Quantitative Characterization of Lithium-ion Batteries under Abuse Conditions

Xiaoniu Du, Dr. Guangsheng Zhang
Department of Mechanical and Aerospace Engineering (MAE)

Introduction

Lithium-ion (Li-ion) batteries are widely used in consumer electronics and increasingly used in electric vehicles. However, under abuse conditions such as short circuit or penetration, they could overheat or even catch fire. With many accidents reported in recent years, Li-ion battery safety has become a critical challenge [1,2]. The objective of this project is to address the challenge by understanding quantitatively the behaviors of Li-ion battery cells under abuse conditions, including external short circuit and internal short circuit caused by nail penetration. The behaviors under abuse conditions are compared with those under normal operations.

Key Results

1. During normal discharge, cell voltage decreased slowly until 2.8 V (cut-off voltage) and cell temperatures increased <5 °C in one hour.
2. During external short circuit (stopped when cell surface temperature in the middle, T3, reached 80 °C), cell voltage dropped to below 0.5 V and temperatures near tabs (T1, T2) increased to ~100 °C.
3. During internal short circuit by nail penetration, cell voltage dropped to ~2.2 V but quickly recovered and then very slowly decreased until stabilized at ~0.4 V. The cell temperatures only increased slightly at first and then decreased back to room temperature.

Conclusions

1. The cell temperatures increased ~2,000 times faster and the temperature distribution was more non-uniform during external short circuit than during 1C normal discharge.
2. The experimental Li-ion cell did not overheat during nail penetration as expected, which should be further investigated.

References


Acknowledgements

The authors thank Mr. An Nguyen (UAH MAE Department) for help in developing experimental setup. X. Du gratefully acknowledges the financial support from HCR Summer Program and help from Mr. David Cook and Dr. William Wilkerson (UAH Honors College). G. Z gratefully acknowledges the Start-Up support from UAH.