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PART |

MICROWAVE PROPAGATION IN INHOMOGENEOUS MEDIA

A. Introduction

In two previous reporfs] ’” on wave propagation in plasma type media, the
problem of microwave propagation in plasma adjoining a conducting surface has been
described in detail. In this study a new perturbation technique for handling inhomo-
geneous permittivity gradients was derived as described fully in Reference 1. The details
of this work will not be given here in this final report since the earlier reporfs]’2 are
self-contained. A brief summary of results obtained in this phase of the study of wave

propagation in plasma will be given as it pertains to further results which are to be

described in Part 11,

B. Summary of Earlier Results

A new method was developed for treating wave propagation in inhomogeneous
media next to a conducting surface containing a radiating element. The method of
solution is analogous to the partial wave technique which is often used in the quantum
mechanical treatment of particle scattering. The analysis leads to an integral recursion
relation where no restrictions are necessary with regard to the thickness of the medium
layer. More general application of the same techniques may be made to the study of
transmission and scattering properties of similar configurations with a propagating wave
incident from infinity.

In the work reporfed] da three symmetries have been considered using analytical
methods. The first was an infinite plasma-clad conducting plane with periodic electric
or magnetic sources on the surface. The second, an infinite plasma-clad right circular
cylinder with a source parallel to the symmetry axis or with periodic circumferential
sources. The third case was a plasma-clad conducting sphere with a circumferential

antenna. In each case the permittivity may be allowed to vary arbitrarily about a
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constant value in a direction perpendicular to the conducting surface. Details for the
planar case with a strip antenna were used to illustrate the method.

Further extension of this work was reporTecjz’4 where an array of line sources
was treated by the same technique. Furthermore, a computer program has been
described in Reference 2 which allows the computation of the complex phase shifts to
be made for an arbitrary perpendicular variation of the permittivity. Calculations
were made of the attenuation and the radiation pattern of an array radiating into a
lossy plasma medium.

In summary a method of partial waves for analyzing wave propagation in in-
homogeneous media has been developed in this study and has been applied to problems
of plasma-clad conductors of different symmetries. Detailed calculations for specific
problems have been made whereby the modified radiation patterns and the attenuation
due to a plasma type medium were calculated. The utility of the technique for other
similar type problems has been indicated.

In the following section a further extension of the methods developed hereto-
fore will be treated, the extension being made to include both inhomogeneous and

nonlinear properties of the plasma medium.
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PART 1l

PROPAGATION IN NONLINEAR INHOMOGENEOUS MEDIA

A. Perturbation Treatment of Microwaves in Inhomogeneous and Nonlinear Media

1. Introduction

A perturbation technique for treating microwave propagation in inhomo-
geneous media adjoining a conducting surface has been developed in earlier work. -3
In the following discussion this technique will be presented in considerable detail
without some of the restrictions previously noted and it will be extended to include
field-dependent (nonlinear)perturbations.

The electric or magnetic field FnI inside the inhomogeneous or nonlinear medium
(gi <e< gé) is found in terms of an approximate solution ?nl and a perturbation term
An(g), i.e.,

| = | 8(e)
F (e) =F (g)e . (1

The actual and approximate fields Fn and ?r:I outside the medium in free space
(e > ge) must have the same functional forms and can only be different by a constant

factor,

S F b e )

The fields must be continuous at the boundary :‘e so that An(€ e) = Aon

A knowledge
of A(=e) then enables one to predict the complete properties of the radiation field
and it is this quantity that the perturbation method provides. The discussion will be
held to the radiation problem and the restrictions given by (6) through (9), Reference

1, are no longer necessary.




==

2. |Integration of the Differential Equations

From (12) of Reference 1 the approximate and exact fields must obey the

relation
v L n - f F o & e
Lyn——g Yn d‘-t] -‘g] ('O $) )'n Yndg (3)
where
l r f‘E -
= |
y F exp 5 X] 1 PR er(r)] df“ (4)

; = F exp'%‘ x][n,f,eo]df:‘ (5)

n n L

The permittivity er(E) of the medium can be a function of position and of the absolute
value of the field intensity.

Substituting from (4) and (5) into (3),

Uk AL - ¢
G(t) LFn e ks Fn i Fn Fn (x][n, g, GO] = X][n, g, Gr(‘-)])_! )
r82 | gl
= (# - @ F F G(&)de (6)
W C.I O n n
where
~ ] ’\E -—
G(t) = exp '_§ J (x] kn, b, ec] + X, [n, t, er(t)]) df_' (7)
Now choose ¢, =t and &, =t (arbitrary) and note that since & (¢) =2° ,
2 e ] n n
oy dF: : d?J_
-Fn de Fn de |, =0, ©)




(6) becomes

dF | dF |
n

=S | "' n ! - . . .
[Fn _d_i-- Fn-E—-z- Fn Fn (x][n, £, eOI -x][n, g, Cr(:)])

o
(9)
rrie 1

='6']Z?)ug (s_-5)F ! G()de +7{Fnl P G(E) byl £ e ] =), 8, € (OO1) f

Ee

which can be written in the form

2+ F ! a(e) +B(E) =0

and the general solution to this first-order differential equation is




" 3

The constant of integration C is evaluated from one of the following boundary
conditions on the conductor surface:

Case 1: Fn represents an E field

Case |l: Fn represents an H field

an' ] an'
e (t.) (d= ) g ( de )

) | a |

Fn as an Electric Field

For Case |,

A(e) E l .
— Z (19)
Plo) B leg

The left-hand side of (19) is evaluated at % and terms rearranged so that

-s)E'En' G(e) dt |.

n




Now define 6(¢)

P :
" Ple) [1+6()]

H7(e) [1 +6(e)] de

This is an exact relationship between the actual and approximate fields, as expressed
through the variable 6(¢).

