Differences Between High-Productive and Low-Productive Active Regions

Declan Brick1, Gang Li2, David Falconer2,3

1. Department of Physics, UAH 2. Department of Space Science, UAH 3. MSFC, NASA, Huntsville, AL

Introduction

- Solar flares are the most energetic events in the solar system and have the potential to damage spacecraft, electric grids, and astronauts.
- MAG4 (Magnetogram Forecast) is a code developed by NASA MFSC & UAH that uses magnetograms of these regions to derive parameters to predict flaring.
- Here we collected a set of 53 HARP tiles-data sets which can contain one or more Active regions (Ars) and use them to determine addition parameters to use in forecasting.

Methods

- We first downloaded HARP patch vector magnetogram data.
- These HARPS were then converted into horizontal and vertical magnetic field components.
- From these components, parameters like alpha, a measure of magnetic twist and calculated by $\alpha=J_z/B_z$, can be computed.
- We divide our sample into high or low productivity based on MAG4’s predictions over a six-day window centered on the time period of the magnetogram.

Key Findings/Results

- We found that high-productive ARs had significant emergence of additional magnetic field 62% of the time whereas low-productive only had emergence 28% of the time.
- When the Kurtosis was calculated for alpha and graphed, we found that it spiked around 75% of the M- and X-class flares (Right Figures).

Summary

- The Kurtosis peaking around flare times indicates that it may be useful as a parameter of flare prediction in future work.
- By using emergence, we possibly can use to improve predictions in future upgrades of MAG4.

Acknowledgments

All RCEU projects are funded by UAH Office of the Provost, UAH Office of the Vice President for Research and Economic Development and the Alabama Space Grant Consortium. Special Thanks to Dr. Alphonse Sterling, Dr. Ron Moore, Dr. Mitzi Adams and Clayton Allison for help in development of the processing code.