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Figure 6.4 Barbados Gun Site, Gun Bearing Measured Relative to Airstrip [51] 

(image used with permission) 
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C. Martlet 2C (Mod 2) Apogee Comparison for the Barbados Gun 

 The drag coefficient, cross-sectional area, and projectile mass are needed for the 

ballistic constant for use of the Modified Kepler equation.  Data taken from a HARP 

report containing detailed trajectory information of multiple rounds fired from the 

Barbados gun can be used to evaluate the aerodynamic properties of the Martlet 2C (Mod 

2). 

 The mass is readily available as the weight of each projectile was measure prior to 

launch.  The drag coefficient and other aero coefficients of the Martlet 2C (Mod 2) were 

found in a report from the HARP program [52]. 

 Using the firing data from 23 Martlet 2C (Mod 2) projectiles, the apogee of each 

round can be calculated using the three term ECI Modified Kepler solution.  The apogee 

will occur at the first minima of the inverse radius.  This can be calculated by the first 

derivative of the solution of the Modified Kepler equation. 

  
du

dθ
= c1cos(θ) − c2sin(θ) − τc4e−τθ − 2τc5e−2τθ = 0. (6.1) 

The radar data shows that apogee happens well over 100 km where the effects of the 

atmosphere have disappeared.  Thus, equation (6.1) can be simplified to: 

  c1cos(θ) − c2sin(θ) = 0, (6.2) 

  
c1

c2
= tan(θ), (6.3) 

  θapogee = tan−1 (
c1

c2
). (6.4) 

Apogee can be predicted for each HARP projectile by the full solution of the Modified 

Kepler equation with three terms: 

  aapogee = [c1sin(θapogee) + c2cos(θapogee) + c3 + c4e−τθapogee +
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c5e−2τθapogee]
−1

− 6378 km,  (6.5) 

with: 

  c1 =
−tanϕ

r0
−

2βc3 cosμ τ

1+τ2 (
Vrel

V
)

2

+
4τβ2c3 cos2 μ 

1+(2τ)2 (
Vrel

V
)

4

, (6.6) 

  c2 =
1

r0
− c3 +

2βc3 cosμ 

1+τ2 (
Vrel

V
)

2

−
2β2c3 cos2 μ 

1+(2τ)2 (
Vrel

V
)

4

, (6.7) 

  c3 =
m2MG

L∞
2 , (6.8) 

  c4 =
−2βc3 cosμ

1+τ2 (
Vrel

V
)

2

, (6.9) 

  c5 =
2β2c3 cos2 μ 

1+(2τ)2 (
Vrel

V
)

4

, (6.10) 

and, 

  β =
CD0ρ0A

2km sin ϕ
, (6.11) 

  τ = kr0 tan ϕ, (6.12) 

  L0 = |V|r0 cos ϕ, (6.13) 

  L∞ = L0e−β cosμ, (6.14) 

  V   = V   rel + ω   × r 0 + V   tangent. (6.15) 

 The Latitude of the HARP gun on Barbados is 13
◦
4’38” (13.0772 degrees) taken 

from a survey of the gun site.  Assuming the perfectly spherical Earth, this results in the 

Earth rotation correction of: 

  ω   × r 0 =
2π

86400 sec
6378km cos 13.0772° = 0.4518

km

sec
. (6.16) 

 The direction the Barbados gun is pointed is not contained in any of the reports 

reviewed but is needed for the accurate evaluation of the trajectory.  The bearing of fire 

can be measured from Figure 5.4 as 109 ‘True’ by measurement relative to the runway in 
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the picture.  Note that the airport runway is visible in the picture and that the approaching 

runway number “27” refers to the magnetic heading for approaching aircraft, 270 

‘Magnetic’.  The angle of the runway to the horizontal was measured as 15.5 degrees 

which is equivalent to the declination at this location (15
◦
 22’) at the year the picture was 

taken (2012) given by the National Oceanic and Atmospheric Administration’s National 

Geophysical Data Center for the island of Barbados. 

 The difference between the predicted apogee and the measured or evaluated 

apogee for each round is used to create and apogee error and is shown in Figure 6.5.  The 

error in the apogee is within 0.4 km of the center of the data with a standard deviation of 

2.25 km.  The data used to calculate each data point in Figure 6.5 is given in Appendix D. 

 

 

Figure 6.5 Apogee Error between Corrected Modified Kepler Solution and Measured 

Apogee Data for Barbados 16” HARP Gun Martlet 2C (Mod 2) Rounds. 
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 The exact method that the apogee is measured by (optical observations, radar 

data, or simulation curve fits) is not given in the reports.  It must therefore be assumed 

that the apogee given for each round uses the most accurate data from the various means 

available. 

 No atmospheric data (temperature, pressure, humidity, surface wind speed and 

direction) was included in the reports.  The atmospheric density used for the Modified 

Kepler solution was the nominal value used in the US Standard Atmosphere (1.225 

kg/m
3
).  This is a good approximation for the island of Barbados as the temperate 

location ensures an average temperature of approximately 80 degrees Fahrenheit during 

the day and 70 degrees Fahrenheit at night year round.   

