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FOREWORD

The research reported herein was sponsored by the U. S. Army Missile
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conducted as a continuation of Contract No. DA-01-009-AMC-166(Z), entitled
"Basic Research in the Field of Inviscid High Temperature Hypersonic Flow of Air
Past Pointed Bodies of Revolution." The Technical Monitor of this contract was
Dr. Bernard J. Steverding.

The author is indebted to Dr. Rudolf Hermann, Director of the University
of Alabama Research Institute, for directing the work on this contract, and for
rendering valuable criticism during the preparation of this report. The efforts of
Mr. K. V. Ramakrishna in checking the equations are gratefully acknowledged.

Last but not least, the author feels obliged to Mr. Robert A. McGraw for
programming the equations for equilibrium flow, and to Mr. Ronald J. Fischer for

programming the problem of nonequilibrium flow.




ABSTRACT

This report discusses two methods for the calculation of hypersonic flow of
dissociating air past a circular cone. One objective of the investigation was to
apply a Taylor-Maccoll type analysis in order to calculate chemical equilibrium
flow past a circular cone and to compare the results with those previously obtained
from Dorodnitsyn's integral method. The other objective was to investigate improve-
ments to the one=strip integral method by developing and using a two=strip analysis
for the calculation of chemical nonequilibrium cone flow. It was found that, for
equilibrium flow, the results from the Taylor-Maccoll type analysis are in excellent
agreement with those from the one-strip integral method. For nonequilibrium flow,
it is shown that with increasing distance away from the tip the two-strip solution is
closer to the equil ibrium flow solution than the standard one=strip solution is. It is
interesting to notice that, except for the distribution of the shock wave angle and
the cone surface velocity, at a sufficient distance from the tip, the one-strip semi-
exact solution approaches the equilibrium flow solution still closer than the two-strip

solution does.
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NOMENCLATURE

Expression, defined by eq. (4.63)

Expressions, defined in Appendix C

Expression, defined by eq. (D-58)

Coefficients, defined in Appendix C

Expression, defined by eq. (4.64)

Expressions, defined in Appendix D

Constant, defined by eq. (2.6)

Coefficients, defined in Appendix D

Number of oxygen atoms per unit mass of gas
Expressions, defined in Appendix B and C
Characteristic temperature of oxygen dissociation [°K]
Unit vectors

Expressions, defined by eq. (3.16) through (3.18)
Source function, defined by eq. (2.9)

Enthalpy [J/kg |

Total enthalpy [J/kg]

Concentration equil ibrium constant [parficles/m3 ]
Pressure equilibrium constant [N/m2 ]
Dissociation rate constant [m3/porfic|e . sec |
Expression, defined on p. 19

Characteristic length [m ] , defined on p. 28
Free stream Mach number

Number density of ith species

Pressure [N/m2]

Velocity vector

Resultant velocity [m/sec ]

Gas constant of undissociated gas [J/kg °K]

Radial coordinate (for equilibrium flow see Fig. 1, for nonequilibrium

flow see Fig. 9)
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Expression, defined on p. 19

)

Temperature [ VK

Velocity components for equilibrium flow in r, 8,0 direction,
respectively

Velocity components for nonequilibrium flow in x, y direction,

respectively

Coordinates, see Fig. 9

Compressibil ity factor

Degree of oxygen dissociation

Angle, defined in Fig. 9

Dimensionless shock coordinate, defined by eq. (4.26)
Dimensionless x, y coordinate, respectively

Mass density [ kg i

Angular coordinate or cone semi-vertex angle
Characteristic vibrational temperature of oxygen, |[“K
Characteristic vibrational temperature of nitrogen, [ 9K
Shock wave angle

Circumferential coordinate

Subscripts

Free stream

Body surface

Strip interface
Behind shock wave
Oxygen
Nitrogen




SECTION |

INTRODUCTION

The problem considered in the present paper is that of inviscid high enthalpy,
chemically reacting flow of air past a circular cone at hypersonic velocities. Also
investigated is the effect of free stream oxygen dissociation on the various flow field
parameters. This work should be considered as a continuation and as an extension of
previous work (Ref. 1) which treated chemically frozen, equilibrium, and nonequilib-
rium conical flows, using Dorodnitsyn's method of integral relations in its one=-strip
version, also called the first approximation.

The present report deals with two cases which may be considered rather indepen-

dent of each other. As done previously, the investigation is based on o simplified

air model, in which air is approximated by a three-component gas ,(‘,.?, O, N?v,

valid in the range of oxygen dissociation.

