
University of Alabama in Huntsville University of Alabama in Huntsville 

LOUIS LOUIS 

Dissertations UAH Electronic Theses and Dissertations 

2016 

Stochastic theory and direct numerical simulations of the relative Stochastic theory and direct numerical simulations of the relative 

motion of high-stokes number particles in isotropic turbulence motion of high-stokes number particles in isotropic turbulence 

Rohit Dhariwal 

Follow this and additional works at: https://louis.uah.edu/uah-dissertations 

Recommended Citation Recommended Citation 
Dhariwal, Rohit, "Stochastic theory and direct numerical simulations of the relative motion of high-stokes 
number particles in isotropic turbulence" (2016). Dissertations. 111. 
https://louis.uah.edu/uah-dissertations/111 

This Dissertation is brought to you for free and open access by the UAH Electronic Theses and Dissertations at 
LOUIS. It has been accepted for inclusion in Dissertations by an authorized administrator of LOUIS. 

https://louis.uah.edu/
https://louis.uah.edu/uah-dissertations
https://louis.uah.edu/uah-etd
https://louis.uah.edu/uah-dissertations?utm_source=louis.uah.edu%2Fuah-dissertations%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/uah-dissertations/111?utm_source=louis.uah.edu%2Fuah-dissertations%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages


STOCHASTIC THEORY AND DIRECT NUMERICAL

SIMULATIONS OF THE RELATIVE MOTION OF

HIGH-STOKES-NUMBER PARTICLES IN ISOTROPIC

TURBULENCE

by

ROHIT DHARIWAL

A DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

The Department of Mechanical and Aerospace Engineering

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2016







ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree: Doctor of Philosophy College/Dept.: Engineering/Mechanical and

Aerospace Engineering

Name of Candidate: Rohit Dhariwal

Title: Stochastic Theory and Direct Numerical Simulations of the Relative Motion of
High-Stokes-number Particles in Isotropic Turbulence

This dissertation presents an analytical and computational investigation of

the relative motion of monodisperse, non-settling, inertial particle pairs in stationary,

homogeneous isotropic turbulence. The research objectives of this dissertation were

to: (1) develop a stochastic theory describing the relative velocities and separations

of highly inertial particle pairs in isotropic turbulence; (2) analyze and validate the

developed theory through comparisons with prior theories, and with data from direct

numerical simulations; and (3) investigate the effects of stochastic and deterministic

forcing schemes on the relative motion of particle pairs in direct numerical simulations

(DNS) of isotropic turbulence.

The PDF kinetic equation describing the relative motion of inertial particle

pairs in a turbulent flow requires the closure of the phase-space diffusion current.

A novel analytical closure for the diffusion current is presented that is applicable to

high-inertia particle pairs with Stokes numbers Str ≫ 1, where Str is a Stokes number

based on the time-scale τr of eddies whose size scales with pair separation r. In the

asymptotic limit of Str ≫ 1, the pair PDF kinetic equation reduces to an equation

of the Fokker-Planck form. Closure of the diffusivity tensor in the Fokker-Planck

iv



equation is achieved by converting the Lagrangian correlations of fluid relative veloc-

ities “seen” by pairs into Eulerian fluid velocity correlations at pair separations that

remain essentially constant during timescales of O(τr). A detailed quantitative anal-

ysis of the stochastic theory was performed by solving the Langevin equations that

are statistically equivalent to the closed Fokker-Planck equation. The pair relative-

motion statistics obtained from the Langevin simulations (LS) for Reλ = 76, 131 and

Stη = 10, 20, 40, 80 are compared with the results obtained in prior theoretical anal-

yses, as well as with the data from DNS. Excellent comparison between LS and DNS

results was found for the radial distribution functions, while a reasonable agreement

was seen for the relative velocity statistics.

Finally, the effects of deterministic and stochastic forcing schemes on the rel-

ative motion of heavy inertial particles in DNS of isotropic turbulence were studied.