 

D. Martlet 2C (Mod 2) Apogee Comparison for the Yuma Gun 

 Apogee data is also given for projectiles fired from the Yuma, Arizona 16” HARP 

gun report [4].  The Yuma gun was equivalent in all aspects to the Barbados gun with the 

exception of the azimuth, latitude, and atmospheric properties at launch.  The Yuma gun 

also fired the Martlet 2C (Mod 2) projectiles and utilized equivalent muzzle velocities.   

 The Yuma gun was mounted at a latitude of 32
◦
52’33” N at a bearing of 078T as 

given in the report.  The majority of the firings happened in the evening hours where the 

illuminate trails would be most visible.  The atmosphere at the Yuma site is considerably 

drier and colder during the evenings when the gun was fired.  An surface density of 1.14 

kg/m
3
 was used for the Yuma site based upon based upon the average evening 

temperature and density calculated from the National Oceanic and Atmospheric 
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Administration’s National Climate Data Center for the year 1966 at the Yuma airport 

[53].  22 Martlet 2C (Mod 2) rounds fired from the Yuma gun for which apogee data was 

given can be used to validate the ECI Modified Kepler solutions at a different bearing and 

latitude.  The drag properties derived from the Barbados data was used to calculate the 

apogee for the Yuma rounds.  The results of the comparison are shown in Figure 6.6 with 

the data presented in Appendix D. The error for the Yuma data is 0.44 km from the center 

of the data with a standard deviation of 2.65 km.   

  

Figure 6.6 Apogee Error between Corrected Modified Kepler Solution and Measured 

Apogee Data for Yuma 16” HARP Gun Martlet 2C (Mod 2) Rounds 

 

E. Martlet 2C (Mod 2) Trajectory Comparisons 

 The Barbados report also includes tables of range and altitude radar data as the 

projectile were tracked in flight.  The radar data from can be compared to the analytical 
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     (a)         (b) 

Figure 6.11 Radar Data and ECI Modified Kepler Solution for Round 221 from Barbados 

Gun 

 

 Round 221 is an example of a trajectory that significantly departs from the radar 

data.  Again the altitude as a function of time is accurately captured but the radar data 

appears to show a course change when the projectile reaches 100 km.  This may be due to 

a failure in the release of the tracking fluid that created a thrust effect and changed the 

trajectory.   

 No radar data was found from the Yuma gun but the close correlation of the 

apogee data between the Yuma gun and Barbados gun suggest that the trajectory data 

would fit the ECI Modified Kepler solution as well.   

 The HARP data proves remarkably good at verifying the Modified Kepler 

equation and its solution.  Without any error estimates from the HARP data, it cannot be 

known if the ECI Modified Kepler solution is within the 0.5 km accuracy estimated by 
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comparison with the numerical simulation, but the data shows a good agreement in all 

dimensions.  
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

   

 The Modified Kepler approach appears to give good estimates of the position of 

an aerodynamically stable projectile launched with an initial speed and elevation that it 

leaves the lower atmosphere.  The analytic nature of the solution results in a much 

quicker evaluation of trajectory than with any possible numerical solution.  The primary 

purpose of this work was to enable hypersonic projectiles for ballistic missile defense.  

The steps to utilize the Modified Kepler solution for firing solution equitation are 

relatively straightforward. 

 

A. Use of the Modified Kepler Solution to Intercept Ballistic Missiles 

 The first step in calculating a potential firing solution for a ballistic missile will be 

to estimate the future position of the target.  If the missile has burned out and is outside of 

the atmosphere the future position is a simple solution of the standard Kepler solution 

with the error being in the uncertainty of the initial position and velocity vectors.   

 If the missile is still boosting then the future position must be estimated by a real-

time numerical simulation or by the development of fly-out tables for the type of targets 

that are expected.  The major error in this method is in the assumption of the behavior of 
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the missile while it is still maneuvering which vanishes upon the observation of the 

missile after burnout. 

 The Modified Kepler solution cannot be manipulated to isolate the elevation and 

bearing which means that the firing solution cannot be solved directly.  The suggested 

approach would be to run a non-linear solver to iterate the Modified Kepler solution until 

a firing solution was found.  This may require solving the equation of motion dozens or 

even hundreds of times.  This would be compared to solving the non-linear numerical 

simulation equations of motion several hundreds of thousands or millions of times to 

converge to a solution.  Based upon the comparison of computational effort (FLOPS) for 

each of the methods used to calculate space gun trajectories, it is suspected that all 

possible intercepts could be found using the Modified Kepler approach in less time than it 

would take to solve for one intercept trajectory using an iterative 3DOF numerical 

solution using equivalent computational power. 

 If a firing solution with a greater accuracy than is available with the Modified 

Kepler solution is needed and time is available, the results of the Modified Kepler 

solution may be used as an input to a high fidelity numerical simulation that could verify 

the accuracy of the solution and possibly iterate a few times to increase the accuracy of 

the solution. 

 The final step would be to numerically integrate the angular momentum to 

determine the time of flight to the intercept point.  If the time to intercept is greater than 

the time available, then the opportunity is lost and the next intercept point is evaluated. 

 The accuracy of the firing solution is an initial guess at the divert capability that 

the projectile will need to perform direct intercept.  For a debris field, the accuracy of the 
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firing solution is an estimate of the debris field size needed to ensure that the missile flies 

through it and the probability of the missile hitting a particle. 