First, inviscid conical flow of air in chemical and vibrational equilibrium is
calculated by using a Taylor-Maccoll type analysis. The purpose of these calcu-
lations is to compare the accuracy of the previously used integral method with that
of a well established, so to speak, classical method. In section Il the equations
for supersonic conical flows as first derived by Taylor and Maccoll (Ref. 2) are com-
bined with the necessary thermodynamic equations. While Taylor and Maccoll
treated their perfect gas calculations as o direct problem, which means that the flow
field is calculated for a specified cone angle, an inverse approach was used in the
present investigation. In this way the shock wave angle is specified, and the
associated cone vertex angle is determined from the calculation. This procedure
avoids any iterative schemes which would be necessary in the direct approach.

Secondly, in section IV chemical nonequilibrium flow of air past a circular
cone is treated by using Dorodnitsyn's integral method in its two-strip version, also

called the second approximation, To the author's knowledge, neither the one-strip




nor the two-strip integral method has ever been applied by other authors to the cal-

culation of chemically relaxing flow of air past cones, although a similar case of

vibrational relaxation in a pure diatomic gas has been treated by South (Ref. 3).

Results from the present calculations can, therefore, be compared only with the

author's previous calculations (Ref. 1).




SECTION I

FORMULATION OF THE PROBLEM

2.1 Basic Equations

This section presents the basic equations for the two cases which are mentioned
in the introduction and which will subsequently be discussed in detail . For the
derivation of all equations stated in this section, the reader is referred to Ref. 1.

Neglecting viscosity, the basic equations for steady, adiabatic flow are the
following:

Conservation of mass:
V- (pg) =0

Conservation of momentum:

2
1
V(%—)+ (Vx Q) x q+ EVp- 0 (2.2)

Conservation of energy:

2
h »%:hf = const (2.3)

The above equations are the usual equations of motion, and they do not depend
on any particular gas model. In order to solve a given problem, they must be
supplemented by expressions describing the relation of the thermodynamic vari-
ables among each other. These expressions always depend on the particular gas
model used.

The simplified air model used in this investigation consists of a three component
reacting gas (02, O, Nz), a detailed description of which can be found in Ref. 1.
Defining the degree of oxygen dissociation, a, as the ratio of the mass of
oxygen in dissociated form to the total mass of oxygen in the mixture, the following

equations can be obtained:
p = pRZT (2.4)

where

Z=1+ba (2.5)




0.21

Considering translational, rotational, and vibrational motion of the particles

in the mixture, the enthalpy may be written as

_ r o iy - <l-c)b802 (1—b)8N2 :
h>R.bcD02'—2—bch~2— _U , } 5 T (2.
‘ 02 N2

e -] e -]

In the case of chemical nonequilibrium flow, the composition of the gas is
controlled by the reaction rates of the chemical processes which are included.
In the present calculations, only oxygen dissociation is considered: and the

resulting rate equation can be written as

-
q --Va f

where f is the source function given by

2 2. - -
;C p2£l<d A 02 i

f — (2.9)

l -a
2b 1 P K

Expressions for the dissociation rate constant kd’ and the concentration equilibrium
constant KC are given in Appendix A.

If it is assumed that the air is in instantaneous equilibrium between the shock
wave and the body, the pressure, temperature, and degree of dissociation are
always related by the equilibrium relation

K (T) 2
P

4ba
p (1 -a)Z

(2.10)

where K (T) is the pressure equilibrium constant, which is a function of tempera-
p

ture, and which is also given in Appendix A.

2.2 Boundary Conditions

The flow in the shock layer is bounded by the shock wave on one side and by

the body surface on the other side. For explicit calculations, the conditions at




these boundaries must be specified.

In all cases the condition for flow tangency at the body surface is given by
v=0 (2.11)
As far as the conditions on the downstream side of the shock wave are concerned,
these can be obtained from the principles of conservation of mass, momentum, and
energy across the shock wave. For equilibrium flow, the gas is assumed to be in
thermodynamic equilibrium behind the shock; for nonequilibrium flow, the frozen
state is assumed behind the shock. Detailed equations for both cases may be

found in Ref. 1 and are, therefore, not repeated here.




