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Abstract 

An analysis is made for the unsteady heat-transfer, due to a time 

dependent wall heat flux, from an infinite disk, rotating in still fluid 

with large suction. The procedure begins with a consideration of the 

thermal response caused by a step change in the local wall heat flux. 

It is found that the response time varies inversely with the Prandtl 

number, the angular velocity and the second power of the suction parameter. 

Incompressible flow with dissipation is considered first. For an 

ideal gas with constant Prandtl number whose viscosity varies linearly 

with temperature, the incompressible results may be, if dissipative effect 

can be ignored, directly applied provided that all properties in the 

solution are replaced by their wall values. 



Nomenclature 

w 
a Mass transfer parameter, - r-rr , dimensionless 
° (\J UJ) ' 

c Specific heat at constant pressure, J/kg °K 
P 

. . 2 r» -§2d§ 
erf x error function, — e 

v/TT J 
o 

F 

G | function defined by (6) 

H 

erfc x 1 - erf x 

/ o 
k thermal conductivity, J/ra sec K 

p parameter in Laplace transform 

2 
p static pressure, n/m 

P Prandtl number, dimensionless 
r 

2 
Wall surface heat flux, J/sec m 

Q(T|) function defined in (11) or (15) 

r radial coordinate for rotating disk, m 
UJ 1/2 

R dimensionless radial coordinate, r(-) 

SCH) function defined in (11) or (15) 

t time, sec. 

o„ 
T temperature, K 

u velocity parallel to the surface of a disk, m/sec 

v velocity in cp direction, m/sec 

w velocity normal to the surface of a disk, m/sec 

iv  



z 

T1 

0 

P 

V 

p 

T 

UU 

cp 

l(t) 

Subscripts 

1 

ss 

w 

coordinate measuring distance normal to a disk, m 

UJ 1/2 
diraensionless coordinate "H = Z(*~) 

dimensionless temperature defined by (11) or (15) 

viscosity, kg/m sec 

2 
kinematic viscosity, m /sec 

3 
density, kg/m 

cut 
dimensionless time, p— 

r 

angular velocity, rad/sec 

the angular position 

Heaviside unit operator; = 0 for t < 0, and = 1 for t > 0 

initial conditions 

steady state 

condition at wall surface 

free stream condition 

v 



1.0 Introduction 

Unsteady heat transfer due to a time prescribed wall temperature or 

heat flux has been a subject of interest for many years. Sparrow and 

Gregg [1,2] investigated the laminar forced convection heat transfer 

from a compressible fluid to a flat plate with uniform, but time dependent, 

surface temperature. Cess [3] and Riley [4] examined the same problem 

for incompressible flow, Goodman [5] and Adams and Gebhart [6] have 

employed the heat balance integral technique to obtain approximate solutions 

for the flat plate problem. Sparrow [7] reported an approximate analysis 

for the unsteady, two dimensional stagnation point heat transfer. He 

employed the integral technique for which a third degree polynomial was 

chosen for the unsteady temperature profile. Subsequently Chao and 

Jeng [8] published an analysis for the unsteady heat transfer at a 

two-dimensional and axisymmetrical front stagnation point due to an 

arbitrarily prescribed wall temperature or heat flux. The analysis was 

extended by Jeng [9] to a three-dimensional magnetohydrodynamic stagnation 

point flow with simultaneous suction or blowing. The heat transfer from 

rotating bodies is of technological interest and has attracted the attention 

of several researchers. The steady heat transfer from a rotating disk 

was first studied by Millsaps and Pohlhausen [10] and later by Sparrow 

and Gregg [11] who also investigated the effect of blowing and suction [12]. 

Cess and Sparrow [13] were probably the first to analyze the unsteady 

heat transfer from a rotating disk. The problem was later re-examined 

by Jeng [9] who also included the effects of mass transfer. Two 

asymptotic solutions, respectively valid for small and large times, are 

found and satisfactorily joined to cover a wide range of Prandtl numbers. 

When the suction velocity becomes sufficiently large, a closed-form 

solution can be obtained. The analysis for this case was also made in 

[9] but for a step change in wall temperature. In the present report, 

we investigate the same unsteady heat transfer problem but with the step 

change in wall heat flux. The method of solution adopted in the present 

analysis closely parallels to that used in [9] but the analysis becomes 

more complicated. We first consider a case of incompressible flow. A 

solution describing the entire time history of the non-steady temperature 



field has been obtained. For an ideal gas with constant Prandtl number 

whose viscosity varies linearly with temperature, it is shown that the 

incompressible result may be directly applicable to compressible case. 



2.0 Governing Equations for Incompressible Flow 

Consider an infinite disk rotating in an infinite mass of fluid 

about an axis normal to its own plane and at a constant angular velocity w. 