At this point 6(t) and (i*o - f)/',o are restricted to values much smaller than
one so that to first order the integral over the product of these functions may be

neglected. ©(t) now represents a perturbation on the original system and

[ 5 - ) () de

Ee
>

- AdS e e B -
'n(“e) PZEi) PR e)] ]

If X]fn, € ecI = X][n, 6o er(Ee)], then A(‘,e) =0 and (23) assumes a

simplified form.
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4, Fn as a Magnetic Field

For Case I,

] & de' rrée
cy=/ ren L %

I a

e (¢.)
1 b ]
+WE—5{ . r(;i) (ﬁ; dr

5H'
n

= |
A G(e) dt

The left-hand side of (27) is evaluated at b and the resultant terms can be

rearranged to yield




Defining

H

(28) becomes
3

g
e dtt ey _ () [1+6E)]de +PE) [ (¢ - 5)Te) ot
e. (8" Jg' o ooy (50

r‘ge d

e J, ﬂ—’)

(30)

This is again an exact relationship. 6(¢) and ¢ - f)/v‘o are again assumed much

smaller than one so that the integral over their producf can be neglected:

‘e de' . = r‘:e B
J' °= Jr| ; £) dt + P(¢) Jﬁi (3_- §T'(e) de
o) = e ‘

e

Ce

. fe de'
5 Ale,) + Ale,) j T




P(ee) e (¢.)

9 = = 3
An - A.n(E,e) —E(-:i—)-TG (e,

If X.[n, e, €] =X,[n, e, e(e )], then A(t ) =0 and (32) takes on the
1 a 1 e’ r’e e

simplified form used in References 1 and 2 .

5. Inhomogeneous Plasma Sheaths
]
The functions X] and 3 are known functions of cr(&) and € which for

a plasma are in turn functions of the ionization density n and collision frequency v

of the medium:

(33)

ng and v, are the averaged values that lead to the approximate solution Fn . The

field perturbation ‘,‘no is a function of the difference between n(g¢) and Ny v(E)

and v, integrated over the sheath. The only restrictions on er(‘,) are that

B <) & <<l
(o] O n

6. Nonlinear Perturbations in a Plasma
The same perturbation technique can also be applied to study nonlinear
interactions in a plasma sheath. This nonlinear "self-modulation" occurs because
the effective collision frequency is a function of the field intensity for strong fields.

Ginzbu rgs demonstrates that

() fTe

e

v = V(g) v’T (34)

where V' is the modified collision frequency, v the small-field value and Te and




e

T are the electron and ion temperatures in the plasma. The equipartition of energy

requires that Te =T when E is negligible.

For w >> v (the high frequency limit),

2,212
-T:————e'E|2 (35)
3mk&w

k being the Boltzman constant and & the average relative fraction of energy imparted
by an electron to a heavy particle in one collision. Combining (34) and (35), one

obtain

¢ |E|
U hE
3mkT 8w

] (36)

The approximate (linear permittivity €, is then perturbed according to (33), where

(36) is the modified collision frequency.

B. Effect of Field Dependent Conductivity on Radiation Through a Plasma

1. Introduction

In the problems considered below, the microwave source is pictured as an
antenna on the surface of a missile, and it is desired to find how the radiation fields
on this antenna are affected by the plasma sheath that coats it.

In principle one could combine appropriate boundary conditions with an
adequate description of the plasma and obtain a general solution to any problem
from Maxwell's equations. However, this approach turns out to be mathematically
intractable and various approximations must be introduced in any analysis. These
approximations lead to a system model that includes the reentry vehicle itself, the

surrounding p lasma sheath and various microwave sources on the vehicle (Figure 1).
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1.1 The vehicle shape is of prime importance in determining the geometrical

symmetry of the model. High degrees of symmetry are required in order to reduce

the vector propagation equations for the electromagnetic wave to uncoup led scalar
equations. Typical vehicle shapes that can be used are planes and cylinders (Figure 2).
Once the geometry has been established the vehicle surface is usually assumed to be

a perfect conductor (the conductivity ¢ = ).

1.2 The sheath itself must be specified both as to shape and as to electrical
properties. In order to simplify the vector wave equations as described above, the
sheath must be symmetrically placed adjoining the conductor.

The most common treatment of the electrical properties of the sheath is ob-
tained by considering the plasma to be a free-space region on which a current density
J (due to the charged particles) has been superimposed. A phenomenological collision
frequency v is introduced to take care of all the plasma collision and loss processes.

The most importanc current term arises from electron motion, since the average ion

velocities are 1/1860 of the average electron velocities. For a plasma of the type

described above

(37)

where N is the electron density and w the microwave source frequency. In its

simplest form the sheath is assumed linear (v is not a function of the field intensities),
isotropic (o does not depend on the direction of propagation, only on the location in
space), and homogeneous (v and N are constants independent of location in space);
o is then a scalar constant. In general the effective permittivity of a plasma is related

to the conductivity by the equation

so that @7) serves to completely specify the plasma of interest.
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1.3 The sources must be symmetrically placed with respect to the vehicle
and the sheath, and are usually long constant-phase apertures or short multipole
antennas. In this paper electric and magnetic constant-phase apertures will be con-
sidered, with emphasis on the latter since such magnetic line source (i.e., a very
narrow source) can be experimentally simulated by operating a slotted waveguide
antenna in the TEIO mode near cutoff. In most studies the source fields are assumed
to be independent of the surrounding plasma, an approximation that grows success-
ively better as the source narrows.

Once the above model has been formulated, the attenuation and phase shift
due to the plasma may be computed and comparisons made between theory and experi-
ment. As might be anticipated from the extreme nature of the restrictions, the theo-
retical calculations are often in poor agreement with the experimental ones. In order
to improve the correlation, various perturbation techniques can be applied to modify
some of the general restrictions. Sometimes the modified model may lead to more

physically-observed results.

2. Perturbation of the Sheath Properties

2.1 Inhomogeneous Plasma. A perturbation method has been described in

prior work for the study of microwave propagation in inhomogeneous plasma adjoining

A - ]
a conducting surface that contains a microwave source, where three symmetries can

be considered. The first is an infinite plasma-clad conducting plane with periodic
antennas on the surface. The second is an infinite plasma-clad right circular cylinder
with a source parallel to the symmetry axis Figure 3) or with periodic circumferential
sources. The third case is a plasma-clad conducting sphere with a circumferential
antenna. For each of these problems the permittivity e may only vary in a direction
perpendicular to the surface (in general, both N and v will be functions of position

in the sheath). The case shown in Figure 3 is considered here.
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The total field is represented by its Fourier series

+m .
mB

Fp,) = 3, F (p)e (39)

m==Q0

where Fm is the miD Fourier component of an electric field E or magnetic field H,

p is the coordinate normal to the surface and the constant phase source is in the z
direction.
The differential equation that describes the wave propagation in the inhomo-

geneous medium may be written

o2F dF

m : m

| (R ek | - 40
:;7' T x][mr P, Gr(P)A dp L xz[ml P Cr(p)n Fm 0 ( )
Using the perturbation method referenced above, the field F_ can be found in terms

of an approximate known field _Fm corresponding to a homogeneous sheath and a

correction ferm A
m

(41)

The homogeneous sheath with er(p) M- constant is the "zero-order" solution,
and the perturbation method provide a first order correction term to 4 . The results
are valid when the functions X] and X2 for the actual permittivity er(p) and the
functions )_(] and 5(_2 for the approximate permittivity e, are first-order approxi=-
mations to each other.

