_2-) _E;— T
where p; = = e (V1-13)

—_2 —
Vil mxy) (g =x))
Since the joint probability density is normal, Price method [16]
can be used. The function h(x) is differentiated until & -functions are

obtained; in this case, one must obtain the second derivative of h(x)

2
gx_" - @ &) = 5 (x,) (VI-14)
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where & is the well known &-function and X, is X} OF X,

Using Price theorem,

] 2 2

2 +® =g & +x5 =2p; x; x))
a R (v (2) (2) 2(1-p,")o,

= h'““/(x) h*“/(x) e Jbd dx, dx, (VI-15)
3 (S .

(2)

which is immediately integrable since h(z)(x]) and h (x2) are & -functions

Price [16] shows that

°32 ' 2 - ]
R (v) = U [ \/] 5 pl Pi Cos (_pi) !1 (Vl-]é)
0.2 E— ‘ZE'TIT' ‘EITTl ; "E|T|
Ry = |V 1-e ‘e s (. ' )| V=12
-Blrl
where p, = e ! and T = b=ty o (VI-18)
RO(O) is obtained by substituting T = 0 in formula (VI-17)
X 2
o SRl
RO(O) =n=— (VI-19)

It is convenient to express the autocorrelation at the output of the half

wave linear device in series form, using the result of Davenport [3].

2
% Sl ) 4
Ry ) = g (14704 g0+ gg® +gpy + o) (VI-20)

. - B 2
and approximately RO(T)z o, (-7— + .25pi + .O7958pi ) (V1-21)

n
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Bl
where P, = e ! ondT:t]—f2

The approximate value of RO(O) is obtained by substituting T =0, i. e,

p; = 1, in formula (VI-21);

RO~ 0.2(1/2x + .25 + .07958)

o [
(VI-22)
RO(O) ~ oiz (.48873)
The approximate value of the variance is
2
2 o,
S G Y = RO - o
o o o 2m
0,0 = o (.48873 - 1/2%) = 0.%(.32958) ~ 0.2(.39) (V1-23)

The approximation of formula (V1-17) by formula (VI-21) is best for small
values of Py s i. e. large value of v, but it is still very good at the limit when
p; = 1, (r= 0) as shown by comparing the exact variance (formula VI-8) and the

approximate variance (formula V|-23).

VI-3 Effect of a Standard Integrator on the Variance

The noise, no(t), at the output of the linear detector is integrated during
the time from t=mT to t = KT where m isan integer. The output of the
integrator is defined by

t
n(t) = —E]T/ no(f) dt for mT< t< mT + KT

mT
Consider the detection of the first random pulse; the threshold detector is
unlashed only at time t = t = T + KT; therefore, the only important value of the

output of the integrator is for t = t and
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= = ewm—- - 4
n(t]) n, T JT no(t)dt (V1-24)
The first moment of n, is easily obtained
4 g T(T./T no“) o "o Vi
The second moment n, is
T+ KT T+ KT
2 ] fr
o / ! -
n’" = = / ) o D () dt dt (V1-26)
G
T T
The variance of n (output of the integrator at time f]) is
T+ KT T+ KT
Ty B 3 TR dr e -2 (vi-27)
., Al y P e o o oV "o
L F |
T T
2 ] /]' + KT /'_I' + KT 5
Since n = ' n_ dtdt', the two terms can be
o KQTZ / / o
T T
condensed into one double integral resulting in
T+ KT T+ KT
2 1 —_ _2
O'] = Kj;'—?/ / [no(f) no(t ) - no ] df dt (VI -28)

T T

The integral can be expressed in terms of

\_)o(t) B no(f) - i , where "o(f) is the noise minus its dc component

and is called dc filtered noise. The mean of *»'o(t) is zero by definition

(VI-29)
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2 | 5 T+ K¥ -+ K1
and 0, = J (t) v (t') dt dt' (V1-30)
[ = T n -

Physically, this means that the variance at the output of the integrator
at time f] is the same whether "O(t) or no(t) is integrated; that is, whether
the dc component of the input to the integrator is removed or not. The proof

is quite simple., Let

e Kl

R .
| =BT .JT (1) dt (V1-31)

The variance of \‘](“ 2) is obtained immediately
v
1

rT+ KT
v = T<]T T () dt=0 (V1-32)
BT+ K0
"..2=7 = —2]—7 [ . v_(t) v (1) dt dt'
1 el 1 . .
Ml 2 :
Hence, v. "0 which was to be shown,

1
Since integrating no(t) or u'o(t) is equivalent, \;o(f) is chosen because

the mathematics is simplified. In other words, the block diagram VI-1b is
preferred to the block diagram VI-1 a.
The autocorrelation, '*'O(-) , of \‘o(t) is simply expressed in terms of

the autocorrelation, Ro(-), of no(~):

Y(M)=vBvlt+n=(n(t)=-n) (n(t+7)=n) (VI-34)
¥ (t)=R (1) -n (V1-35)

The approximate value of "o(~) is obtained by substituting formulas

VI-6 and VI-21 in formula VI-35, resulting in

75

(V1=33)
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= | v,l - 2-| . |
"o(")z ~12(.25 e ! + .07958 e ! ) (V1-36)
- 31T, N 2
0. isgiven in terms of 7 by formula VI-23; therefore,
-8l 7| -28l 7|
2 [ i g T
Y(r)=o0 .7587 e ¢ .2415 e J (V1-37)
o )
The normalized autocorrelation of ° o(t), :'vo(—--), is defined as
usual:
-O(') ‘O('")
:f)o(') m ‘\O) % (V|-38)
A o
o
[_ -.‘IT'l -Z?l‘l -
(.‘)O(') = L .7587 e + .2415 e 3 (V1-39)
The variance, ~]2 (formula VI-30), is now expressed in terms of
(,‘)O(").
T+KT _T+KT
2 ® f
0, =0 ¢ (t-t')dtdt' (V1-40)
] o KiTQ IT 1 o
which reduces to a simple integral as shown in paragraph V-3,
KT
2 - BAN r
0.“=0 | (KT =7)¢ (t) dr (V1-41)
] o K?T? JT o
and after (1) replacing (,ﬂo(') by its value of formula (VI1-28) and
(2) using the dimensionless variable u = /T,
R BT PT Ly ' - 260
o =0, -;7- e (K -u) (.75873 e + .24152 e ) du (VI-42)

76
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It was shown in paragraph V-2 that

K

L P - Bu 2 - =Ke
T Jo (K 'U) e du —2—? (K' T € _]) (VI'43)
K K™ B
Changing B into 28
g §» ~28u 1 -2K
T ” (K - U) e dU ——,27 (ZK e -]) (V|‘44)
K 2K"B
~]2 is obtained by substituting formulas (V1-37) and (V1-38) in (VI1-36)
-
D ar 2 : -BK 1 -2K R (VI1-45)
o, =0 | .75873 (KB + e -1) + .24152— (2KB + e -1) J
S gL K2 g? 2K 22
After grouping the terms,
-BK -28K
2 2 11.75897 < e e 1.63822 19
] = o _KE— + l .J] 746 ﬂ + .]2076 T? - —2—2—— (V|-46)
K8 KB K™ B
-BK -2KE
2 2 P55 Se e 53979 1
or 0," =0, F—K—_ o .03979 77 77 ] (VI-47)

VI-4 Effect of an Adaptive Integrator on the Variance

The input and output of the linear detector are ni(t) and no(t), respectively,
The dc component of no(t) is removed and the dc filtered noise is called ‘:o(f),
exactly as in paragraph VI-3.

Consider again the detection of the first random pulse, i. e. the pulse which
may be present in the interval T <t <T 4+ KT. The dc filtered noise does not vary
instantaneously; consequently, the dc filtered noise, ‘O(f), during the time interval
of integration (T <t < T 4 KT) is related to the dc filtered noise just before

*

integration, "o(f =T)= ) If the dc filtered noise is sampled at time t* = i

77
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vo* is known and the expected value of the dc filtered noise is *'O’ Oo(f -T)

where Oo(”) is the normalized autocorrelation function of ‘o(t) and given by

formula VI-39.
The noise, "O(t), at time (T < t < T + KT) can be partially eliminated
by subtracting the expected value of the noise. The corrected noise is called

\"'oA (*):

A(t) =v{t)-6t-T)Vv * (VI1-48)

HEEREENRE

The input of the integrator, *'OA(f), and the output, \)A(t), are shown in the
block diagram VI1-2.

S v (1) dt (VI1-49)

Again, since the threshold detector is unlashed only at time

et T + KT, the only important value of "A(t) is |
|
T+KT
N4 o v IR S v, (1) dt (V1-50)
A( 1 1A KT ‘T oA’
The first moment of ViA is desired
T
IA TRT £ VALY O (Vi-31) |
‘J_; (t) is obtained using formula (VI-48):
v x (t) = \-OM - mo(t -7 vo' (V1-52)

(for a given value of t, «ﬁo(f - T) is just a coefficient)

Since \JOM =y "= 0, "'oAM =0 it follows that Vip = 0 (V1-53)
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Since = 0, the variance of the noise at the output of the integrator

1A
at time f] is equal to the corresponding second moment:

2
2 2 e i |
oo T ot T el 7 gl 7 (V1-54)

T+ KT T+ KT
2 2 1 r r S
o~ = \ = | ) ) i -
1A 1A (t) ;TTT - ‘1 oA Vor ! dt dt (VI-35)

Formula VI-52 is used to expand the integrand

voA(f) \>A(f') = (v () - ¢, =) "o')"'o“') - (' - ) \‘o*) (VI-56)

Voa ) v A (H) v, (1) -.F) - "’0“5 Vo* 6, =)

o
(VI-57)
* 1 * L .
TVF 6 (=) +v, 7(.»00 -1 6 (' - 7)
Therefore, 3]A2(t) is the sum of four integrals
O 2“) Jy=J,=J J (V1-58)
1A . "2 9 4 &
| r‘T + KT T+ KT
Where J.I = T—Q J J O“) 5\ 0“ ) dt df (VI"59)
KT T T
Formula (VI-59) is identical to formula (VI-30); therefore,
2
J] =0, (V1-60)
| T+ KT T+KT
J2 = 7—2 J J (_‘ro(" —')"oif;"o* df df (Vl-él)
KT T T
~ T+KT T+KT
1 ‘ TS dr
J3 = Kj—? \T -T '_A)o(t - ") "Ot \)o dt df (V|-62)
T+KT T+KT
1 r Za NS =
J4 atn w B oo(t - )uo(t - )\O dt' dt (VI-63)

¥ shek ! i |

80
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From the definition of autocorrelation,

v (1,5 TR B b (f b T) (Vl -64)
o o 90
Oty * - 2 b (' =T VI1-65
‘o ‘o o Yo ) (V1-65)
R . (V1-66)
o o

After substituting formulas (VI-64) and (VI-65) and (VI1-66) in

J2 ’ J3 , and Jy respectively,

: J+KT T+KT
o et , ' c ¢ =T (t=7)dt'dt (VI-67)
2 3 4 K2T2 1 ‘1 o o o
] i o4 4
Let J = ﬂ— :'O JT (f)o(f - ”) dt. (V|-68)
Th J-J-J-(J)2 VI-69)
en J, - 3 (VI- |
After substituting (VI-60) and (VI-69) into (VI-58), ’
2 2 2
oy s M) =0"-() (V1-70)

oo(f - T) is replaced by formula (VI-67) and after the change of

variable, u = - }T "
PP ul BT e ™ 4 M5 o]
. B | 5 v ! " J du (VI-71)
After integrating and grouping the terms,
Co r KB 2KB 1
J=0x |.8795 - 7587 ¢ - .1208 e
KE L 4 Y J (VI-72)

l



2
%A (t) , given by formula (V1-70), can be expressed in terms of
the initial variance before detection, ".2 , by using formulas (V1-47), (VI-23)
|
and (VI-72).

o, " i
3= (5048 - 4355 ™" - 0693 e )
20 = 2. 5T S eX® 038 e K" 5398
1A . P . P 222
(VI-73)
\ 2
[ (5048 - .4355 o« FP - 0693 &"KF) ]

)

" LKP d

VI-5 Higher Moments are also Reduced by Integration

Before integration, the noise is stationary, after integration, the noise
is non stationary. Only the moments at the time of detection, t‘ =T, are

important. The nth moments at t =t for standard and adaptive integrator are

1
respectively,

— T+KT  T+KT  T+KT

by ¥io s (KT)n JT J“[ ”"JT \‘0('13 "o('2) Vo(tn) dt] df2 dfn
and

= . J+KT T+KT T+KT
')IA =(KT)” JT 8 JT voA(t])voAﬁzf....“o?fn) df]dfz....dfn

It was shown in paragraph VI-3 and VI-4 that the variance of the noise at

time H decreases when an integrator is used. The decrease is greater for an

adaptive than for a standard integrator; this result can be expressed by an inequality:
\ (f ) ~ _7 S v " 7
ST in T A il

The inequality (VI-76) can be extended for higher moments:

n n n

vy () > " > v, (VI-77)
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using basic properties of autocorrelation functions and multiple integrals.

The inequality "on(f) > ‘_]n is shown first. The generalized auto-

correlation function

Rty tgeee, t)=v BV ). .. v ] (V1-78)
is maximum at bo=ty= A (the origin of time is arbitrary); that is
n
\'o(f]) *'o(t2) b o(fn) ok “l) (VI-79)

Substituting the inequality (VI-79) in formula (VI-74) it results

JHKT THKT  T+KT—;
‘ Cowil vV (hdt, ... (V1-80)
o 1 n

and after integration,

MSe v.10) (V1-81)

which was to be proved.

It remains to be shown that 1A < Ma - letns 3 to simplify

the mathematics. By definition,

\’OA(f) = \Jo(f) - (,‘)o(f -T) o Tt < ¥ 4K (V1-82)

Vo *
o

Therefore,

\')oA(fl \JoA(f2) \)oA(@ " \"o(flrx'lo(fZ) \"o(t3y

i Vo* \'B(fZ) \"o(f3)oo(fl ) ‘k"o* \'40“3) "vo(fl) OonZ K}

"V Volty) Vol) 6lt3=T) + v " v t) .t -T) ¢ (t, - T)
FV AV () 6 (b =T) 6 (ta =TV v *2y (1) . (tn = T T
Vo Jo( 1) Po\'2 %o\'3 Yo o 2) 00(3 . )éo(fl -7
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o9
o Jo (f)o(f] - T) C)o(fz - T) 1_)o(f3 - T)
After combining the integrals,
o T+KT T+KT T+KT
] r r r ‘ S
b Ll v J J oAl Voa(tg) Vop(tay) dt, dtydty  (VI-84)
o ek T T
T+KT T+KT
5 BIE°T e g ity T -
) B ey . L tvl) ] v (ta)= v oo(f3-T)]dt2 dt
0. Kt  § T
(V1-85)
3
- (J)
where J is an integral given by formula (VI-72) and
B0 . 3
Vi < V) (VI1-86)
which was to be shown. By extension,
N
A <V (VI1-87) i
; WL IR .
and finally V1A 2 % (V1-88)

VI-6 Reduction in Average Probability of Error and Variance due to an
Adaptive Integrator

The receiver consists of a linear detector and an integrator. When the
input of the receiver consists only of normal type RC noise (0 received), three
cases are compared: no integrator, standard integrator and adaptive integrator,
The nth moments are denoted respectively by ~‘on(t) . \“]n and \J]An . Let
f(\)o), f(v]), f(\.v]A) be the probability density at the input of the threshold
detector for the three cases. The corresponding average probabilities of error
of the first type are

E, = [ fv)dy , E = [ fv) dv

(o) ‘A o o ! A =

HE SN NN NN ENNNNNENNNELN
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EIA a1 f(”lA

threshold level.

) d , respectively where D is the

V1A

Since the linear rectifier is a non linear network, the probability

densities f(v ), f(\']), f(~:]A) are not normal and quite difficult to obtain.

