Selective Dielectric Barrier Discharge Actuation for Flow Control of Delta Wings

Arnab Chatterjee, Kunning G. Xu Ph.D. and Konstantinos Kanistras Ph.D.,
Mechanical and Aerospace Engineering Department

Overview
This study investigated the efficiency of Dielectric Barrier Discharge (DBD) actuation on a delta wing leading edge vortex. A DBD actuator is an Active Flow Control (AFC) device comprised of two layers of copper tape, separated by layers of Kapton tape, which forms the dielectric layer, through which high voltage AC current is applied to produce a plasma discharge (Fig. 1). Symmetric and asymmetric leading edge (LE) DBD actuation was tested on a delta wing model of 60° sweep angle in a subsonic recirculating wind tunnel (Figs. 2 & 3). The model’s vortex flow field was investigated using Stereo (Fig. 4) and Mono Particle Image Velocimetry (PIV) obtaining vorticity magnitude contours to quantify the vortex structure.

Conceptual Framework
Delta wing planforms, primarily efficient in high speed flight regimes, are dependent on their leading edge vortices (LEVs) for lift generation (Fig. 5) at low speeds (high angles of attack). LEVs are subject to breakdown due to a substantial lack of axial flow transport along the vortex core, thus affecting the wing’s controllability. Leading edge DBD actuation has been shown to delay the vortex breakdown location through manipulation of the separated shear layer at the wing’s leading edge [1, 2]. Future work would involve the investigation of the actuation effects of new chevron DBDs, designed and placed along the vortex reattachment angle in an effort to entrain high momentum axially attached flow to the leading edge vortices along their primary attachment lines.

Key Findings
A baseline delta wing’s vortex flow field was characterized at x/c=0.2 intervals to identify the vortex breakdown location at α = 20° (Fig. 6). Asymmetric actuation at x/c=0.4 (Fig. 7(a)) was shown to significantly strengthen the left vortex, leading to the formation of a well-defined core structure, along with observed increased vorticity on the right. Effects of symmetric leading-edge DBD actuation in a post breakdown phase at x/c=0.5 (Fig. 7(b)) shows a reduced region of increased peak vorticity for the right vortex along with the substantial strengthening of the left vortex which led to the reformation of the vortex core, consequently delaying vortex breakdown.

Impact
Selective control of vortex breakdown through DBD actuation can significantly alter a delta wing’s rolling moment aiding maneuverability at low flight speeds. Application of DBD actuators on delta wing flow control platforms such as engine strakes can significantly strengthen the LE vortex over an aircraft’s wing.

References

Acknowledgements
• The authors would like to thank Eli Merloch and Nate McWilliams for their invaluable assistance with the testing and prototyping of the wind tunnel model.
• The authors would also like to thank the RCEU staff, UAH Office of the Provost, UAH Office of the Vice President for Research and Economic Development and the Alabama Space Grant Consortium.