Fig. 1 illustrates the cylindrical coordinate (r, Cp, z) and the corresponding 

velocity components (u, v, w) appropriate for the problem. From physical 

considerations, one sees that the velocity and temperature field would 

be independent of Cp, if the thermal condition at the disk surface is 

also independent of cp. Under the assumption of steady, incompressible 

flow with constant properties, the governing equations are (with dissipation 

included) : 

Continuity: 

du + 2 + = 0 
Or r oz 

(D 

Momentum: 

du v , du u — + v -r— 
or r oz 

dv , uv , dv u + — + w -t— 
or r oz 

dw 
dr 

dw _ 

dz 

H Or oz 

4ri + ̂ © + ri] 
. lie + vT — + - ̂  +^" 

p dz L ̂ 2 r S7 az2 J 

(2.a) 

(2. b) 

(2. c) 

Energy: 

oz p 

+ [di)2+Qf + ̂ 2+M;©}2] (3) 
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The velocity boundary conditions are: 

u(r,0) = 0 uCr,®) = 0 

v(r,0) = rOJ v(r,°°) = 0 (4) 

w(r,0) = ww 

In the above, w^ is the fluid velocity at the wall. Positive values 

of ww correspond to blowing, and negative values correspond to suction. 

For time t < 0, there will be a steady temperature field in the 

fluid due to frictional dissipation. Its precise nature would depend 

on conditions prevailing in the disk. As an example, one may consider 

a disk of infinite thermal conductivity with the consequence that its 

temperature rise due to the frictional dissipation is uniform. On the 

other hand, the disk may have large resistance to heat flow in the radial 

direction. This situation contrasts with that for flow over a flat 

plate. With these observations, we consider two cases of simple initial 

and boundary conditions for the temperature field as follows: 

Case (i) For disks initially at adiabatic wall temperature. 

T(r, z, 0) = Tvl(rtz) 

(5.a) 

T(r,„,0) = Tm 

5T(r.0.0) = Q 
dz 

In the above (r>z) represents the initial temperature distribution 

in the fluid consistent with an adiabatic wall temperature Here the 

problem is to examine the transient response of the wall temperature due 

to a step change in wall heat flux. 

4 



Case (ii) For disks initially of uniform wall temperature 

T(r,z,0) = T.^2(r,z) 

_ . Itofcu 1 [%Cr) . (5.b) 

T(r,to,t) = Tro 

T (r,0,0) = T^w = constant 

Where q^w(r) is the wall flux due to frictional dissipation. 

The initial temperature field T. _ is clearly different from that in 

Case (i). It is to be noted that for a disk of uniform temperature, the 

wall flux q^w is not uniform. Here we are examining the transient 

response of the wall temperature due to a uniform, step change of the 

local wall flux. While qw(r) and botb vary with r, their 

difference is a constant being independent of the radius. 

3.0 Method of Solution 

The solution of (1), (2), and (3) with the initial and the boundary 

conditions (4) and (5) for moderate suction is given in [9]. In 

this report we consider large values of suction. Physical considerations 

suggest expressing the velocity components u and v as: 

u = r uu F(ri) , v = r w G(r \ )  

1/2 
wherein „ _ /uA 

^ z U • 
It follows, then, from the continuity requirement that 

1/2 
w = (HI V) H(T1) 

Upon introducing the foregoing expressions for the velocity components 

into the momentum equations and observing that the pressure must necessarily 

approach a constant value at infinity, one is led to the conclusion that P 

is independent of r and may be expressed as 

p = p w V P(ri) (6 c) 

5 
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Substituting (6.a, b, and c) into (1) and (2.a, b, and c) yields, 

after some rearrangement, 

G" = HG' - H'G (7.3)* 

H* = HH" - j (H')2 + 2G2 (7.b)* 

U I -ff 
and F = - j (7.c) 

with 
w 
w 

stx- . T&i + v „ st = i a r. ̂  jt 
c)t r * * r * * cirj IFrV1 TJ + ̂  

(8) 

G(0) = 1, H(0) = - a = ppr- , H1 (0) = 0 
u (UU v) 

G(°°) =0, H'C") = 0 

In the foregoing, the prime denotes differentiation with respect 

to T) ; aQ is the mass transfer parameter. Numerical solutions of the 

above set of equations for an impervious wall, i.e. a^ = 0, were 

given by Cochran [14]. Stuart presented an analytical solution for 

large suction. His result will be used later for the integration of the 

unsteady energy equation in the present analysis. 

Sparrow and Gregg [11] reported computer results for aQ ranging 

from -5 to 4. 

To transform the energy equation, we further let 

/uA1/2 T _<iJ t 
R = T ~ F~ (9) 

r 

and obtain 

P U) V 
r 

R2 [(C)2 + (F')2] + 

2 p u) v 

—7 2F2 + (H')2] (10) 

A fourth equation which governs the pressure distribution in the 
fluid is not of our concern and is thus omitted. 