SECTION 111

EQUILIBRIUM FLOW PAST A CIRCULAR CONE

3.1 Basic Assumptions

As early as 1929, A. Busemann (Ref. 4) has stated that supersonic inviscid
conical flows are characterized by the fact that in the shock layer the pressure
and the velocity vector are constant on coaxial conical surfaces having the
same vertex as the conical body. Assuming this behavior of the flow, in which
all variables such as pressure, density, and velocity are functions of 0 (see
Fig. 1) only, Taylor and Maccoll (Ref. 2) successfully calculated supersonic
conical flow of a perfect gas in 1933. The same assumptions will be the basis

of the present calculations.

3.2 Conical Flow Equations

For axisymmetric flows, the governing equations are most suitably expressed
in pherical coordinates (Fig. 2). Since the flow variables are independent of
the circumferential coordinate ¢, only two independent variables, namely r
and 8, are retained. Finally the assumption that all flow variables are constant
along any radius vector through the apex of the cone reduces the independent
variables to 8 alone.

Hence, with

} ] _pé’
rsin 6 9¢ ¢

1 ow

9 (v sinB) + S
"TsinB a0 \V? rsin® 00

r




the following equations are obtained from eq. (2.1) and (2.2):
Conservation of mass:

dv |

T V(s 55 tcotB) + 20 =0

:
P

r-Momentum:

8-Momentum:

1 dp c
5 36 0 (3.9)

) 4

v(u 4 )
It should be noticed that in this particular application the r-momentum equation
reduces to the irrotational ity condition

Vxg=0 (3.7)
Therefore, it follows that in the flow under consideration the assumption of
homenergic and irrotational (hence, also homentropic) flow upstream of the shock
wave, together with the assumption of instantaneous equilibrium downstream of
the shock wave, means that the flow in the shock layer is also homenergic and
irrotational (and thus homentropic).

Eq. (2.3), (2.4), (2.10), and (3.4) through (3.6) now form a system of six
equations for the six unknowns: u, v, p, P, T, and a. The derivative of v ,
obtained from the 8-momentum equation, can be substituted into the continuity
equation and the differentiated energy equation. Also differentiating the equation
of state and the equilibrium relation, the resulting system of equations for the
derivatives of p, p, T, and a is as follows:

Continuity:

5 j—g--'rcote)—u:O

Energy:

dT _ h, da _,
Hﬁ_a_facﬁ




dp
36 —RZT g5 -

dp dT da

Equilibrium Relation:

dK
2dp dT  4bap [Z+ (1 —a)] da -
4ba ) dT ? 1 —a)Z do 0 o

Eliminating the derivative of p from the above equations and solving for the

remaining derivatives, the following expressions are finally obtained:

pv F3(v cot B + vu)

(3.18)

and where p and u are given by the equation of state and by the energy equation,

respectively.




3.3 Method of Solution

For the numerical evaluation, the present problem is treated as an inverse
one; that is, for a specified shock angle, the associated cone angle results from

the calculation. The integration is performed by using @ Runge-Kutta technique

of fourth-order accuracy with a fixed step size of 2 - 10_4 radians. The inte-

gration proceeds from the shock wave towards the body surface. The cone angle
Bb is determined by finding the angle at which the normal velocity component
v vanishes (eq. 2.11). If the solution is desired for a specified cone semi-
vertex angle, the calculation is repeated until v vanishes at the specified 6, -

A large number of cases have been calculated, and the results are discussed in

section 5.1 of this report.




SECTION IV

NONEQUILIBRIUM FLOW PAST A CIRCULAR CONE

4.1 Governing Equations

In connection with Dorodnitsyn's integral method (Ref. &), it is convenient
to treat the equations of motion in a surface oriented orthogonal coordinate system
which is indicated in Fig. 9. It should be noticed that from now on the velocity
components in the flow field are defined in @ manner which differs from the
definition used in section III.

The equations of motion were derived in Ref. 1 for a pointed body of arbitrary
convex surface curvature. Without rederiving these equations, they are listed
here as they apply for a circular cone which is characterized by the semi-vertex
angle eb. For convenience, we shall set Gb = 0 from now on.

Conservation of mass:

d
a—x— (pur) 1 (pvr) - O
x=-Momentum:

L2

3y (puvr) —psin® =0

;—Hp* pu%rl F

y-Momentum:

a d 2 %
5)-(—(puvr) Fa—y- [p+pv )] —pcos® =0

d 0
ol o = - orf = 4,
x (puar) 4 3y (pvar) — prf =0 (4.4)

Additionally there are the energy equation and the equation of state, respectively:
2
v

i +h= ht = const (4.5)

p = pRZT (4.6)




4,2 Method of Integral Relations

4.2.1 Method in General --First Approximation

The method of integral relations, as developed by Dorodnitsyn (Ref. 6)
was described in detail in Ref. 1. Essentially, it permits, through the use of
certain assumptions, a transformation of the above given partial differential
equations into ordinary differential equations which are then open to numerical
integration. Only a short summary will be given here.