Vv
o

However, the inequality Eo > E] > E]A follows directly from the inequality

n n o . . .
Vi (t)> v for any n; in other words, integration, and especially

p- L n
1 1A
adaptive integration, reduces the average probability of error,

Although the average probability of error of the first type is not defined
completely by the variance and the mean, the reduction of the variance gives
an idea of the reduction in average probability of error. The input variance of

: 2 . R
the noise, 0, , serves as a reference; the variance after detection is
|}

2

g " = .33 n,; the variance after standard integration is @
i

A given by formula

1

VI-47 and the variance after adaptive integration is %A given by formula
VI-73. 012 and :lA are function of the product KB, that is, the width
of the pulse and the autocorrelation functions of the RC type input noise.

2 2 2

Fig. VI-3 shows the normalized variances, 02 y 12 , and —”;—,

i i i
versus KB. The variance of the noise is considerably reduced by the use of

adaptive integration especially for small values of KB,
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Chapter VII

VII- OPERATION OF THE BLOCK DIAGRAM OF THE EXPERIMENTAL SET UP

Vil=| Introduction

Chapter VIl and chapter VIl are the experimental verification of
chapter 1V; chapter VIl explains the block diagram shown in Fig. VII=1 while
chapter VIl presents the experimental results. The threshold is adaptive or
constant depending upon whether the double switch SW (SW1 and SW2) is
on "Adp" or on "Ct". The block diagram simulates (l) the production of the
noisy signal, (2) the receiver with RC filter and threshold detector and (3)
the detection of errors.

The pseudo period of the random train of pulses is T and the width of
the pulses is KT = Km(. )T where K is an integer between 1 and 5. Precise
timing is provided by a pilot clock which divides the pseudo period T into
tenths and serves as a time reference; signals for sampling and detecting can
be obtained anywhere between the clock signals by using two slave pulse
generators with adjustable delay; the origin of time is as in Fig. 11-2, The
periodic train of pulses of width Km(. 1)T and period T is transformed into
a random train of pulses by random gating .

The noisy signal is the sum of the train of random rectangular pulses
and of white noise. In the case of adaptive threshold, the sampler-holder
corrects the threshold level by an amount equal to the expected noise at the
time of detection.

The error counter consists of a coincidence circuit, which compares
the true signal (noiseless random pulse) to the detected signal, and of a counter

which counts the number of non-coincidences, i.e. errors in the detection.

VII-2 Block Diagram Components

The basic components used in the block diagram of Fig. VII-1 are

either especially designed or standard. The especially designed equipment

consists of a pilot clock, six preamplifiers, three samplers (one of which is
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Fig. VII-1 Block Diagram of the Experimental Set Up.




a sampler holder), one binary source, seven summer amplifiers (one of which

is a component of the sampler holder) and one absolute value network. The
standard equipment consists of an electronic comparator, three generators, a
white noise generator and an electronic counter.

Throughout this chapter, the components are described in terms of the
mathematical operations performed. The circuits for specially designed com-
ponents are given in Appendix D; for the standard components the reader is

referred to manufacturer's literature.

VIl-2a Pilot Clock

The pilot clock behaves as a ten step rotary switch which progresses by
one step every time a pulse is applied at the input. The rotary switch connects
the nth output to a positive dc voltage (+8 v) and the nine other outputs
are at the ground. When a pulse is applied at the input, the (n + 1)th output
becomes +8 v while the nth output becomes zero.

A pilot generator provides a periodic train of pulses of period T/10 to

drive the pilot clock; the shape of the input pulse is arbitrary. The origin of
time is chosen as in Fig. |1-2 and the ten outputs of the pilot clock are labeled
KO, K] cese ‘KQ' The output KO is a periodic train of rectangular pulses of

width T/10 and period T; the pulses appear in the intervals of time

mT<t<mT+.1T, where m is an integer. The output K] is identical to

the output K. except that the train of rectangular pulses is translated by .1 T.

0

The pulses appear in the intervals of time mT 4+ .1 T<t< mT + .2 T. Similarly

....K, are obtained successively by translation as shown in

the outputs K 9

Fig. VII-2,
The pilot clock divides each period T into tenths; the outputs K

2

OI
K. ....K. of the pilot clock are successively positive for one tenth of a

1 9

period and can be used to synchronize the receiver and the error detecting \

circuit.
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VIl-2b Preamplifiers

The noisy rectangular pulses of the pilot clock are transformed into
noiseless rectangular pulses using preamplifiers, P1, P2,..... P6. Each

preamp lifier has several inputs IPA > IPB . IPC etc. and one output OP as
shown in the schematic diagram of Fig. VII=-3. The output OP is equal to

V, volts (VP is an adjustable constant) if one or more of the inputs are more

P
than 1.5 volt. If one pulse of width .1 T (of amplitude not necessarily

constant but always larger than 1.5 volt) is applied to one input, the output

is a rectangular pulse of width .1 T and of amplitude VP volts. More

generally, if | consecutive pulses (j =1, 2, 3....5) of width .1 T and of
amp litude larger than 1.5 v are applied to | inputs, the output is a
rectangular pulse of width | (.1 T) and of amplitude VP volts., The noise
between pulses at the input is eliminated by the 1.5 volt threshold level.
In the present application, | is equal to one or two. The amplitude of the

output rectangular pulses are respectively: V, . =2.5v, =45v, =9%9v,

Pl Vp2 Vp3

VP4=2.5 v, VP5=8 v, and VP6=4.5 V.

VIl-2¢ Samplers and Sampler-Holder

The schematic diagram of a sampler is shown in Fig. Vll-4a. The
exact circuit of the sampler is given in Appendix D; however, the schematic
circuit diagram of Fig. VII-4b is sufficient to analyze the mathematical
operations of the sampler,

The input, the output and the control terminal of the sampler are
denoted respectively by Is' Os and Cs' The sampler behaves as a switch
controlled by the control terminal, Cs' Let VC1 and VC2 be two dc
voltages, where VCI1 is smaller than any input voltage and VC2 is larger
than any input voltage (VCI1< |s< VC2); then (1) if Cs = VC1 the sampler
is an open switch, OS= O and (2) if CS = VC2 the sampler is a closed switch,
Os = ls'
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Fig, VII-4 b : Schematic Circuit of a Sampler

* Fig. VII-4 a corresponds to the operation of the sampler S (see coincidence

circuit) for an error of the first type (0 sent, 1 detected)
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Two samplers are used in the block diagram of Fig. VII-1: the random
gate, RG, and the sampler, S. The input of S, Is' varies between (0 and
+ 4.5 v and the control voltages on the gate, Cs' are VC1=0 and
VC2=+6v. When CS = VCI1 = 0 the transistor of Fig. VIl-4b behaves as
an open switch and the output OS is zero since it is connected to the ground
through the low impedance resistor R'; when CS = VC2 =+ 6 v, the transistor
behaves as a closed switch and OS = |S. The operation of the random gate,
RG, is identical except for the numerical values: (1) the input, IRG' varies
between 0 and 2.5 v and (2) the control voltages on CR are VCl= 0

and VC2 =+ 4.5 v,

The schematic diagram of a sampler-holder is shown in Fig. VII-5a.

G

The sampler-holder, SH, consists of a sampler, a memory device
(capacitor C') and an amplifier as shown in the schematic circuit diagram of
Fig. VII-5b. The input ISH of the sampler-holder is half of the output of A
s(t)
b 5

i.e. SH > » and can assume any value between - 10v and + 10 v.

21

The control of the sampler-holder is binary: CSH is equal eitherto + 10 v or

to = 10 v. The inputs of the amplifier A7 are u < and v, == 10v

17~ ~SH 27
and the one-side-gain of A7 is about unity. The sampler-holder has two states:

27:-]0v by

formula VII-4 and the transistor conducts because both the collector and the

(1) When CSH =+ 10 v, the sampler-holder is sampling; O

base are positive with respect to the emitter (ISH > = 10 v); the transistor

behaves as a closed switch and the charge of the condenser C' by the summer
amplifier A2 connected to ISH can be considered instantaneous because the

output impedance of a summer amplifier is very small; therefore, the voltage

i _ s(t) T
OSH follows closely the voltage ISH' OSH = ’SH - (2) When CSH ==10v,

the sampler-holder is holding; 027 = 0 since identical voltages are applied on
Uiz and Upzi therefore, the transistor does not conduct because the emitter is
negative with respect to the base. The condenser C' discharges itself on the

resistance R' (the output impedance of A7 is negligible) and O decays

SH

from its initial value to zero with a time constant R'C'.




Sampler-Holder

+Ysg I
8(1
o bl Ci __J.L
| i, R
} 1 .95 (t/T)
- |
- "Tt'.’_ el ¢—-holding -
~ sampling

(t/r)

Fiz, VII-5 a : Schematic Diagram of a Sampler-Holder*

SH
c
R RO S - \// Transistor
T 4 o MPN
ﬁ[ 1
PRI 1 L ce
e b AN Ny |
S e =
27 | 927
———— '

f ity > o]
Fig, VII-5 b : Schematic Circuit of a Sampler-Holder

* In Fig. VII-5 a, the filtered signal s(t) is sampled during the interval
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For example, if CS =+ 10 v fort < t”)*
4 == | fort >t "
LCS Ov k])

where t(])* is the end of the sampling interval, 1»

|s = s(t) for any t
d(0o, = i
an H—st) or t< )3
< ol -'(ll )/' Rl CI

YOHZS(f:f’)e for t ‘t(l)*

In conclusion, the sampler-holder behaves as a zero-memory network
during the sampling interval and as @ RC network during the holding time,

which includes the detection interval.

VII-2d Binary Source and Random Gate

The block diagram of Fig. VII=6 shows how the binary source controls
the random gate. A message is stored in the form of binary digits in the binary
source which is synchronized by the pilot clock to deliver one binary digit
(1 or 0) every pseudo-period in the form of pulse or no pulse; a binary 1 in
the nth pseudo-period is expressed by a pulse in the interval 8T+ (n=1)T
to .8 T+ nT (the exact width does not matter). For a sequence of binary 0
(every digit is zero), the binary source can be replaced by a ground. For a
sequence of binary 1 (every digit is one), the binary source can be replaced
by +4.5 volts. The messages, i.e. the sequence of digits, can be completely
random; however, recurring messages such as 111111,.,... , 000000..... ’
I 55 s , 1001001..... , are very useful to check the detection system; for
example, to show that the average probability of error for adaptive threshold
is independent from the sequential order of the digits.

1— f] - t]* , p* denote theoretical values; t(]) . t(])* » :(*) denote the

corresponding experimental values.
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The binary source has two functions: (1) it controls the random gate
in order to transform the periodic train of pulses out of the preamplifier P1
into a random train of pulses which is the pulse code modulated binary message;
(2) it provides a true emitted digit (although not the true emitted pulse) to
compare with the detected digit in the coincidence circuit (Aé).
The random gate, RG, is a sampler and, therefore, is described in
paragraph VII-2c. It works as a switch: the output is equal to the input if
the gate is positive (+ 4.5 volts) and the output is zero if the gate is zero,
The random gate, under the control of the binary source, removes
pulses from the train of periodic pulses coming from P1. The random gate
behaves as a closed switch when the binary source emits a digit 1 and as
an open switch when the binary source emits a digit 0. The output ORG
of the random gate is the binary signal in a pulse code modulated form. The

width, amplitude, and shape of the pulse are determined by the preamplifier

P1, while the presence or absence of a pulse is determined by the binary source.,

VII-2e Summer Amplifiers

The summer amplifier is a dc differential amplifier whose gain G is
controlled by feedback. The schematic diagram is shown in Fig. VII-7. The
amplifier is completely symmetric and consists of two sides , side one and side
two which are denoted by the subscript 1 and 2, respectively. The outputs are

either 02 to ground or 0, to ground or O] to 02. A positive signal on one

1

input of side one (u] ¢ Vyr W,y OF X ) makes O] more positive and vice-versa ;

] ]
O] and 02 are complementary. The output voltages, 0. and 0 are limited

1 — 727
by the dc supply to a minimum of - 10 v and a maximum of + 10 v; however,
0, or O ik . :
] 2 can be limited to any value in the ange - 10v to +10v using a

limiter (Zener diode) in the feedback.
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G £u1+v1+w1—(u2+v2)] < 412

U1 __.j
¥4
Side One —
w
B el
X1 <
A -
1
:2 __11 Gain = G
Side Two 2
w
81
| - i)
-10 < 0y =
- 10 <02=-O1 < 1L

(a) Linear Amplifier

—

Side One 11— E——
5

Side Two e 0 G large

(b) High Gain Amplifier
Ii‘u41-+v1+v.:1 - (uz+w2) -0

Ifu1+v1+w1-(u?+w2) <0

Fig, VII-7 3 Schematic Diagram of

with Two Limiters on O1
01 = 5 v

01=-3v

a Summer Amplifier
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The general equations for the differential amplifiers are :

(1) no limiters

0, to ground = 0, = Gi_u]; v, 4 w‘..x]-(y2+.v2;,; (VI1-1)
0,=-0, (VII-2)
0, to 0,=2 0, (V11-3)
- 10v< (O] or 02;\ +10v (VII-4)

where G is the gain of the amplifier

(2) two limiters on O] (lower limit = LOI' upper limit + UO])

(VI1-4) becomes

-10,< 0,< + U0, (V11-5)

(3) two limiters on O, (lower limit - LO2 , upper limit + UOZ)

2
(VI1-4) becomes

- LO2 < 02 <% UO2 (VI1-6)

The voltage gain, G, is limited to 30 for linear operation but may be
made much larger to perform logic operations. In the block diagram of Fig. Vii-1
the differential amplifiers are denoted by Al, A2, A3, A4, A5, A6. Al, A2,
A3 and Aé are linear low gain amplifiers ; A4 and A5 are high gain amplifiers

with voltage limiters on 02 . When the output of the amplifier is between O]




(or O2) and the ground, the gain is G which is called one side gain; when
the output of the amplifier is between Ol and O2, the gain of the amplifier is
2G which is called double side gain.

The equations for the output of a high gain amplifier with two limiters
on 02 are obtained after replacing G by @ in formulas (VII-1), (VII-2),
(VI1=3) and (VII1-6):

4 + >
(1) Ifu] Vit X Ku2 Vo) 0 J

then O.==LO (V11-7)

then O,=+UO (V11-8)

Since several amplifiers are used in the block diagram of Fig. VII-1, a
second subscript is necessary to denote the number of the amplifier. For example,

v means: input u, side 1, amplifier 5,

15

VI1-2f Absolute Value Network and Coincidence Circuit

The absolute value circuit, ABS , which is shown in Fig. VII-8a, has

two inputs, | and 'AB2 , and one output, O Since the inputs of ABS

ABI AB’
are the outputs of the differential amplifier, AG , they are equal and opposite:
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ABI AB2 (V11-10)

Because of the diodes, the output OAB is equal to that one of the two

inputs which is positive :

AB IAB]

(VI1=11)

If | >, OAB IABZ

The two formulas (VII=11) and (VII1-12), which define ABS can be

condensed into one :

Opp* “AB]' “AB2! Vi1-12)

The coincidence circuit shown in Fig. VII-8b consists of a differential
amplifier, A6, an absolute circuit, ABS, and a sampler, S. The inputs of A6
are (1) the true binary digit coming from the binary source and (2) the detected
binary digit coming from the comparator ; the binary digit zero and the binary
digit one are represented respectively by no-pulse and by a pulse of amplitude
+ 5 v. If the binary digits on the inputs of A6 are identical, the outputs of Aé
and ABS are zero; if the binary digits on the inputs u, and u, of Aé are

different, the outputs of A6 are O]b =+ 6.7 v and 0126 =+ 62.7 v and the
output of ABS is + 6 v (taking into account the voltage drop in the diodes of
the rectifier). The true binary digit appears in the interval (n - 1) T+ .8 T to
(n) T+ .8 T; the detected binary digit appears in the interval f“) LT,

where f(]) is the detection time. Since the true binary digit and the detected

binary digit do not overlap completely, they are compared only during some of

the interval of overlap , more precisely, between .3 T and .4 T; the sampler
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S is used for this purpose. The sampler S is controlled by the preamplifier
P5 and behaves as a closed switch in the interval of time nT+ .3 T <t <nT+ 4T
and as an open switch elsewhere,

During the interval of time nT + .3 T {t {nT + .4 T, the output of the
sampler S is either zero or + 6 v: it is zero if the nth emitted digit and the
nth detected digit are identical and it is 6 v if they are different. Outside
of this interval of time, the output of the sampler is zero.