6 



We sha l l  f i r s t  cons ider  the  case  for  the  ad iaba t ic  wal l  t empera ture  

wi th  in i t i a l  and  boundary  condi t ions  prescr ibed  by  (5 .a ) .  For  convenience ,  

we in t roduce  a  d imens ionless  tempera ture  def ined  by  

T -  T 

f GD 
® _  UU V  
172 °PfGD 

Yfl (R s + Q) + 0(T1,T) (11)  

The func t ions  S("n) ,  QCH),  and  0Cn, T )  respec t ive ly ,  sa t i s fy  

S"  -  P r  .  H .  S '  +  P r  .  H'  •  S  =  -  P r  [ (G ' ) 2  + (F 1 ) 2 ]  ( 1 2 . a )  

with  S '  (0)  =  0  ,  S(«)  =  0  

Q"  -  P  •  H •  Q '  =  -  4  (S  +  3  P  * F  )  
r  r  

( 1 2 . b )  

(13 .a )  

wi th  

and  

Q ' (0)  =  0  ,  Q(»)  =  0  

oT 1  
„  ae  _  a z e  

wi th  6(T1,0)  =  0  30(0  i T > =  
dr\ 

_i (T) ,  e ( oo j T ) = 0  

(13 .b)  

(14 .a )  

(14 .b)  

For  d i sks  in i t i a l ly  a t  the  uni form wal l  t empera ture ,  sub jec ted  

to  a  un i form,  s tep  change  in  wal l  f lux ,  we l e t  

T -  T„ uu V  

( L 1 / 2 \ " c  ^ ( ' V - 1 / 2  

vojy  k  p  k  W 

rR 2 S(Tl )  +  Q(T0j  +  9  (T) ,  T)  (15)  

Here  Ac^  =  ^ (R)  -  ^^(R)  which  i s  a  cons tan t .  The  func t ions  S  and  

Q,  respec t ive ly ,  sa t i s fy  (12 .a )  and  (13 .a )  bu t  wi th  boundary  condi t ions  

a l te red  to  

and  

S(0)  =  0  

Q(0)  =  (T .  -  T )  
uuv iw 0 0  

S(°°)  =  0  

Q(°°) = o 

( 1 6 . a )  

(16.b) 

7 



It is easy to show that 6 of Eqn. 15 satisfies Eqn. 14.a with initial 

and boundary conditions of Eqn. 14.b. 

Finally, we note that for negligible dissipation the fluid will 

initially have a uniform temperature T^, which is also the wall temperature 

prior to any thermal disturbance. If we now re-define 001,T) according to 

it is easy to demonstrate that 9 again satisfies (14.a) with initial 

and boundary conditions (14.b). 

To integrate (14.a) with (14.b) for large values of the suction 

parameter (say aQ = 1.5 or greater), we employ the Stuart's solution [15] 

for the velocity field in inverse powers of aQ. In particular, the H 

function is given as, 

T - T, CO 

0 

a 
o 

a 
o 

(17) 

wherein § - a T| 
o 

Application of Laplace transform to (14.a) with initial and 

boundary conditions (14.b) yields 

M 
9 - P . H . 9 = p9 

r 

with 9 (0) = - and 9(®) =0. We now introduce a new variable 

(18) 

Y(Tl,p) defined by 

(19) 

8 



and obtain from (18) 

with 

r P  P  ? >  "  
r" +  Q-p + -J - H' -^-h zJy = o 

a P -
- •jS-E Y(0) + aoY'(0) = -1, Y(«>) = 0 

In (18) and (20) the prime denotes differentiation with respect T], 

Transforming the independent variable from T) to § and making use of 

(17), for large a Q, we arrive at, 

(20) 

- Cco2 + v5 + v"25 + v'35 + •••) y<5) = ° (21) 

wherein 

0 2 
a 
o 

" ' 2 a  

4a a 8a a etc. 

The solution of (21) satisfying the boundary condition 

a P -
- ° -r Y(0) + Y'(0) =-1 and Y(°°) = 0 may be appropriately represented 

by a series of the form 

-Cj> 
Y = Ke ° (l + A1e"" + kf'2* + k^e'2^ + .. ( 22 )  

9 



where 

K = 

ao[(r + OC1 + A! + A2 + A3 + ...)+ (ax + 2A2 + 3A3 + ...)] 
C1 . Cl2 + C2(1 + 2 C0> 

A1 1 + 2Cq • 2 4 (1 + 2 CQ) (1 + CQ) 

_ Cx3 + 0^(5 + 6 CQ) + 4C3(1 + 2 CQ) (1 + CQ) 

A3 12 (1 + 2 CQ) (1 + C0) (3+3 CQ) ' etc-

The latter are obtained by substituting (22) into (21) and equating 
-(C + 1)§ -(C + 2)§ 

coefficients of te r m s  l i ke e 0 , e 0 ....,to zero. 