The m = 0 Fourier component FO is found to be of particular interest, having
no angular dependence. Also, the modification in the m = 0 term due to the plasma
sheath is the same for the planar case and for the case of a large cylinder. The

complete field is given by Fc> for an electric or magntic current cylinder, and if

|F(p,6) |2 is integrated around the cylinder only the m = 0 term will be nonzero.
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2.2 Example 1. Now consider a specific example of a large conducting
cylinder with a constant phase magnetic source parallel to the cylinder axis and
on its surface (Figure 3). The requirement of a "“large" cylinder is necessary because
for simplicity the expansion

2 e vl
ACETRC P A e S

has been made for the Hankel function Ho(p). The conductivity is assumed to be of

a form consistent with experimental results

-2(p - py)/T 2(P‘Pi)
o) =—5—25 (2-De 0+ —T)

where No and v_ are the electron density and collision frequency at the conducting
o
surface p = Py and T is about the 1/3 thickness of the plasma.
The attenuation produced by the sheath in nepers is just the real part of
A
-
to be the sum of two terms, one due to the reflections and "phase-mixing" from the

Eq. 41) and on applying the perturbation method one finds this total attenuation

gradient in N and the other due to direct heating losses (Figure 4). For a zero

thickness plasma T =0 both attenuation terms are zero as they must be, and for small

2 . " 3
values of T the phase mixing term increases as T~ and the direct heating term as T

The reflection loss approaches a fixed value for thick sheaths, whereas the
heating losses continue to increase linearly. In order to find the total field pattern
and to complete the example, the other F_ terms must be computed in a similar

fashion and the results combined.

2.3 Nonlinear Interactions. The same perturbation technique used above

can also be applied to study nonlinear interactions in the sheath. This nonlinear
"self-modulation" occurs because the effective collision frequency is a function of

5
the field intensity for strong fields. Ginzburg™ demonstrates that:




(44)

where V' is the modified collision frequency, Y the small-field valve and T
e
and T are the electron and ion temperatures in the plasma. The equipartition of
energy requires that Te =T when E is negligible.
For @ >> v (the high frequency limit),
S e
|E,|°
= o
> 2, (45)
3mk Sw
k being the Boltzmann constant and & the average relative fraction of energy im=-

parted by an electron to a heavy particle in one collision. Combining (44) and

(45),

\/ o2 IE |2
! = 1 + ____..0__
A" \)o 5

3mkT 8w

and for "intermediate" field intensities

- 12
e’ [E |
v =v (1 + - )
. 6mkT 8 w
This last relation is the one that is used in subsequent analysis.
2.4 Example 2. Now consider the same m =0 term as in the problem of
Section 2.2 but allow for intermediate field intensities so that the collision frequency

is given by (47). For this model |—E_O|2 a p—] and substituting V' for , A in (43) the

field attenuation now produced by the sheath in nepers is




=21

atten (nonlinear) = atten (linear)

(1 +2—T:—) de"

] +YE"

-

—ZEII//T
e

(48)

6m25 th«)2
o

where ¢' = p' - P; s g" =p" - Py and Y is the reciprocal of P, times the free
space wave number ko. The results from (48) are shown in Figure 5 for y< 1,
where it may be noted the y =0 term (for which the nonlinearity vanishes) is
identical in shape to the direct absorption curve in Figure 4. The reflection

term is unchanged by the nonlinear interaction. It may be noted that the nonlinear
attenuation components have a larger percentage increase in value for thinner

sheaths and tend to flatten out sooner than do the linear components.

3. General Purpose of the Analytic Studies

The results above provide in themselves interesting clues into the loss
mechanism in a plasma sheath. However, the application of these results should
also be considered in light of the over-all effort being made in this field of study.
Due to the complexities involved any results that closely parallel an actual physical
problem of interest will probably be derived from a long, difficult computer program.
But establishing the validity of such numerical techniques depends to a large extent
on comparison of results with simpler analytic solutions of the kind described in this
paper. Any analytic solution that can be obtained then serves double duty, both as

a solution in itself and as a check on a more general computer program,
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THE EFFECT OF PLASMA\ PCJL:\"“L_M| i\,w NN 'vn\‘f\\_j‘v'\’/\\/t F'{QPAGA[ION

A. Introduction

In a theoretical Ffudy of microwav F agation through p|osmo there are
two basic problems both of which must be ade: ly solved in any acceptable
description of the phenomenon. These are: 1) rhe description of the electrical
properties of the medium in question, and 2) the solution of the wave equation and
description of the propagation through a medium of given properties. In the work
reported previously (References 1 and 2) only the second of these problems was
investigated, that is, methods of solving the propagation problem for a medium
whose electrical properties (complex permittivity) are specified for solution of
the equations.

In Part |l above, one phase of the first problem, that of describing the
electrical properties of the medium, has been treated. That is, in the case of
strong fields the effective collision frequency being a function of the field inten-
sity causes the effective permittivity to become modified by the change in collision
frequency The perturbation technique was exte nded to include, in a certain
approximation, such nonlinear effects

In this part of the present report another aspect of the microwave propagation

problem for plasma type medium is investigated, this particular aspect having been

ignored by most investigators in the subject though its importance has not been dis-

counted. The problem which will be studied in the following is that of determining
the contribution to the complex permittivity of an induced polarization vector due
to electronically excited atomic, ionic and molecular components of the plasma.

This problem is particularly significant for very high frequency propagation where




standard approximations for plasma permittivities become at best, somewhat dubious,
and contributions from species other than the f lectron distribution may become

important .