The effects of forcing time scale Tf , a key parameter in stochastic forcing, on the rel-

ative motion statistics of particle pairs were assessed by considering five Tf ’s, ranging

from 4TE to TE/4, where TE is the Eulerian integral time scale obtained from the

DNS with deterministic forcing. Six DNS runs (one deterministic and five stochatic)

are performed for each of the three grid resolutions 1283, 2563, 5123. Data from the

runs with deterministic forcing and stochastic forcing (with five time scales) were

compared, and their effects on particle statistics quantified.
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CHAPTER 1

INTRODUCTION

Particle-laden turbulent flows are encountered in a variety of natural and engi-

neering systems such as dispersion of pollutants in the atmosphere, sediment transport

in rivers, cloud precipitation, planetesimal formation, spray combustion in engines,

and fluidized bed reactors. In these types of two-phase flows, the phase consisting

of solid particle or liquid droplets or gas bubbles (commonly referred as particles) is

called dispersed phase, whereas the continuous fluid phase (liquid or gas) in which

particles are immersed is referred to as the carrier phase. Particle-laden turbulent

flows can be broadly categorized into dilute and dense regimes, depending on the

dispersed phase volume fraction [19]. In dilute flows, the particle motion is primarily

dominated by the fluid drag and lift forces, and inter-particle collisions are negligible.

On the other hand, in dense flows the particle motion is controlled by collisions or

continuous contact. In dilute regime, the fluid and dispersed phase can have “one-

way” or “two-way coupling”. One-way coupling implies that the fluid turbulence is

unaffected by the presence of particles and this approach is valid for particle volume

fractions φv < 10−6[24]. Whereas, for 10−6 < φv < 10−3, the momentum source/sink

provided to carrier phase by the particles is not negligible and their inclusion is called
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Warm-Cloud Precipitation Planetesimal Formation

Pyroclasts Fuel Injector

Figure 1.1: Examples of particle-laden turbulent flow

two-way coupling. In this dissertation, dilute one-way coupled particle dispersion in

turbulence is considered.

Disperse multiphase flows exhibit a variety of interesting phenomena that be-

come important in the context of a turbulent carrier-phase flow. A comprehensive

discussion of dispersed multiphase turbulence can be found in reviews by [4, 80, 82].

One of the important phenomenon in particle dispersion is preferential accumulation

or clustering. The preferential concentration of particles refers to the phenomenon

of accumulation of particles in certain regions of the flow. This clustering is caused

due to the difference between particle and fluid inertia, as the particles due to their

inertia are not able to follow the fluid streamlines closely. The particle inertia can be

characterized in terms of Stokes number St, which is the defined as a ratio of particle
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response time to the flow time scale of interest. In one of the early studies on particle

clustering [52, 23] found that the inertial particles are centrifuged out of the high

vorticity regions and preferentially accumulate in the high strain regions. Since then,

numerous experimental [23, 76, 78, 6, 79] and numerical [52, 89, 23, 91] studies have

been devoted to the study of particle clustering, and it is found that the particles

having St ∼ O(1) show maximum clustering. An important statistical measure of

particle clustering is the radial distribution function (RDF)[77]. RDF is defined as the

ratio of the number of particle pairs at a given separation to the expected number of

particle pairs in a perfectly randomly distributed particle field. RDF of unity denotes

uniform distribution of the particles, whereas, RDF more than one means preferen-

tial concentration of particles. Reade and Collins [69] performed DNS of isotropic

turbulence laden with inertial particles and Shotorban and Balachandar [83] studied

dispersion of small Stokes numbers using LES to show clustering of inertial particles.

The study of Sengupta et al. [81] describes the application of spectral-based methods

to simulate particle-laden turbulent flows. Figure 1.2 shows the effect of clustering

for various Stokes numbers.

1.1 Modeling and Simulation of Particle-laden Turbulent Flows

There are two methods to simulate particle-laden turbulent flows, namely

Lagrangian-Eulerian (LE) and Eulerian-Eulerian (EE). In both these methods, the

fluid phase is solved in Eulerian framework, whereas, the dispersed phase is solved

using Lagrangian (in LE) or Eulerian (in EE) framework.
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Figure 1.2: Clustering of inertial particles. Figure taken from [69]

In both LE and EE methods, the fluid phase can be modeled using any of the

standard techniques to solve the Navier-Stokes equations, namely Reynolds-averaged

Navier-Stokes equations (RANS), large-eddy simulation (LES), and direct numerical

simulation (DNS). The individual particle trajectories and velocities are computed

by integrating the particles equations of motion in LE approach. [48, 93, 50, 88,

78, 31, 94, 26, 41, 84, 85] are few notable studies of DNS and LES of particle-laden

turbulent flows. Kuerten [46] provides a recent review on DNS and LES of particle-

laden turbulent flows. While in EE approach, the particulate phase is treated as a

continuum much like the fluid phase. Hence, in EE approach, mass and momentum
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conservation equations are developed for the particle phase, which are then solved for

the particle concentration and velocity fields.