Since C1 = 0 (-^), C2 = 0 (-^), but C3 = 0 (-^), it is a valid 

a0 a0 a0 

2 3 
approximation to ignore terms involving ^3* anc* ^l * 

Accordingly, after substituting the values of the A^, K may also be 

written as 

K = == 

r C1+2 coX1+ 0 
3 /̂ 3 *"? rt>'N 9 f\ S 0̂P N 

c 0  +  ( 5  +  r +  - +  c 0  +  Q +  C 1  +  l c 2 +  — +  4 ^ +  8 ^ )  c o  

n CP C 
(l + 2n _E ( 1 + p + 2"̂  (Note denominator only continued to this line) 
\2 4 J + 4 V Li 4/ 

(23) 

10 



and thus (22) may be approximated by 

•. -.Q̂  g 4--s-h 
Y La (c. - A Wr - A Wr. _ A ^ (24) 

where A1; A2 and A3 are the three roots of the cubic equation in the 

denominator of (23). These roots are characterized by the determinant 

of this cubic equation. For convenience, let 

, Cn C0 . 5C0 3P C.P C0P 
~ ^ 4- 4- 4- ^ „ -1 4. n 4- ^4- ^ 4. 1 _i_ 2 V 
1 *2 ~2~ ~ ~T~ *2 1 8 ~ + — + 8 

c, C n  P X -.c. 
r 

=K3<* - Pi2) b = ii C2 PL - 9"i+ 27 0 

u2 3 
D 3 

Then if — + — > 0 , one real and two complex conjugate roots will 

be obtained as follows; 

we may write, 

P1 Ai = Px = A + B - — 

. = 3 . i3 = . A+ A^_J _ Pi 
*2 2 3 2 2 3 

A + B A B /—~— P1 
2 A 3  =  3 2 +  

In the above, is the real root and 32 is the real part and the 

is the imaginary part of the two conjugate roots. 

1 1  



w 2  3  D cl  
I f  — + Yj  <  t h r e e  unequal  rea l  roo ts  wi l l  be  ob ta ined  as  fo l lows:  

b 2  a 3  
I f  -7— +  — -  0,  th ree  rea l  roo ts  wi l l  be  ob ta ined  but  a t  l eas t  two 

4  27  '  

are  equa l .  

In  v iew of  the  foregoing  ana lys i s ,  we subs t i tu te  (24)  in to  (19) ;  

rever t  back  to  the  T|  va r iab le ,  cons is ten t ly  ignore  te rms  of  smal l  o rder  

of  magni tude ,  t ake  the  inverse  t ransform and  ob ta in  for  

the  d imens ionless  tempera ture  func t ion  as :  

.<n ,x> -  „  [ .  i  „ -  f 4  •  I .  -  V  -  £>]  

0  0  

"{?[ «" [-175 - <• 
^  -a Q P +  CL '  20.  '  

a 1 / 2 n 
+  e  e r f c  | "_n  +  ( a  T ) l / 2 " j  (cont inued  next  page)  

-a Q P 1  -  a  '  2T 

1 2  



+ !/,} . a e x i - a o ^ + <aoV -  a>TJ ( ^ m  -  aoV1/2) 

/Y r - o } ^ \  

[ ; ^ e 2 • " •  f c f o  -  < *  

a1/2ri 
+ ~71 —172" erfc [—r/2 + (a T)1/2] 

a0V* 2 + 3J ~ 2T J 

-ax Y2aQ (P2 - 1P3) 
+ e 

V<P2 " lP3> " a 

exp [~a0^2 " + aQ2^2 " lg3^2x] 

[7T72 - a0(P2 - iP3)Tl/2Dl • <25'a> 
2T 

For -7— + > 0, but CL — a_^f3.^ or a^2 = -aJ3 we obtain 
4 27 0 1 0 1 

0/n T ?r f + ?r ^ n Pr ^ "a0T1 1 _2V 3^1 0(n»T) = exp L - T Vao + —3 ) 
71 - 7-4 ^ - 4 e - \A 

0 0 

1̂75 {»"%"*• ' " • 7. • , »0. ...{A,, . 