B. Statement of Problem

In light of the current interest in very high juency propagation through
plasma, it is necessary to investigate mor the electrical properties of the
plasma medium in frequency ranges where of d approximations begin to break
down. In calculating the complex permittivity lasma for microwave studies

one should consider, in addition to the conductivity due to the presence of free

electrons, the possibility of an appreciable plasma polarization term due to the
presence of a very large number of atoms, molecules, and ions in highly excited
states. Since electrons in atomic or molecular excited states are very weakly
bound, the resultant excited atomic or molecular system is very easily polarized

by the electric field of the incident electromagnetic wave and thus exhibits a

very large induced dipole moment. Since the frequency dependence of the resultant

polarization term in the complw» nermittivity may be quite different from the free

electron contribution, the dielectric properties of the medium may be changed

appreciably from those predicted by 1 arization terms., Thus the

question of the magnitude of a plasr in high frequency micro-

wave propagation through plasma seems to warrant some attention in order that its

possible importance in such problem:

] Plasma C

The problem as referred to above i or a realistic plasma

g 4 e R
composed of typical gases, say air ical plasma temperatures.

1

sity p of .1p_ (p_= standard
o

For the sake of discussion, let us consider air at a der s
The

atmospheric density) and in a temperature interval of 5000 to 15,000 °K

: . LD tioge ) s ¢ :
resultant plasma is very complicated in its make-up, consisting of a mixture of
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+ _+ + -
02, N2, O,N,NO, N, O, NO, and e in various molar concenfrations,<s
Mi (see Fig. 6). From the curves, the number of particles of a given species per

cubic centimeter, Ni’ is given by

3.1)

N, = 2.55x 10'? o/o, M

1
Any or all of the atomic, molecular or ionic species may exist in one of an infinite
number of excited states, where the distribution of excited states at equilibrium would
be given by the appropriate Boltzmann factor for each state. To calculate the con-
tribution to the frequency dependent permittivity of each of these components in various
excited states would involve a great deal of effort, particularly for molecular species.
The calculations are meaningful, however, since highly excited electrons become
more and more analogous to the free electron component in the plasma as the frequency
of a propagating signal is increased, and thus more important in their contribution to
the total complex permittivity.

The program which is undertaken in the following sections is not so ambitious
as to determine the effect on € of all such constituents in a model plasma, rather
we will take a much more limited approach and try to answer quantitatively the
question as to the importance of the simplest systems (the atomic species) and to
infer from the order of magnitude of the results for the simple case the importance
of the total contribution from all species and indicate the validity of the problem in

microwave studies.,

2. The Polarization Vector
The problem of describing the dielectric properties of a plasma medium
(other than the contribution from the free electron component) can be attacked on
a microscopic scale from which a macroscopic description may be derived. Looking
ot the individual elements of the plasma, each atomic, molecular or ionic component
is affected by the electric field of a propagating wave, the charge distribution of
each being distorted or "polarized" by the effective field to which it is subjected.

The result is that a dipole moment ; is induced in each particle, the moment being




15 20

Temperature - 1000° Kelvin

Equilibrium molar concentration of air of p/p =
o




(3.2)

where a is the dipole polarizability of the individual atomic or molecular species.
In general the dipole polarizability a(V) is a function of the frequency and very
strongly dependent on the state of excitation of the atomic or molecular system.
As mentioned above, the excited electron being very loosely bound, is strongly
polarized by an electric field. This leads to a very large value of a for an excited
system, and thus to a large induced dipole moment ;. Added to this is the fact
that near an absorption frequency or resonance, a(V) is very strongly frequency
dependent and in fact may become sharply spiked with an extremely high maximum,
In the problem with which we are concerned, the quantities a(V) for the
atomic and molecular states are the microscopic observable which must be deter-
mined in order to predict the dielectric properties of a plasma. If N is the number
of atomic or molecular species per unit volume, the total polarization vector P
as contributed by the species of number density N is

PN = Np = chOEUf.

For a multicomponent plasma the contributions from each species to P would add

arithmetically to give the total effective polarization vector. By noting that

.

P=c¢e X—f where X is the electric susceptibility, or with k =1 + X where K is
o

the specific inductive capacity, one can write P'= co(k - 1) E and eliminate the

fields from the equation above and get the familiar Classius-Mossotti relation for

the specific inductive capacity. That is’
(3.3)
This relation is in fact quite complicated, being temperature dependent since the

distribution of excited states depends on the temperature, and frequency dependent

since a(V) depends on the frequency of the incident wave. Of course, the complex
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permittivity € is given by the relation
€ = 1 X(w))
(w) ec( + X (w))

where o is the plasma conductivity and w is the source frequency

Summarizing, we note that aside from knowing the number densities Ni for
the plasma components in their various states, knowledge of the real part of the
macroscopic parameter € depends on knowing the microscopic quantities a, for

the various plasma components

3. The Dipole Polarizability a
On a microscopic scale one should know the distribution of excited states
of all plasma species; that is, atomic, molecular, and ionic components, and further
should know the polarizability of each in these states. With this know ledge the
macroscopic polarization vector P could be determined to a very high degree of
accuracy. The problem of calculating dipole polarizabilities a has been well
formulated for systems in the ground state and many specific examples have been
worked out which are in good agreement with (.,-.pe-ximnnf.B However, this state-
ment does not apply to such particles in excited states, nor o more complicated
molecules where calculations are very difficult
In principle, the frequency dependent polarizability tensor is given by
ay) = = a_ ' (3.5)
3 , z
In the limit as v becomes zero, a(v) becomes the usual average polarizability a,
or a(0). For any atomic or molecular system in its ground state the quantities aii(‘.)

may be determined from the oscillator strength sum rules. From time dependent

*
pertutbation theory the expression is easily shown to be

a (‘)’—’Gci3 },:'

XX

f(x)qi (e2/00)2

'Afomic units are utilized throughout this section. Unit of length is the Bohr

radius a, (.53 x 10-8 cm).
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Here f(x) ; is the oscillator strength corresponding to a transition from the state

q to the state | under the influence of x-polarized electric dipole radiation.

(3.7)

o
1 )(ea )
(o) O

|

In the expression for the oscillator strength f(x) ., the quantities .'q and ¥, are
i
the wave functions for the system in states q « | respectively. The term p_ is
X

the x component of the dipole moment, u = /{ X where e, is the charge and
X, the coordinate of the ith particle, and the summation is extended over all of the
charged particles in the system including nuclei. Similar expressions obtain for
ayy and a .

