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Abstract

An analysis is made for the unsteady heat-transfer, due

dependent wall heat flux, from an infinite disk, rotating in still fluid

with large suction., The procedure begins with a consideration of the
thermal response caused by a step change in the local wall heat flux
It is found that the response time varies inversely with the Prandtl
number, the angular velocity and the second power of the suction parameter,
Incompressible flow with dissipation is considered first, For an
ideal gas with constant Prandtl number whose viscosity varies linearly
with temperature, the incompressible results may be, if dissipative effect
can be ignored, directly applied provided that all properties in the

solution are replaced by their wall values,




Nomenclature

’

function defined by (6)

ied o,
thermal conductivity, J/m sec K

parameter in Laplace transform
2

static pressure, n/m"

Prandt]l number, dimensionless

5
Wall surface heat flux, J/sec m"

function defined in (11) or (15)

radial coordinate for rotating disk,

dimensionless radial coordinate, r(=)

function defined in (11) or (15)

time, sec.

O,,
temperature, K

dimensionless

1/2

velocity parallel to the surface of a disk, m/sec

velocity in ® direction,

velocity normal to the surface of a disk,




coordinate measuring distance normal to a disk, m

| 2
dimensionless coordinate N = ZQ:)l/~
dimensionless temperature defined by (11) or (15)
viscosity, kg/m sec

2

kinematic viscosity, m /sec

density, kg/m3

Ut
dimensionless time, F~
r

angular velocity, rad/sec
the angular position

Heaviside unit operator; 0 for & “ =1 for t~> 0

Subscripts

initial conditions
steady state
condition at wall surface

free stream condition
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1.0 Introduction

Unsteady heat transfer due to a time prescribed wall temperature or
heat flux has been a subject of interest for many years., Sparrow and
Gregg [1,2] investigated the laminar forced convection heat transfer
from a compressible fluid to a flat plate with uniform, but time dependent,
surface temperature, Cess [3] and Riley [4] examined the same problem
for incompressible flow, Goodman [5] and Adams and Gebhart [6] have
employed the heat balance integral technique to obtain approximate solutions
for the flat plate problem, Sparrow [7] reported an approximate analysis
for the unsteady, two dimensional stagnation point heat transfer., He
employed the integral technique for which a third degree polynomial was
chosen for the unsteady temperature profile, Subsequently Chao and
Jeng [8] published an analysis for the unsteady heat transfer at a
two-dimensional and axisymmetrical front stagnation point due to an
arbitrarily prescribed wall temperature or heat flux, The analysis was
extended by Jeng [9] to a three-dimensional magnetohydrodynamic stagnation
point flow with simultaneous suction or blowing. The heat transfer from
rotating bodies is of technological interest and has attracted the attention
of several researchers., The steady heat transfer from a rotating disk

was first studied by Millsaps and Pohlhausen [10] and later by Sparrow

and Gregg [11] who also investigated the effect of blowing and suction [12].

Cess and Sparrow [13] were probably the first to analyze the unsteady
heat transfer from a rotating disk. The problem was later re-examined

by Jeng [9] who also included the effects of mass transfer. Two
asymptotic solutions, respectively valid for small and large times, are
found and satisfactorily joined to cover a wide range of Prandtl numbers,
When the suction velocity becomes sufficiently large, a closed-form
solution can be obtained. The analysis for this case was also made in
[9] but for a step change in wall temperature, In the present report,
we investigate the same unsteady heat transfer problem but with the step
change in wall heat flux., The method of solution adopted in the present
analysis closely parallels to that used in [9] but the analysis becomes
more complicated, We first consider a case of incompressible flow. A

solution describing the entire time history of the non-steady temperature




field has been obtained, For an ideal gas with constant Prandtl number

whose viscosity varies linearly with temperature, it is shown that the

incompressible result may be directly applicable to compressible case.