In general, the LE approach is preferred when the number of particles to be

tracked is “small” so that the CPU time for the Lagrangian tracking of particle posi-

tions and velocities does not overwhelm the CPU time for solving the fluid equations.

But, when the number of particles to be tracked becomes very large, the LE ap-

proach may become computationally unviable. In such scenarios, EE is the preferred

method. The EE approach, while being computationally economical compared to LE,

also presents a substantial conundrum due to the form of the particulate phase contin-

uum equations. The equations for the conservation of particle mass and momentum

are typically obtained through an appropriate averaging process.

An alternative approach to the averaging process to derive and close the par-

ticle continuum equations is that motivated by the Boltzmann equation describing

the statistical behavior of a thermodynamic system. This method is commonly re-

ferred to as the probability density function (PDF) kinetic equation approach. Since

the turbulence-driven particle motion is inherently stochastic, the kinetic equation

method presents a natural avenue to develop the desired closures for the particle

continuum equations. The advantage of this method is that one is able to derive clo-

sures for not only the mean particle quantities, but also the second- and third-order

moments.

The first step in the kinetic equation method is to derive the transport equation

for the PDF of particle velocity and position, P (x,v), where x and v represent

the particle position and velocity phase space. It is seen that the equation for P
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contains contains a turbulence-particle interaction term of the form ⟨uf̃ ′⟩ that requires

closure, where u is the gas-phase velocity and and ⟨·⟩ represents ensemble averaging

over flow realizations. The quantity f̃ ′ can be interpreted as the fluctuating particle

number density, thereby the term ⟨uf̃ ′⟩ is analogous to the Reynolds stress terms

that arise when deriving the averaged Navier-Stokes equations. Three methods have

been used to close this unknown term; [71, 73, 70] used the Lagrangian History

Direct Interaction, [92, 37, 106, 100] used the Furutsu-Novikov correlation splitting

technique and [65] used Van Kampen’s method. Mashayek and Pandya [49] provides

a comprehensive review on various methods for modeling two-phase flows. A detailed

description of pdf methods for particle-laden turbulent flows can be found in [55, 54].

In this dissertation, particle dispersion in turbulent flows is studied using both

LE and EE approaches. In LE approach, Lagrangian particle tracking is used in

conjunction with DNS of fluid velocity field. In EE approach, particle position and

velocity PDF is solved using Langevin simulations in combination with an analytically

derived diffusion coefficient that describes fluid flow statistics.

1.2 Dissertation outline

In Chapter 2, an analytical model for the pair diffusion coefficient in the limit

of high Stokes number is presented. In Chapter 3, a quantitative analysis of the

stochastic theory is performed through a comparison of the pair statistics obtained us-

ing Langevin simulations with those from DNS. In Chapter 4, the effects of large scale

forcing schemes on the relative motion of inertial particle pairs in DNS of isotropic
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turbulence is studied. And finally in Chapter 5, key results from this work are sum-

marized.
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CHAPTER 2

A STOCHASTIC MODEL FOR THE RELATIVE MOTION OF HIGH

STOKES NUMBER PARTICLES IN ISOTROPIC TURBULENCE

2.1 Abstract

The probability density function (PDF) kinetic equation describing the rela-

tive motion of inertial particle pairs in a turbulent flow requires closure of phase-space

diffusion current. In the current study, a novel analytical closure for the diffusion cur-

rent is presented that is applicable to high-inertia particle pairs with Stokes numbers

Str ≫ 1. Here Str is a Stokes number based on the time-scale τr of eddies whose

size scales with pair separation r. In the asymptotic limit of Str ≫ 1, the pair PDF

kinetic equation reduces to an equation of the Fokker-Planck form. The diffusion ten-

sor characterizing the diffusion current in the Fokker-Planck equation is equal to 1/τ 2v

multiplied by the time-integral of the Lagrangian correlation of fluid relative veloci-

ties along particle pair trajectories. Here, τv is the particle viscous relaxation time.