 The use of fly-out tables or look-up tables of potential positions of the projectile 

and missile based upon numerical simulations is also a possible method to develop 

intercept solutions.  This method divides the volume of above the surface of the Earth 

into discrete volumes and then runs multiple numerical simulation until the trajectory is 

centered in the discrete volume.  The firing solution into this space is then recorded in the 

fly-out table and the time of flight.  The fly-out table for the target and projectile is then 

searched to find potential intercepts.  The limit on this method is the size of the discrete 

volume.  If the discrete volume is sufficiently large, then the number of simulations 

required to develop the tables is reasonable and the size of the tables is also reasonable.  

As the size of the discrete volume is decreased to increase accuracy, the number of 

simulations and size of the tables increase to an unreasonable size.   

 The combination of an analytic solution to the motion of the missile combined 

with the Modified Kepler solution for the motion of the projectile is expected to be the 

fastest and most accurate method of calculating firing solutions.  This combination is 

valid now for missiles that have burned out and follow a standard Kepler motion.  For 

boost phase intercept calculations, the development of an analytic solution to missile 

while still boosting and past burnout is still pending development. 

 

 B. Other Sources of Uncertainty 

 There are numerous other sources of uncertainty in a practical fire control system.  

These other factors can be roughly divided into gun control and environmental effects. 
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 The accuracy in which the gun can be pointed will become important for these 

long trajectories, possible down to the milli-radian or lower.  The accuracy of the muzzle 

velocity will also become critically important to accurately predict the motion.  The 

latitude of the gun on the surface of the Earth must also be known with a sufficient 

accuracy.  Finally the timing of fire will need to be very accurately controlled to ensure 

an intercept is possible.  

 The variation in atmospheric density will also need to be taken into account.  The 

loss of angular momentum due to precipitation would be expected to dramatically change 

the predicted motion of the projectile as well. 

 All of these sources of potential errors will need to be studied to predict the 

impact on the accuracy of any firing solution.  These uncertainties may end up being 

much larger than the uncertainties contained in the simplification assumptions made to 

make the Modified Kepler equation solvable. 

 Finally, the projectile itself will need to be aerodynamically stable and have a low 

MKS beta (drag to weight) value.  The lower the MKS beta value, the more accurately 

the projectile matches the assumptions used to derive the MKS.  From the various 

projectiles used in this study, a MKS beta value of less than 0.25 is needed for reasonably 

accurate MKS trajectories. 

 

C. Ground Support Fire 

 Although the purpose of this study was to evaluate the trajectory of hypersonic 

projectiles for ballistic missile defense, it would be foolish not to take the opportunity to 

evaluate the relevance of the work for ground to ground fire support.  The first concern is 
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the minor mismatch of predicted angular momentum with reality that causes the error of 

the projectile to grow over the trajectory.  A set of empirical correction factors may be 

developed that provides a slight improvement of the prediction or a look-up table 

approach may be used to correct for this mismatch to improve the overall accuracy of the 

system. 

 The second area of concern is the error associated with reentry.  In this case, the 

total position error is slightly misleading.  The error associated with hitting a ground 

target 0.5 seconds late is unimportant but at 2 km/sec may result in a 1 km miss relative 

to a ballistic missile.  For the Modified Kepler solution to be utilized for ground support 

fire, more work on accurately predicting the asymptotic angular momentum and decay of 

angular momentum during reentry would be recommended. 

D. Closing 

 The next few years is expected to be very exciting for space gun research.  For the 

first time in over 50 years the possibility of collecting trajectory data from a real system 

is possible.  The data from the US Navy Railgun will make it possible to further validate 

and improve the Modified Kepler approach.  The formalization of a fire control system to 

intercept ballistic missiles and thus help eliminate this threat is one step closer.  It is my 

sincere hope that we can take unfinished technology of the Nazi war machine (the V3) to 

make obsolete one of the greatest evils produced by the same regime (the V2 and all 

subsequent ballistic missiles).  
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APPENDIX A 

3DOF Numerical Simulation of Hypersonic Projectiles 

 The numerical simulation was written in Visual Basic for Applications as a 

Microsoft Excel Macro.   

Private Sub CommandButton1_Click() 

'This simulation calculates the trajectory of a railgun projectile 

'By:  John Stutz, P.E., Missile Defense Agency 

'created 10/11/2010 

 

Dim GM As Double 

GM = 398600.4418   'Mass of earth times gravitational constant km^3/s^2 

Dim RE As Double 

RE = 6378  'Radius of earth km 

Dim Xbullet(2), Ybullet(2), Zbullet(2) As Double 

Dim Xo, Yo, Zo As Double 

Dim Rbullet, Thetabullet, Phibullet As Double 

Dim Xgrav, Ygrav, Zgrav As Double 

Dim VX(2), Vr(2) As Double 

Dim Pi As Double 

Pi = 3.14159265358979 

Dim dt As Double 

dt = Worksheets("Main Page").Cells(4, 2).Value 

Dim Jacobian(2, 2) As Double 

Dim earthspin As Double 'angular rate of earth rotation 

earthspin = 0 '0.0000727221   'radians/second 

Dim time As Double 

Dim q, w As Double 

Dim dens, t, p, a As Double 

Dim Xdrag, Ydrag, Zdrag As Double 

Dim drag As Double 

Dim bulletMa As Double 

Dim Cd As Double 

Dim k As Integer 

Dim dtheta As Double 

Dim theta As Double 

Dim L(2) As Double 

Dim dL As Double 

Dim flag As Double 

L(1) = Worksheets("Main Page").Cells(19, 2).Value 

'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

time = dt * 3 

flag = 0 

k = 0 

Worksheets("Main Page").range("d2:i10000").ClearContents 

 