2.0 Governing Equations for Incompressible Flow

Consider an infinite disk rotating in an infinite mass of fluid
about an axis normal to its own plane and at a constant angular velocity
Fig. 1 illustrates the cylindrical coordinate (r, ¥, z) and the corresponding
velocity components (u, v, w) appropriate for the problem. From physical
considerations, one sees that the velocity and temperature field would
if the thermal condition at the disk surface is

be independent of @,

also independent of . Under the assumption of steady, incompressible

flow with constant properties, the governing equations are (with dissipation

included):

Continuity:

u

T

Momentum:

Energy:




The velocity boundary conditions are:

u(r,0) u(r,®)
v(r,0) = v(r,®)

w(r,0)

In the above, w_is the fluid velocity at the wall, Positive values

W

of v correspond to blowing, and negative values correspond to suction,
q
For time ¢t < 0, there will be a steady temperature field in the
fluid due to frictional dissipation, 1Its precise nature would depend
on conditions prevailing in the disk. As an example, one may consider
a disk of infinite thermal conductivity with the consequence that its
temperature rise due to the frictional dissipation is uniform., On the
other hand, the disk may have large resistance to heat flow in the radial
direction, This situation contrasts with that for flow over a flat
plate, With these observations, we consider two cases of simple initial

and boundary conditions for the temperature field as follows:
Case i For disks initially at adiabatic wall temperature,

T(zr.2.0) =% (r,z)

121

3 :ffr Olt! = %E 1(t)

T(r.0,0)i"= %

©

2(r.00) . 0

)Z

In the above Ti’l (r,z) represents the initial temperature distribution
in the fluid consistent with an adiabatic wall temperature Ta“' Here the
w

problem is to examine the transient response of the wall temperature due

to a step change in wall heat flux,




Case (ii) For disks initially of uniform wall temperature

T(x.,2,0) = Ti’z(r,z)

! q. r 7
T(T';O,t) - 1&;(52 ; 1_1( [ a,(0) - q(r) | 1(t)

T(r,uit) =T,

T:(x,0,0) = Tiw = constant

Where qiw(r) is the wall flux due to frictional dissipation.

The initial temperature field T, , 1is clearly different from that in

g &

Case (i). It is to be noted that for a disk of uniform temperature, the
wall flux Y is not uniform, Here we are examining the transient
response of the wall temperature due to a uniform, step change of the
local wall flux. While qw(r) and qiw(r) both vary with r, their

difference is a constant being independent of the radius,

3.0 Method of Solution

The solution of (1), (2), and (3) with the initial and the boundary
conditions (4) and (5) for moderate suction is given in [9]. 1In
this report we consider large values of suction., Physical considerations

suggest expressing the velocity components u and v as:

F(M)

b2

z —

wherein

It follows, then, from the continuity requirement that

1/2

V) H(M)
Upon introducing the foregoing expressions for the velocity components
into the momentum equations and observing that the pressure must necessarily

approach a constant value at infinity, one is led to the conclusion that P

is independent of r and may be expressed as

P(M)




Substituting (6.a, b, and ¢) into (1) and (2.a, b, and c¢) yields,

’ ’

after some rearrangement,

G" = HG' - H'G

2 2

Y

ittt -% (H')® + 26°

W
W

G(0) = H(O) = « @, ™ et
® V)

0
G(*) H'(®)

In the foregoing, the prime denotes differentiation with respect
0T a is the mass transfer parameter, Numerical solutions of the
above set of equations for an impervious wall, i.e, a_ 0, were
given by Cochran [14]. Stuart presented an analytical solution for
large suction., His result will be used later for the integration of the
unsteady energy equation in the present analysis,

Sparrow and Gregg [11] reported computer results for a_ ranging
from -5 to &,

To transform the energy equation, we further let

1/2
i N3/

and obtain

x ~ '3 ’ 1 '3 » » »
A fourth equation which governs the pressure distribution in the
fluid is not of our concern and is thus omitted.