The expression (3.1) for the polarizability a(v) of an atomic or molecular
system has very limited applicability for the problem of interest to us here. First, as
it is written it applies only to systems in their ground state; secondly, the summation
is over all the infinite number of excited states and such summations can only be
approximated in practice; finally, the oscillator strengths f(x)qi are difficult to
obtain with reliable accuracy, thus placing a severe limitation on the accuracy of
calculations made from Eq. (3 7). Thus, we need a more tractable expression for
the polarizability if a large number of excited state calculations are to be made.
Before leaving this equation, let us note that Eq. (3.6) has a minimum for zero
frequency and gradually increases with v to the point where hv is equal to the
energy difference between the ground and the first excited state. Thus, for micro-
wave frequencies, a(0) represents a minimum for the frequency dependent polariz-
ability.

With the observation that the zero frequency value of a(V) represents a
minimum in this quantity for microwave frequencies we will make the following
simplifications for the purposes of calculation: 1) Calculate the static polarizability

a(0) for certain specific species in several excited states. This problem will be
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formulated in the following section in a tractable form. 2) Utilize the results at
zero frequency to infer the importance of the polarization vector in plasma for
microwave propagation (for simple atomic systems). 3) Estimate the contribution

from more complicated systems where calculations become more difficult

C. Method of Calculation

The electronic polarizability of an atomic system, whether it be neutral or
ionized, may be determined by a perturbation calculation on the Hartree-Fock wave
functions for the system in question. This problem has been formulated by Sternheimer
and specific examples have been worked out and published in the literature for neutral
and ionic species in their ground sfcn‘es.(3 In this section we will consider this method
as applied to excited state systems and specific examples will be given in the following
section.

Assume that the wave functions for the unperturbed system are known, whether
in the ground state or some excited state, and that the Schroedinger equation for each

electron of the system is
(3.8)

Here H0 is the unperturbed Hamiltonian and eol the energy of the ith electron in the

Hartree-Fock equations. Now assume that an electric field is produced by a unit
charge -e at a large distance R from the nucleus along the positive z-axis. If R is
the distance in units of the Bohr radius a_ the dipole part of the potential energy in
Rydberg units is given by the expression

H] = (2/'R2) r cos 6. (3.9

Here 8 is the angle between the position vector r of the ith electron and the z-axis.

We now consider the potential H, asa small perturbation on the Hartree=Fock solutions

for the isolated atom. Denote the perturbation of one of the H.F. functions ¥ : by
)
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the symbol X, and the first order change in energy by € The Schroedinger equation

to the first order in the perturbation H, is given by

)(,}%‘-i.) (Li‘r\(.'v\(.). (3.10)

1 o i’ o it 0 i

(HO+H

The term EI , from standard first order perturbation theory, is given by
D LT L4 2 2,
e« =J J . ¢' " drsin 8d¢ (3.11)
o

o o ©

Since H] is linear in cos O while ¥ © is an even function of cos 8, the integral over
o
8 vanishes in the above expression, thus yielding € = 0. Utilizing equation (3.8),
equation (3.2) is reduced to
i i
(H -e')X, ==-H, ¥ (3.12)
0.8l

T

; : i
The solution to this equation determines the perturbation X, of the wave function Wo .

The unperturbed functions are defined such that

¢! =R Y (8, 9)

o

2“’ i @

QO 9. 9
T Fia 4 g ¥ r sin 6d8de = S (r)dr = 1 (3.13)
0. ‘e o o o ©

: i - F R i
The first order perturbation of the density | 'o| + \(i} is given by 2'.0I X,
for the ith electron. From this, the induced dipole moment in the perturbed atomic

system, indicated as Pind-z" is given by

Xi)nl.m rcos 6 r2 dr sin 6d6de (3.14)

where we use the subscripts nlm to denote an orbital of principle quantum number n

having angular momentum quantum numbers Land m. The density "ol )(i depends,

.36} 4 2
of course, on nfm. The electric field EZ is given by -e" /R, so that the polarizability,
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defined as the induced dipole moment per unit field is given by

2 2T

) s e ¥ 2 - S
a _pind-z/Ez = 2R nfm£ {; [) (.O Xi)nlm * rcos Br drsin8dBde (3.15)

The integrals in the expression for a can be reduced to radial integrals, and
the inhomogeneous partial differential equation (3.12) may be reduced to a radial
equation by expressing the unperturbed functions as in Eq. (3.13) and the perturbation

X, in a similar fashion, that is, as products of radial functions multiplied by a spherical
|

harmonic. To this end we write Eq. (3.12) in detail.

2 i 2ri i
i
i - B e — v o .]
[ Vi + VHF(ri) € ] Xi R2 cos O s (3.16)

h

In this equation V orbital whose unper-

is the Hartree-Fock potential for the if

HF

3 . i . . N
turbed eigenvalue is ¢ . In order to separate this equation we write A and Xi as
o

P ,(r)

nl m

R\ Yy (8, 6) = Y, (6, 9) (3.17)

r

nl.f-j.'m m-m' m'

Lt Yy (6, ¢)

The above equation then separates into the following radial equation

2

rd yat +1) i 2

Ld2 - 3 * Vel - e | Unld,(r)--;3 1. (3.19)
r r

m-m

We note that the constants Cy_ g+ which appear in Eq. (3.18) are determined by the
Clebsch Gordon coefficients which occur in the angular integrations. These coeffi-
cients vanish unless L' = L +1 for8 #0 and L' = £+ 1 for L= 0, Thus, the solutions

to two radial equations (3. 19) are required in order to determine the radial functions
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Jnl A of the perturbation Xi of a given orbital (for s-states only one). The notation

Jn! 2 for the radial functions of the perturbation of an ni orbital is that due to

Sternheimer. It indicates an orbital of £ character being perturbed to a state of
m—m'

angular momentum L', The coefficients Cg~y have been tabulated by Sfernheimer.9

The dipole polarizability due to the contribution from an ni state may now be written

(m") g © T 2w '

m m
ooy "L L L Uy g0 P OYE 0% (6 rcord
. 2 - o i
. drsin 86d0dé = 2R Kl ; [ U@ P () rdr (3.20)
il %

m-m'
where Kl-'l' is a constant which is the product of C!~~’.' times the constant which

occurs from the angular integral in Eq. (3.20). These are also tabulated by Sternheimer.