For every error in the detection, a pulse (amplitude é v, width .1 T)
appears at the output of OS ; this pulse activates the counter, CNT, which
counts the errors in the detection of binary digits mixed with white noise ; if
the frequency of the binary digits and the duration of the experiment are measured,

the average probability of error in the detection can be determined.

VIl-2g Electronic Comparator

The electronic comparator unit, E. C. , is made by Electronic Associate
Inc. The block diagram of the electronic comparator is shown in Fig. VII=9.
The input is |

and the outputs are C] and C_, which are complementary;

G 2
that is, if one is 5 volts, the other is 0 volt and vice-versa. The comparator
possesses two logic controls: latch and unlatch., When + 5 volts are applied on
the latch terminal, the input of the comparator is virtually disconnected and the

remain in their previous state independently of the input.

outputs C] and C

2

The unlatch terminal overrides the latch terminal ; therefore, when =~ 2 volts are
applied on the unlatch terminal, the input voltage regains control of the comparator.
When the comparator is unlatched the correspondence between input and output is as

follows:

(VI1-13)

(VII-14)
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In the block diagram of Fig. VII-1, the comparator is latched all the

time except (1) at the time of detection where the input | . is controlled by

C

the summer amplifier A4 and (2) at the time of reset where the input | . is

C

controlled by preamplifier P4. The input of the comparator (| is protected

c)

against large voltages by two diodes which short circuit the input for voltages

outside of the allowed range, - .6 v to + .6 v.

VII-2h Pulses Generators

Three pulse generators (one pilot pulse generator and two slave pulse
generators ) are used in the block diagram of Fig. VII-1.

The pilot pulse generator provides periodic pulses at the input of the
pilot clock. The shape of the pulses is not important and a certain amount
of frequency drift is tolerable because the pilot clock insures a proper sequence
of control signals for a wide range of frequency.

The pilot clock and the preamplifiers P1 to Pé provide control signals
only at the discrete times mT, mT + .1 T, mT +.2 T, etc., or more generally,
only at the discrete times m +p(.1) T. where m and p are integers. It
is necessary to control the intervals of time for sampling and for detection
accurately anywhere in the pseudo-period. For this purpose, slave pulse
generators are used.

The schematic diagrams of the slave pulse generators SG1 and SG2
are shown in Fig. VII=-10. When a rectangular pulse is applied to the input,

ISG’ SG

pulse whose delay, width, zero level and amplitude are adjustable. Using a

of a slave pulse generator, SG, the output, O_ ., is a delayed rectangular

slave control generator, any desired rectangular pulse can be obtained during
the pseudo period.

The input, | , of SG2 is connected to the output of P6 and the

SG2
output, OSG2 , of SG2 determines the desired sampling interval ; the zero

level and the amplitude of OS are chosen for a proper control of the

G2
sampler-holder, SH.
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SG1 ‘ G2 |
!
Delay .05 T 0
Width 057 5329 T
} Zero setting 0 . ‘ - 10 v
Amplitude | 5 v ‘ 20 v
J j

Fig, VII-10 : Schematic diagram of the slave pulse generators, 5G1 and SG2




The input, lSGl » of SGI1 is connected to the output of P2 and the
output, OSG] » of SG1 determines the desired detection interval ; the zero

level and the amplitude of OSG] are chosen for a proper control of A5,

VII-2i Switch SW

The switch, SW, is a double switch used to switch from adaptive to
constant threshold. In the position "Adp": (1) SW1 connects the sampler
holder to Uiq %0 that the output of A3 is the adaptive threshold and (2)

SW2 connects the condensator C2 in parallel with C] , making the time
constant of the filter RC = R(Cl + C2) for adaptive threshold. In the position
"Ct": (1) SW1 connects U5 to the ground so that the output of A3 is the
constant threshold and (2) SW2 disconnects C2 making the time constant of the
filter RC = RC] for constant threshold.

VII-2] White Noise Generator

The random noise generator is manufactured by General Radio (type
1390-B). It is used to deliver white noise of normal distribution on a band-
width 0 to 22 Kcs, whichisa large  bandwidth in comparison of the
inverse of the width of a pulse. The maximum open circuit output is more than
two volts and the spectral voltage density with 2 volt output is about 2.4
milivolts for one-cycle band. The output impedance is less than 900 ohms

which is small compared to the input impedance of the amplifier Al.

VII-2k Electronic Counter

The electronic counter is manufactured by Hewlett-Packard Company
(type 5245L) which is a high frequency general purpose electronic counter
that measures frequencies from 0 to 50 Mcs, periods from 1 second to 10
seconds and period average from |0 to 100,000 periods. The electronic

counter is used to count the pulses coming from the coincidence circuit (one

pulse for each error in the detection) for a duration of several hours,
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VII-3 Choice of the Sampling Time, The Detection Time and the Holding Network

The experimental model of Fig. VII-1 differs slightly from the mathematical
model of chapter 1V because the response of the electronic components, although

fast, is not instantaneous.

The experimental sampling time finishes at time t = f(]') and t“'; -, 957

instead of at the theoretical value, H T, because the sampling must be terminated
before the start of the unknown pulse and a safety margin is necessary.

The experimental time of detection is at the end of the pulse; however, it
cannot be defined exactly (as the theoretical time was) because the detection is not
instantaneous. For example, if the width of the pulse is .2 T, the detection takes
place at a time f(]) in the interval 1.15 T to 1.2 T instead of the theoretical value

f] =1.2T.

The optimum adaptive threshold, DA’ at the time, t,,,, of detection is ob-

(1)
tained by using formulas (IV-52) and (1V=31) and replacing t by f(]), f‘i by f(]’; and

p* by p(*):

-(t )/RC

- *
D, =A/2 +s5,% e n = A/2 + p(*)s 2

” o oy T (Vi-15)

p(*) is not precisely defined because t(]) is anywhere between 1.15 T and 1.2 T.

-(f(” - t(]'))/RC

e-.25 T/RC y p(*) D >

o -2 T/RC (VII-16)

- g R
As an approximation, let p(*) = ¢ £ 1R

(VII=17)
The optimum adaptive threshold, DA(f), at time t anywhere during the
interval of detection (1.15 T <t < 1.2 T) is obtained by generalizing formula
(VII-15):
-t -t,.1)/RC
-t 3/

D) = A/2 +5,) e for 1.15T<t<1.2T  (VII-18)

1 The peak amplitude A of a filtered single pulse is smaller for adaptive
than for constant threshold (RC larger).




On the other hand, the output of a samp ler-holder at time t, after sampling

until time f(]';, is given by paragraph VII-2 e:

-(t - f“'))/R'C'
OH(H = S(HQ e for t ‘f“) (VII-19)
and at the time f”) of detection:
-(t,.. =-t,R'C
(1) (H)/ (*) . «
= ; * /2 o = -
OH(t fm> 501y 2 P 8y (V11-20)

The output of the summer amplifier A3 (gain 2) at time during the interval

of detection is

-(t - r(]‘))/R'C'
013(f) = A/2 +s(]*) e for .1I5T<t<1.2T (VII-21)

From comparison between formulas (VI1-18) ard (VII-21), it follows that the
output O]B(f) of the amplifier A3 can be made equal to the adaptive threshold
DA(f), as desired, during the detection interval by taking R'C' =RC:

0130(])) = DA(t = t(”) DA for R'C' =RC and t ;,,“) (V11-22)

Since the output of P4 overrides the output of A4, EC is sensitive to Ad
only for 1,15 T <t < 1.2 T when, both, EC is unlatched and OP4 =0,

Therefore, the decision circuit, which consists of A4 and EC, compares the
output of A3 to the output of A2 (i.e. D(t) to s(t)) only during the short interval
1.15T<t < 1.2 T. For all practical purposes, this short interval is an instant of

time, f( % where 1.15T<t .. <1.2T. Thus the comparator compares D, =

1 (1) A
DA(f =f(])) to 5(1) 9 desired. In conclusion, the experimental block diagram of
Fig. VII-1 simulates the theoretical block diagram of Fig. 1l1-1 except for minor

differences due to the noninstantaneous operation of the electronic components.
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VII-4 Analysis of the Experimental Block Diagram

Vll-4a Outline of the Analysis

The block diagram of Fig. VII=1 can be divided into four subdivisions:
(1) the clock system, (2) the generator of noisy signal and the decision circuit,
(3) the unlash control and (4) the coincidence circuit and error counter. In each
of the four subdivisions, the operation of each component versus time is analyzed
for about one pseudo-period using (a) the description of the components of para-
graph VII-2 and (b) the experimental sampling time and the experimental detection
time (f(]; and t(” respectively) defined in paragraph V11-3.

The following types of detection are considered successively:
(1) The detection of one pulse (width KT = .2 T) mixed with white noise using an
adaptive threshold detector (see VII-4 b);
(2) The detection of no-pulse, i.e. white noise alone using an adaptive threshold
detector (see VII-4 c);
(3) The detection of one pulse (width KT = .2 T) mixed with white noise , using
a constant threshold detector (see VII-4 d);
(4) The detection of no-pulse, i.e. white noise alone, using a constant threshold

detector (see VII-4 e).

The analysis for a pulse width other than .2 T would be very similar.

VII-4b Detection of One Pulse Mixed with White Noise Using an Adaptive
Threshold Detector

One pulse is emitted by the random gate during the interval of time
T<t<1.2T and the switch, SW, of the block diagram of Fig. VII-1 is on the
position Adaptive Threshold (Adp). The detector either detects a pulse, which is
a correct detection, or detects a zero, which is an error of type 2 (see Fig. 11-4).

The block diagram of Fig. VII-1 is decomposed into four elementary block

diagrams: (1) the clock system; (2) the generator of noisy signal and the decision
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circuit; (3) the unlash control and (4) the coincidence circuit. These are analyzed

successively in paragraphs VIl-4b-1, VII-4b-2, ViIl-4b-3 and VIl-4b-4,

VIl-4b-1 The Clock System

The clock system (which consists of a periodic pulse generator, a pilot clock,
a group of preamplifiersand two slave generators) is used for control and synchroni-
zation.

The functions of the preamplifiers, P1.......... P6, and of the two slave
generators, SG1 and SG2, are shown in Fig. VII=11 for the one pseudo-period. The
detection of one pulse in the interval of time T to 1.2 T starts by the reset of the
electronic comparator inthe previous period, ot time t = .6 T.

The clock system controls (1a) the reset of the comparator and (1b) the
gating of the sampler-holder; it synchronizes (2a) the generator of a noisy signal,
(2b) the unlatch control and (2¢) the coincidence circuit.

(1a) The clock system controls the reset of the comparator by the preampli-
fier P4 which makes the input of the comparator positive while the comparator is
unlatched (.6 T <t < .7 T); P4 is positive during the time .6 T <t < .7 T which
insures that the comparator is in the position Ic >0 (C] =5v, Cc =0v) when it is
latched at time t = .7 T.

(1b) The clock system controls the sampler-holder by the slave generator,
SG2, which applies +10v to the gate during the sampling interval .8 T <t <(95T =f(])*)
and which applies =10 v to the gate during the holding interval t( l )* <t <1.8T). The
operation of the slave generator and of the sampler-holder are analyzed in detail in
paragraph V11-2b and VII-2c, respectively.

(2a) The train of random pulses representing the binary signal is obtained by
gating the periodic train of pulses produced by P1. (See paragraph VII-2d.)

(2b) The preamplifiers P2 and P3 synchronize the amplifier A5 which con-
trols the unlash of the comparator. (See paragraph VIl-2g.)

2(c) The preamplifier P5 controls the gate of the sampler, S, which syn-

chronizes the coincidence circuit so that the true signal coming from the binary
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source and the detected signal coming from the comparator are compared only

during the interval of time .3 T <t < .4 T which is common to the two partially

overlapping signals (see paragraph VII-21).

VIl-4b-2 The Generator of Noisy Signal and the Decision Circuit

The generator of noisy signal consists of a noise generator, NG, a random
gate, RG, and a summer amplifier, Al. The random gate transforms the train of
periodic pulses at the output of P1 into a train of random pulses under the control
of the binary source as explained in paragraph VII-2d. Throughout the paragraph
VIl-4b, it is assumed that one pulse is received during the interval of time T <t <
1.2 T; therefore, the random gate behaves just as a closed switch, that is OR = OP] .
The output 02] to O” of the summer amplifier Al is the sum of the white noise and
of the pulse coming from P1. This output corresponds to the noisy input signal si(t)
of the theoretical block diagram of Fig. lI=1.

The decision circuit consists of the summer amplifier, A2, the sampler-
holder, S=H, the summer amplifier, A3, and the threshold detector, (A4 and EC).
The input impedance of the amplifier A2 is so large that the RC filter can be con-
sidered unloaded. The output O]2 to 022 of A2 corresponds to the filtered signal,
s(t), of Fig. llI-1.

The sampler-holder is controlled by the control circuit and more precisely
by the output of A7 which follows the output of the slave pulse generator, 5G2,
shown in Fig. VII-10. The operation of the sampler-holder was explained in para-
graph VII-2c; the intervals of sampling and detection were determined in paragraph
VII=-3. The output of A3 is the adaptive threshold level D4 (t) which is given by
formula (VII-21). The differential amplifier A4 has a very high gain and two limiters
(+2v and =2v); the output of A4, which is 42v if DA(t) > s(t) and is =2 v if DA (t) <s(t),
is applied to the input of the electronic comparator, lc’ through a small resistance,

R4 (R4 is used for protection of both A4 and Ec)'
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The comparator EC is latched by +5v on the latch terminal except when the
output of the amplifier A5 of the control circuit provides -2v on the unlatch termi-
nal which occurs (1) during the reset interval (6 T<t< .7 T) and (2) during the
detection interval (1.15T<t< 1.2 7).

The operation of the electronic comparator is explained in paragraph VIl-2g.
During the reset interval (.6 T<t < .7 T) the comparator switches to the testing
state C] =5v, C2 = 0v,(or remains there) because both (1) P4 makes IC positive
and (2) A5 unlatches the comparator. During the detection interval (1.15T <t €

)

1.2 T) the comparator is sensitive to the output of A4 because A5 unlatches the com-
= 3 = + (*

(I)) Sy > DA A/2 + p

024 (t = t(])) < 0 and the comparator switches to the detecting state C

parator; two situations arise: (1) if s(t =t then

(1)’
9= 5v which
means a pulse has been detected; (2) if s(]) < DA' then 024 @t = t(]? < 0 and the
comparator remains on C2 = 0v; no pulse has been detected (this is an error of the

second type. The variations of the output voltage of the components of. the noisy

signal generator and of the decision circuit versus time are shown in Fig. VII-12,

VIl-4b-3 The Latch and Unlatch Control

The latching and unlatching of the comparator is controlled by the amplifier
AS. The operation of the comparator was explained in paragraph VIl-2g; the com=
parator is unlatched when the output of A5, 025, is negative and is latched other-

wise,

A5 is a high gain amplifier with two limiters which limit the output 025

between -2v and +10v, Using paragraph Vll-2e, 025 is equal to =2 v when the sum
of the inputs to A5 (denoted by I) is positive:

le=u]5+v]5+w]5+2x]5<O, Oz=+10v; EC is latched

i >0, O2 ==2v; ECis unlatched.