13  



The quant i ty  in  the  bracke t  a f te r  2Re in  the  equa t ion  (25 .b)  i s  

same as  tha t  in  equa t ion  (25 .a ) .  In  the  above  the  symbols  CL^ 

and  ^  are  def ined  as :  

V 2  2  

a o  

2 1  P r ( 1  "  P r )  "V 1  P r ( P r  "  2 )  1 P 2  + i  & +  1)  +  O,  +  1) e  +  - i - |  (P ,  + ^)e  

0  0  
Y,(T1)  =  9  — "1 2  

0 2  -  V  + „  

2  .  3  , Q  ,  q  \  _i_  1  _i_ P r ( 1 "V, Q  , a  

*,00  =  

[ (W 1 -^ ]  [<V i P 3> +  i ( V i P 3 > +  i + ^-4^o 2 - i3 3 + 1 ) -o  

»L<?i - p p 2  +  p 3 2 J  

. P r ( V 2 ) , D  , Q  ^l s -2a„Tl" ]  
f ~ 4 ^ J (Numerator only continuea to this line) 

1 6 a 0 

,2  3  22  2 2 /  2  2  
fo r  — + YJ < 0 ,  and  for  CL f  a Q  ;  0•  '  b Q -^2  » a  a 0 ^3  

the  d imens ionless  t empera ture  0  takes  the  fo l lowing  form:  

r  F r  ^  P r  A P r  ^ 'V  1 "V 3M 
0(1.7) = exfj_- f (aQ + —3J T1 - —2; (o * 4 e * 4 J 

0  0  

,  rMD 4 2CH) 4 3 0D 1  a 1 / 2 n r T,  1 /21 
-I [-172 -+a [ / 2 + a  -  - J e  " 4 ^ 1 7 2  +  < a T >  J  

a  + a 0 A 1 + a 0 A 2 a  +  a 0 A 3 2  

(cont inued  next  page)  

14 



-(XT rVl(T1) f „ 2 2_^ Z' ti 1/2^ 
+ V L~T~2 exp VW1 + a0 Ax V erfcU^ - a^T J) a0 A1 _ a 

A^OD 

2 2 
*0 *2 

A3̂ 3(11) 

— exp (-â tl + â Â ) erfc!̂ -̂  - â T1/2) 

2 2 
a0 A3 

— exp C-a^Tl + a02A32V - a^T1'2)] } (25.c) 

2 3 
b a ^ . , « 2 2 also for ~ + "27 < °» and a = a0 A 1 which automatically implies 

2 2 2 2 a ̂  a0 A2 and a ̂  a0 A 3 thG teinPerature function is 
expressed as: 

Pr/- Pr > Pr /"V 1 "V 3 
e(n>T) = exp [- f (aQ + -i-j) Tl - -S-j (, " 4 e 

2ao 2ao 

1/2. 
I f l  " 2  1 3  ~j  - a  " H  - J  Tl  r a n 1 / 2 l  

1 U2 + <a"2 - a^ <ap/2 . aj ^ J 

- [^172 (3+ al/2̂ + »0 + XT72—r,+ *3 1al/2r 

rf'2 + vO <al/2 + 

e 
'2a 2^a ' + a„A^ 7 2V a + a 

,1/2 
r •L" I . a f_L 

erf 

*0^3-

1 / 2 - /T \ C rf ^ 
cL j- + (aT) J + exI*v~ 47 " aJJ (equation continued cn 

2T next page) 

When a = aQ A2 (But a ̂  a0 Ax )» interchange and $ 2 and 

replace A2 by A1# Similary rule may be applied when a = aQ A3 . 
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+ 2 a - a) T"'oV] er£ctT72 " W^) 
a0 z " 2T 

W3 

ao\ 
~ ex{(ao V - a) T - W ] «fc(̂ T72 - aô 3Tl/2)} 

WHERE A 2 3 A 1 Pr(1 " Pr> "V1 Pr(Pr " 2) 1 V + | 4  1 +  r  r » ( 1  +  ̂ _ r  ( A i  +  l ) e  

4a 16a 

• i « -  V - a2) (Al - A3) 9 (25-d) 

A22 + | A . A 1 V
1 " V 

-anTl p_(p_ - 2) x -2aQTl 

(1 + A2)e ° + r 4 (A2+|>e 

16a0 
2 2 T 2 + , 4 

0 

(A2 " A]_) ^A2 " A3) 

A3 
2 3 _L rv jr 
+ 2 A3 + 2 + , 4 

P_(l - P„) -anTl Pr(Pr - 2) _ -2aQTl 

( 1 + A ) e  °  + — — |  ( A 3 + ^ ) '  

3 16a^ 

(Ag ~ A^) (Ag ~ A^ 

2 3 

for T~ + "§7 = 0, and for CL ^ A^ > and Cl - A2 
2 2 

4 27 

the function 0 is given as: 

r P /- P v P /- -anTl . -a 11 

e^.T) = exp [- 21 Ca0 +~l) 11 - ~4 Ce " 4 e " a)j 
2a„ 2a. 
0 0 

1/2, 

fe? *^ T 7 rw* - «"'> 
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rxian X2 *3 1 ol1̂ 2̂  J" ri .1/2~| 

+ [v<) C-

1 - a^T) + 2a02A22T 'A 
2 2 

a o  %  - a  (aoV - a) 

*n 2̂a(/h. 

iJ + 
(.O 2̂ - ̂  

]. 