After casting all our partial differential equations in divergence form,

namel y

= +H.=0
dy i
(V)2 ol i)
where x and y are the independent variables, while Fi' Gi and Hi are the
known functions of the dependent variables, and assuming that Fi and Hi
can be represented by polynomials of the form

b. fx\yn (4.9)
N

and also dividing the region between the shock and the body surface into N strips
of equal width (Fig. 10 shows a two=strip arrangement), eq. (4.7) can be integrated
across each strip, which results in a system of m + N ordinary differential equations

of the following form:

d
dx




where k=0,1, ..., N=1; n=0,1, ..., Nandi=1, 2, ..., m.
For the first approximation, we have N=1, k=0, n=0, 1. Hence,
eq. (4.10) can now be simplified and, for the first approximation, results in
d
/s

i P W Ve -y

(4.11)

The above equation might be called an operator equation, allowing us to transform
our partial differential equations of the form (4.7) directly into ordinary differential

equations for the dependent variables along the body surface and along the shock

wave.

4,2.2 Second Approximation

For the second approximation, we have N=2, n=0, 1, 2 and k=0, 1.

Hence, from eq. (4.8) or (4.9), the polynomial approximation has the general form

(4.12)

C.A(x) 2
2%
From eq. (4.13), the coefficient functions in general are then

L) - Pi

i0 ,b

g8 £

AL
Ys




Applying this procedure to Fi and Hi’ eq. (4.10) can now be simplified; and

for the strip between y =0 and y = Y/ 2, the following equation results:

Similarly, one obtains for the strip between y = Y/ 2 and y=y the following
s
equation:
d
s

1
¢ P —Fi,b)+y—(20Fi, )W

i,
. s

2~ 1? Fi,s 3 Fi,b
. 24
y

By properly manipulating eq. (4.15) and (4.16), that is subtracting and adding them

in a suitable fashion, the following simpler equations are finally obtained:

dy

s
i,s)d—x

s

ik
),S

-F

i,s’ dx

__]_((3i +4G

sl SR e R ey

r

It may be of interest to note that eq. (4.17) and (4.18) are also obtained if the
strips are selected such that one strip is bounded by the lines y =0 and y = YS/ 2
and the other strip is bounded by the lines y =0 and y = Y, Comparing the two-
strip analysis with the one-strip analysis, eq. (4.17) and (4.18) correspond to

eq. (4.11).




4.2.3 Application of the Second Approximation
Applying now eq. (4.17) and (4.18) to eqs. (4.1) through (4.4), the

following set of ordinary differential equations is obtained:

Continuity: 4

dx (pbubrb TR "
dy

1 s 4
v, 420272 = Pl = 3R G (Rt - 20y

d
ax (2Pugfy + P =

&t 5 Upyvgrg - Seyvt)

&
Ys
x=Momentum:

d 2 : 2

o [(pID ey, - g F eyl |
dy

®i 2 % 2 s 2 s
" 5 348y % Ry - (B, T AN 20, eV IR o
S

dr
r =20 U VArs) + (p, - )*E
¢  Ta'gll X% Py &

+i(puv
Y, 558

dx [2(p2+ p2u2)r2 ‘ (ps g PsYs )rsI

2 2 dys ]
“ps . PsYs )rs y (p2 y pZUZ)r2| Tdx 2 75 (4p2u2v2r2 % Spsusrs)
dr
*dpy * R B

y-Momentum:
g 1 s
dx (psusvsrs) ¥ Z (3psusvsrs T 4p2u2v2r2) dx

2
+ (ps + psvs )rs] - (pb - ps) cos O

(4,19b)

(4.20b)

4 2
3 [Pyry, = 2y * pp¥))Ty

(4.21q)




i (2 4 -
dx \“Puq¥afy t PUVT) -

d
:—4—(uvr— UAVaE) yS’ ][ .+ 4 ‘ 2
Y PssVs's = P2V2¥2"2) g% Z Py F 4Py * Pva)Ty

2
~ + 3 t
5(ps AZ )rS | + (2p2 ps) cos O (4.21b)

LA . )

dx ‘Pb'b%b'b Psls%ss

dy

-3puar) s
ssss dx

L (4 &
Y, P2¥2%"2 PR b'b

(4.22q)

$SS

4
&3 AR N S A

d
3x 2Pugagray t puar)

dy
r)

:i(u r - g )~—i~i(4v -5pv
Y, Ps¥s%s"s = RY2%2"2) Tax Y, Y2 ' s

i Rl A (4.225)

Before the above eight ordinary differential equations can actually be integrated, a
considerable rearrangement is necessary. Also, since they contain more than eight
unknowns, some additional relations are needed.