Closure of the diffusion tensor is achieved by converting the Lagrangian correlations

of fluid relative velocities “seen” by pairs into Eulerian fluid velocity correlations at

pair separations that remain essentially constant during timescales of O(τr); the pair

center-of-mass, however, is not stationary and responds to eddies with timescales
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comparable to or smaller than τv. For isotropic turbulence, Eulerian fluid-velocity

correlations may be expressed as Fourier transforms of the velocity spectrum tensor,

enabling us to derive a closed-form expression for the diffusion tensor. A salient fea-

ture of this closure is that it has a single, unique form for pair separations spanning

the entire spectrum of turbulence scales, as opposed to prior closures that involve

velocity structure functions with different forms for the integral, inertial subrange,

and Kolmogorov-scale separations. Using this closure, Langevin equations—which

are statistically equivalent to the Fokker-Planck equation—were solved to evolve

particle-pair relative velocities and separations in stationary isotropic turbulence.

The Langevin equation approach enables the simulation of the full PDF of pair rel-

ative motion, instead of only the first few moments of the PDF as is the case in a

moments-based approach. Accordingly, PDFs Ω(U |r) and Ω(Ur|r) are computed and

presented for various separations r, where the former is the PDF of relative velocity U

and the latter is the PDF of the radial component of relative velocity Ur, both condi-

tioned upon the separation r. Consistent with the direct numerical simulation (DNS)

study of Sundaram and Collins [91], the Langevin simulations capture the transition

of Ω(U |r) from being Gaussian at integral-scale separations to an exponential PDF at

Kolmogorov-scale separations. The radial distribution functions (RDFs) computed

from these simulations also show reasonable quantitative agreement with those from

the DNS study of Février et al. [29].
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2.2 Introduction

The two principal quantities describing particle-pair relative motion in a tur-

bulent flow are: (1) the radial distribution function (RDF) which is a measure of

the number density of particles that are located at a separation r from a reference

particle, and (2) the probability density function (PDF) of the relative velocities of

particle pairs conditioned upon separation r. Both can be determined through direct

numerical simulation (DNS) of particle-laden turbulent flows. However, DNS suffers

from the well-known computational limitation on the Reynolds numbers that can be

achieved. This drawback of DNS is one of the motivating factors for developing PDF

equation-based stochastic models for particle-laden turbulent flows. The transport

equation for the PDF of pair separation and relative velocity vectors, r and U re-

spectively, contains an unclosed phase-space diffusion current. In this study, a novel

closure is derived for the diffusion current in the limit of Stokes number Str ≫ 1 when

the pair PDF equation reduces to the Fokker-Planck form. Here Str is the Stokes

number based on the time-scale τr of eddies whose size is of the order of pair sepa-

ration r. Predictions of RDF and relative velocity PDF obtained from the current

closure show good agreement with prior DNS results.

Numerous computational and theoretical studies of inertial particle motion in

isotropic turbulence have established that dense particles with response time (τv) of

the order of the Kolmorogorov time-scale (τη) preferentially accumulate in regions

of excess strain over vorticity [52, 89, 22, 21, 28, 27, 66, 18, 68]. When τv ! τη,

particle accumulation occurs at separations smaller than the Kolmogorov length scale
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(η). Preferential concentration at separations of O(η) is maximized for particles

with Stokes number Stη ∼ O(1), and is attenuated when Stη > 1, where Stη =

τv/τη. Février et al. [29] found that particles with Stη > 1 also exhibit preferential

concentration, as quantified by RDF values greater than unity, but the peak in the

RDF shifts towards separations larger than η for higher Stη.