The control of latch and unlatch for one pseudo-period is shown in Fig,

VII-13. During the detection interval (1.15T <t < 1.2 1), O =45v;

i85 VSO

at time t =1.15 T, the comparator EC is unlatched because both Vi5 = +5v and
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=C, = +5v (the comparator was reset at t = .6 T). The comparator remains

u
15 1
unlatched until T = 1.2 T if no pulse is detected; however, if a pulse is detected

at time r(]), U5 = C] becomes zero and the comparator is latched since V15 alone

cannot unlatch it. The purpose of Yis is to prevent the detection of several pulses

in one pseudo-period.

During the reset (.6 T <t < .7 T) the comparator is unlatched by a +9v on

X157 whether (UIS =C]) is zero or five volts.

VIl-4b-4 Coincidence Circuit

The operation of the coincidence circuit was examined in detail in para-
graph VI1-2f, Table VII-14 shows the operation of the coincidence circuit and of
the counter when one pulse is sent for the two cases: (1) no pulse detected (error

of the second type) and (2) one pulse detected.

VIl-4b-5 Operation of the Block Diagram When One Pulse is Sent

The main steps in the detection of one pulse mixed with white noise using
a RC filter and an adaptive threshold are shown in Table VII-15 which condenses

the main results of Tables VII=11, VII-12, VII-13 and VII-14 into one table for

easy reference,

Vil-4c Detection of no Pulse Mixed with White Noise Using an Adaptive Threshold
Detector

No pulse is emitted by the random gate during the interval of time T <t <
1.2 T; the detector either detects no pulse, which is a correct detection, or detects
a pulse, which is an error of type 1. The switch, SW, of the block diagram of
Fig. VII-1 is on the position "Adaptive" (Adp).

The clock system operates exactly as in paragraph VIi-4b-1. The output

of the random gate is zero; therefore, the output of Al is just the white noise and
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A |
°MPO= 1 Outputs AT 1.15T <+, <1.2T  1.3T  1.4T  1.6T
nents (1)
BS OBS:U16 QorS5v 5v 5v 5v S5v 5v
= 0 0 0 6 0
P5 OP5 CS 0 v
EC C2 =Vis 0 0 0 5v 5v 5v 5v
Aé 016 Qoréb.7v)| 6.7 v 6.7v 0 0 0 0
One 026 Qor=6.7v] =6.7v |-6.7v 0 0 0 0
detected] ABS [O, =[0, | | Oorév 6v 6v| © 0 0 0
S OS 0 0 0 0 0 0 0
Counter 0 0 0 0 0 0 0 0
-
( EC C2 16 0 0 0 0 0 0
Aé 016 Qoréb6.7v| 6.7 v 6.7 v 6.7v| 6.7v | 6.7 v
Zero 026 Qor =6.7v| =6.7v -6.7 v ~6.7v|=6.7v |=-6.7v
detected | ABS |O,=|0,,]| | Oorév 6v 6v bv | 6bv 6v
(Error) S 0 0 0 0 0 év 0
Counter 0 0 0 0 0 1 0

Table VII-14: Operation of the Coincidence Circuit and the Counter

(One Pulse Sent)
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the output of A2 is the sum of the filtered noise and of the small residual voltage
due to the previously detected pulses. The decision circuit and the reset operate
exactly as in paragraphs VII-4b-2 and VII-4b-3.

The operation of the coincidence circuit and of the counter is explained in

paragraph VII-2f for any possible case and is shown in Table VII-16 for the case

of no pulse sent. Since no pulse is sent, Yig is zero for .6 T<t<1.6Tand in
6
particular during the coincidence check (1.3 T <t <1.4T).
Vil-4d Detection of One Pulse Mixed with White Noise, Using a Constant
i B
Threshold Detector
One pulse is emitted by the random gate during the interval of time
T<t<1.2T; the detector either detects a pulse, which is a correct detection,

or detects a zero, which is an error of type 2.

The switch SW of the block diagram of Fig. VII=1 is on the position
"constant threshold" (Ct); therefore, by SW1 the output of the sampler holder
is not used and by SW2 the time constant of the RC network is reduced to RC
RG5

1

The operations of the clock circuit, the generator of noisy signal, the
control circuit, the coincidence circuit and the counter are identical for constant
or for adaptive threshold and are described in paragraphs VIl-4b,

In the case of constant threshold, the input U, o Of A3 is equal to zero;
therefore, (1) the amplifier, A4, compares D (t) = A/2 to s(t) and (2) the com-
parator, EC, detects the output of A4 at time t " Together, A4 and EC compare

\ )

D =A/2tos(t =t,,,) =s,,,.
c (1) (N
In conclusion, the detections of one pulse mixed with noise using (1) an
adaptive threshold and (2) a constant threshold, are identical except for two
points (see Table VII-17):
a) The sampler-holder is not used in the case of constant threshold detection,
b) In the case of constant threshold, the decision circuit compares D =A/2
c
tos while in the case of adaptive threshold it compares D, = A/2 + p(" $/q1

(1)’ A (1)

10 8,410

(1)
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Compo- g »\
Outputs 6T 5T <t K | ot AT ]
nents (1) ,
| et )
1 | ' j
BS OBsiulé Qor5v 0 0 0 0 ’ (
’ 1
P5 J 0 0 0 0 |é6v | O
? P5 CS J j :
L f f
R | s . -~ |
EC Cz V]é 0 ' U 0 OV 9 \ }; JV ; o JRY
-6.7v | ’ . ey TR e
Aé 016 0or ] 0 | 0 j - 6. -6.7\ | -6.7 -6.7v
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Table VII-16: Operation of the Coincidence Circuit and the Counter
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Vll-4e Detection of no Pulse Mixed with White Noise, Using a RC Filter and
a Constant Threshold Detector.

The switch, SW, of Fig. VII=1 is on the position "Constant Threshold" (Ct);
therefore, Ujg = 0 and the sampler-holder is not used. By hypothesis, the output
of the binary source is zero during the interval .6 Tto 1.6 T. It follows: (1) the
random gate is an open switch, the output of Al is just the white noise and the
output of A2 is the sum of the filtered noise and of the residual voltage due to the

previously detected pulses; (2) the threshold detector compares s ) fo DC A/2

(1

as in paragraph VII-4d; (3) the coincidence circuit compares a zero coming from

the binary source to the detected signal coming from the comparator (C,) during

the interval 1.3 T <t < 1.4 T, If apulse is detected, which corresponds to an

error of the first type, (1) C2 =5v for f(].) <t<1.6T, and (2) Q5 =+4,5v for

1.3T<t<1.4T which activates the counter.

VII=5 Conclusion of Choptcr Vi

The experimental block diagram of Fig. VII-1 consists of functional blocks:
clock system, noisy signal generator, receiver, and error detector. The operation
of the block diagram is explained in three steps by considering (1) the basic com-
ponents, (2) the functional blocks and (3) the complete diagram. It was shown that
except for minor differences, Fig. VII-1 simulates the theoretical block diagram of
Fig. 11-2 as desired

In chapter VIII, numerical values are assigned to the pseudo-period and

the RC filter, and the block diagram is tested.
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CHAPTER VIII

EXPERIMENTAL RESULTS

VIII=1 Introduction

Chapter VII| is the continuation of Chapter VII; the purpose of
Chapter VIII is twofold: (1) numerical values are assigned to the following:
the pseudo-period, the time constant of the filter and of the sampler-holder,

Firious

the amplitude V, the gain of the amplifiers, the threshold and the fi

signal to noise ratio; (2) the experimental average probabilities of error for
constant and adaptive threshold are determined and compared with the

theoretical results of Chapter |V.

VII1-2 Choice of the Pseudo-Period, T, and of the Normalized Width of

the PUISC, e

AIH‘OUQ’] most ?elo'm*tr‘/ systems operate at rather high fre
they can be simulated at lower frequency using time scaling. The pseudo-
period, T, can be determined by three considerations: (a) if T is short
the design of the components is more difficult, (b) if T is long the experi-
ment is very lengthy and (c) the bandwidth of the noise generator must be
small for a truly normal distribution but still large compared to 1/T in order
to simulate white noise; as a compromise, T is taken equal to 500 ps.

It was shown in Chapter |V that the average probability of error for
constant or adaptive threshold is minimum for K minimum; however, K
would be at least .1 or .2 for a practical system. |n Chapter VII| as in

Chapter VII, K is taken equal to .2. The pulse width is then: KT = 100 ps.
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VII1-3 Choice of the Time Constant of the Filter (RC) and of the Sampler-Holder (R'C')

The time constant of the RC filter, which is determined by the product

KT
Ky RC is chosen to minimize the average probability of error. For constant
threshold and K = .2, the optimum value of Ky is Ky = 1.25 by Fig. 1V-3.

For adaptive threshold the average probability of error is minimum for the minimum
Ky (see Paragraph |V~9), for realizability Ky is taken equal to .312.
The values of the time constant for constant and adaptive threshold
T
RC

N
O

(1) Constant Threshold RC=RC, , Ky=1. 6.25

SRR ooty (VI11-

R=1600w , C1 .05 pf (VII1-2)
(2) Adaptive Threshold RC = R(C, + C,) , Ky = .312 , y ic .56
500)
RC. + C.) ;g:lr) 320 us (VI11=3)
] 2 I 1L
R 1600w, C] : C2 4R C? YT (VIl-4)
The variation of capacity from C] O5uf to C, 4 C2 . 2uf
|

is controlled by the pole SW2 of the switch SW which connects C2 . 15pf

in parallel with C].
The time constant R'C' of the sampler-holder is equal to the time constant
of the RC network by paragraph |V-5; therefore, R'C'= 320ps: R' = 1600w

C' = .20f.

Since the amplitude V of the rectangular pulse must be small compared
to the maximum instantaneous amplitude of the noise but must be large for

accuracy, V is taken equal to 1.65 volts.




In Chapter |V, s.l(f) = n;(f) + pi(r) and s(t) is sim after RC filtering;
this corresponds to a gain one for both Al and A2. The threshold detection
which compares the filtered signal to the threshold level is unchanged if
both the filtered signal and the threshold level are multiplied by the same
factor; this means that the gains of the amplifier Al and A2 are arbitrary.

The gains of A1 and A2 are chosen small for linear operation of amplifiers,
even when the noise has a large amplitude. The double gain of Al is equal

to one. The double gain of A2 is about 3.4 and is adjusted for a peak amplitude

A = 4 volts when the noise is null. The output of A2 (0., to 0,,) is calle
"/ A/.
the filtered noise and denoted by s(t); because of the symmetry the Itag

between O,‘ and the ground is s(t)/2.

2

VIII=5 Choice of the Constant and of the Adaptive Threshold Level:

The constant threshold level, D ., which is the output of the amplifi
N

A3 when the switch SW is on "Ct", was defined in Chapter VIl as equal to
A/2 where A is the peak amplitude of a single filtered pulse without
Since the gain of A2 is chosen to make A=4v, it follows that D 2 v

The adaptive threshold level, L‘A t), which is the output of the

amplifier A3 when the switch SW is on "Adp", is defined by formula (VII-=15)
at the time r(,” of detection:
-(t =T e " A/RC
, ‘ (1) 1)
A is proportional to (1 = e-KY), therefore, for adaptive threshold
(1 - o-°3]2\
A=4 —— " =1,495v, Substituting 1,495v forA, t,..* = .95T,
-, 25 (1)
(1 -o )
ty ® 1.17T and yT/RC = 1,56 gives
-(.22) (1.56)
748 + * = . /48 % . * (V1=
DA 748 s“) 2 8 7095(“ 11-6)
Since the sampler-holder samples only one for the two sides of the
e -(t~t”) )
b i, LY RC
h h > .
amplifier A3, the output of the sampler is g~ for t by




A HEEEHEEEEREEEEEERNNEEN

128

therefore, (1) the gain of the amplifier A3 must be exactly two and (2) the

input u,, of A3 must be equal to A/4= .374v.

23

VIlII-6 Adjustment of the Fictitious Signal to Noise Ratio Q

The numerical values of the fictitious signal to noise ratio Q

eyl

chosen exactly as in Paragraph |V =6 so that the theoretical and experimenta

c

”~

results can be compared: Q = 15 and 25. Since,
)
PS T v2 kT
Q ~'———_ —r‘: =

by Paragraph IV-1 and that V, T and K are held constant, Q is determined

by adjusting the white noise generator. When
Y | g R ’

2 2 6

VEKT  (1.65)° (.2) 500 10°
2Q 30 .

-6 2
9.1 1077 volts“/ cycle

When Q =25, n=5.44 10-6 vo|r52 cycle

The peak amplitude of the output of A2 is A GT V(1 - ") where
GT is the overall gain of the amplifiers Al and A2. Substituting the numerical
valves for A, V, Kand y, yields GT 765)(71-7')_ 3.40
: ‘ Ryt - ~ Y
The mean square power of the noise at the output of A2 is o GT " 3
where 02 is the variance of the noise when GT = 1 and is given by formula |V-12
2 2 2 - o i) 2
o G, 0 =G, T== . 361 10”1 volts

e T T 4RC
Instead of measuring the power density, n, of the noise, it is more

practical to measure the rms value of the noise o_ at the output of A2.

Q=15 a9 ) ]O_é vo|f52, cycle , G“2 . 328 vo“s2 y Oy .573 volt

i 2 .
Q=25, n=5.4410 évoli’s /cycle , 092 .196 volrs2 , 0. = .443 volt
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VII1-7 Error for Noise with Limited Bandwidth

Since the average probabilities of error are rather small, the normal
curve must be correct up to 6o at least; therefore, noise with limited band-
width and true normal curve was preferred to noise with large bandwidth and
truncated normal curve to approximate the white normal noise. The variance
for a limited bandwidth is smaller than for an infinite bandwidth; however,
the error is small when the bandwidth is large with respect to 1/RC.

The power density spectrum at the input of Al is G; and the power
density spectrum at the input of A2 is G.. The bandwidth of the noise is

Otof , then:
c

n/2 for 0< f< 22 Kc
0 otherwise
2
/ G n/2
( T N
| for f< 22 Kc
| 1 + (2 fRC)
Gf {
0 otherwise

The variance at the output of A2 is

f
2 2 c
- ¢
o _'2GT é Gf df

e

L N -]
= GT m tan (2w QC fc)

When FC R fon—](Z‘nRC fc),— fon_lka) w /2; When f = 22 Kc,
c
-1 -1
tan (2w RC fc)f tan (11.2) = 1.49. The error on the variance due to the

limited bandwidth is in per cent

IS EEREEEEEEEEEENEENEDRN
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(ﬂ/’lz - 1.49)
ﬂ;!

/

100 = 5%

However, the bandwidth is not limited sharply at 22 Kc, so that the

error is even less,

VI11-8 Photographs of the Signals and of the Threshold

The operation of the experimental set up is observed on the oscilloscope
and is recorded using a polaroid camera. The oscilloscope is triggered by the
pilot clock at time t = .6T. The random rectangular pulse is received (or nof
received) in the interval of time T < t <1.2T. The photographs are made for

a fictitious signal to noise ratio Q = 15.