Simple geometry (see Fig. ?) yields

W =i sin 6
, = 7 sin®(2+86 cotB)

xsin B (1+8 cotB)

r




Also from geometric considerations one obtains

dy
_S = fong

dx

(4.27)

Differentiating now the first three equations and using the last two, it can be

shown that

= sin O (4,28)

sin 0 (2 + cot9 tan B) (4.29)

= sin 8 (1 + cot® tanP) (4.30)

dx
Substituting now the expressions which are given in eq. (4.23) through (4.30) into

eq. (4.19a) through (4.22b), and rearranging some terms, the following equations

result:
Continuity: d d 7
&(pbub, - (1+8 cotB) -5 (psus) =

S ERY .

vl [292U2(2 +8 cotB) - 3psus(1 +8 cotB) - pbubl tan B

+4 | psvs(l +8 cotf) - p2v2(2 +8 cot 9)] - PpYp * psus(l + cot O tan B)
(4.31a)

d d i
(2+ 8 cote)a)—( (p2u2) + (1 +8 cotB) e (psus) -

1{
' [4psus(1 + 8 cot B) - 2p2u2(2 +8 cot )] tan B + 2p2v2(2 + 8 cot 0)

\

-

- 5psvs(1 +8 cot 0) , - p2u2(2 + cot B tanB) - psus(] + cot B tan B)
' “(4.31b)




x=-Momentum:

d 2 d 2
&'(pb+pbub)-(] *SCOf e)&(p 'psus)

S

[ 2 2
5 [2(p2 Py 2)(2»6cofe\-3<p psus)(l'BcotO\

1
X

2
- (pb + pbub) | tan B + 4| psusvsﬂ +8 cot 0) - p2u2v2(2 & cot 0)]

2 A 2
+(p + , B)-p -
(pS P, ) (1 + cot O tan B) P = PpY

d 2 d 2
-8 0) = - t i e ¢ =
(2+8 cot )dx (p2 + PV (1 +8 cot B) I (pS Py )

-

T+1 19 2 2
;(S- [ (ps+ psuS )1 +8 cot B) - 2(p

2* p2U2)(2 +8 cotB) ] tan B

\
+ 292u2v2(2 +8 cot ) - 5psusvs(] +8 cot 0) | 4 2p2 tp

S

2
_(P2+ qug)(Q + cot O tan B) - (ps t psuS ) (1 4 coi@ton"’,)

y-Momentum:

(]’Scoi’mi Puv)
dx R

= S]-,{ PV, (1+8 cotB) - 2F2u2v2(2 8 cotB) ] tan B

2.
'4[Pb'* (ps "psvsz\(] +8 cotO‘l—(p2"2 2)12~

-

+(p - pb) cot O - _osusvs(l + cot O tan B) (4.33q)
s




18

d d
(2+8 cotB) &(pZUZVZ) + (1 +8 cot 8) e (psusv )

)

r
[ 1
|
L

g(IZpsusvs(l +8 cot ) - PoUoVo(2 +8 cotB) | 2 tan B

L]
X

2
+ " 5(pS + A ) (1 +8 cot )+ 2(p2 t p,zvg)(Q + & cot )

+ (2p2 + ps) cot O - psusvs(] + cot O tan B) - p2u2v2('2 t cot © tan B) (4.33b)

d d
T (pbubab) - (1 +8 cotB) 7= (psusas)

r |
M
5 ‘ [2p,u15(2+8 cot 8) - 3pua (1+86 cot 6)

-

- pbubcb [tan B

+4lpsvsas(] +8 cot 0) 2+ cot0)]

= Pyva8)

1

-pf (1 +8cot 0

- 5 | 4
+ psusas(] + cotO tan B) PLU% | 'Obfb p.f

d d
(2+8 cotB) = (pzuzaz) + (1 + 8 cot ) o (psusas\

1{1!
= ;Ls- [2psusas(l +8 cot B) - p2u202(2 +8 cotB) | 2tan B

+ 2p2v2c|2(2 +8 cot ) - 5psvscs(] + 8§ cot 9) (2 + cot O tan B)