If we indicate by the notation a(nt—%') the contribution to the dipole polari-
zability of an nf orbital undergoing excitation to state L', then the total dipole
polarizabilities for the atomic system can be written

nl
tar * Z. N™ a(ng-1) (3.21)
nil
where an is the number of electrons in the nt subshell. We note that the above
equations give a in units of 003. To obtain a in units of /g3 the results must be multi-
olied by 0.529° = 0. 148.

We further note that in considering a system in an excited state one can sim-
plify Eq. (3.21) by noting that for the excited orbital the contribution to the sum is
very large as compared to the contribution from other electrons. Consequently, only
one term in the total contribution to a need be considered, namely that of the excited
electron, all others being negligible. Thus, unlike the problem of determining the
ground state polarizabilities where the contribution to a from several orbitals is often
important, the determination of a for excited states depends only on determining the

snperturbed eigenfunctions for the excited systems and determining the first order

perturbation of the excited orbital (from Eq. (3.19)) and performing the integral in Eq.
3.20).




D. Results for Oxygen and Nitrogen

Detailed calculations for atomic oxygen and atomic nitrogen have been made

for several low lying excited states. We note that the determination of the dipole

polarizability of an atomic system in any state requires a knowledge of the unper-

turbed Hartree-Fock wave functions for the system in the given state. With these
=

functions, Eq. (3.19) may be solved and the perturbations X. of the Hartree-Fock
|

functions thereby determined. With these solutions, both ¥ and X. may be utilized
(o) |

in the expression (3.20) for determining the polarizability a in the particular state

nlm,

1. The Unperturbed Solutions
In Rydberg units the Hartree-Fock equation for the i'" orbital of the H.F.
jeterminant can be written

[-92 ¥ VEY AN E) = E4F) (3.22)
|

| | I | | I |

where V(r.) is the sum of the nuclear and electronic coulomb potentials
|

V(r.) -2Z + I LW (r,) — (r,)ar, (3.23)
| Ve | K 13 b R K
|

and the exchange potential is given by

Alr,) v.(0) =Z [S v. () ¥ () — ¥.(r) ¥ () dr ] ¥.(r.) (3.24)
Y ¢\ k ‘ .

In the present calculations the exchange integrals A(r.) are replaced by the
convenient approximation due to Slater which is an average exchange potential for
electrons. One further modification was made on the exchange term, this being

to write the Slater exchange term with a variable coefficient; that is,

(r)] b.(r.) (3.25)

where )\ is a variable parameter.
s
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The equation can be reduced to radial equation by writing the function

= Pnﬁ(ri) -
'.'i(ri) = Ll Yi (8, ¢) (3.26)

r.
1

Equations (3.22) then separate leading to the radial equation

2 -
l_‘;d—z + V(r) - &%’ﬁ - Alr) | P o(r) = ¢ P (r) (3.27)
|

r.
I

In solving these equations the coefficient A\ was varied until the eigenvalues were
s

n agreement with experimental values to within one or two percent. For excited

states the experimental values were taken to be the weighted average of the config-

ration.

2. The Perturbation Calculations
In the present calculations the unperturbed wave functions for the atomic
system were obtained from a program originally written by Herman and Skillmann,
which was modified to yield the variable term in the Hartree-Fock=-Slater (H.F.S.)
equations as discussed above. The output of the program furnished the functions V(r),

Alr), e IO and P in equation (3.19), which could then be solved for the pertur-

nl-(r)

bations Unl»- y of a given orbital whose radial function is Pnl.' For a given value
of R, equation (3.19) was integrated by the Numerov process for inhomogeneous
equations as described by Hartree, » over the same r mesh as that of the H.F.S.
program which furnished the unperturbed functions. The integration in the inner
region was started by noting, as did Si’ernheimer,6 that for r ~ 0 the inhomogenous
term on the right side is negligible as compared to the potential terms on the left.
The solution may thus be started by a series expcnsion] ; near the origin and con-
tinved by numerical integration. With this procedure there is an arbitrary constant

2+

n the starting values, this being the value of (Unl.'*l-"/r )r=0' For the inhomo-

geneous equation (3.19), this parameter in the starting conditions must be determined

n order to satisfy the boundary conditions; that the solution to (3.19) be exponentially

J
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2+

decreasing at infinity. The value of (Unl"l"/r )O was varied automatically in
the coded program until two values were found which enclosed the correct one. The
choice was then narrowed by successive solutions until an accuracy of five to six
significant figures in the starting value was achieved. The calculations were performed
on the Univac 1107 computer at the University of Alabama Research Institute.

The total dipole polarizability for both oxygen and nitrogen in their ground
states was calculated from the equations for the two outermost shells of the H.F.S.
system. However, as mentioned above, in the case of an excited system only the
perturbation of the excited orbital need be considered in the calculation of the
polarizability, all other contributions being completely negligible by comparison.
With the perturbed functions Unl—*l‘ determined from Eq. (3.19) the dipole polari-

zabilities were determined by carrying out the numerical integration of Eq. (3.20).

3. Numerical Results

In this section numerical results of dipole polarizability calculations for
excited states of atomic oxygen and nitrogen are presented. Calculations have been
made for the ground state and for several excited states of both atoms. The unper-
turbed Hartree-Fock-Slater functions for the various states were obtained ad described
above by varying the Slater exchange term until the calculated eigenvalues of the
excited electron agreed with the experimental value to within one percent. The experi-
mental value in all cases was taken to be the weighted average for the excited config-
uration. Thus the eigenvalues and the polarizabilities correspond to those for the
average of a given excited configuration of the atomic system.

As an illustration of the effect of the perturbing field on an excited state
wave function, Figure 7 shows the unperturbed 4p radial function of oxygen along
with the radial perturbation U4p-~d and U4p**s' The solutions Unl—‘l' for the
radial equations exhibit a behavior similar to that reported by Sternheimer. Thus

the nodes of the radial function U T correspond in number to the orbital next
ni-

higher in energy than ni having L' angular momentum. However, unlike the case
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of ground state systems where np - s and np - d, also nd =+ p and nd = f contri-
butions to the polarizability have opposite sign and tend to cancel each other to
some extent, the situation is somewhat different in that the contributions nt— §'
where L' = L - 1 are not necessarily opposite in sign to the case where ' =4 + 1,
thus the two contributions in fact add together rather than cancel each other. This
behavior can be explained from a physical argument similar to that given by Stern-
heimer for ground state calculations. That is, in the ground state, contributions
nl - L' and nQ' =1 tend to cancel each other and should cancel exactly in the
case of a filled shell nL since the transition n{' = 1 would correspond to a non-
physical situation where an electron is excited into a closed shell which is, of course,
forbidden by the Pauli Principle. However, in the case of an excited orbital the
transitions nd — L' are not forbidden for L' = Y 11 since neither of the neighboring
angular momentum states corresponds to a closed shell. Thus, the contribution from
L' =1 - 1 need not have the opposite sign as that for L' = £+ 1, and in fact this
proves to be the case as can be seen in Tables | and II.

