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Introduction to Critical Phenomenon
The point in the phase diagram of a system where the structural difference between two coexisting  phases disappears  

defines a critical point. Systems as diverse  as superconductors, pure fluids, and binary liquid mixtures exhibit critical 

points [1,2]. The critical behaviors of the thermophysical properties of these systems are sufficiently similar from case to 

case as to constitute an “isomorphism”[1]. Figure 1 shows a phase diagram for a binary liquid mixture with a critical point 

of solution

Fig. 1. The coordinates are the temperature,  T  vs. the mole fraction, X2 , of 

one of the components. The solid curve is the liquid-liquid coexistence 

boundary. On the convex side to this curve, the two components are miscible 

and form a single liquid phase. On the concave side, complete miscibility fails, 

and a meniscus appears separating two liquid phases, one with composition X2
β

and the other with composition X2
γ . The critical temperature for the phase 

transition is Tc , and the critical composition is X2
c.

The intensive thermodynamic variables describing a binary liquid mixture with a critical point of solution can be divided 

into two classes, called “fields” and “densities”. A “field” variable, h, such as temperature, pressure, or chemical 

potential, has a value which is uniform across all coexisting phases. A “density” variable,  ρ , such as a mole fraction or 

the specific entropy has a unique value in each phase [2]. 

• The derivative of a “density” with respect to a “field”                        will diverge toward infinity near the critical point,  

if the set of fixed variables , {X} , defines a  path of approach to the critical point that contains no more than one fixed 

“density”.

• The isobaric heat capacity is given by . Here    is the specific entropy, (a “density” variable) 

and T  is the temperature (a “field variable”);  is the derivative of a “density” with respect to a 

“field”.  The path of approach to the critical point lies along the critical isopleth, X2 = X2
c, so only one “density” 

variable is held fixed; hence, 

The G-W Rules are Based Upon a Count of the Independent Intensive Variables 
In the case of a liquid mixture under ordinary laboratory conditions, the temperature and pressure (both are “fields”) are 

fixed by the experimenter.   Any additional fixed variable is necessarily a mole fraction (i.e. a “density”).  The condition 

that the path of approach to the critical point should contain no more than one fixed “density”  is satisfied when the phase 

rule [3] predicts F = 3, where F = C  ̶ R  ̶ f  ̶ I  + 2 and F = the number of independent intensive thermodynamic 

variables, C = the number of chemical components making up the system, E = the total number of chemical elements 

required to express the stoichiometry, R = C – E, the maximum number of linearly independent chemical reactions, f = the 

number of coexisting phases, I = the number of constraint equations derivable from the law of conservation of mass.

1. Chemically inert mixture: aniline and cylcohexane [4]

•Components: C = 2; aniline and cyclohexane

•Reactions:  R = 0

•Phases: f = 1 ; Liquid phase above Tc

•Constraints: In the absence of chemical reaction,  I = 0  

•Evaluation of the Phase Rule: F = C  ̶ R  ̶ f  ̶ I  + 2 = 2 – 0 – 1 – 0 + 2 = 3

• Experimentally

2. Chemically reactive mixture: triethylamine and water [5]

The components undergo acid-base reaction according to 

• Components: C = 4 ; R3N, H2O, R3NH+, OH- (R = ethyl)

• Chemical “Elements”:  E = 3;  R3N,  H, O

• Reactions:   R =  C  ̶ E = 4  ̶ 3 = 1 

• Phases: f = 1   ;  Liquid phase above  Tc

Element Conservation Equations:

Conservation of  H:                                                                                                              (1)    

Conservation of  O :                                                                                                              (2)  

where, nY
0 is the initial number of moles and nY is the equilibrium number of moles of substance Y. A  relation, which is 

independent of  , can be derived by forming the linear combination, Eq.(1) – 2 x Eq.(2).   The result is the 

electroneutrality condition:

• Hence,  constraint equations:  I = 1

• Evaluation of the Phase Rule: F = C  ̶ R  ̶ f  ̶ I  + 2 = 4  ̶ 1  ̶ 1  ̶ 1 + 2 = 3

• Experimentally 

CONCLUSION: The diverging temperature behavior of as T goes to Tc is correlated with F = 3. 