Turbulence-induced clustering of high-inertia particles has potential applica-

tions in many astrophysical environments, such as the interstellar medium, protoplan-

etary disks, and the atmospheres of planets and dwarf stars [16, 63]. A phenomenon

of significant interest in Astrophysics is the formation of planetesimals from dust

particles in protoplanetary disks. An intriguing possibility that astrophysicists are

investigating is whether gas-turbulence-driven dispersion, sedimentation, collisional

coalescence and fragmentation of dust particles play an important role in the forma-

tion of planetesimals. Particle preferential concentration at separations in the inertial

subrange is of particular interest to the problem of planetesimal formation, where the

Stokes numbers of relevance are estimated to be Stη ∼ 10-100 [63]. The proposed

high-Stokes-number theory would be directly applicable in this scenario.

In a DNS study of inertial particle dynamics in isotropic turbulence by Sun-

daram and Collins [91], it was observed that the PDF of particle-pair relative velocity

was Gaussian at pair separations of the order of the turbulent integral length scale,

and that this PDF became increasingly non-Gaussian (exponential) as the separa-

tion decreased. Particle motion at smaller separations (compared to, say, the integral

length scale) will be strongly correlated due to the influence of the fluid, giving rise

to the non-Gaussian relative velocity PDF. At larger separations, particles will be
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less correlated because turbulent fluctuations effectively behave like Gaussian white

noise, leading to a Gaussian relative velocity PDF.

The motion of disperse particles in turbulent flows is inherently stochastic due

to the turbulence-driven random fluctuating forces acting on the particles. Hence,

a PDF equation-based approach presents a natural avenue to study particle-laden

turbulent flows. However, this approach poses a closure problem in the form of a

diffusion current term that arises when one averages the phase-space density equation

over an ensemble of particle initial conditions and flow realizations. Reeks [71, 73, 70,

72], and Hyland et al. [37] are among the seminal fundamental studies on the PDF

kinetic equation approach to model particle transport in turbulent flows.

The PDF kinetic equation approach of Reeks and coworkers considered the

single-particle PDF ⟨P (v,x; t)⟩ whose phase space consists of particle velocity and

position vectors v and x, respectively. In Reeks [71], the Eulerian Direct Interaction

(EDI) approximation [43] was used to close the diffusion current term. In a subsequent

study, Reeks [73] showed that in order to preserve invariance to a random Galilean

transformation (RGT), the diffusion current should be of following form:

j = −
(
∂

∂v
· µ+

∂

∂x
· λ+ γ

)
⟨P (v,x; t)⟩ (2.1)

where j represents the phase-space diffusion current, µ and λ are diffusion tensors,

and γ is a drift vector. In an improvement over Reeks [71], Reeks derived a clo-

sure for the diffusion current in the particle PDF equation by using Kraichnan’s

Lagrangian-history direct interaction (LHDI) approximation [44] in conjunction with
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a renormalized perturbation theory. One of the important advantages of LHDI is

that it preserves RGT invariance. Subsequently, Hyland et al. [37] adopted the

Furutsu-Novikov-Donsker (FND) formula to derive closed-form expressions for the

two diffusion terms in (2.1).

In an important theoretical study, Pozorski and Minier [65] discussed the sig-

nificance of the choice of state variables in the PDF equation-based modeling of

two-phase flows. They presented two broad formulations depending upon the choice

of the state vector. The first formulation considered a state space that included only

the particle position and velocity, x and v respectively. This is a traditional approach

that is used in [73, 37], as well as in the current study (although we consider rela-

tive quantities and not single-particle quantities). The first approach gives rise to

a diffusion current closure of the form in (2.1). In the second approach, the state

vector also includes the fluid velocity “seen” by the particles, u. Inclusion of u in the

state vector necessitates a Langevin evolution equation of the form du/dt = A. The

PDF equation for the enlarged state space, (x, v,u), now has a new unknown term

⟨A|x, v,u⟩. To achieve closure, Pozorski and Minier [65] proposed a Langevin model

for the time evolution of the “seen” fluid velocity.

Gardiner [30], and subsequently Pozorski and Minier [65], observed that one

retains the temporally slowly-varying quantities in the state vector, while removing

the quickly-varying ones. Gardiner (1990) demonstrated that in dynamical systems

characterized by widely separated timescales, one is typically not interested in system

variations occurring on very short timescales, and refers to such variables as “fast

variables.” He further says that fast variables are effectively slaved by slow variables,
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meaning that by the time the latter have relaxed to a steady-state, the fast variable

values can simply be determined using the steady-state values of the slow variables.