 

Xbullet(0) = RE * Math.Cos(Worksheets("Main Page").Cells(6, 2).Value * 

Pi / 180) * Math.Cos(Worksheets("Main Page").Cells(7, 2).Value * Pi / 

180) 

Ybullet(0) = RE * Math.Cos(Worksheets("Main Page").Cells(6, 2).Value * 

Pi / 180) * Math.Sin(Worksheets("Main Page").Cells(7, 2).Value * Pi / 
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180) 

Zbullet(0) = RE * Math.Sin(Worksheets("Main Page").Cells(6, 2).Value * 

Pi / 180) 

Xo = Xbullet(0) 

Yo = Ybullet(0) 

Zo = Zbullet(0) 

 

'Calculate R, theta, phi 

Rbullet = RE 

Thetabullet = Worksheets("Main Page").Cells(7, 2).Value * Pi / 180 

Phibullet = Worksheets("Main Page").Cells(6, 2).Value * Pi / 180 

 

Vr(0) = Worksheets("Main Page").Cells(11, 2).Value * 

Math.Sin(Worksheets("Main Page").Cells(9, 2).Value * Pi / 180) 

Vr(1) = Worksheets("Main Page").Cells(11, 2).Value * 

Math.Cos(Worksheets("Main Page").Cells(9, 2).Value * Pi / 180) * 

Math.Sin(Worksheets("Main Page").Cells(10, 2).Value * Pi / 180) + 

earthspin * RE 

Vr(2) = Worksheets("Main Page").Cells(11, 2).Value * 

Math.Cos(Worksheets("Main Page").Cells(9, 2).Value * Pi / 180) * 

Math.Cos(Worksheets("Main Page").Cells(10, 2).Value * Pi / 180) 

 

'Jacobian constants to convert polar vectors to cartesian 

Jacobian(0, 0) = Math.Cos(Phibullet) * Math.Cos(Thetabullet) 

Jacobian(0, 1) = Math.Cos(Phibullet) * Math.Sin(Thetabullet) 

Jacobian(0, 2) = Math.Sin(Phibullet) 

Jacobian(1, 0) = -Math.Sin(Thetabullet) 

Jacobian(1, 1) = Math.Cos(Thetabullet) 

Jacobian(1, 2) = 0 

Jacobian(2, 0) = -Math.Sin(Phibullet) * Math.Cos(Thetabullet) 

Jacobian(2, 1) = -Math.Sin(Phibullet) * Math.Sin(Thetabullet) 

Jacobian(2, 2) = Math.Cos(Phibullet) 

 

'Convert Velocity vector into cartesian 

For i = 0 To 2 

VX(i) = 0 

Next i 

For i = 0 To 2 

    For j = 0 To 2 

        VX(i) = VX(i) + Vr(j) * Jacobian(j, i) 

    Next j 

Next i 

 

Xbullet(1) = Xbullet(0) + VX(0) * dt 

Ybullet(1) = Ybullet(0) + VX(1) * dt 

Zbullet(1) = Zbullet(0) + VX(2) * dt 

 

 

'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

10 'This bookmark is the start of the iteration to solution 

 

    'Calculate a normal vector pointing toward the origin (center of 

earth) 

    Xgrav = -Xbullet(1) / Math.Sqr(Xbullet(1) ^ 2 + Ybullet(1) ^ 2 + 

Zbullet(1) ^ 2) 

    Ygrav = -Ybullet(1) / Math.Sqr(Xbullet(1) ^ 2 + Ybullet(1) ^ 2 + 

Zbullet(1) ^ 2) 
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    Zgrav = -Zbullet(1) / Math.Sqr(Xbullet(1) ^ 2 + Ybullet(1) ^ 2 + 

Zbullet(1) ^ 2) 

     

    'Calculate density for drag calculations of bullet 

    Rbullet = Math.Sqr(Xbullet(1) ^ 2 + Ybullet(1) ^ 2 + Zbullet(1) ^ 2) 

    a = Rbullet - RE 

    t = 141.89 + 0.00299 * a * 1000 

    p = 2.488 * (t / 216.6) ^ -11.388 

    If a < 25 Then 

    t = -56.46 + 273.1 

    p = 22.65 * Math.Exp(1.73 - 0.000157 * a * 1000) 

    End If 

    If a < 11 Then 

    t = 288.14 - 0.00649 * a * 1000 

    p = 101.29 * (t / 288.08) ^ 5.256 

    End If 

    dens = p / (0.2869 * (t)) 

     

     

     

     

    'Calculate bullet velocity relative to motion of air spinning with 

earth 

    VX(0) = (Xbullet(1) - Xbullet(0)) / dt - Ybullet(1) * earthspin 

    VX(1) = (Ybullet(1) - Ybullet(0)) / dt + Xbullet(1) * earthspin 

    VX(2) = (Zbullet(1) - Zbullet(0)) / dt 

 

    'Calculate bullet Mach number and drag coefficient 

    If t > 0 Then 

    bulletMa = Math.Sqr(VX(0) ^ 2 + VX(1) ^ 2 + VX(2) ^ 2) * 1000 / 

Math.Sqr(1.4 * 287 * t) 