In Tables | and 1l are shown the static dipole polarizabilities of oxygen
and of nitrogen respectively in their ground state and in each of several excited
states. In the tables, the first column gives the excited configuration for the atomic
system. The next column gives the experimental eigenvalues for the average of the
given configuration corresponding to the ionization potential as zero energy (in
electron volts). In the third column is shown the separate contributions to the dipole
polarizabilities from the two modes of excitation (one for s-states) in atomic units.
Finally, in column four are shown the calculated dipole polarizabilities in each
state (in /&3). For the ground state a comparison is made with experimental values;
that is, for oxygen the calculated value for the ground state is .762 3«3 and the
experimental value is .77 + 06 ;&3 while the values for nitrogen are 1.08 XB‘
theoretical and 1.13 £ 06 3\3 experimental. The agreement with experiment in both

cases is very good. A comparison of theoretical values for the excited state polari-

zabilities is not possible since no such values are available in the literature. Thus,
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TABLE |

’ Contributions to 3
Config. i (ev) Polarizability a &
4

2P Ground State 762 (.77)

2p3 35 4.3298 472.12 46.58

2P3 3P 2.7833 p-d 1109.7 y &S

2P3 45 1.7449 7316.8 7217

2P3 3D 1.5249 d-f 4374.,2 410.3
d-n ' 3837.2

2p3 4p 1.3041 bd - 4969.7 333.3
o-s7 " 196.8

2P3 I . 9430 53834.5 5311.6

2P3 4D .8619 -f 509811, 31743,

f
-p  39605.
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TABLE Il

NITROGEN POLARIZABILITIES

: Contributions to 03
Config. i (ev) Polarizability all
3
2P Ground State 1.08 (1.13)
2P2 35 4.0973 595.65 58.77
2P:2 3P 2.6728 p-d 1359.40 89.09
p-s 2.9
2P2 4S5 1.6712 9937.38 980.4
2P2 3D 1.5461 d-f 4175.9 334.8
2220.2
2P2 4P 1.2906 p-d 9032.9 521.9
2362.2
2P2 5S .92165 66715.2 6627.0
2P2 4D .8713 d-f 408452. 25005.
d-p 20763.




an estimate of the accuracy of the calculated values must be obtained by a critical

examination of the theoretical method. It is well known that dipole polarizabilities
obtained by the Sternheimer method for Hartree-Fock type systems are extremely
sensitive to small inaccuracies in the unperturbed H.F. wave functions. The same
criticism, of course, applies here. In order to obtain an estimate of the effect of
inaccuracies in the H.F. functions on the calculated polarizabilities, the calculations
were repeated for a given state with a set of functions obtained by varying the ex-
change term slightly in order to produce an eigenvalue for the excited orbital which
differed from the experimental value by about 3%. It was found that this change in
the unperturbed function produced about a 15% change in the calculated value of a.
Thus the method is indeed very sensitive to small changes in V- The only recourse
under the circumstances is to utilize the most accurate unperturbed system that one
can obtain. In the present calculations the criterion which was used to define a good
H.F. wave function was that which yielded an eigenvalue which differed by no more
than 1% from the weighted average experimental value for a given configuration. This
method is, of course, subject to error. The values listed in Tables | and Il are estimated
to be accurate to about 15%. Though this could possibly lead to an appreciable error
in detailed calculations, the accuracy is more than adequate for the purpose of deter-
mining the importance of wave propagation, which is our intended purpose here.
Having obtained the microscopic variables a. for several states of the two
species, neutral atomic oxygen and nitrogen, our objective is to determine the macro-
scopic variables, K, X or € which appear in Maxwell's equations and thus to estimate
effects in microwave propagation problems. As mentioned earlier, the Classius-
Mossotti relation yields the electric susceptibility X for a simple medium through the

relation

LR o

X +3 3

or the specific induction capacity through K =1 +X, In this equation N is the

number density of molecules of polarizability a. For a plasma medium of the type
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of interest to us here the problem is complicated by the fact that there are many
different species in the medium each of which have a different number density and
a different polarizability, these being the various atomic, molecular, and ionic
species in their multitude of excited states. Thus, on a macroscopic scale, one
must take the various contributions to the specific inductive capacity from the
various species present, taking into account their number densities and dipole
polarizabilities. For a given plasma component, say atomic oxygen for example,
one can calculate the average polarizability @ as a function of temperature
very simply if thermodynamic equilibrium is assumed. That is, the number density
of atoms in an excited state represented by energy Ei and by ground state energy
Eo at a temperature T is related to the number No at zero temperature by the

appropriate Boltzmann factor

TS (3.28)

where NE is the number at temperature T, and k is Boltzmann's constant. |f one
knows the po|cr|zab|||fy of the state E., one can determine the average polarizability
I

of atomic oxygen at temperature T by the expression

I Ng. ©E.
o = o i (3.29)
T I Ng
|

which is a temperature dependent polarizability for the species. The Classius-

Mossotti relation then yields X or K, i.e.

K = | = (3.30)

For a multi-component mixture of gases this process could be repeated for each
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contributing species. In the present work this is done for oxygen and nitrogen. The
results can be used to estimate contributions from all species.

In Figure 8 the specific inductive capacity for zero frequency of atomic oxy-
gen and nitrogen is shown as a function of temperature over a range from 6000 to
15,000 degrees Kelvin. Each is assumed to be at standard atmospheric pressure.for
purposes of comparison. From the figure it can be seen that the electric susceptibility
X changes by more than two orders of magnitude over the temperature range shown.

Two facts are very significant about the results shown in Figure 8. These are:

1) The static susceptibilities shown are a lower limit to the frequency depen-

dent susceptibilities which are significant to microwave problems. From Eq. (3.6) for
a(v) it is obvious that for certain frequencies resonances will appear which increase
the value of X by a very large amount.