The three cases: (1) pulse without noise, (2) noise without pulse and
(3) pulse plus noise are considered successively: (1) Pulse without noise: in

this case si(t‘) is a rectangular pulse and s(t) is the filtered pulse. Photo VIII-1
shows the input signal si(f) = pi('t) (output of A1) versus time; Photo VIII-1b shows
the filtered signal s(t) = p(t) (output of A2) versus time for constant threshold;
Photo VIlI=1c shows the filtered signal s(t) = p(t) (output of A2) versus time

for adaptive threshold. (2) Noise without pulse: Photo VIII-2 is for constant

threshold (RC = 80 us). Photo V1lI-2a shows the noise before filtering, s,l(t) ni(r),
versus time. Photo VII1-2b shows the noise after filtering, s(t) = n(t), versus

time. Photo VIII-3 is for adaptive threshold (RC = 320 us). Photo VIII-3a shows
the noise before filtering versus time and would be identical to Photo VIII~2a

if the noise was random. Photo VIII-3b shows the noise after filtering, s(t) = n(t),
versus time. (3) Pulse plus noise: Photo VIII-4 is for constant threshold. Photo
VIl1-4a shows the rectangular noisy pulse, Si“) = ni(t) . pi(t), before filtering.
Photo VIlI-4b shows the noisy pulse after filtering, s(t) = n(t) + p(t). Photo VIII-5
is for adaptive threshold. Photo VIlI-5a shows the rectangular pulse, s;(ﬂ ”i”)

+ p.(t), before filtering and is statistically identical to photo VilI-4a. Photo VIII-5b
|

shows the noisy pulse after filtering, s(t) = n(t) + p(t).
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6T 8T 1T 1.27 1,47 1.6T

7T 9T 1,47 1.3 1.5T

Photo VIlI=la: Input random rectangular pulse, pi(f), versus time

Scales: vertical, 1 sq = 2v; horizontal, 1 sq = 50 ps

JT 9T 1.4T 1,37 1.5T

Photo VIII-1b: RC filtered random pulse, p(t), for constant threshold (K = .2,
KT/RC = 1.25)

Scales: vertical, 1sq = 2v; horizontal, 1 sq = 50 ps

6T .87 iT 1.27 1.4T 1.67

7T 9T 1.1T 1,37 1,57

Photo VIll-lc: RC filtered random pulse, p(t), for adaptive threshold (K = .2.
KT/RC = .312)

Scales: vertical, 1sq = 2v; horizontal, 1sq =50 ps




(a)

Photo VIII-2:

Photo VIII-3:
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(@) Input random noise, ni(t), versus time, (b) RC filtered random

noise , n(t), versus time for constant threshold (K = .2, :% = 1.25)

Scales: vertical, 1sq =2v; horizontal, 1 sq =50ps

6T .87 1T 1,27 1,47 1,67

L TR e Y 4,97

(@) Input random noise, ni(t),vemus time, (b) RC filtered random

noise, n(t), versus time for adaptive threshold (K =.2, —K%— = ,312)

Scales: vertical, 1sq =2v; horizontal, 1 sq =50ps
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7T 9T 1.17 1.3T 1.5T

Photo VIII-4: (a) Pulse plus noise before filtering, si(r), (b) pulse plus
noise after filtering, s(t).for constant threshold (K = .2,

KT
K = ].25)

Scales: vertical, 1 sq = 2v; horizontal, 1 sq = 50 us

Photo VIII=5: (a) Pulse plus noise before filtering, si(f), (b) pulse plus noise
after filtering, s(t), for adaptive threshold (K = .2,

KT
ol .312)

Scales: vertical, 1sq = 2v; horizontal, 1 sq = 50 us
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The RC time constant of the filter is much larger for adaptive than for
constant threshold. It follows: (1) both the rms value of the noise and the
maximum amplitude of the pulse after filtering are smaller for adaptive than
for constant threshold and (2) the pulses do not overlap for constant threshold

and overlap for adaptive threshold.

In the case of adaptive threshold the threshold is the sum of a constant
voltage equal to half the peak amplitude of a single filtered pulse and of a
corrective term which takes into account the residual dc level and the expected
value of the noise. The corrective term is obtained at the output of the sampler-
holder which performs as shown in Photo VIlI=6. Photo VIlI-éa shows the filtered
signal plus noise s(t) versus time. Photo VIII=6b shows the output of the sampler-
holder versus time, i.e. OSH(t) of Fig. VII=1. 0, (t) follows s(t) during the

sampling period .8T <t <.95T, and then decays exponentially during the
holding period .95T <t.

VIII-9 Measurement of the Average Probability of Error

When the detected Signol differs from the received signal a pulse which
activates the error counter appears on the output of the sampler, S. The number

of error is measured for a time sufficiently |

everal hours) to assume that the
frequency of error is equivalent to the average probability of error.

Let NC and NA be the number of errors occuring for a duration of
H hours, for constant and adaptive threshold respectively.

The pseudo-period is T = 500 us which means that 2000 "0" or "1" are
received per second, the experimental average probabilities of errors for constant

and adaptive threshold are respectively:

Ne
EC
2000 x 3600 x H
and N
g e A
A"

2000 x 3600 x H

134
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Phato VIII-6 Operation of the sampler-holder for a pulse mixed with noise:
the upper curve is the filtered signal, the lower curve is the
output of the sampler.

Scales: vertical, 1sq = 1v; horizontal, 1sq = 50 S
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Since the error of the first and the second types are equal, the errors

are practically the same whether only "1" or only "0" are received.

VIII-10 Comparison Between Experimental and Theoretical Results

The experimental and the theoretical average probabilities of error

are compared in Fig. VIll-T. The continuous line shows the theoretical
values (minus the logarithm of the average probability of error) versus Q,

for adaptive and constant threshold; the check marks show the corresponding
experimental values.

The experimental average probabilities of error are some what larger
than the theoretical values. The main reasons are: (1) the threshold detector
is unlatched for a finite interval of time rather than for the theoretical zero
duration, (2) the sampling terminates at .95T instead of T for the theoretical
optimum. Other causes of discrepancy are: the experimental normal curve is

not exact for large voltages, slight unbalance of the amplifier which makes

s

the error of the first and second type unequal, small drift, small internal noise

of the amplifier. The experiment is especially difficult for large signal to
noise ratio when the average probability of error becomes extremely small.
More work will be done to make the measurements more accurate.

In conclusion the experimental results confirm the theoretical results,
The experimental average probabilities of error, which are somewhat larger
than the theoretical average probabilities of error (which is justified), are
still much smaller for adaptive than for constant threshold as was true in the

theoretical case.
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CHAPTER IX

CONCLUSIONS OF PART | AND FUTURE WORK

IX-1 Review

Part | shows that the average prol f tect
pulses mixed with noise is reduced me isused. Th
noisy signal at time t * just before t d the noisy
signal at time t, are more o less g relat

techniques, it is possible to predict

The noisy signal can be corrected by

the residual voltage due to previous pulse

exoc?ly equivcﬂ(-n? to (1) compare the

or (2) compare the signal to a corre

The corrected threshold which is the

predicted noise is denoted adaptive thre
Most of the study is for pulses

(the autocorrelation is a §-functior

decaying exponential). However, Chapte

since the normal noise passes through a non

An adaptive scheme can be used whene

he autocorrelation

coefficient between the sampled signal and t etected signal is not null.
In general, it is advantageous, but n ssary, to filter the signal
because this increases both the signal-to-n itio and the autocorrelation

coefficient. Two types of filter are consid

RC filter (Chapters |V, VII

and Appendix E) and integrator (Chapter VI and Appendix E). In
Chapter |V, an RC network is used to filter the pulses mixed with white noise.
The analysis, which is performed for constant thre Id ar da » threshold,
determines both the width of the pulse and the RC network which minimize the

P
average probability of error for a given fictitious signal-to-noise ratio. The
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minimum average probability of error corresponds to the maximum signal-to-noise

ratio only when the process is normal. Instead of (1) expressing the effect of

the adaptive threshold as an increase of the signal-to-noise ratio and (2) maximizing

the signal-to-noise ratio, the optimization is performed directly on the average

probability of error since this is a more general technique. In Chapters V and VI,
an integrator is used. The output of the integrator is the integral of the input
only during the interval where a pulse might be present and it is zero otherwise.
The integrator is an active network which the signal to noise ratio more
than a passive network. When the aut elation function of the noise is not a
&-function (i.e. except for white noise), the noi ignal can be corrected using
an adaptive integrator where the predicted value of the noise is subtracted
continuously from the noisy signal before the integration takes place. The adaptive
integrator can be used after a linear network (Chapters Il and V) or after a non-
linear network (Chapter VI). An adaptive thre i cannot be used behind the
integrator because the output voltage before detection is always zero and is not
correlated to the noise. The standard integrator and the adapt ntegrat 4

compared with the RC filter in Append

|IX-2 Conclusions

In Chapters 111, 1V, V, VI and Appendix E, a train of rectangular pulses

1
$

mixed with noise is detected; the noise is either white and nomal, or RC type

and normal.
For white normal noise, the following cases are considered: (1) RC filter
and constant threshold; (2) RC filter and adaptive threshold and (3) integrator and

tv of

constant threshold. The optimum designs (minimum average probability of error)

are (a) for constant threshold: K= .1, RC= .08 T, (b) for adaptive threshold:
K=.1, RC=.32T, DA = DC + p* s.*, (c) for the integrator

] T+ KT : ;
s(t) = el j} si(f) dt. The logarithm of the average probabilities of error

versus the fictitious signal to noise ratio are shown in Fig. E~1, for the optimum
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choice of K, RC, DA and the integrator. The average probabilities of error
for adaptive threshold and integrator are equal and are smaller than those for

constant threshold; the reduction in average probability of error, expressed in

decibels, increases linearly with Q from 12 db for Q = 15 to 28 db for Q = 35.
For RC type normal noise, the following cases are considered: no
filter and constant threshold, (2) no filter and adapti threshold, (3) integrator
and constant threshold, (4) adaptive integrat ind nstant threshold, (5) RC
filter and constant threshold, (6) RC filter and iptive threshold., The effect
of the adaptive threshold is, as before, a reduction of the variance by
./VI -p'z . The ’Jdopfi.“ integrator sul f ly t predicted value
of the noise before the integration tak place. e three cas RC noise and
no filter, RC noise and standard integrator, e and adaptive integrator are
compored in Fig. V=2. The adaptive integration is especially advantageous for
large autocorrelation of the RC noise (KB sn . For example: if K| .5, the
signal to noise ratio for adaptive integrator is 12.4 db better than without
integrator and 11 db better than with standa tegrator; if KB= 2, the signal
to noise ratio for adaptive integrator is 8. n wit t integ
and 3.6 db better than with standard inte tor. At the |limit when B becomes
o< , the RC noise becomes white noise, the - rrelation becomes an impulse

and nothing can be gained by an adaptive integrator. Instead of an integrator,

an RC filter can be used with either a constant threshold or an adaptive threshold.

For example, if KB= 2, the optimum RC filter is defined by Ky = 1.4 for

constant threshold and by Ky = 0.8 for adaptive threshold. The increase in signal

74 " 7~

to noise ratio in decibels for KB = 2 are: filter and constant threshold

2.88 db (Appendix E), (2) for RC filter and adaptive threshold 5.6 db (Appendix E),

(3) for standard integrator and constant threshold 4, 9db (Fig. V-2), (4) for
adaptive integrator and constant threshold 8.4 db (Fig. V-2). The reduction of

the average probability of error by use of an adaptive threshold without filtering

is shown by Fig. 111=3; the reduction of the average probability of error by use of
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a standard or an adaptive integrator and constant threshold is shown by Fig. V-4;
the reduction of the average probability of error by use of the optimum RC filter
and constant or adaptive threshold is shown by Fig. E-3. The six systems inves-

tigated are listed in order of decreasing average probability of error: (a) n

filter and constant threshold, (b) RC filter and constant threshold, no filter
and adaptive threshold, (d) standard integrator and stant threshold, (e) RC
filter and adaptive threshold (f) adaptive integrator and constant threshold. The
advantage of an adaptive integrator increas th the signal to noise ratio; for
example, if KB = 2, the average probabilit f error decreases by 32 db for

\'/, 20i = 2and by 90db for V 2r'I 3.5.

In Chapter VI, the use of an integrat n a nonlinear system is investi-
gated. The signal to noise ratio is considerably increased by an adaptive
integrator; the effect on the average probability of error is not straightforward
since the probability distribution is not normal

Chapters VIl and VII| are experimental check of Chapter IV. Precise
timing is obtained by using a dekatron counter and the errors are detected by

comparing the true signal to the detected

1X-3 Future Work

Research efforts to date were mainly concerned with the minimization of
the average probability of error in telemetry using adaptive network and linear
circuits. The future work will be oriented towards (1) application of adaptive
detection on radar, and (2) use of non-linear networks in telemetry and radar.

In telemetry, the unknown signal is located in a known interval of time

so that sampling can be used to determine the noise before detection and the
pling

threshold varied accordingly. This technique is not applicable in radar detection

because the signal can appear everywhere and any sample would be a mixture of

signal and noise. In order to transform the problem of telemetry in a problem of
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APPENDIX A

AVERAGING THE CONDITIONAL PROBABILITY OF ERROR IN THE THRESHOLD

DETECTION OF PULSES

A train of random rectangular pulses mixed with normal noise is filtered
through a network F. The output, s(t), of the filter at time t =T + KT

(S(t =T + KT) S]) is detected with a threshold detector of threshold level D.

|f the time constant of the filter F is large, the pulses overlap. Thus, the
amplitude of 5 depends upon whether the previous signal contained a pulse

or not; in other words, 5 depends upon s(KT . More generally, the
amplitude of the unknown signal, 514 is often related to the amplitude of a
known previous signal, s]',- therefore, the average probability of error in the
threshold detection is a function of s,* and it is an average conditional proba-

bility of error denoted by E(s]*) and

E(s, s.*) e 1 I(g(s,*) ) where
|

g(s]*) is a function of s.*. The average probability of error in the detection of

1
is obtained by averaging E(s,

* *

1

) with respect to s *

s, for any previous s |

1

E(s]) = ") C06.*) ds,

where f(s]") is the probability density of ;% :Qsll is a double integral,
fortunately when g(s]") is linear, the double integral can be condensed in a

simple integral using the following formula:
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which is proved next.
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Reversing the order of integration of J2 yields:
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The inside integral is evaluated immediately after the change of variable:

/o 4
/2 2
-1/2 | b +1 v by \\ !
(L .4
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- /2 2 . &7 iy
J2 has been reduced to a single integral:
2
.
& 1 2(b° + 1)
e dy
s \/ 2" \/b + ]
Letting t =y / _,bi R then
a 3 f2
"\,/b 4 ] 7
J e dt
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Finally,

which was to be proved.




APPENDIX B

COMPUTATION OF THE AVERAGE PROBABILITY OF ERROR OF DETE(lTIOL\J

B -1 Computer Program

The average probability of error in a threshold detection is a linear combi -

-

f int | ftthet e ]
of integrals of ti.e typ |>g' N

’ K r Y . For t,:\nmp]: ’ the average

probability of error for constant threshold EC is given in paragraph | V-8 for

a two step memory:

/9 -Ky
£ aiae Tl 28 ey l PPN /8 (1-e ) oL g -7Y] |
) = A Tl — € e
C “re R vl B N. — C -1
‘: {o= 0,1 (= 1) : 10 K‘/ ¥
5,
io T F :
g N r Y o K is written as a product of two tunctions
|
io
S -
10 10
. ’ ’ K h ’ ¢ F v.ly)
9% N B NI iV
io io
S / > =— . -Ky
where h( —= K / - 0 B
RS A ; N. Ky
io io
- -2
and W.(y) 1+ 20(y e Y 43 e )')
i o -1
where ! assumes the values 1 and -1, while v and . assume the values Oand 1.
o -
There are 8 possible values for W,(y), one for each combination of t, and .
i o -
It is necessary to obtain EC for a large number of combinations of S, N,_»
10 10
y, K, because the optimum combination of y and K for a given S, N. is
io io

desired. A Univac 1107 computer is used for all numerical computations.

Given valves for S, /N. ,u, K, !, v and . , a numerical value is
10 10 o) - |

obtained for g.(S,o N.o v 5
| | |




- -

9. (S, N. ,y, K) | is then computed as explained in the next
| 10 10 .
section. For a given combinationof S, /N. ,y and K, there are eight
io io
values for | | g. (S. N YN and E_. is the average for those eight
i io io s
values.
Tables for significant values of S, N. , K and y are read in the
10 10
computer. For given S, N, ,y,and K ,6 the computer varies [, and
io io o
, successively; the value obtained for E. is typed together with the cor-
- N
responding S, N. , K, and y. Then the computer varies y , K and S, N.
10 10 i 10 10
successively, resulting in a large number of EC for each S. N. , the smaller
?

of which corresponds to the best choice for y and ¥

It is necessary to compute many values of {C in the neighborhood of the
minimum of EC , in order to locate the minimum accurately. Since the minimum
of EC occurs in a small range of u =Ky, K is chosen first and then y is varied
: - . 1.1+K 1.6
in the range .19 Wis iy o .85 y where y —————

g 0 0 0 K
B-2 Computation of [(x)
r ] r2 2
The integral |(x) —_ e t is expressed in the fornm
R

pee S ) e

| (x) 5 - J(x) where J(x) [ o : dt. The integral
S BT

i | 72
J(x) —_— e dt is evaluated by Simpson's technique, which is one of

. e Y P que,
0 2

the most widely used and simplest methods of numerical integration. This technique
is developed and described in detail in most standard calculus and numerical analysis
references. Therefore, we will only state the rule and explain how it was incor-
porated into our computer program.