    Cd = 0.077 * Exp(-0.38 * bulletMa) + 0.014 

    Else 

    Cd = 0 

    End If 

   

     

     

    'Calculate drag on projectile 

    drag = 0.5 * dens * Cd * Worksheets("Main Page").Cells(13, 2).Value 

* (VX(0) ^ 2 + VX(1) ^ 2 + VX(2) ^ 2) * 1000 ^ 2 

    Xdrag = drag * VX(0) / Math.Sqr(VX(0) ^ 2 + VX(1) ^ 2 + VX(2) ^ 2) 

    Ydrag = drag * VX(1) / Math.Sqr(VX(0) ^ 2 + VX(1) ^ 2 + VX(2) ^ 2) 

    Zdrag = drag * VX(2) / Math.Sqr(VX(0) ^ 2 + VX(1) ^ 2 + VX(2) ^ 2) 

 

 

    'Calculate position of bullet 

    Xbullet(2) = 2 * Xbullet(1) - Xbullet(0) + ((GM * Xgrav * dt ^ 2) / 

(Rbullet ^ 2)) - Xdrag * dt ^ 2 / (Worksheets("Main Page").Cells(14, 

2).Value * 1000) 

    Ybullet(2) = 2 * Ybullet(1) - Ybullet(0) + ((GM * Ygrav * dt ^ 2) / 

(Rbullet ^ 2)) - Ydrag * dt ^ 2 / (Worksheets("Main Page").Cells(14, 

2).Value * 1000) 

    Zbullet(2) = 2 * Zbullet(1) - Zbullet(0) + ((GM * Zgrav * dt ^ 2) / 

(Rbullet ^ 2)) - Zdrag * dt ^ 2 / (Worksheets("Main Page").Cells(14, 

2).Value * 1000) 

    Rbullet = Math.Sqr(Xbullet(2) ^ 2 + Ybullet(2) ^ 2 + Zbullet(2) ^ 2) 
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    'Calculate the Angular Momentum and Rate of Angular Momentum of the 

Bullet 

    dtheta = (Xbullet(2) * Xbullet(1) + Ybullet(2) * Ybullet(1) + 

Zbullet(2) * Zbullet(1)) 

    dtheta = dtheta / Math.Sqr(Xbullet(2) ^ 2 + Ybullet(2) ^ 2 + 

Zbullet(2) ^ 2) 

    dtheta = dtheta / Math.Sqr(Xbullet(1) ^ 2 + Ybullet(1) ^ 2 + 

Zbullet(1) ^ 2) 

    dtheta = WorksheetFunction.Acos(dtheta) 

    L(2) = (Xbullet(2) ^ 2 + Ybullet(2) ^ 2 + Zbullet(2) ^ 2) * dtheta 

/ dt 

    dL = (L(2) - L(1)) / dtheta 

    L(1) = L(2) 

    theta = (Xbullet(2) * Xo + Ybullet(2) * Yo + Zbullet(2) * Zo) 

    theta = theta / Math.Sqr(Xbullet(2) ^ 2 + Ybullet(2) ^ 2 + 

Zbullet(2) ^ 2) 

    theta = theta / Math.Sqr(Xo ^ 2 + Yo ^ 2 + Zo ^ 2) 

    theta = WorksheetFunction.Acos(theta) 

     

     

     

'Display data 

'this section reduces the amount of output to display on chart 

If (time > (k * 0.5)) Then 

    Worksheets("Main Page").Cells(k + 2, 4).Value = time 

    Worksheets("Main Page").Cells(k + 2, 5).Value = Rbullet - RE 

    q = 0 

    q = RE * Math.Cos(Worksheets("Main Page").Cells(6, 2).Value * Pi / 

180) * Math.Cos((Worksheets("Main Page").Cells(7, 2).Value * Pi / 180)) 

* Xbullet(2)  ' earthspin * time 

    q = q + RE * Math.Cos(Worksheets("Main Page").Cells(6, 2).Value * 

Pi / 180) * Math.Sin((Worksheets("Main Page").Cells(7, 2).Value * Pi / 

180)) * Ybullet(2)  '+ earthspin * time 

    q = q + RE * Math.Sin(Worksheets("Main Page").Cells(6, 2).Value * 

Pi / 180) * Zbullet(2) 

    q = q / (Rbullet * RE) 

    q = WorksheetFunction.Acos(q) 

    'q = (RE * Math.Cos(Worksheets("Main Page").Cells(6, 2).Value * Pi 

/ 180) * Math.Cos((Worksheets("Main Page").Cells(7, 2).Value * Pi / 

180)) - Xbullet(2)) ^ 2 

    'q = q + (RE * Math.Cos(Worksheets("Main Page").Cells(6, 2).Value * 

Pi / 180) * Math.Sin((Worksheets("Main Page").Cells(7, 2).Value * Pi / 

180)) - Ybullet(2)) ^ 2 

    'q = q + (RE * Math.Sin(Worksheets("Main Page").Cells(6, 2).Value * 

Pi / 180) - Zbullet(2)) ^ 2 

    'q = Math.Sqr(q - (Rbullet - RE) ^ 2) 