Pozorski & Minier (1999) discuss the replacement of removed fast variables with

models containing their equilibrium values along with white-noise terms.

The preceding discussion is directly applicable to the current study, where the

reference time-scale is the particle viscous relaxation time, τv. This means that the

particle variables of interest such as the pair separation and relative velocity vary

over times ∼ τv. In the asymptotic limit of Stokes number Str = τv/τr ≫ 1, where τr

is the time-scale of an eddy whose size scales with separation r, the fluid timescales

impacting the pair relative motion are much smaller than τv, and hence the seen

fluid relative velocity is a fast variable. This justifies the elimination of the seen fluid

relative velocity ∆u from the state vector. In this context, it is also relevant to discuss

the study by Reeks [72]. In that study, Reeks rigorously examined the purported

differences between the above two approaches to stochastic modeling of particle-laden

flows: the kinetic PDF model (KM) pioneered by Reeks, and the generalized langevin

model (GLM) pioneered by Simonin et al. [87] and Pozorski and Minier [65]. The

principal differences between KM and GLM are with regard to the non-inclusion or

inclusion, respectively, of u in the state vector, and the different closure requirements

this entails (note that Reeks was considering single particle dynamics). Reeks asserted

that KM and GLM will, in principle, give identical results provided the modeling

inputs to both approaches are the same. For instance, integrating the GLM PDF

equation over all the fluid velocities local to the particles will yield an equation that

is identical to the KM PDF equation. However, if the closures for the unknown terms
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in the two approaches are fundamentally different, then the closed PDF equations for

the two approaches, and thereby their predictions, will differ. Reeks demonstrated

that the differences between the two approaches can be attributed to the neglect of

the inertial convection term in the GLM equation for the mean carrier flow velocity

seen by the particle.

[65] elucidate the implications of the choice of the state vector in the KM ap-

proach, and more importantly, the properties of the PDF kinetic equation resulting

from such a choice. This equation has a form that is apparently analogous to the

Fokker-Planck equation. [73], however, shows that the PDF equation becomes the

classical Fokker-Planck equation only for asymptotically large particle Stokes num-

bers when one may represent the underlying turbulence as white noise. [65] bring out

a more crucial difference between the PDF kinetic equation and the Fokker-Planck

equation. This difference relates to the fact that in the kinetic equation, the diffusion

block matrix B formed from the diffusion tensors λ and µ (see (1.1)) is not positive

definite, whereas for the classical Fokker-Planck equation B is positive definite. This

would mean that B for the kinetic equation has at least one negative eigenvalue so

the effects of turbulence on particles for that eigenvalue are manifested as “antidiffu-

sion” behavior in the phase space. Since the current study specifically considers the

asymptotic limit of Str ≫ 1, the PDF equation reduces to the classical Fokker-Planck

equation for the PDF of pair separation and relative velocity.

In their encyclopedic monograph, [55] provide an overview of the PDF methods

for studying particle-laden turbulent flows. For instance, the principle of the elimina-

tion of fast variables from the state vector was illustrated in detail, and provides the
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basis for the removal of the the “seen” fluid relative velocity ∆u from the state vector

in the current study. They also show that the effects of the eliminated fast variable

may be modeled as a white noise term represented using a Wiener increment in the

stochastic differential equation or the Langevin equation governing the slow variable.

The relevant slow variable in the present study is the pair relative velocity U , whose

Langevin evolution equation contains a white noise term modeling the effects of the

underlying fluid turbulence on pair relative velocity. The consequence of the white

noise representation is that this term is manifested as a phase-space diffusion current

characterized by a diffusion tensor in the Fokker-Planck equation governing the PDF

of pair relative motion.

In a precursor study to the current one, Zaichik and Alipchenkov [100] devel-

oped a stochastic model based on the kinetic equation for the joint PDF of pair separa-

tion and relative velocity. Although the current study and Zaichik and Alipchenkov

[100] are similar in this respect, i.e. a stochastic investigation of particle-pair rela-

tive motion, there are important fundamental distinctions between the two studies.