We shall first consider the case for the adiabatic wall temperature
with initial and boundary conditions prescribed by (5.a). For convenience,

we introduce a dimensionless temperature defined by

The functions ' om,T respectively, satisfy

g g e
-2 [ @Y+ @)

_;_QQL;l = .1(T), (=,T)

For disks initially at the uniform wall temperature, T, subjected
1w

to a uniform, step change in wall flux, we let

T-T,

1/2 Aq

2 T

Here Aq_ < q“(R) - qiw(R) which is a constant, The functions $§ and
Q, respectively, satisfy (12.,a) and (13.a) but with boundary conditions

altered to

$(0) =0 5(=)

U} = 25 02 < 1)




It is easy to show that of Eqn, 15 satisfies Eqn. 14.,a with initial
and boundary conditions of Eqn., 14.b,
Finally, we note that for negligible dissipation the fluid will

initially have a uniform temperature T,

- Which is also the wall temperature

prior to any thermal disturbance, If we now re-define ©(M,T) according to

o

i QN2
k \w/

it is easy to demonstrate that Y again satisfies (14.,a) with initial
and boundary conditions (14.b).

To integrate (14.a) with (14.,b) for large values of the suction
parameter (say S 1.5 or greater), we employ the Stuart's solution [15]
for the velocity field in inverse powers of a . In particular, the H
function is given as,

AL
H(S) b,

wherein

Application of Laplace transform to (l4.,a) with initial and

boundary conditions (14.b) yields

sk
8 = pf
Pr o Bk P

8 (0) = -

and 9(®) = 0., We now introduce a new variable

1
P

defined by




and obtain from (18)

YH -+ 4(_p ¢

aP - - -
- 5= Y(0) + a ¥'(0) = -1, (=) =0

In (18) and (20) the prime denotes differentiation with respect
Transforming the independent variable from T to £ and making use of

(17), for large a_, we arrive at,

wherein

The solution of (21) satisfying the boundary condition

aP -

- —%—E Y(0) + a Y'(0) ==1 and Y(®) = 0 may be appropriately represented

by a series of the form




5 C2(1 Lot C())

+€,C,(5+ 6Cy) + 4C,(1+2C)) (1 +¢
1IZ(1¥2Cy) (L +Cy (3 +3Cy

())

The latter are obtained by substituting (22) into (21) and equating
_-(C0 + 1)8 O-(CO + 2)S

coefficients of terms like e

: 1 1 : ] Sk 42 -
Since Cl =0 (1—5), C2 0 (j)' but C; - 0 (_—H.)’ it is a valid
é & a

0 0 0

’

2

approximation to ignore terms involving Cl", +

Accordingly, after substituting the values of

written as

to zero,

(Note denominator only continued tc

this




and thus (22)

<

may be approximated by

C >

2

TR S
o " S%\3"T * °
Ay

) (Cy - Ay (C, - A3)

where Alz A, and A3 are the three roots of the cubic equation in the

denominator of (23). These roots are characterized by the determinant
of this cubic equation, For convenience,

let
e | I
2 2

1 C

= —— _Z . (1 . % s B
2 4 4 \ 1

1 2 3 .
g & b A $ 9
a 3 K}q Py J Py 9qpl 27

Then if one real and two complex conjugate roots will
be obtained as follows;

4]
3

P
1
V-3 - 3

In the above, dl is the real root and bz is the real part and

the
Pq is the imaginary part of the two conjugate roots,




three unequal real roots will be obtained as follows:

v

-a

A=, 38
s &

2

b2 13
If F g e %7 = 0, three real roots will be obtained but at least two
are equal,
In view of the foregoing analysis, we substitute (24) into (19);

revert back to the 7T wvariable, consistently ignore terms of small order

of magnitude, take the inverse transform and obtain for

b

4

the dimensionless temperature function as:

/

= ' 3
BT e =T\

(continued next page)




» obtain




The quantity in the bracket after 2Re in the equation (25.b) is

same as that in equation (25.a). In the above the symbols

’

and ?2 are defined as:

0 and for

’

the dimensionless temperature

(continued next page)
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b 8. A -

also for + and X a which automatic:

hr "2 e o4
2

- a 2 i L F : th t per
w.rF anc w 7 ’ ne emperature
0o 4 -

expressed as:

(equation continued cn

ncxt page)

)
(But & 7 a -‘\1_)‘ interchange ¢
)

Similary rule may be applied when




the










Where X

Eq. (25) represents
to a step change
in evaluating the wall temperature

+h

the dimensionless temperature

formed from (25) by letting

vall temperature,




v 2 -
rk_(‘) T, + -C—pLR $(0) + Q(0) | + 8(0,T)

ind for disks initially at uniform temperature, the same

R 52‘_3(1..
SgtN\a/ - & 7007

values of S(0) and Q(0) were obtained from the numerical integration

(12) and (13) by electronic computer, the Univac 1107. Their value

Prandtl numbers ranging from O0.001 to 100 and suction parameter
ranging from -1.2 to -4.0 were obtained.

Inasmuch (25) is valid for the entire time domain, the corresponding
steady state solution at the wall can be obtained by simply letting

Pl and 1T 2 0. The result

’




footnote on page 15

For the cases




od the steady state case corresponding to Equation

In the above equations

are obtained by letting

E (M) and X_(M).




weé note that

teady wall temperature under

q

W

"k \u/

The above results are to be cted

the suction is very large, tli heat transfer

mpletely dominated by the convecti
injectio (aU < 0) is to decrease
surface with the injecting fluid of

On the other hand, suction increasc

free stream temperature

m physical

grounds




Numerical Results and

Discussion

The values of the

are tabulated in Table

and the blowing parameter,

The values of

$(0)
IT

ulated in Table for

parameter as shown, It

and the blowing parameter

as almost a constant

under consideration,

P and
The

is shown

plotted against

andtl numbers indicated.

00 L  [“
sufficientl
Prandtl numl
)N parameter

i step change ir

roots

of the cubic equation in the

IIT for various values of the

and Q(0) obtained from

2)
the

range Prandtl ber

II that

has

value

denominator

Prandtl

and

and

Prandt]




A Special Case of Compressible Flow

For an ideal gas of constant Prandtl number, exl

rariation of viscosity with temperature, Ostrach

shown that, if dissipative effects
solution for the compressible flow over a rotating di

from the corresponding incompressible solutions,

{f the same could be stated for the unsteady heat transf

Using the same transformations for both the dependent
variables in the governing conservation equations

t for difference noted belo
equation posed above is affirmative

to the disk is given by

Where the subscript

the proportionality

h the transformation
mpressible case,
Expressions given for

remain valid provic
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Values

Table 2

of S(0)

a

0

2.0 .5
0.46 .4851 ). 4939 * i ,
0.1 0.4509 0.4720 0.4890 0.4952 0.4975 | 0.4992
1 | )
0.7 0.4894 0.4942 0.4980 0.4992 | 0.4995 | 0.4998
1.00 0.4991 0.4998 0.5002 0.5001 0.5000 | 0.5000
10,0 0.5441 0.5228 0.5087 0.5038 0.5017 | 0.5005
! |
100,0 0.5503 0.5258 0.5097 0.5042 * |
8 failed to converge
Values of Q(0)
;1”
1.2 1.5 I 2.0 5 3
i ST v L A
0.01 9633 | 7106 | 4560 | 3093
] 1
0.1 96.9393 75.1505 | 48.3896 32,4440 22.93 13,0515
0.7 29213 | 2.1302 | 1.3088 | 0.8624 0.6055 0.3431
.0 1.6548 | 1.1874 | 0.7199 | 0.4718 ).33 18
| | | 1 -
10.0 0.1159 | 0.0660 | 0.0329 | 0.0200 ).1362x19" 0.756x]
.0 0.4598x161 0_1924x161 0.5911x10° 0.2594x18°
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