Simpson's Rule: If f is continuous function in the interval la , b], if n

is an even integer, and if r =_x , x, , , X _Jis the regular partition of

n o e n
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a, b linto n subintervals then

b 3
f(x) dx %—To f(xo) 3 4f(x]) ¢ 2f(x2)

4 f(x 2800, ) Favie el ) + 4 f(x ) + f(x
3) Lf{x-i) i 2!()(”_? n-| 2

For the purposes needed in this work, it is necessary to have the value

of the integral

&) ] _f ?
Ta— ¢ a
£
Q
over each interval la , b]such that b ~a = .005 and ( 1 =b = 5.0, Referring
to the formula stated in Simpson's rule, in our case n = 2 since our interval La, b

is quite small and this gives required accuracy. The f(x,)'s needed for evaluating

. : , | /2 b~-a
integral are obtained by evaluating f(x,) = —— ¢ for » a; X, —-— ;
| L J | L
X b. Therefore, our formula simplifies as f
Jlx) ,._—.-, ‘_.-_k‘ f(x ) 8 * "I- { ’1‘
o 2
/2 3°*n
.005 e
—_——— f(x ) 4 « f(x,) fH(x,)
o ‘ 2
2T %4
13 A0 i f(x ) 4 « f(x,) f(x,)
X i TiXx {
T ]2 O o) | '\2

where f(x.) and x. (i =0, 1, 2) are as defined above.
| |

The average probabilities of errors in the detection of pulses is very small
for a usable system. Therefore, the integrals 1(x) are desired for a very large

range of x , say from 0 < |x| < 6.25. For large value of x , |I(x) is very
small, for example: when x =5, I(x) = ,28665157 x 10 ~ and when x =6,

1(x) = .986588 x 10 9.




In order to obtain 1(x) with three significant digits, it would be necessary
to compute J(x) with twelve significant digits, which is impractical. Therefore,
I(x) is corrected by reading exact values, IT(x), into the computer from a table for
X =X, = i(.005) where (i = 1) is a multiple of one hundred for 1 <i <701 and (i-1)
is a multiple of 25 for 701 <i <1272, The incremental values of J(x) are computed
with eight digits. Since the greatest number of intervals between two read in values
is one hundred, the maximum loss in accuracy would not exceed three digits. This
leaves two extra digits to account for errors inherent in the Simpson formula.

Let J*(x) be the computed value of J(x) for the discrete value of

i(.005) where i assumes every integer value between 1 and 1272,

Then I(xi) IT(:-;;\ if {T(m;) exists; otherwise J‘(ui):‘md
I(x.) l(:-(i_,l)-J'-i). Finally, 1272 value

|

6.35 , then |(x)=

then |(x)

’

I(x|)=10) = {1(G) =10 4

| X

where i =Tr ( —pse -.00001;

The integral can be obtained as a function of

(sign x,) 1(|x,]) - (sign x].)“‘x]‘)

2 2

:
'
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APPENDIX C

2,
*t/2 4 IN POWER OF (u - u)

| x
EXPANSION OF o f( \ e
v gu

The average probability of error, E, in the threshold detection of pulses

mixed with normal noise is a linear combination of integrals:

where C.'s are constants, l{x) = J~ - d ind g.(u) is a function of u.
| |

For example, if the amplitude of the detected signal is a function of the two

previous random pulses, there are 8 combinations for Yy and y | and eight different

J

functions f.(u).
|

Given the f.(u) and the value for v, E can be computed;from the curve E
|

versus u, the minimum of E and the value of u which makes E minimum can be read

Since the minimum of E cannot be obtained directly by the calculus of variations,
n

it is very convenient to develop I(f.(u)) into a series of u, so that E

| .

i=]

is a polynomial in u. If the series converges rapidly for all the 1[f.(u)], the
|

minimum of the polynomial is easily obtained. An example for this technique follows.

The probability of error for a constant threshold A /2 and a two step memory

was obtained in paragraph |V-8:

E.= ]|3

C 10,1 ¥=0,1 t=1,] .

where all the variables have been defined,
Formula (C-2) can be developed as a power series, but to simplify the

algebra, one step memory is assumed:




(C=3)

] -e ') -
E = | /o 2 1+2ty e”
e 4 '|v N, Ry o
y =0,]1 I =-],] 10
O s
o i S s : : Ui
| e IS minimum for Ky 1.25. The minimum of [,, ccurs ot
L Nio Ky
Qa |(lrgt'l value of F\y because of the factor
/ 20 y e’
When K is small (for k , y is large vat the t W is close to one;
when K is large for Ky 1.25, y is small and W is not neglitible Therefore, the
minimum of [C occurs for a larger value of Ky. However, the value of Ky
which makes FC minin remains in the small range 1.2 y < 2, so that it becomes
pr(lcfig(ﬂ to develop |/ g.(u)] (and hence E..) in power of u about the point u = u,
i < 0
X m
¢ 1 &% .” \ - y
lig.(u) llg.(u )|+ 1 | (u) e -
| | ) m "11
L & e
It is necessary to obtain the first four derivative 11 g.(u) Let
i
glu) 1 _'/ "
Jiglu) [ Pa— © at,
/ 2m
o

then

I[glu)] = .5~- J[g(u)]

Hence, the derivatives of || g(u)] are the derivatives of J[ g(u)]

change of sign.

except for a
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product of three factor

( x(u) x(u
/ 9% o= -l -
where x(u) '~ 3 ’
/ N;
-y -
or 1 = 2 . The derivatives of g.(u) can be ¢
1
v.(u), and their derivatives x ; ' v of
v ' ’ J | . ) | € ’ )/ s W , X ’
] ] ! ]
g X ZW Z WX TW XZ
g x"'zw + xz"w + xzw" + 2x'z'w

Before writing the higher derivatives of g(u),

which means permutation of x, z, w and summation.

’

the length of the formulas.

11

Using the operator "Perm ' yields

we

onvenient to writ

2"'#/‘/

lefine an operator "Perm

¥ 2‘NIA‘¢'.

This notation divides by three
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g Perm [x'zw
g" = Perm [x"zw + 2x'z'w

g™ Perm [x™zw + 3(x"z'w + x"zw')] +6éx'z'w'

g™ = Perm [x™zw + 4(x"z'w + x"zw bx"z"w + 12x"z'w
Finally, x, z, w and their derivatives are expressed as functions of the
variable u and the parameters S. /N. and
| 10
el L . e ' ) . e ' e ol " '
- / N: AN ' / N1 y ’ ’
o
- .
-1/2 } 2
Z=Uv ' : ' o, 5 ' 5
£ L £ L U
2a. ¢ where o o Ty S
|
' 2(J| 27 K | . | i o
W, Vange @ ' ! - -
| K ) K
For any given value of 5 N ind K, the efficients of the power series
Yy 9 '

10 10

can be obtained. The procedure is as follows:

(1) Inx, z, w, and their derivatives, replace K and S. /N. by their
10 10 d

: ‘ .
assigned values and u by u .

Jes obtained for x, z, and w, and their derivatives

(2) The numerical va

are substituted in the formula giving g, g', g", g", g"'.
(3) The numerical values obtained for g, g', g", g™, g™ in step (2)
1T
are substituted in the formulas giving — | 1g.(u)].
,""‘\ |

Once the power series for the four different | [g.(u)] are obtained, the

power series for E . result immediately by formula (C-3). Since E_. is a polynomial
| O




of degree 4, the derivative of E . is a third degree polynomial. To minimize E,

C

all that is necessary is to find the roots of a third degree polynomial.

Figure I V-5 shows u ., (K) versus K (u = Ky) and Figure | V=6 shows

min
-log E T K .1) versus Q, obtained from the series approximation. These
10 "C min
curves are in good agreement with the curves of Figure |V-3 and Figure |V-4,

respectively, which result from a direct computation.
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APPENDIX D

ESPECIAL CIRCUITS USED H\LTHE EXPERIMENT

D'] P”Of ClOuLL Cilx,ui?

The circuit of the p?iuf clock, shown in Fig. DI, ynsists of a decade
counter tube (decatron EZ10B, Elesta Switzerland) and of its driving circuit.
The decatron is a cold cathode jas tube and i Irc moves fron e cathodt
to the next every time a negative pulse is applied to the guide. The driving
circuit transforms the periodi juare wave ming from the pilot generator
into p('ri()d?? pulses of more than 100 v amplitude at the stput of the trans-
former. The pilot clock operates correctly f Juencit p to 200 k

D-2 Preamplifier

The circuit of a preamplifier is shown in Fig. D=2. The preamplifier
is used in two different ways: (1) A ISy | pplied on | ind the
DA
PA
output, OP, is a rectangular pulse of width .1 T, and (2) Two contigous
noisy pulses are applied, one on | and one on | and the output, O

PA PB p’

is a rectangular pulse of width .2 T. The amplitude of the rectangular

pulse is determined by the Zener diode Z. The transistor Trl eliminates the

noise on top of the pulse, while the transistor Tr2 eliminates the noise between

pulses,

D-3 Sampler-Holder Circuit

The circuit of the sampler-holder is shown in Fig. D-3. It is exactly
the same as the schematic circuit of Fig. VII-5b. However, the sampler-
holder samples not OIQ but 0 127 which is the output of an emitter follower;

'
this makes the charge of the capacitor more instantaneous. |t would be quite

easy to include 0',

|2

in the feedback loop of the amplifier A2, but this in not

necessary.
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D-4 Summer Amplifier

The circuit of a summer amplifier is shown in Fig. D-4. It is a transisto-
rized dc amplifier and is analized best in terms of currents. A complete sym-
metry is necessary to avoid a drift with temperature variations; therefore, the
resistors are identical and the transistors more or less matched, at least

first stage. The gain of the transistor is inversely proportional to the input

impedance, R, (large with respect to the input impedance of the transistor),

and inversely proportional to the feedback resistance (Pot 3). For linearity

and stability, it is advantageous to have a very large open loop gain and to
reedback (¢ le pot tiometer,

adjust the closed loop gain by varying the
Pot 3). The transistor Tr5 works as a current source; it behaves as a very large
impedance and, thus, allows a high common mode rejection; that is, insensitivity
to an equal variation of v, and Uy The potentiometer, Pot 1, is used to
balance the amplifier; it is adjusted until C‘ 0, for v, =u,. The poten-

y .

| 4

tiometer Pot 2 is used to "zero" the outputs; i

1 <

160




¢ Summer Amplifier Circuit
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APPENDIX E

COMPARISON BETWEEN RC FILTER AND INTEGRATOR

E-1 White Normal Noise, RC Filter

It was shown in Chapter |V that the peak amplitude of the pulse after RC
P P ¢

S : oG -2y, - Ky, . 4
filteringis A =A(l1+y e’ +Yy ,e 7)) where A=V(]l -e ) is the peak
P o - |
amplitude of a single pulse and the corrective terms a int for the residual
voltage due to the previous pulses. When y is reasonably large A A. The
P
rms value of the noise is o /n/ 4RC for a constant threshold detection.

The Odopfivc threshold detection is equivalent to a constant threshold detection

where (1) the residual voltage due to the previou pulses is removed and (2) the
variance of the noise is reduced by a factor ~ where p* is the auto-
1 o <
ol

correlation coefficient between the noise at the time of sampling and at the time
of detection; the equivalent rms value of the noise is O, 4RC -

-0
The average probability of error in the detection of a signal of peak amplitude
ge p Y ¢ P P

A with a constant threshold D A /2 in presence of normal noise of variance
c

P
2

(g
- 2/2
E =1(X) ¥ LI (E-1)
W
A
p

where X - - [ and is denoted half peak signal to rms noise ratio.
The half peak signal to rms noise ratio determines completely the detection
in the presence of a normal noise. The subscript 1C is used for white noise, RC

filter and constant threshold; the subscript 1A is used for white noise, RC filter

and adaptive threshold:
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oo, 0. AL O] (E-3)

E-2 White Normal Noise, Integrator

It was shown in Chapter V that the amplitude of the pulse after ir tegration

is Vat time T + KT and that the mean square noise is given by formula (V-15).

In the case of white noise of power density 17/2 , the autocorrelation function is
a b-function (Fig. 11-3 ¢), R.(7) 2 . Substituting R.(7) 2 &(T1)

in formula (V=15) yields the mean square noise at the output of the integrator,

€ KT
2 ‘ 1 o
2 s | (KT = N/ 2 i (E-4)
y < G
K | 0

The integral of &(x) from =Kt to + KT is one by definition, but the

integral form 0 to KT is only one half. Therefore,

(E-5)

¢. KT

The half amplitude to noise ratio for white noise and integrator is

denoted by X2 ,

Q (E-6)
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E-3 Comparison Between RC Filter and Integrator for White Noise

The average probability of error for white noise and constant threshold,

EIC' is approximately
E X )
3 1C
where xlC is given by formula (E-1). The

formula (1V-58). The average probability of

by ECmin (Q) when K=.1 and y =12.5. T
shown in Fig. IV-1.

The average probability of error for white
EIA' is

{
E?A l Xl/\

where X, is given by formula (E-3). E,, is:
denoted by E (Q) when Ky =.1. The plot ¢

I1Amin
in Fig. 1V-1.

t IS minimum
2
plot - log [
noise and adaptive
inimi
-logE, . (Q
AA ]

> give

minimum an

ind denoted

threshold,

is shown

The average probability of error for white noise and integrator is

E2 I(X‘,_,)

where X, =/Q as given by formula (E-6).