    'q = q / RE 

    Worksheets("Main Page").Cells(k + 2, 6).Value = q 

    Worksheets("Main Page").Cells(k + 2, 7).Value = Math.Sqr(VX(0) ^ 2 

+ VX(1) ^ 2 + VX(2) ^ 2) 

    Worksheets("Main Page").Cells(k + 2, 8).Value = Math.Sqr(Xbullet(1) 

^ 2 + Ybullet(1) ^ 2 + Zbullet(1) ^ 2) 

    Worksheets("Main Page").Cells(k + 2, 9).Value = L(2) 
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    k = k + 1 

End If 

 

'Update old values for numerics 

    For i = 0 To 1 

    Xbullet(i) = Xbullet(i + 1) 

    Ybullet(i) = Ybullet(i + 1) 

    Zbullet(i) = Zbullet(i + 1) 

    Next i 

 

time = time + dt 'update sim time 

time = WorksheetFunction.Round(time, 4) 

If Rbullet > RE Then 

GoTo 10 

End If 

'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

20  'Use this bookmark to jump out early 

 

End Sub 
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APPENDIX B 

6DOF Numerical Simulation of Hypersonic Projectiles 

 The numerical simulation was written in MATLAB by Dr. Nathan Slegers. 

clc 
clear all 
global mass rho GM Ix Iy Iz d cx0 cx2 cypa cna clp cmq cldd dx dxmag 
mass = 15.66;                  % mass [kg] 4.894 
GM = 398600.4418;              % gravitational acceleration km^2/s^2 
d=0.0395;                      % diameter of the projectile (M) 
Ix = (15.66/5.029)*(0.0395/0.0256)^2*0.00033;  
Iy = (15.66/5.029)*(0.0395/0.0256)^2*0.24021;  
Iz = Iy; % [Kg*m^2]; 
% 
% M829 AeroTabels Mach numbers and  corresponding coefficients  
% 
M_Table = [0.00,1.00,1.50,2.00,2.50,3.00,4.00,5.00,8.00]; 
CX0_TAB = [-0.60,-1.00,-1.35,-1.22,-1.04,-0.91,-0.69,-0.543,-0.449];   
CX2_TAB = [-8.35,-11.53,-17.21,-16.29,-15.73,-13.91,-12.18,-10.41,-

9.08];  
CNA_TAB = [17.94,22.37,21.09,19.97,18.77,17.63,15.36,13.15,9.92];  
CYPA_TAB =[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]; 
CMQ_TAB = [-7288,-8697,-9064,-8000,-7523,-7047,-6091,-5129,-4224]; 
CLP_TAB = [-21.46,-27.47,-25.0,-23.6,-22.3,-20.2,-16.1,-13.4,-11.4]; 
CLDD_TAB =[0.084,0.084,0.076,0.072,0.068,0.062,0.049,0.041,0.035]; 
SLDEL =   [-0.2615,-0.2615,-0.2615,-0.2615,-0.2314,-0.2000,-0.1661,-

0.1512,-0.1507]; 
SLMAG =   [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]; 
Coeff_Table = [CX0_TAB' CX2_TAB' CNA_TAB' CYPA_TAB' CMQ_TAB' CLP_TAB' 

CLDD_TAB' SLDEL' SLMAG']; 
% 
% initial state conditions 
%          x   y    z    phi  thetha  psi    u    v    w    p    q    r 
state = [0.0; 0.0; 0.0; 0.0; 0.872665; 0.0; 2022; 0.0; 0.0; 10.0; 0.0; 

0.0]; 
% 
time(1)=0.0;            % time at i=1 
ti=0;                   % initial time  
tf=270;                 % final  time  
h=0.0005;               % time step in seconds 

  
b=1; 
% 
% RK4 Integration 
% 
    for i=1:(tf-ti)/h; 
        % Compute Density and Speed of Sound Meters 
         Vtot(i) = sqrt(state(7,i)^2+state(8,i)^2+state(9,i)^2); 
         if (state(3,i) < -10769.00) 
              rho = 0.37454745*exp(0.00015682*(state(3,i) +10769.0)); 
              a = 295.92987; 
         else 
              rho = 1.2258100*(1+0.00002257* state(3,i) )^4.256; 
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              a = 14.9390*sqrt(518.4+0.01170* state(3,i) ); 
         end 
         %rho=0; 
         Mach(i) = Vtot(i)/a;  % Mach Number 
        % 
        aeros  = interp1(M_Table,Coeff_Table,Mach(i)); 
        cx0 = aeros(1); 
        cx2 = aeros(2); 
        cna = aeros(3); 
        cypa= aeros(4);  
        cmq = aeros(5); 
        clp = aeros(6); 
        cldd= aeros(7); 
        dx  = aeros(8); 
        dxmag= aeros(9); 
        % 
        k1=h*PROJ6DOF_M829_DERV(time(i),state(:,i)); 
        k2=h*PROJ6DOF_M829_DERV(time(i)+0.5*h,state(:,i)+0.5*k1); 
        k3=h*PROJ6DOF_M829_DERV(time(i)+0.5*h,state(:,i)+0.5*k2); 
        k4=h*PROJ6DOF_M829_DERV(time(i)+h,state(:,i)+k3); 
        s=(k1+2*k2+2*k3+k4)/6; 
        state(:,i+1)=state(:,i)+ s; 
        % 

         
        if (time(i)>(0.5*b)) 
            output(b,1)=time(i); 
            output(b,2)=state(1,i); 
            output(b,3)=state(2,i); 
            output(b,4)=state(3,i); 
            output(b,5)=Vtot(i); 
            

output(b,6)=sqrt(state(8,i)^2+state(9,i)^2)*180/(state(7,i)*pi); 
            b=b+1; 
        end 