exP C"ao^2^ + ̂ aO2̂ 22 " a) 0 erfcCjl/2 " aOA2T J + 

xiao ' ̂ " r2aoV 
+ ~U2  e x p  ̂  4 T  "  a V  L  2 . 2  

1/2 

2. 2 772 -.1/2-

0 V - a (ao z -a) T 

V(A 

(aQ2Ai2 - a) 
exp C-a0V + (*0 V - a) T) erfc ̂ 175 - 30Ait1/2)} 

(25.e) 

,2 3 9 2 
for J> a = 0 and a = an Al the temperature function is: 

U 71 U I 
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rVo 
+ L „ //v 1 / 2 

X* 

2 1/2 
W - a0A2) 2 (a + a0A2> 2a 

rm Q + q1/2ti + 2 a T)Jett 

1/2, 

erfc [7̂ /2+ (aT)1/2J +K-

1 " a0A2T1 + 2aO A2 T aOA2 
2 2 

aO A2 " a  

2 2 l) * 
(aQ 2 " a> 

laO 

2 f22 ] exP (."'W1 + (302a22 " a) V "£C (Zl72 " aoV1/2) 
(aO A2 - a) 1 

Vo ("2V2t1/2 1 __ V1/21 „ (_ jf _ n.T̂  } 
+ T7? L 2 2 " 2 2 ... 2_l/2+\.a_ J P V 4T 
7^ La oV-" (a 0V--> V / 2  Vo 

(25.f) 

2 3 

For T~ + 17 = 0' and a = aQ2 A22 ' a ' 30A 1 

8(n.T) = exp [- f (. + 1 - -4; 0 

0 0 

"V 1  1 JN-1 - 4 e " V1 J 

f r r /7vxl/2 1/2 x- rî  4 / 1/2 , > 1 
{voJL- 2^ ( 9 )  exp  C-«- +C 1  +  a  ri 2as^ 

> a1'2!! 

. erfc (-4 + (aS)1/2)] dS 

+r^_ .*> 

4(a)1'2 2((a)1/2 - Vi/ 

exp (- a1/2n) erfc 4-̂ 75 - (ax)--J 
T1 1/2" 
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+ *2 OD 6XP C" *4T " aV 

,1 /2 ,  
°  "  " " < 7 >  * < " > " ' )  

+ 3 2 ° A l  e x P C^cAl 1 1  +  a o 2 A i 2 T  "  a T )  e r f c  ^71 /2  '  a o A i  t 1 / 2 )  }  ( 2 5 , g )  

a o  A 1  •  a  

P (1  -  P  )  -a_Tl  P  (P  -  2 )  .  -2a n Tl  
0  • £ * — < v * > -  0  

4a0 0 
14,616 X1 

P  (1  -  P  )  

^ - 2a1A2 + | (A2 " Ax) - 2 + —L, ( A 2  "  A 1  ' l) G" 

X 9  = — "  ,2  
2  -  A l )  

P  (P  -  2 )  -2a  T |  
+  r  r  / ,  -  A )  e  °  (Numera to r  on ly  c on t i nue d  t o  t h i s  l i ne )  

16ao4 1 

Al  +  4  A.  + 2 + 
V1 - V 
4a , 4  

(1  +  A , )e  
-a f t Tl  P  (P  -  2 )  

0  + S  E 
16a , 4  

1 "2aoT1 
CAi  +  2 ) e  

x3 = 
CAX - A2) 

Eq .  (25)  r ep resen t s  the  d imens ion less  t r ans ien t  t empera tu re  p ro f i l e  due  

to  a  s t ep  change  in  loca l  hea t  f lux .  S ince  we  a re  p r imar i ly  in t e res t ed  

in  eva lua t ing  the  wa l l  t empera tu re  va r i a t ion ,  the  quan t i ty  des i r ed  i s  

the  d imens ion less  t empera tu re  a t  the  wa l l  6 (0 ,T)  which  can  be  r ead i ly  

fo rmed  f rom (25)  by  l e t t ing  T\  =  0 .  Thus ,  fo r  d i sks  in i t i a l ly  a t  

ad iaba t i c  wa l l  t empera tu re ,  t he  wa l l  t empera tu re  a s  a  func t ion  d imens ion less  

t ime  i s :  

1 9  



T CO = Tra +^[R2S(0) + Q(0)1 + 6(0,T) 
W p J 

(26.a) 

and for disks initially at uniform temperature, the same can be written: 

/-V JN 1 /2 >(J 

VT) = Tiw+w • V 6(0'T) (26-b) 

The values of S(0) and Q(0) were obtained from the numerical integration 

of (12) and (13) by electronic computer, the Univac 1107. Their value 

for Prandtl numbers ranging from 0.001 to 100 and suction parameter 

ranging from -1.2 to -4.0 were obtained. 