2

The optimum value for X"C is obtained by substituting Ky =1.2

formula (E-2) and is denoted X

¥C opl”
JQ V2 (1=i;287)
X]Cof
P .25
and 3 Q) =~ 1(.902 VOO

Cmin

ol

O

(E-8)

(E-9)
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The realizable optimum value for X is obtained by substituting

1A

Ky = .3 in formula (E-2) and is denoted x]A opt’

/ ?(] -.7"‘0]) - o .F_'\Q“

1 £

and E ' 1(.996/Q ) (E-13)
1A min
The average probabilities of error using an integrator or an adaptive
threshold are theoretically equal. Indeed, it was shown in paragraph (1V-9)
that the theoretical optimum for Kos ' 18
|A
i et syt
6 ® { o /2(1 - S ) I
\ since |lim, /| em—— 3
F\)’—’O //
A T ~Ky
k‘u.‘;"i + € )

Practically, any error in the switching on and off of the integrator will

decrease X,. Finally, X, 22X = ,996 » (E-14)
L

2 1A
The optimum average probabilities of error for white noise as a
function of the fictitious signal-to-noise ratio Q are compared in Fig. E-1,
Curve (1) is for constant threshold and curve (2) is either for adaptive threshold

or integrator,

E-4 RC Noise, RC Filter, Constant Threshold

As in Chapter |l| the RC noise can be assumed to be white noise filtered

by a fictitious RC network, Qf Cf. The normal RC noise is defined by its auto-

>
4

)

correlation function Rx)=0. e where o, is the variance of the
| | |

noise. Let n/2 be the power density of the fictitious white noise. Using

O Wy e’ T 2
formulas IV-7 and IV-12 it follows: RfC{r B and o, Tﬁ; . The block

165
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diagram Fig. E-2 represents the detection of rectangular pulses mixed with
RC noise with constant or with adaptive threshold.
Using formula IV-3 twice, the power spectrum of the noise at the

output of the RC filter is obtained

n /2 1 )
G, = ———4 R — (E-15)
: 1.'2er7 1 + (2n f RC)
Therefore, the variance of the noise at the output of the RC filter
L e . E-16
3 ’-’,D ol
R
= < i 4l (2n C‘T_C:)" | (Zn f RC) )
n oo (RC)? ReCe) j
- S - NIERE a2 B AT |
47 ((RC) -(RfC{—»—?—u - Ll4+e (RC (j[( & e
Let u=wRC
2
@ (RC) : o ]
e ot e Mui Lo Ty W
(RC) l +u
+ @ ]
R i
C /—CD TT auv
U
(E-18)
RC | fon-] ul® =
-0

= 4+ n RC
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HCnCel nw (RC &) Rfcf)

o —
3 oy ‘RC)Z 4 <Rfo)2> F«RC.RfoB

While the white noise passes through two RC network, the rectangular

pulses passes only through one. Using y=T/RC , B=T/R.C. and
2 nB
0.”=n/4R.C,) = —= (E-20)
| 14 14 41
. £l re . L 1 "r»v .
the peak amplitude of the filtered pulse is as before V(1 -e ) (assuming
non overlapping pulses, y > 10), and
5
\33‘ — ‘—T~A;A——1-f —_ “‘W (E-21)
| B
4T (— + ) (14 —)
(‘/ 73'/ v
The half peak signal to rms noise ratio for RC noise, RC filter and
constant threshold is denoted by X, ,
, -K .
X v(l -e ) "y . A 7
Bl e Py 14
3 i
(E-22)
-Ky.
V(l-e) s
I+ KB / Ky

The average probability of error for RC noise, RC filter and constant

threshold is E3. For non-overlapping pulses (i.e. y > 10),

E 1(X,) (E-23)

3 3

A more general formula which takes into account the residual values of the

two previous pulses can be obtained as in Chapter |V

(1420 e 74y ™2y

(E-2

4)
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E., isa function of (1) the half peak signal to rms noise ratio at the input

3
of the filter (V QOI), (2) the product Ky = TQK%- , i.e. the choice of

the pulse width and the RC filter, (3) the product KP , i.e. the auto-

correlation function of the RC type noise, and (4) of y if RT—C is large

enough to produce overlap. Fig. E=3 shows =-log E., versus V/20, for
9 B 0 c G 3 :

KB=2 and Ky =1.4 .

E-5 RC Noise, RC Filter, Adaptive Threshold

The autocorrelation function is the Fourier ine transform of the

power density spectrum (Wiener's theorem). Using formula (E~13), the auto

correlation function at the output of the filter is

Rtt) = [ v - ot df (E-25)
- VS anR(Cf_)z)(l 27 f RC)”
2 R.G \2
n / @ |— (RC) ff
! “",-/ = o -";')“ CC WT C
4 (RO -®OZ) ™ L1 &2 RC) ;
—|T| R.C
. IR f -
- /R R.C o }
n [ RC)? e Irl/RC (R CY™ e .
5 = - — (E-26)
4 ((RC) -(R.C)") 2(RC) 2(R.C,)
f f = R ;
The normalized autocorrelation function is p(r),
R(r)
Pl = 1)
RCC_ITl' RC—RfCT,C—|T| ReC
RC - Rfo

(E-27)
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The autocorrelation coefficient, p*, between N and 5) is
obtained by replacing |t| by KT in pv)
-KT/R.C
ff
Rfo e
RC - Rfo

ec o-KT/RC _

Using y=T/RC and B=T RFCf" p* becomes

& | —

As explained in Chapter |V the adaptive threshold reduces the

variance of the noise by a factor : 2
geheip

The equivalent half peak signal to rms noise ratio after filtering

the RC noise by an RC filter and using an adaptive threshold is X ,

(E-28)

(E-29)

(E-30)

(E-31)




The average probability of error for RC noise, RC filter and

adaptive threshold is E, and

4
= (E-32)
E4 I(X4)
E, isa function of the same variablesas E,. E, <E, because
4 K| 4 J
"3

(x4 _—) X3 Therefore, the average probability of erron

/ ‘ ‘2

V1-p

is reduced when an adaptive threshold is used as seen in Fig. E-3, which

shows =-log E4 and -log E3 versus V/2 7
The increase of signal-to-noise ratio in decibels is equal to twice
the increase in half peak signal-to=rms noise ratio. In the case of RC noise
and RC filter the increase of signal-to-noise ratio is a function of Ky, Kf
and the type of threshold; let G3 and G.‘. be the increase in decibels for

constart or adaptive threshold, respectively; then,

Gy = 40logyy w77

X
4
GA' 40 |o910 V/ 20,
|

For example, if KB= 2, G3 is maximum for Ky a21.4 and equal to 2.88 db;
G4 is maximum for Ky=:.8 and equal to 5.6 db. Those results can be compared
to the increase in signal-to-noise ratio using an integrator which is shown in

Fig. V=2. The conclusions of the comparison between RC filter and integrator are

part of Chapter |X, (Paragraph |X-2).
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DETECTION AND INFORMATION PROCESSING WITH ADAPTIVE DECISION CIRCUITS

PART 1l
Chapter |

|. Introduction

A substantial amount of the work performed in this report depends upon the

ideas and theorem of decision theory. Decision theory treats in a general w«

the problem relating to the detection of signals in no T t the
structures of Signol and noise. The approach is based upon the fact that in testing
hypotheses of all decisions involving doubt and uncertaint T, osts and

risks are associated with them. These may be measured in any way appropriate to

the problem at hand. The cost could be a function both of the true hypothesis and

the hypothesis as the observer decides it to be. The conditional risk is the average

value of the cost over all possible decisions the observer can make giver

particular hypothesis. The average risk is the average of the conditional risk over
all possible hypothesis. Decision theory assumes that the observer wishes to decide
in the way which will minimize this conditional or average risk. On this assumption,

the decision theory shows us how to choose a decision rule for processing the
received data, This decision rule will yield decisions which minimize risk for the
particular physical situation and the cost involved. We have described the
essence of the decision theory. Now we can proceed with a more detailed study
of this theory,in particular, the application of this theory to the binary detection

problem.

2. The Decision Problem

In order to determine the decision problem, a loss function y‘i, Y) is assigned to
each combination of decision ¥ and signal s in accordance with some prior judgment
of the relative importance of the various correct and incorrect decisions. Each
decision rule may then be rated by adopting an evaluating function which takes into

consideration both the probabilities of correct and incorrect decisions and the losses



associated with them. We may now state the reception problem in the following
general terms:

Given the family of distribution functions F (v/S), the a priori signal
n

probability distribution o( S), the class of possible decisions ¥, and
function ?, the problem is to determine the best rule & ( v/v) for ng the data
to make decisions. The decision Y is not restricted to a finite number m of

alternatives

An infinite number may be used equally well. In fact, the extension to a continuum
of POSSible alternatives is a matter of reinterpretation. ed I ¢ >(Y/Vv)

which used to be a discrete probability distribution must in this case be interpreted

as a probability density function; i.e., &( Y/v) dr is the probability that v lies
between Y and Y+ dN, given v. To represent ) 1 de nrule, we
interpret &(Yv/v) as a Dirac § function. Usually, the family of distribution
functions is not given directly and must be found fror jiven noise distribution
W(N) and the mode of combining signal and

Now let us explain a little about the nota f eption situation. A
shown in Fig. 1, a decision Y is to be made about a signal S, based on data v,
in accordance with a decision rule & (y/v). Here, Y ¥ae Vo o Y )

| L n

S (5], 52 ....)m) v (\.'], v2, +sse V_)are ve tors. The subscript n the

components of S and v are ordered in time so that S 1 {1 v(t, ) et

with 0 t t t, t
ST w208 b Pl T

In Fig. 1 and Fig. 2, each of the quantities S
by a point in an abstract space of appropriate dimensionality, and the occurrence
of particular values is govemed in each instance by an appropriate probability

density function. Here o(S), W(N), and F (v/S) are the probability density

n
functions for signal, noise, and the data v respective when S is given. These
are multidimensional density functions which are discrete or depending




on the discrete or continuous nature of the spaces and of corresponding dimension-

ality.

3. Functions of Evaluation

J(S, Y) is a generalized loss function, adopted in advance ot any

optimization procedure which assigns a loss, or cost fo every comt ination of

system inpn.f and decision (system output) in @ way that ma may not »\ﬁwpr-"x(f n
the system's operation. Actual evaluation of system performan is made by adopting
an evaluation function f F) which takes into ¢ nt all possible modes of
system behavior and their relat ve frequencies of occurrer ind assigns an all
loss I’Ofing to each system or decision rule. One obviou hoice of E is the

mathematical expectation or average value of \'} ind it is on this reasonable
choice that the present theory is based.
The conditional loss rating [(S, o) of o e fined as the nditional

expectation of loss. That is, for given S,

L(5B5) =E . {FIS,

/d/ dy FS,7) F (v/S) 8(v/v) (1)
n
& L

where

\7(5,‘/‘) generalized loss function

F (v/S) conditional probability density function of the observed
n : A : c
quantity v given signal S
5(y/v) conditional probability density function of the decision Y
given v.

Equation (1) can be applied to discrete as well as continuous spaces A. For the

discrete space, the integral over A is to be interpreted as a sum and o(Y/v) as




a probability, rather than as a probability density.

However, when the signal distribution o(S) is known, we use the above
information to rate the system by averaging the loss over both the sample and
the signal distributions. The average loss rating [(0,8) of & is defined a

the (unconditional) expectation of loss when the signal distribution is o(S).

d (0, 8) E (F, 7))

v,S
/ds /dv/d) ?H;,;; o(S) F (v/S)&(Y/v) 2)
Q A

J is usually a function which assigns to each combination of signal and decision

a certain loss, or cost, which is independent of

F=C 57 (3)

However, a more general type of loss function is suggested by information theory.
Jr - log P (5/Y) (4)
By substituting (3) into (1) and (2), we have

Conditional risk Y(S, 8)

r (S, 8) /dv Fn (v/S) /d‘; C(S,y) 8(v/v) (5)
g

Average risk R( o, §)

R(o,8) = E (Y (5,8)} = /; (S, 8) o (S) dS (6)
Q
or
R(O, 5) = ‘/G(S) dS dv Fn (V/S)ﬁ Y & wS,‘;) 5 (y/v) “‘7\)
Q ' i A




By substituting (4) into (1) and (2), we get,

Conditional information loss h (S, §)

h (S,8) -/dv Fn(v S) /d7 log P (S 7)]6‘ Y/Vv) (8)

r

Average information loss H(o, )

H(o ,5) E Lh(5,8)]

j‘mb,&) a(S) dS

Q

- fo(S) dS/dv Fn (v 5‘)/'1 Y Llog P (S/7)18(y/v) (9)
/" .

Q

When S is a function of a set of random parameters @ , frequently it is the
parameters © about which decisions are to be made rather than about S itself.
Similar to Eqs. (5) and (6), the conditional and average risks for this situation may

be expressed as:

r (e, S) /dv Fn [v/S (8)] /d{ c(e,y)s (v/v) (10)

7

and

R(o,é)e = fY(e,é) o (B8) dp

Qe
/a(@)d@/dv Fn.v S((A\)/i';C!'C,/‘):;(; v)
Q8 il A

(11)
Here §6,8) and R 40,8)8 are not necessarily the same as NS, §), R( ¢,8)
above, nor is the form of Yy either. Notice that the cost function C( 8, Y) is

usually a different function of 8 from C [ S(8), v | also.
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4. Bayes Systems and Minimax Systems

Average and conditional loss ratings may be assigned to any system once the

evaluation and cost functions have been selected. We now describe two kinds of
optimum decision systems. We consider one system is better than another if it erage

loss rating is smaller for the same application (and criterion) and that the best

optimum system is the one with the smallest average loss rating. We call this optimum

system a Bayes system. A Bayes system obeys a Bayes decision le §*, where
a decision rule whose average loss rating £ is smallest for a given a priori distri-
bution ¢o. For the risk and information criteria of Eas. ind (9),

R* min R (o,¢ R(o,85*) Bayes Risk 12)
and ;

H min H(o,& H( o, Baye fior (19)

R* minimizes the average risk while H* minimizes the equivocation. For a
given \9; , Bayes decision rules form a Bayes class, each member of which corresponds

to a different a priori distribution o(S).

When the a priori signal probabilities are now known or are only incompletely
given, a possible criterion for optimizati i Is provided the Minin
decision rule C“M which is a Bayes rule as iat it nditional risk J(S,8).
Roughly speaking, the Minimax rule is the decision rule which reduces the maximum
risk as far as possible. The Minimax decision rule &*, . is the rule for which the
maximum conditional loss rating £ (S, 6)mo , as the signal S ranges over all

»

possible values, is not greater than the maximum conditional loss rating of any other

decision rule §.

In terms of conditional risk r, we have

Max r (S, 6*,) Max Min r(S, §) Max r(S, 8) (14)
M - .
S S & >
In terms of conditional information loss h, we may write
Max h (S, 6*),) Max Min h (S, 8) Max h(S, & (15)

M o
S S 5 S




We may also express the Minimax decision process in terms of the resulting

average risk.

Max Min R (0,5) (16)

o 5
Thus the Minimax average risk is the largest f all the Bayes risks, nsidered over
the class of a priori signal distribution { 0 (S) } . Geometrically, the Minimax
situation of o s M R(as", 8) s TP , 84 present
by a saddle point of the average-risk surface over the &) plane as shown in Fig. 3.
5. The Average Risk for Binary Detection System
In binary detection, we test he hypothesis H (noise alone) against the
alternative H, (signal and noise). Therefore, there are only two point Y (y.le ,-l)
| x5 )

in decision space A. Let & (v _/v)ond 8(Y,/v) be the probabilities that y. and

o n :
y are decided given v. Since definite terminal decisions are p tulated, some

o
decision is always made and therefore
S (y /v) + &(Y,/v) | (17)

o ]

Denoting by S the input signal that may occur during the observation interval,

we may express the two hypotheses conciselyasH : S & Q and H, : 5 & S

where Q and Q] are the appropriate non-overlapping hypothesis classes. It is
X g

now convenient to describe the occurrence of signals within the non-overlapping

classes Qo' Q] by density functions &/ (S), &/,(S), normalized over the corresponding
o ‘

Q

spaces, e.g.
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jw] (5)dS =1 (19)
QY

Let q and P (= 1 - q) are the a priori probabilities that signal from Q and Q
respectively will occur. The a priori probability distribution 0o(S) over the tota

signal space Q Q + Q. becomes

o(S) q & (S) + ;;((,_) S (20)

O |
If there is only a single signal in class Q. , then | 2(
(S) q S=-0 [ - (21)
In this simple alternative situation and the more general case, we have

/ y (S) dS 1 (22)

For the one sided alternative case, we can assign a set of costs C (S, ¥) J
to each possible combination of signal input

Let

C] g and C] o are the costs associated with correct decision (success)
~ - P

while C and C, are associated with the possible incorrect decisions (failure).
a o -

Physically, we require




We can also postulate that

& > Sodt ¢
le G =
C 0
=8 &
The best we can expect here is that success may cost noth
(C @ ] 0). Substituting Egq. (23) into Eq.
|l ~a 1 -8B -
the integration over decision space A is replaced by an appropri

Therefore, the average risk of Eq. (11) becomes

R(o, ) /dv .?\(,’)‘.’!1qC] f:' (v/0) ~;*:;\/‘

- Q n n
7
/_ ' (v/0)
61/] /)‘pC]_,p\an 5)) q “fhu 0
where
v/S) o (S)F 5) dS
P {F (v/5)) /;s J ‘
Q
]
P ‘/[(//1 (S) F ) dS
n
S
qF (v/0) / a(S) Fn (v/S) dS
Q
0
: /CU (S) F (v/S) ds
o n
S
When S = S (R) these become
P \/Fn (v Sl> P /Q//W‘(f-l F v/S (P
e