                 
        i=i+1; 
        time(i) = time(i-1) + h; 

         

         
    end 

     

     
function dstate= PROJ6DOF_M829_DERV(time,state)  
global mass rho GM Ix Iy Iz d cx0 cx2 cypa cna clp cmq cldd dx dxmag 

  
x=state(1,1); 
y=state(2,1); 
z=state(3,1); 
phi=state(4,1);  
theta=state(5,1);   
psi=state(6,1); 
u=state(7,1);   
v=state(8,1);  
w=state(9,1); 
p=state(10,1);  
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q=state(11,1);      
r=state(12,1); 
% 
c_theta = cos(theta);           
s_theta = sin(theta);            
c_phi = cos(phi); 
t_theta= tan(theta); 
s_phi = sin(phi);               
c_psi = cos(psi);                
s_psi = sin(psi);  
t_theta= tan(theta); 
thetacorrect=theta+atan(sqrt(x^2+y^2)/(6378000-z)); 
% 
%TIB a transformation matrix from the Inertia reference frame I to the 

body 
%frame B 
TIB=[c_theta*c_psi                    c_theta*s_psi                   -

s_theta; 
     s_phi*s_theta*c_psi-c_phi*s_psi  s_phi*s_theta*s_psi+c_phi*c_psi  

s_phi*c_theta; 
     c_phi*s_theta*c_psi+s_phi*s_psi  c_phi*s_theta*s_psi-s_phi*c_psi  

c_phi*c_theta]; 

  
TIB2=[cos(thetacorrect)*c_psi                    

cos(thetacorrect)*s_psi                   -sin(thetacorrect); 
     s_phi*sin(thetacorrect)*c_psi-c_phi*s_psi  

s_phi*sin(thetacorrect)*s_psi+c_phi*c_psi  s_phi*cos(thetacorrect); 
     c_phi*sin(thetacorrect)*c_psi+s_phi*s_psi  

c_phi*sin(thetacorrect)*s_psi-s_phi*c_psi  c_phi*cos(thetacorrect)]; 
% Kinematic equation matrix 
K=[1    s_phi*t_theta           c_phi*t_theta; 
   0        c_phi                    -s_phi;  
   0    s_phi/c_theta            c_phi/c_theta]; 
% Weight 
%Weight = (mass*GM*1000/((6378-z/1000)^2+(x/1000)^2))*TIB2*[0; 0; 1]; 
Weight = (mass*GM*1000/((6378-

z/1000)^2+(x/1000)^2))*TIB*(1/sqrt(x^2+y^2+(6378000-z)^2)*[-x; -y; -

z+6378000]); 
%Weight = mass*9.81*TIB*[0; 0; 1]; 
% Angular velocity skew symmetric matrix 
SW = [0 -r q; r 0 -p; -q p 0]; 
% Inertia and Invese 
Inertia =[Ix 0 0; 0 Iy 0; 0 0 Iz]; 
IntInv =[1/Ix 0 0; 0 1/Iy 0; 0 0 1/Iz]; 

  
% 

  
V  = (u^2+v^2+w^2)^0.5;        % body velocity 
qa =  0.125*pi*rho*V^2*d^2; 
% Forces 
FSA = qa*[(cx0 + cx2*(v^2+w^2)/V^2); -cna*v/V; -cna*w/V]; 
FMAG = 0.0625*rho*pi*d^3*p*cypa*[0.0; w; -v]; 
FA = FSA+FMAG; 
%Moments 
%Steady Moments 
MSA = qa*cna*dx*[0.0; w/V; -v/V]; 
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%Unsteady Moments 
MUA = qa*d*[cldd+(p*clp*d)/(2*V); (q*cmq*d)/(2*V); (r*cmq*d)/(2*V)]; 
%Magnus Moments 
MMAG = 0.0625*rho*pi*d^3*p*cypa*dxmag*[0.0; v; w]; 
% Total moment 
MA= MSA + MUA + MMAG; 
% Kinematic equations and dynamic equations 
PositionKIN=TIB'*[u; v; w]; 
RoatationKIN=K*[p; q; r]; 
TranslationDYN =(1/mass)*(FA+Weight)-SW*[u; v; w]; 
RotatitionDYN  =IntInv*(MA-SW*Inertia*[p; q; r]); 
% Output 
dstate=[PositionKIN; RoatationKIN ; TranslationDYN; RotatitionDYN]; 
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APPENDIX C 

Taylor-Maccoll Solution of Drag Coefficient 

 The Taylor-Maccoll method was written in Visual Basic for Applications as a 

Microsoft Excel Macro.   

Private Sub CommandButton1_Click() 

'This code solves the famous Taylor-Maccoll equations for conical 

supersonic flow over a right cone. 

'by: John Stutz, P.E. 