Inasmuch (25) is valid for the entire time domain, the corresponding 

steady state solution at the wall can be obtained by simply letting 

T -• ro, and T| -• 0. The result is 

T + li > 0 and a ̂  ao2pi2 

, a1/2 > 
»,«» & r - * 2 -  ifV 

ss , . » . .  - ,  -  - J  

" *1 - V + 3 
30 

2 3 
for -̂ + > 0 and CL = or 

'"2 • • *.», 

/ dl/2 
Y (0) (- + 09 + 

, r¥, <°> 2 ^ ao 2 V1 
(27.b) 
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2 .  2  for — + Yj < 0 and & / aQ 

2 .  2  
a ^ a 0 A 2  

4 (0) 
0..(O) = 4-

a ^ o A i :  

SS , 1 / 2  

* 2 ( 0 )  

+ ~T7T 

* 3 ( 0 )  

+ 7U2 
(27.c) 

a " aoAL a " a0^2 a " a0A3 

b 2  a 3  ^  ~  2 . 2  for — + — < 0 and Ct = a_ A, (which automatically implies 
4 27 0 " 

a ' « o V -  a * « o V >  

$ (0) §.(0) $.(0) 
9(0) = -^72 + "4/2 +  "172 ( 2 7 'd )  

20. a - 3 ^2 CL - aQAj 

For the cases a = aQ2J^2 or a = aQ2Aj2 see footnote on page 15 

for T~ + 77 = 0 and a ^ 3o2aI2, a ~ ao2ji2 

•0^(0) X2(0) x3 ( 0 )  ( 2 7  e )  

" S S ( 0 ) = ( ? 1 / 2 -  W ^ +  a 1 / 2  -  a o A 2  +  a 1 7 2  -  a 0 A i  
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For  +  f ?  = 0  and  2 2 
a  = a 0 Ai  

s s  

aoV°> 
CO) =7^2  

x2(0) 

(?"! - w a 1 / 2  
a  "  a 0^2 

^ (O)  
+ 172 2 a  

(27 .  f )  

We have  no t  worked  the  s teady  s ta te  case  cor responding  to  Equat ion  25 .g  

In  the  above  equa t ions ,  the  express ions  ^ n (0)»  a n c l  

are  ob ta ined  by  l e t t ing  T|  =  0  in  the  equa t ions  def in ing  Y ("H)  

•  n (Tl )  and  X n (Tl ) .  

For  very  la rge  suc t ion ,  i . e . ,  a  0 
the  foregoing  resu l t s  

s impl i fy  to :  

l im 9  (0)  =  -~ -_ M  ss  a„P a Q  -  0 0  Or 
(28)  

The numer ica l  va lues  of  0  (0)  as  eva lua ted  f rom (27)  a re  l i s ted  ss  
in  Table  1  for  the  severa l  Prandt l  numbers  and  suc t ion  parameter  shown.  

For  compar i son  purposes ,  we  have  inc luded  the  resu l t s  for  P^_ =  0 .7  

obta ined  f rom the  re la t ion  

ss  
(0 )  =  -

0 ' (0) 
ss  

(Pr ime ind ica tes  f i r s t  
der iva t ive  wi th  respec t  to  r ] )  

in  which  the  va lues  of  0  ' (0 )  a re  taken  f rom the  resu l t s  repor ted  by  
s  s  

Spar row and  Gregg  [11] .  The  maximum d iscrepancy  i s  about  2% fo r  a Q  = 1 .2  

and  the  agreement  i s  progress ive ly  be t te r  for  la rge  va lues  of  aQ.  I t  

may a l so  be  shown tha t  i f  one  uses  the  l imi t ing  express ion  (28) ,  the  

e r ror  remains  wi th in  a  few per  cen t  when aQ >  2 .  
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Fina l ly ,  we no te  tha t  when d i ss ipa t ive  e f fec t s  a re  negl ig ib le ,  the  

s teady  wal l  t empera ture  under  the  l imi t ing  condi t ion  of  a Q  0 0  becomes  

% / 'V\ 1 / 2  l  q w  
U m  TW,SS =  T°° +  V W* P a = T°° + c p |W I (29) 

a  - 00 r  0  PM  1  W 1  

a o 

The  above  resu l t s  a re  to  be  expec ted  on  phys ica l  grounds  because ,  

when the  suc t ion  i s  very  la rge ,  the  hea t  t ransfer  a t  the  wal l  would  be  

comple te ly  domina ted  by  the  convec t ive  process .  The  e f fec t  of  f lu id  

in jec t ion  (a^  <  0)  i s  to  decrease  the  hea t  t ransfer  by  b lanke t ing  the  

sur face  wi th  the  in jec t ing  f lu id  of  the  same tempera ture  as  T^ .  