2) The second point which should be made is that the static polarizabilities,
and thus the resulting susceptibility X, are much smaller, in general, for atomic species
such as oxygen and nitrogen than it would be for molecular species which commonly
appear in atmospheric plasma. That is, the curves for O2, N2, NO, etc., will be
correspondingly larger due to weaker binding in molecular systems.

The frequency dependent polarizability a(v) for oxygen and nitrogen may now
be obtained in an approximate way from Eq. (3.6) by utilizing the static value obtained
by the method of Section C to determine the sum of the oscillator strengths of Eq. (3.6).

That is, one can treat the energy denominators in Eq. (3.6) as being important only in

the region near a resonance. Thus, in a region where hv is of the order of the difference

between the energy state € and any one of the higher states € As the frequency V
q

increases from zero, the first resonance will exist when hv approaches the difference

between e and the next higher excited state. Taking into account only the first term

in Eq. (3.6) for this case we can thus approximate a(v) by

ey
9 : (3.31)

a(v) = 777




. ! v puo uabAxo 1oy X A4111q14dadsns 211429|3 Aouanbaij ciaz ay| g ‘614
000°S1 000°¥1 000 €l 00021 000°L1 000 ‘0L 000°6 0008 000°Z 0009

R TLANNN P ¢ e R R

wd A
X
Z0l X




-45-

This yields the approximate frequency dependence of a(V) near the first discontinuity
in the frequency curve. It is obvious that the appearance of a large polarizability
at a given frequency will depend on the spacing of the levels ¢_ and €, for the
atomic or molecular species in question. ks

The value of a(v) from Eq. (3.31) for oxygen and nitrogen is shown in Figure 9
over a frequency range which includes two resonances for these species. The corres-
ponding values of the susceptibility at selected temperatures and frequencies are
shown in Figures 10 and 11.

From the figures it can be seen that the excited species in a plasma medium
can make a significant contribution to the electrical properties of the medium at
some frequencies. For the results obtained here, we see that contributions from the

atomic states are more important at very high frequency; that is, in the infrared

region of the spectrum. This, however, is not an insignificant result in the light

of recent work on utilizing infrared devices for communication purposes. The main
objective which we should like to achieve here, however, is to determine the effect
of plasma polarization for very high frequency microwave propagation. In order to
estimate these effects we must investigate the contributions from molecular species

in the plasma.

E. Extension to Other Systems

In this section we carry out the third step in the program outlined in Section
B-3 above. That is, we have 1) calculated the static polarizability a(0) for certain
specific species in several excited states; 2) these results have been used to infer the
frequency dependent polarization vector in a plasma due to atomic species; 3) in this
section we endeavor to estimate the contribution from more complicated systems utilizing
the results already obtained.

Let us continue to assume for the sake of argument that the plasma of interest
is generated from atmospheric gases. By referring to Figure 6, we then see that the

species of interest for the present considerations are the molecules OZ' N2, NO and

possibly a low concentration of the negative ions of these species, which were not
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considered in the data of Figure 6. As mentioned earlier, calculations similar to those
which have been carried out here for atomic systems, are very difficult for the mole-
cular species, owing to the complexity of the molecular wave functions.

In order to obtain reasonable estimates for the contributions from these mole-
cular species to the polarization vector of the plasma, we will make a comparison of
two physical properties of these species with those of oxygen and nitrogen for which
calculations have been made. The physically significant quantities are the ground
state polarizabilities and the excited state energy levels, both of which are known from
experiment. With these quantities we can estimate the excited state polarizabilities
of the molecular species. The data of Table 111 are useful for this purpose. Shown
in the table are the ground state polarizabilities and the first excited level for O, N,

02, N, and NO.

2
TABLE 11l
Atom or Ist Excited Level | Polarizgbility lonization
Molecule (ev) a (A9) Potential (ev)
@) 9.15 ¥ i 4 13.614
N 10.3 1.13 14,54
O, 7.9 1.57 12.5
N, 6.1 1.74 15.5
NO 5.4 1.70 9.5

First we note from Table 11l that the ground state static polarizabilities of the
three diatomic molecules are about a factor of two larger than that of atomic oxygen.
From Figure 8 we see that in O and N the relative magnitudes of the polarizabilities

remain fairly constant at higher temperatures. Thus we would expect the magnitudes

of o for these molecules to be at least a factor or two larger at elevated temperatures.
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The second and more important point to note about the molecular species is
the close spacing of energy levels in molecular states, and the lowering of the ioni-
zation potential in 02 and NO from that of O or N. Both of these characteristics
tend to increase the polarizability of the excited states for these species to values
which are greater than those of the atomic states of O and N. Taking NO for example,
the first electronically excited state lies at 5.4 ev above the ground state compared
to 9.15 and 10.3 ev for O and N respectively. Thus a very large polarization vector
at a much lower temperature would result for these molecular states. Looking at the
values in Table | and Il for O and N, we could expect an increase in the polarizability
of perhaps a factor of ten over that of N in the first excited state and even more for
the closely lying levels of higher excitation.

One other factor which is even more significant in this comparison comes from
an inspection of Eq. (3.31) for the frequency dependent polarizability a(v). We note
that the frequency dependence is determined by the energy denominators (cq- . ) - h2 2
Thus the appearance of a resonance in the denominator depends on the energy spacing
€ " € which, in the case of molecular states, is much closer together. The result of
this is that such resonances as shown in Figure 9 appear at much lower frequencies in
molecular gases. Whereas, in the case of the atomic species O and N such effects were
seen to lie in the infrared region of the spectrum, for excited molecular states the quan-
tities € - e, are much smaller and correspond in frequency to very long infrared and
radio frequency regions.

Thus, we can expect that the value of X(v) from Eq. (3.30) in the temperature
range of a typical atmospheric plasma will become significant for very high frequency
propagation. The strong frequency dependence of a(v) in a near resonance situation

would make a tremendous difference in the dispersive properties of the plasma medium.

F. Conclusions

The results obtained in the present application are intended only to yield an

estimate of the importance of the bound state electrons of a plasma medium to the

electrical properties for high frequency propagation. The results for molecular species
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are merely qualitative in nature as was our intention since a detailed calculation

for very complicated systems would require a great deal of effort. The results obtained
here do indicate, however, that such an effort would indeed be justified in view of
the apparant magnitude of these effects on the problem of microwave propagation in

plasma. Thus, it would seem that this problem which has received little attention

from a theoretical or an experimental standpoint well deserves further investigation.
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