~ Pyriy

-

- psusus(] tcot@tanB) | +

p2f2(2 + 8§ cot 0) + psfs(l + 8 cot 0) (4,34b)

Considering that all variables on the downstream side of the shock wave
(subscript s) and their gradients can be expressed as functions of the shock wave

angle ¢ (see Appendix B), eq. (4.27) together with the above eight equations




form a system of nine differential equations for thirteen unknowns. Additional
differential equations are obtained by differentiating the energy equation and
the equation of state and applying them at the body surface (subscript b) and

at the strip interface (subscript 2). Hence, from the energy equation,

2
dx

da
+ i db (4.38)
b X

Now eq. (4.27) and eq. (4.31a) through eq. (4.38) constitute a system of thirteen

differential equations which can be solved for the following thirteen unknowns:

at body surface: Py’ Tb’ aps Ppr Yy

at strip interface: Por T v

21 021 P21 U21 2

at shock: o, ¥

By using the last four equations to eliminate the derivations of u

b’ U21 pbl
and p2from eq. (4.31a) through (4.34b), the latter equations yield a system of eight

equations in the unknown gradients of the eight variables Py’ Tb’ a s Py T2, Aor Vo

and o, which is given on the following page.
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These eight equations are, respectively, two continuity, two x-momentum,
two y-momentum, and two rate equations. It can be seen that due to the
y-momentum equation (4.43), containing the gradient of o only, the system
of eight equations can be broken up into two sets of equations, each group
consisting of one continuity, x-momentum, y-momentum, and rate equation.
Once these two sets are solved, Upr Ypr Pps and py are calculated from the

energy equation and from the equation of state directly.

4,3 Method of Solution

4,3.1 |Initial Values--Frozen Flow

In order to start the numerical integration of the system (4,39) through
(4,46), the values of all variables must be known at the cone tip (x =0). The
use of frozen shock conditions implies that the flow is frozen at the tip of the
cone. Therefore, the frozen flow values serve as initial values,

For frozen flow, just as for perfect gas flow, there is a conical attached
shock wave. By definition, then also the interface is a conical surface. Hence,
using the well-known assumption that all variables are constant on coaxial
conical surfaces having the same vertex as the conical body (see section 3.1),
one can set dgs d92 dgb
E:W:FX_:O (4.47)

where g stands for any of the flow variables. Since also

Ys
lim & = lim (—x- ) = tan B (4.48)

x=+0 x=+0
eq. (4.31a) through (4.34b) reduce to nonlinear algebraic equations which can
be brought into the following form:
Continuity:

pz(u2 - 2v2 cotB)(2 + cotB tanB) - PpYp = ps(us - 2Vs cot B)(1 + cot 8(4tc;r;{)3)

cot B)(2 + cot B tan B) = ps(3us - 5vscof B)(1 + cot 6 tan 8)

PH(3u, = 2v




x=-Momentum:

= — - 2 =
(pb ps) 2(p2 ps)(2 + cot O tanB) + 2pbub = 2;:>2u2(u2

- 2v2 cot B)(2 + cot O tan B) - 2psus(uS - ?.vs cotB)(1 + cot O tan B)
(4.51)

(p2 - ps)(4 + 3 cot O tan B) = psus(3us - 5vs cot B)(1 + cot 6 tan B)

- p2u2(3u2 - 2v2 cot B)(2 + cot O tan B) (4.52)
y-Momentum:

4(p2 - ps)(cof 0+ 2cotpB) - (pb - ps)(cot O +4cot B)
= 2p2v2(u2 - 2v2 cot B)(2 + cot O tan B)

- .'Zpl:_‘vs(uS - 2vs cot B)(1 + cot O tan B)

(pb - ps) cot B + 4(p2 - ps)(cot 0 +cotB) = p2v2(3u2 - 2v2 cot B)(2
+ cot O tan B) - psvs(3uS - 5vS cot B)(1 + cot 6 tan B)
Rate:
pzaz(u2 - 2v2 cot B)(2 + cot B tan B) - pbubab =

- 2vs cot B)(1 + cot O tan B)

(3u,. - 2v,, cot B)(2 + cot B tan B) =

PPy 2

= pa (3u - 5v_cot B)(1 + cot B tan B) (4.56)
W s

The above equations can also be obtained by formally multiplying eq. (4.31q)
through (4.34b) by x, and then taking the limit for x=0.