'16 June 2011 

 

Dim i As Integer 

i = 7 

Dim Vr(2), Vt, M1, M2, Vmax, M1n As Double 

Dim p1, p2, ps, Ms, pt As Double 

p1 = Worksheets("Sheet1").Cells(4, 9).Value 

Dim Gamma As Double 

Gamma = Worksheets("Sheet1").Cells(4, 7).Value 

Dim T1, a1, T2, a2, Ts, a3, Tt As Double 

Dim Shockang As Double 

Dim dtheta, theta As Double 

dtheta = Worksheets("Sheet1").Cells(2, 9).Value * 3.14159 / 180 

T1 = (Worksheets("Sheet1").Cells(2, 7).Value - 32) * (5 / 9) + 273 

Dim alpha, beta As Double 

'cells(row, collum) 

Shockang = 70 * 3.14159 / 180 

 

10 'Mach Number itteration- outer most loop 

'look up Mach number for this itteration 

M1 = Worksheets("Sheet1").Cells(i, 1).Value 

'calculate the free stream speed of sound 

a1 = Math.Sqr(Gamma * 287 * T1) 

'calculate the RSS velocity behind shock 

Vmax = Math.Sqr(2 * (((a1 ^ 2) / (Gamma - 1)) + (M1 * a1) ^ 2 / 2)) 

 

20 'Shock Angle itteration- middle loop 

'calculate the velocity of the radial component behind shock 

Vr(0) = M1 * a1 * Math.Cos(Shockang) 

'calculate Mach number normal to shock 

M1n = M1 * Math.Sin(Shockang) 

'calculate the Mach number normal to shock behnind shock 

M2 = Math.Sqr((1 + ((Gamma - 1) * (M1n ^ 2) / 2)) / (Gamma * (M1n ^ 2) 

- ((Gamma - 1) / 2))) 

'calculate the air temp behind the shock 

T2 = T1 * (1 + (2 * Gamma * ((M1n ^ 2) - 1) / (Gamma + 1))) * ((2 + 

(Gamma - 1) * (M1n ^ 2)) / ((Gamma + 1) * (M1n ^ 2))) 

'calculat the local speed of sound behind the shock 

a2 = Math.Sqr(287 * Gamma * T2) 

'calculate the pressure behind the shock 

p2 = p1 * (1 + 2 * Gamma * (M1n ^ 2 - 1) / (Gamma + 1)) 

'calculate the velocity of the normal component behind the shock 

Vt = -M2 * a2 
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'calculate the total temperature 

Tt = T2 * (1 + (Gamma - 1) * (Math.Sqr(Vt ^ 2 + Vr(0) ^ 2) / a2) ^ 2 / 

2) 

'calculate the total pressure 

pt = p2 * (Tt / T2) ^ (Gamma / (Gamma - 1)) 

'set angle for next itteratio loop 

theta = Shockang - dtheta 

 

30 'Taylor Maccoll itteration- inner loop 

'these are algebra terms to simplify the code per line 

alpha = ((Gamma - 1) / 2) * ((Vmax ^ 2) - (Vr(0) ^ 2) - (Vt ^ 2)) 

beta = (Vr(0) * (Vt ^ 2) - alpha * (2 * Vr(0) + (Vt / Math.Tan(theta)))) 

/ (alpha - (Vt ^ 2)) 

'calculate the radial velocity at the next ray angle 

Vr(1) = Vr(0) - Vt * dtheta + beta * (dtheta ^ 2) 

'calculate the new normal velocity at the next ray angle 

Vt = (Vr(0) - Vr(1)) / dtheta 

'substitute new value for old value 

Vr(0) = Vr(1) 

'check to see if we are at the cone surface-close inner loop 

If Vt < 0 Then 

theta = theta - dtheta 

GoTo 30 

End If 

 

'calculate surface speed of sound 

a3 = Math.Sqr(((Vmax ^ 2 - Vr(1) ^ 2) / 2) * (Gamma - 1)) 

'calculate surface mach number 

Ms = Vr(1) / a3 

'calculate surface pressure 

ps = pt / (1 + (Gamma - 1) * Ms ^ 2 / 2) ^ (Gamma / (Gamma - 1)) 

If Shockang = 70 * 3.14159 / 180 Then 

Worksheets("Sheet1").Cells(i, 2).Clear 

Worksheets("Sheet1").Cells(i, 3).Clear 

Worksheets("Sheet1").Cells(i, 4).Clear 

Worksheets("Sheet1").Cells(i, 5).Clear 

Worksheets("Sheet1").Cells(i, 6).Clear 

Else 

Worksheets("Sheet1").Cells(i, 2).Value = Vr(1) 

Worksheets("Sheet1").Cells(i, 3).Value = Vt 

Worksheets("Sheet1").Cells(i, 4).Value = Shockang * 180 / 3.14159 

Worksheets("Sheet1").Cells(i, 5).Value = ps 

Worksheets("Sheet1").Cells(i, 6).Value = 2000 * (ps - p1 * 

Worksheets("Sheet1").Cells(4, 12).Value) / (Vmax ^ 2 * 

Worksheets("Sheet1").Cells(2, 12).Value) 

End If 

'chect to see if cone angle is correct-close middle loop 

If (theta * 180 / 3.14159) - Worksheets("Sheet1").Cells(2, 4).Value > 0 

Then 

Shockang = Shockang - dtheta 

GoTo 20 

End If 

If i < 28 Then 

i = i + 1 

GoTo 10 

End If 

End Sub 
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