On the  o ther  hand ,  suc t ion  increases  hea t  t ransfer ,  because  f lu id  a t  

f ree  s t ream tempera ture  i s  e f fec t ive ly  brought  to  the  d i sk  sur face .  
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4.0  Numerica l  Resul ts  and Discuss ion 

The values  of  the  roots  of  the  cubic  equat ion in  the  denominator  of  

K a re  tabula ted  in  Table  I I I  for  var ious  values  of  the  Prandt l  number  

and the  b lowing parameter .  

The va lues  of  S(0)  and Q(0)  obta ined f rom (12)  and (13)  a re  

tabula ted  in  Table  I I  for  the  range of  the  Prandt l  number  and the  blowing 

parameter  as  shown.  I t  i s  seen f rom Table  I I  that  the  Prandt l  number  

and the  blowing parameter  has  l i t t le  effec t  on the  values  of  S(0) ,  which 

has  a lmost  a  constant  value  of  0 .5  in  the  range of  P^ and pos i t ive  a Q  

under  considera t ion.  By contras t ,  Q(0)  i s  a  rapidly  varying funct ion of  

P^ and pos i t ive  a Q .  I t  decreases  wi th  increas ing P^ as  wel l  as  a ( ) .  

The ra t io  of  the  d imensionless  temperature  a t  the  wal l ,  0(O,T)  /  0  (0)  ,  
UD t /  S S  

i s  shown p lo t ted  agains t  T =  /  P^ in  Fig .  2  to  7 for  the  severa l  

Prandt l  numbers  indica ted .  I f  one replots  the  9(0 ,T) /  0  (0)  agains t  s  s  
2 2 2 
P r  T (  = a Q P^t )  the  data  can,  for  a l l  pract ica l  purposes ,  be  brought  

to  l ie  on a  s ingle  curve  for  Prandt l  number  ranging f rom 0 .1  to  100 and 

a^  f rom 1 .5  to  4 .0 .  This  i s  i l lus t ra ted  in  Fig .  8 .  This  resul t  indica tes  

that  for  suff ic ient ly  large  suct ion the  response  t ime var ies  inverse ly  

wi th  the  Prandt l  number ,  the  angular  ve loci ty  and the  second power  of  the  

suct ion parameter .  The same conclus ion has  a lso  been drawn for  the  case  

of  a  s tep  change in  wal l  temperature  [9] .  Due to  the  l inear i ty  of  the  

energy equat ion,  the  previous  resul ts  can be  readi ly  genera l ized for  any 

arbi t rary  wal l  heat  f lux  us ing the  Duhamel ' s  theorem.  
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5.0 A Special Case of Compressible Flow 

For an ideal gas of constant Prandtl number, exhibiting a linear 

variation of viscosity with temperature, Ostrach and Thornton [16] has 

shown that, if dissipative effects can be ignored, the steady heat transfer 

solution for the compressible flow over a rotating disk can be obtained 

from the corresponding incompressible solutions. It is natural to examine 

if the same could be stated for the unsteady heat transfer processes. 

Using the same transformations for both the dependent and independent 

variables in the governing conservation equations as those given in [16], 

except for difference noted below, one may show that the answer to the 

equation posed above is affirmative. Now the velocity component normal 

to the disk is given by 

« = p f e [ ( 4 «  V J 1 / 2  H O T )  -  5 T  i 0  ̂  d z ]  

Where the subscript 03 refers to the free stream condition and A is 

the proportionality constant in the linear viscosity - temperature relation, i.e. 

With the transformation stated above, the solution obtained for the 

incompressible case, may be directly applied for the compressible case. 

Expressions given for the transient wall temperature for the incompressible 

case remain valid provided that all properties are replaced by wall values. 
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Table 2 
Values of S(0) 

ao p 
r 

1.2 1.5 2.0 2.5 3.0 4.0 

0.01 0.4466 0.4657 0.4851 0.4939 * * 

0.1 0.4509 0.4720 0.4890 0.4952 0.4975 0.4992 

0.7 0.4894 0.4942 0.4980 0.4992 0.4995 0.4998 

1.00 0.4991 0.4998 0.5002 0.5001 0.5000 0.5000 

10.0 0.5441 0.5228 0.5087 0.5038 0.5017 0.5005 

100.0 0.5503 0.5258 0.5097 0.5042 * * 

* 
s failed to converge 

Values of Q(0) 

a0 

1.2 1.5 2.0 2.5 3.0 4.0 

0.01 9633 7106 4560 3093 * •k 

0.1 96.9393 75.1505 48.3896 32.4440 22.9324 13.0515 

0.7 2.9213 2.1302 1.3088 0.8624 0.6055 0.3431 

1.0 1.6548 1.1874 0.7199 0.4718 0.3307 0.1872 

10.0 0.1159 0.0660 0.0329 0.0200 0.1362x1 I1 0.756xl52 

100.0 0.4598x10 1 0.1924x10 1 0.5911x10 2 0.2594x1 52 * * 

s failed to converge 
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