Q0

(25)
» that
ummation.
,)‘>
(26)
(27)
(28)
(29)




q Fn (v/0) q /((JO(P) Fn (v/S(8)] dB (30)
8

There are two possible classes of error:

Type |: Noise —2 signal + noise

Type 1l: signal + noise —» noise

The class conditional probabilities of these two type f error are:

a /F (v/0) Eml,I v) dv

n
r
/
) / 5() v) dy
i /\FH (v S)>S 3 ’;; d
r

Substituting (31) into (26) and using relation (17), we get
R qC]_G‘pC]_S~qctC(l—C‘_(x)-;>r‘ C;*-C]—.‘)

G) + pP l'C;, - g) (32)

where

Similarly, the conditional risk corresponds to Eq. (5) and becomes

(1-a’) C ¢ ja’' C (S = 0)
| ~a a
I (S) (34)
-8 ()] C B’(S)Cp (S# 0) |

where




6. Optimum Detection

The optimum decision rule &* (Bayes decision rule) can now be found. From

Egs. (26) and (17) we get

) qC oy & y il cS Y o) I p(Ca - C,

o

R(o,

&,an S)§ - q CG il : F (v/0) dv (37)

(¥ )

The problem is to choose &(y /v)and &(Y,/v) in such a way as to minimize the
O
average risk. For each vé&€ /7 , both §&'s must be positive and (equal to or) les:

than 1. The optimum choice of §'s is as follc

" / d -
_ when p(Cp-C, o KF. v s\> > q(C,-C, _ )F (v/0)
>
_ choose 5* (v,/v) ]
|
(38)
E/ { ]\ V) C
thn
pcElcand b (F' $)> < q(C_-C. ) F (v/0)
P - P n ¢ a | -a n
choose &* (;] v) 0
(39)
P &5* (7 V) ]
o
_ It is now convenient to introduce the generalized likelihood ratio.
y :
_A P\Fn (v S)> S :
0) (40)
q Fn (v/0)

In the binary case, Eqs. (38) and (39) may be stated more compactly as:
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Decide 7Y

| when A > K

Decide ”o when ) < K

where
Co S | -a
K — ' > 0 (41
Cs - € _p

K is called the threshold and depends only on the preassigned costs. Thus,
the Bayes rule essentially amounts to a division of observation space [~ into two

regions separated by the v satisfying the equation.

ZAw) =K (42)

In general, the optimum detector is a computer which processes the received
data v in a nonlinear fashion. Its precise form depends on the statistics of the
background noise and signal structure, as well as on the a priori probabilities.

/. Detection for a priori distributed sigi

From Egs. (40), (41), and (42), we have the decision equation.

V4 vl e L (43)
q F1 (v/0) Ca- i
I 1] = )

P is the a priori distribution of received signal S in a signal vector space €U
v is the received data vector in vector space )’ , and FP is the conditional
probability distribution of v given S. v is taken to be the sum of signal S and
noise N. A signal is said to be present whenever /1 exceeds some preset

threshold level K. The value of K is dependent upon the various costs involved.

One reasonable assumption for the costs are:

s CB
C]
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With the above condition, K equals unity. An observer who makes a decision in
this way is called an ideal observal.

It is convenient to represent the received signal S(t) by an expansion of the form

oo
S(t) L Sk "'k (t) (44)
k=1
The ¢, are orthonormal on an interval which completely spans the interval

k

(0,T) in which all the S(t) of interest are assumed to exist. Here we are interested in

Ises of a constant shape

detecting single pulses received from a source which emits pulse f a const

but not necessarily with constant repetition rate, The received pulses need not

the same shape as the transmitted pulses. The set of tion of the
integral equation.
T 2
R,, (t, u) ¢ (u) du o 5, () (45
/ N’ 2 k 9 )
o

where

The Kernel RN (t,u) is the autocorrelation function of the noise N(t). For example,
b ] ]

for band limited white noise, with frequency interval (- = v 5=
o )

) the auto-
correlation function of the noise is

o s )
R (?, v) N sm2ﬁfo( v) (46)

N QWf(f-u)
o)

where

T is the separation of the equally spaced pulses.
o




Thus the integral equation (45) becomes

teo
/RN (t,u) YTL.(U) du = Okz (,‘)k (t) (47)
-0

Equation (47) is satisfied by the set of functions defined by

sin2n f (t-k~ )
O O

L (f) — |18\
2v f (t =kt )
o o
where k ) EERC S Fh - e 4P e O S
The D (t) are orthogonal over the interval ( - ©o , ©@), The characteristic
values of the integral equation are equal and given by
2 N
o N
k o 21
o
The noise N(t) can then be written as
= sin 2w f )
: o .
N(t) ! n, _— - (49)
k
k = ~00 2w f (t-k~
o
and &
N(krt) n (50)
o k

The values of N(t) at the sampling instants kv are the coefficients of the
o

cardinal functions in the orthogonal expansion of N(t), (- 22< t oo,

Now back to the discussion of the likelihood ratio /1 . Assume \/F (v S> 5
n

and F (v/0) are two N-variate normal distributions with the same covariance matrices
n

but different means. The space [" of observation v is N-dimensional vector space.

Thus we put X - \2
2 Bee i !

" P 2

o8 ] O,/

\/F (v S)) = ] e
- ¥ (51)
(ew) T
0y 0y ees Oy
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]
Fn (v/0) N
-

(2w) 0102'°'0N

Substitute Eqs. (51) and (52) into Equation (40), and we get

/S
P F (v )

g ! -
an (v/0)
2 2
E & . :l (‘.k—skv ) - )
A 2 y : Wi - T Wy
v‘( K
o R 51\2 N e
—q‘ E)\'p. - :?' ‘ Z ‘ '—2' + )l L ‘ /L “7 } ) ))
" | g, | o
K -

is more convenient mathematically and physically to expre he likelihood ratio

It is 2 C t matl tically and phy Iy the likel t

in terms of log/] . The detection threshold for log /A is @ monotonically increasing
function of /1

From Eq. (53), when the noise is Graussian, the log of the likelihood ratio is

N 512 N S
log A log ity l% L L v LA
T Biincnont Thaluskdi; ioe o f
N SL\
log /] 2 V, —— (54)
o k 2
k=1 o,
where
N SL(2
log/lo logu - 7' L ——, (55)
k=1 o
k
and
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8. The adoptive circuit arrangement

A proposed adoptive circuit arrangement is shown in Fig. 4. We know that

the received signal can be expanded as:

aa
S(t) I S (1) (56)
k "k
k=1
Therefore, the radative energy ratio of signal to noise can be optimized by
passing the observed quantity v(t) through a time invariant linear filter systems.
The linear filters have the impulses respenses ¢, (- t). In any real system there
P P ) ,
are only finite number of K of these orthog nal filters. The tput of each filter

passes through an operational amplifier with a fixed gain of 'k . Then

summing circuit is employed to add all the components at the output of all the

filter-amplifier units. Another term log _/1 should be added into the sum of
O

this point. From equation (55) we know that

log ‘/1 F log v - 5 L .

where U F
B

: Y oy . :
since P, q, o, , and Sk are known quantities. Therefore, log ./10 is just @

(57)

constant term. Thus the output of the summing circuit represents the log likelihood

ratio. This then goes to an amplitude comparator which is controlled by the

threshold bias K. The bias K is determined by the cost: CC s s , and

pu
| . i - Q

As mentioned before, one reasonable decision rule is let K ]

1 -p°

Therefore, the comparator produces a detected pulse when the output of the

summing circuit exceeds that of the threshold bias K. Likewise, there will be no

detected pulse when the output of the summing circuit is below the level of the

threshold bias.,
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PART I
CHAPTER |1

A LEARNING DETECTION PROCEDUR

. Introduction

The procedures for detecting the presence or absence of a signal in noise

have been studied extensively in the past L1 - 3], These dectors choose a
threshold level and count the number of obse tions that ¢ eed this level

On the basis of this number, the detector decides whether not there is a signal
present. In these early investigations of coincidence procedures, the threshold

was chosen, on the basis of intuition, to be the mean of the input waveform
under no signal conditions. This choice of threshold, in general, leads to a
suboptimum procedure. In a later study |4 ], an analytical and more sophis-

ticated approach to the subject was taken, and optimum coincidence procedures

$

were obtained for weak signals in noise. The optimum coincidence detection

procedurcs choose the threshold level in such a manner that it requires the
minimum inpuf sig;rW'zl—r - se ratio to insure a specitied information rate and
error probobilit‘/. However, it must be emphasized that all of these papers

studies a train of small pulses in order to determine whether there is a signal
present or not. Moreover, the threshold is optimum only for the particular

detection problem for which it was obtained.

In this investigation, instead of a train of pulses, only one large pulse is

studied in order to determine whether a signal is present or not. The particular

detection scheme we are going to study is shown in Fig. 1. The threshold of
the comparator | can be optimalized due to the learning ability of the scheme.
This scheme learns not only the characteristic of the noise, but also the signal
to noise ratio. Therefore, there is a possibility that this scheme can be applied

to a communication system where the signal is time-varying. It is for sure that

this scheme can be applied to a quasi-stationary communication system.
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Il. The Detection Scheme

As shown in Fig. 1, the input of the detector consists of signal plus random

noise. The gate opens only at the interval where the signal pulse would appear.

Therefore, the function of the gate is to eliminate part of the noise which is not
contaminated in the signal. Now, we only consider the signal plus noise combi-

nation as input to the threshold comparator | during the interval where the signal

pulse would appear. We have,

) (t) t (1)
where i (t input time fur
?‘ KNOWnN nmanc €
unknown signal (may be time vau
The output of the thre old comparator | isa iated with the input i(t)
by the following relation

Olﬁ) is then sent into the ideal integrating its. The output of the
ideal integrator is:

O2rr) | O'.”" dt (3)

Since the duration of the pulse, which is being investigated is T. Therefore,

the integrator output at the end of the pulse interva

T

-

Ozr"T‘) O,](r) dt (4)
O

O,(T) is then sent into the comparator [I. The output Oft) of the threshold

comparator || obeys the following relation:




! when O,(T) K
“

O when OL(T) < K

L

The value of K will be determined later,

111. Derivations and Calculation:

Let us assume that the signal is quasi-stat That the signal
4 R '
Omplifudc does not change in a reasonable t f But, within a long
period of time, the constant signal amplitud ( time to time,
due to the variation of tran: n distance U t ¢ ns Due t
the same reasons, the random noise characteristics may inge from time to
time, too. Let us investigate and see what happens v eries of pulses or non-
vlses is sent at the transmitting end. We want to find the variance of the output
P
OQ(T) of the integrator.
The variance of O,(T) is defined by the fol ng equatior

From Eq. 4, we know that O,(T) is determined by:

CIatt) : t) dt (7)

of O.(1) at the tput of the threshold comparator | is:

Therefore, the mean value of O,(T) is,




S n2
E e s -
\'\”Oth)'\ AT —_—L— ‘ e 2 dn
v 21 E
Aret 3
I 2
Hence, the square of the mean value
o \7?‘2,1 L
\\; 2 T‘ A !
The mean square value of O(T) is :
:
~ 3 e % ! \
Qi(T)./ O, (t,) dt Ot ) dtS
. Bl ¥ By 2
A\ \ :
R |
<O, () O,(t,) )
4 \ | ! & 4
rl
: b (t, =t
J O] Z
T
2 (T - ‘ (1) ¢
)O]

~ S g (‘ |
02”) \02 (T)/, \\leTi
T .
2[ C-Den~ S i e
. B B L /
) n
6 (1) can be determined from the bivariate normal density distribution

O

function W( X, X ). We have,
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(9)

(10)

(12)




S S
B S 2
crol( ) % 5 A" W(X , X )dxdx (13)
h N
i pics (x2 X 2-2c(mxx )
g S
WX , X)) : Sb A0 e T =G (14)
21 0% /1 =C(7)
Where C(7) is the correlation coefficient. Eq. 13 can be expanded
into a series in powers of C(7), 5
2 \ — ]] —?i— .
) A e ———————————————— : 5
50 (1) ) C( (15)
| o |
where e
v/ S 1 L% 7
b 4 e = ¢ f i _V
& s { 5 (16)
2
H (X) are Hermite polynomials. We ha
H (X) :
H]O\’) (X)
H,(X) - (X)* -1
. 3
H3u<) (X)" =3(X)
4 2 \
H4(X) (X) =-6(X)" + 3
’ 5 3 R
Hj(;<) (X)" =10(X)" + 15(X)
, 4 2
HérX) (><)é -15(X) + 45(X)" =15
HoX) = (X)) =21X)° + 105(X)° 105(X)
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B »
N; P
HB(X) (X)8 -28()()6 + 210(X) —420()()2 + 105
9 7 5 3 i
- HoX) = (X)” -36(X)" + 378(X)° - 1260(X)" + 945(X)
. Now, Eq. 12 can be written as:
i : .
By , [ : 2275
. OZ(T) '2J (T-7) Am( )dt -A T P %
o -y
i1 . " _2 (17)
T i,
- i TR b b 9/ 2Tew d-T2P2{2
o o !
. for v 0
S
T e C D
- 2| @-7 | ¢
Iy ,
] S . .
i B g R
o /2
. .
2 - )P2 —S— d
B | 2
o)
2 2r'S
- LA S 5
. Substituting Eq. 18 into Eq. 17, we get:
2
[ r Vgt /
- T " (V=) == v |
2 2 31 ; 2 A
OZ(T) v i Ry : e C(7) d (19)
o J §
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The correlation coefficient C(T) of the random noise is usually in the

following form:
C(7) e (20)

where B can be determined from the received data of the random noise.

Substituting Eq. 20 into Eq. 19, we get,
1 ) S -2 Y )
| | sv=1 =53 | - :
g %y LBl NeD o | (T-1)e dt (21)
\ 1 v | .

Since,

AL TN i L
Bv | o ‘o
(22)
—_Ili* (1 - 1) o PVIT _St_P-f | |~,
O
1 -BuT 2
T? B T e -]
B.
Substituting Eq. 22 into Eq. 21, we get,
. § - v 3 e
2 2A2 V-1 (75 . BuT BT _, >

-
-y
|
o®
L
™
Q
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A reasonable threshold level for the comparable |1 is %l . This isalso
the appropriate value of K in Eq. 5. Therefore, the equivalent output signal

to noise ratio is:

AT
S i —_—
N/ :
Oz'T)
(24)

B 131503 L B0 "T~_;_f__._‘, SN [

; v TR [V
3./ bl =1 -‘Lh—'j? e

A computer program has been compiled to compute Eq. 24 using the first
P prog P P { g

N

ten terms (i.e. from v=1 to v = 10) as an approximation of N The
g
accuracy of the approximating calculation is within 1%. Fig. 2 is a plot of a
family of curves of signal to noise ratio of output B versus signal to noise
ratio of input e using PT as a parameter. Figure 3 is a family of curves
which plots 1y /vmsus BT using - 1S p ter
N . ! \20 - :
o

1V. Conclusion

For a given communication system, the pulse interval T is already a
fixed value designed to meet the requirement of the system. P isa quantity
which we can readily measure at the receiving end. Therefore, the only unknown
variable of Eq. 24 is the input signal to noise ratio. The equivalent output

signal to noise ratio can be expressed as:
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The exact value of © can be measured at the integrator output

O,(T)
: g 2 . .

02(T). Therefore, N can be easily calculated. Thus, the input signal

7

o
to noise can be detérmined. This means that the detection scheme is learning
all the time the input signal to noise ratio. In other words, there must be an
optimum setting of the threshold level of comparator |. The optimum setting
is determined by the learning scheme such that it gives a minimum variance

at the output of the integrator. |f the learning process isvery fast,
0,,(T)

then this scheme can be applied to detect the time-varying signal. Conservatively

speaking, the scheme can certainly apply to quasi-stationary signal detection.
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