Chemical Properties of The Critical Point
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If we designate the extent of reaction by s, the slope,  of a van’t Hoff plot of  ln 𝑠 vs. 1/𝑇 is the 

derivative of a “density” with respect to a “field”. The sign of the slope is given by the following equation

The chemical equilibrium stability condition is                         . Because                        involves differentiation of s 

(a “density) with respect to ΔG (linear combination of chemical potentials, and hence a “field”), then when we have 

F = 3, the                                        .  According to Eq.(3), we can expect

(3)

if ΔH > 0        (4) if ΔH < 0        (5)

Observation of Critical Effects in the van’t Hoff Slope

Solubility of Barium Chromate in 

Isobutyric Acid (HA) + Water [7]

Reaction of Lead Sulfate with Potassium 

Iodide in Isobutyric Acid (HA) + Water [6]

• Components: C = 9, HA (aq), H2O, H3O
+ (aq), A- (aq), 

BaCrO4 (s), Ba2+ (aq), CrO4
2- (aq), HCrO4

– (aq) and 

Cr2O7
2- (aq)

• Elements: E = 5; H, A-, O, Ba2+, Cr

• Reactions : R = C – E  = 4

• Phase: f = 2; BaCrO4 (solid) and liquid phase

Conservation of H, A, O, Ba2+ and Cr leads to two 

constraint equations as shown below

• Constraint Equations: I = 2

• Evaluation of the Phase Rule

F = C  ̶ R  ̶ f  ̶ I  + 2

= 9 – 4 – 2 – 2 + 2 = 3

Fig. 2. Van’t Hoff plot of the dependence of the concentration, s vs  

temperature, T , of total chromium dissolved in critical 38.8 mass % 

aqueous isobutyric acid in equilibrium with excess barium chromate.  

The standard state of dissolved chromium was taken to be s0 = 

0.00275 g/L.  The solid line was fitted to data collected above the 

critical point and then extrapolated into the critical region.  The 

vertical dashed line locates the critical temperature at Tc = 299.07  K.

The slope of the van’t Hoff plot outside the critical region is 

positive, implying that DH < 0.  In agreement with Eq.(5), the sign 

of the divergence in the critical region is positive.

Fig. 3.  Van’t Hoff plot of the concentration, s of Pb2+ vs. 

temperature, T ,  for the reaction of PbSO4 with KI in a 

mixture of 38.8 mass % isobutyric acid + water.  The standard 

state concentration is s0 = 1 ppm.  The vertical dashed line 

locates the critical temperature at Tc = 299.95  K.

The slope of van’t Hoff plot of the data within the critical 

region is finite and continuous with that outside the critical 

region. Because F = 4, there is no evidence of a critical effect.

Reaction Scheme Reaction Scheme

• Components: C = 11, HA (aq), H2O, H3O
+ (aq), A-

(aq), PbSO4 (s), Pb2+ (aq), SO4
2- (aq), (aq), PbI2

(s), I- (aq) and K+(aq)

• Elements: E = 7; H, A-, O, Pb, SO4
2-I- and K+

• Reactions : R = C – E  = 4

• Phase: f = 3; PbSO4 (solid), PbI2 (solid) and liquid 

phase

Conservation of H, A, O, Pb, SO4
2-, I- and K+

leads to two constraint equations as shown below

• Constraint Equations: I = 2

• Evaluation of the Phase Rule

F = C  ̶ R  ̶ f  ̶ I  + 2

= 11 – 4 – 3– 2 + 2 = 4

Physical Properties of The Critical Point

Application of The Phase Rule
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