The principal difference lies in the approach adopted to close the diffusion current

in the PDF equation. Zaichik and Alipchenkov [100] achieved closure by using the

Furutsu-Novikov-Donsker (FND) formula wherein the diffusion current was expressed

in terms of the second-order cumulants (or moments) of the fluid relative velocities

“seen” by the inertial particle pairs. Swailes and Darbyshire [92] showed that the

diffusion current, in principle, can be written as an infinite series expansion compris-

ing fluid velocity cumulants of all integral orders. The FND formula is a special case

of this generalized expansion, where only the first- and second-order cumulants are

16



non-zero, and all others are exactly zero (due to the Gaussian random function as-

sumption inherent to FND). For isotropic turbulence, the first-order cumulant is also

zero. Therefore, the assumption implicit in Zaichik and Alipchenkov [100] is that the

fluid relative velocities are Gaussian. This assumption is reasonable for large-scale

eddies driving the relative motion of pairs at integral-scale separations [5]. But, it

is questionable at separations in the inertial and dissipative subranges. The increas-

ing non-Gaussianity of the relative velocities of fluid particles as their separations

approached the Kolmogorov scale was discussed by Minier and Peirano [55]. This

was also confirmed by the DNS of Gualtieri et al. [34] who showed that the PDF of

fluid relative velocity at a separation r/η = 8 is Gaussian only for small values of

relative velocity, and that the PDF quickly deviates away from being Gaussian at

larger values. The current study does not use the FND formula to achieve closure,

but is based on a perturbation analysis of the pair PDF equation.

Using the FND formula, Zaichik and Alipchenkov [100] expressed the particle-

eddy interaction (diffusion current) term in the PDF equation as a combination of:

(i) a diffusion term in the relative velocity space, and (ii) a cross diffusion term in the

separation-relative-velocity space. Both the diffusion terms contain the time-integral

of the two-point, two-time Lagrangian correlation of fluid relative velocities along

pair trajectories. In order to close these correlations, they further assumed that the

correlation of fluid relative velocities along inertial pair trajectories is the same as that

along fluid pair trajectories. It is evident that this assumption is appropriate only for

Stokes number St < 1 when one may assume that the deviation in the trajectories of

inertial and fluid particles is not significant. Therefore, the Zaichik and Alipchenkov
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[100] theory is most appropriate for small Stokes number particles. In the current

study, we consider high St particles, which enables us to develop an alternative closure

for the Lagrangian correlations. This is the second major difference between the two

studies.

Another important difference concerns the simulation approach adopted in the

two studies. In order to predict pair dispersion and particle preferential accumulation

in isotropic turbulence, Zaichik and Alipchenkov [100] solved the governing equations

for the zeroeth, first and second relative-velocity moments of the pair PDF. These

moments equations were derived from the fully closed pair PDF equation, but they all

contain unclosed higher order moment terms. In the current study, we simulate the

Langevin equations, which are equivalent to the Fokker-Planck equation in a weak

sense, to evolve the relative velocity and separation vectors of a large number of par-

ticle pairs. When compared to solving a finite number of PDF moments equations,

the Langevin approach is higher order accurate in the sense that the Langevin sim-

ulations inherently include all moments of the pair PDF. Another advantage of this

approach is that it allows us to explicitly compute the PDFs of pair relative velocity

at various separations, thereby enabling us to track the transition in the nature of the

PDF as the separations are reduced from the order of integral scale to Kolmogorov

scale. The moments equations-based approach also presents the conundrum of ad-

ditional closure problems since an equation for a given moment contains the next

higher order moment. This leads to a chain of an infinite number of equations, which

is typically broken by assuming that the moments of a certain order or higher are

zero. For example, in Zaichik and Alipchenkov [100], fourth and higher order mo-
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ments are set to zero, and the third order moments are closed in terms of the second

moments using the gradient transport approximation which is likely to be quite poor

when the relative velocity PDF is far from Gaussian as we find it is. This problem

is completely obviated through the Langevin equations approach since there are no

additional closure issues.