It is noticed that eq. (4.55) and (4.56) still contain a and a ,
s

a
b’ 2[
although these equations were derived by assuming frozen flow. It will now

be shown that, in fact, a, =a,=a, which means that the conditions for
frozen flow are satisfied.
Solving eq. (4.56) for A, one obtains

rP (3u -5v cotB)(1+cotb tanB) -
! S S S

a, = a
L F>2(3u2 - 2v2 cot B)(2 + cot © tan B) J .

Since it can be seen from eq. (4.50) that the square bracket term in eq. (4.57)

is equal to unity, it is shown that

(4.58)

Due to eq. (4.58), a, in eq. (4.55) can now be replaced by @, hence

GS r

PuY

Gb 'Lpz(u2 - 2v2 cotB)(2 + cot O tanB) - ps(us - 2vS cot B)(1 +

-

+ cot O tan B) (4.59)

Eq. (4.49) shows that the square bracket in eq. (4.59) is equal to (pbub\

hence

cxb _ Gs (4.60)

Consequently, due to the boundary conditions (section 2.2), and due to

eq. (4.58) and (4.60), the condition for frozen flow

(4.61)
is satisfied,
Due to the nonlinearity of the equations, a trial and error procedure
must be used to calculate the remaining flow variables for frozen flow. It
seems to be convenient to calculate the interface conditions first. It is found

that eq. (4.50) and eq. (4.52) do not contain any body surface variables.




Eliminating the body surface pressure from the two y-momentum equations, a
third equation which contains interface and shock values only is available.
Combining these three equations with the equation of state and the energy
equation, there are five equations for the five unknowns: Pos T2, Por Yoy

and v2.

The first step is to combine eq. (4.52) and the two y-momentum equa-

tions in order to eliminate Pgr Py and Py The result is an equation in Por Uy
and Vo Combining this equation with eq. (4.50) in order to eliminate Uy OF Vo,

a quadratic equation for either v, OF u, can be obtained. Eliminating v

2 2'

the quadratic equation for Vo is

8Ap2 cot B vg = Py (3uS - 5Vs cotB)(8B+ 14 + 3 cot O tanB) vy

[ |
it ps L 6vs(us - 2vS cotB) + (305 - 5vs cot B) 3vs (4

P al
+ cot O tan B) - 4B fanB 3u - 5v cot B)A - 3u

P2

A 2+ cotH tan 8
1 + cot Btan B

6 cofzﬁ + 6 cot cotf + cotze

(4.64)
4+3cotBtanB

B:

Assuming a value for o and Por where Py < p2< Ph (and Py is known from
the first approximation), eq. (4.62) can be solved for Vo Since there are two
solutions, the correct solution must be selected such that 0 < |v2| < IVS|

Knowing Vor One obtains from eq. (4.50)

Py

+ cot B tan B ]
(3u -5v cot B)2+cot6 ey +2v2 cofB.

Pn
‘ (4.65)




and from eq. (4.50) and (4.52):

] +cotB tan B
u,) +

ps(3u5 i 5vs e 3)4 + 3 coth tanB (Us R i ps

P2 -
From the equation of state

P2 ;
T2 p2RZ (4,67)

Having assumed Py and having calculated T2 as function of v, and Vor
there remains the energy equation for a check on Py
2 2

u LY
2

2 ) (4.68)

Q(ht - h2

If the energy equation is not satisfied, a new value of Py hes to be assumed.
The calculation must then be repeated until a consistent set of values of all
variables at the interface is found.

With the values at the interface calculated, the body surface variables
are determined from the remaining equations. Eq. (4.49), (4.51), and (4.54)
can be combined in order to eliminate Py and Py The resulting equation

can be solved for the body surface velocity as follows:

U = + ps(l + cot 0 tan B) [ (v

b 2t | - vs)(3us - 5vs cot B) = 2(u

2 2

( ( f $ ( 11 [
- us)lus - 2VS cot B)cot B | - 2(p2 - ps)cot B(4 + 3 cot O tan 3\) ‘- 2 cotB ACH

| =1

- 2v cot B)(1 + cotB tan 8) - pz(u2 - 2v2cot B)(2 + cot O tan B) |
¢ J (4.69)

Solving eq. (4.49) for the surface density, the latter one is

St + o
pb - LI [p2(u2 - 2v2 cot B)(2 + cot 6 tan B) QS(US

- 2vs cot B8)(1 + cotB tan 8) | (4,70)

From the y-momentum equation, eq. (4.54), and the continuity equation,

eq. (4,50), the surface pressure becomes




r

p p t(1 +cotBtanB)| p (v, -v )(3u - 5v cot
k s 3" 2 s 3 s

‘ >

,
- 4(p, = p )cotB3 | tanB
P2 }s J

From the equation of state
-Fh
b RZ
b

T

Since the above calculations are still based on an assumed value of the shock
wave angle o, the energy equation is now used to verify this assumption. T}
)

and U s @S calculated above, have to satisfy the relation
:

2

Ub

2(h =-h,)
t

b
If eq. (4.73) is not satisfied, a new value of ¢ is chosen. The calculation

must be repeated by starting with eq. (4.62).

4,3.2 Initial Derivatives

The necessity for determining the derivatives of all variables at x =0
arises from the fact that for the initial values, which were calculated in the
previous section, the system of eq. (4.39) through (4.46) becomes indeterminate.
The reason for this, of course, is the direct relation of the algebraic equations
(4.49) through (4.56) with the nonhomogeneous terms in the system (4.39)
through (4.46), respectively.

However, a set of linear equations for the initial derivatives can be
derived from the system (4.39) through (4.46). The indeterminancy can be
resolved by applying L'Hospital's rule to the Ai (i=1,2, ...., 8) in order
to find their limiting expressions for x=0. The resulting equations for the

initial gradients are given on the following page.
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4.3.3 Numerical Procedure

For the numerical evaluation, all variables and the coordinates were
nondimensionalized as follows:

U,v

where

The equations were then programmed in dimensionless form; all calculations
were performed on the UNIVAC 1107 high speed digital computer.

In order to facilitate the numerical evaluation, the problem was pro-
grammed in two parts. The first part considers the calculation of the initial
values, while the second part is concerned with the integration along the body
surface. The calculation starts by evaluating the conditions behind the attached
shock wave for a given configuration and an assumed shock wave angle o, as
described in detail in Ref. 1. Knowing the shock wave conditions, the variables
at the interface and at the body surface are evaluated as described in section 4,3.1
of the present report. As it was mentioned there, the nonlinear character of the
pertinent equations necessitates the use of a trial and error procedure in order to
obtain the initial conditions at the interface and at the body surface.

Having completed this first part, initial gradients can be calculated by

resolving the system (4.74) through (4.81). With initial values and initial gra=-

dients available, the flow conditions at some finite A¢ can be calculated. From
this point on, the computation switches over to the system (4.39) through (4.46).
This system is then evaluated by a program which mainly uses two subroutines,
namely a linear equation solver, and a Runge-Kutta integration technique of
fourth-order accuracy. The step size is essentially fixed; however, it can be

varied in intervals.




5.1 Equilibrium Flow

Results were obtained for free stream Mach numbers ranging from 10 to 25 and
for shock wave angles ranging from 20 to 50 degrees. Th e stream temperature

and the free stream pressure were fixed
-3 -3
P 1.01325 - 10 “bar (=10 ~ atm),

f the
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used by Romig (Ref. 5) and is very good indeed.
The results from the present investigation are compared with results previously

obtained with the method of integral relations (Ref. 1) and with results obtained by

Romig (Ref. 5). When comparing the graphs, it should be considered that the present

results and those of Ref. 1 are based on the same air model. While Romig basically

ised the same equations as those in the data

were not directly calculated but were taker more elaborate tables.

It can be seen from Fig. 3 through Fig. 8 that the agreement of the present

results with those obtained with the integral method is excellent. With the excep-

tion of the surface pressure, the integral uniformly about
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5.2 Nonequilibrium Flow

Within the time which was allotted to this contract, it was not possible to cal -

culate a large number of cases. However, some results for chemical nonequilibrium
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APPENDIX A

THERMODYNAMIC FUNCTIONS

Enthalpy:

[

The above expressions were taken from Ref. 1.
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APPENDIX B

SHOCK WAVE RELATIONS FOR FROZEN
COMPOSITION ACROSS THE SHOCK

v, sin O RZ]T] 5
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1 7 . 2
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where the dimensionless functions C. are:
]
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APPENDIX C

COEFFICIENTS AND FUNCTIONS IN
EQUATIONS (4.39) THROUGH (4. 46)

Ppob

Pl
-ub(] + 8 cot 9)(p]u$C2 + psu]C3)

2
2

v CslpuCot Py Ca)

2
RZbTb + vy
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APPENDIX D

COEFFICIENTS AND FUNCTIONS IN
EQUATIONS (4.74) THROUGH (4.81)
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