Finally, the two studies also differ in the state vectors that they consider in

order to derive the final form of the pair PDF equation. Zaichik and Alipchenkov

[100] considered a state vector comprising only the pair separation and relative ve-

locity, r and U , respectively. The current study begins with the high-dimensional

PDF P (r,U ,x,V ; t), where the state vector includes the particle-pair center of mass

position and velocity x and V , respectively, in addition to r and U . The need to

include x and V arises naturally since we do not approximate inertial pair trajec-

tories to be the same as fluid pair trajectories. The state vector (r,U ,x,V ) allows

one to account for not only the relative motion of a particle pair, but also the dy-

namics of the pair center-of-mass. The inclusion of x and V in the state space has

an important benefit in that it enables us to determine the orders of magnitude of

the various terms representing the dynamics of the center-of-mass in the P equation.

The order-of-magnitude information will help us identify the conditions under which

certain terms may be neglected when performing a perturbation analysis of the PDF

equation. For instance, we incorporate into the diffusion coefficient tensor the effects

of change in x during integral timescales due to the velocity V through the rela-

tive velocity vector W = uI − V . Here uI is the velocity with which eddies of size
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r are passively advected past the center-of-mass by the large-scale eddies (cf. eqs.

(2.23-2.26) and eqs. (2.46-2.53)).

Using the radial distribution functions (RDFs), Zaichik and Alipchenkov [100]

demonstrated that high Stη particles show preferential concentration at length scales

that are much larger than η, and are scaled by the integral length scale (L). Their

study also predicts that for Stη ≥ 4, the RDF plateaus (i.e. nearly zero slope in a

log-log plot) for separations smaller than some multiples of the Kolmogorov length

scale. For Stη = 10, Zaichik and Alipchenkov [100] show a plateauing of the RDF for

separations r ! 10η. In contrast, our theory predicts the plateauing of the RDF to

begin at smaller separations r ∼ η for Stη = 10, which is consistent with the DNS of

Pan et al. [63].

In a stochastic and computational study, Chun et al. [18] studied particle

relative motion in the limit of Stη ≪ 1. This study was concerned with particle-pair

separations smaller than the Kolmogorov length scale, where the pair relative motion

is principally determined by the dissipation range of the turbulent energy spectrum.

They also assumed a locally linear flow for the fluid velocity difference along the

pair trajectory. Using a state space comprising only the pair separation vector r,

they derived the PDF equation consisting of drift and diffusion terms. The closure

of the two terms involved expanding the pair relative velocity, w, as a perturbation

expansion in Stokes number (Stη), and retaining only the zeroeth- and first-order

terms in Stη. This results in a drift velocity ∼ St2η, and a diffusion coefficient ∼ r2,

where r is the particle separation.
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Pan and Padoan [57] derived an analytical model for the relative velocity of

both monodisperse and bidisperse inertial particles in turbulent flows. Their ob-

jective was to derive a model that captures particle relative motion for all particle

response times, i.e., τv ≪ τη, τv ≫ τI , as well as τη ! τv ! τI . Here τI is the inte-

gral time-scale. Their model is conceptually based on the approach of Ayala et al.

[3]. However, Ayala et al. [3] only considered particle separation due to gravity for

sedimenting droplets in turbulent flows, and neglected particle relative motion due

to turbulent dispersion. When developing an analytical model for particle relative

velocity that includes turbulent dispersion, one invariably encounters two-point two-

time correlations of fluid relative velocities along pair trajectories. As was done in

earlier studies [37, 100, 102, 20], Pan and Padoan [57] approximated these correla-

tions as being those along fluid particle-pair trajectories. In this respect, our study

differs from these studies in that fluid relative-velocity correlations along inertial pair

trajectories are converted, in the limit of high Stokes number, into Eulerian two-point

fluid velocity correlations.

Recently, Goswami and Kumaran [32, 33] performed both DNS and Langevin

stochastic simulations of high Stokes number particle dynamics in a turbulent Cou-

ette flow. In their stochastic model, they began by considering the Boltzmann equa-

tion for the particle fluctuating velocity PDF, which is reduced to a Fokker-Planck

equation. However, the derivation behind modeling particle-eddy interactions as a

Fokker-Planck-type diffusion term was not provided. It is important to note that

the assumption that allows one to derive the Fokker-Planck equation is that the

particle response time is much greater than the decay time for the fluid velocity
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fluctuations. In their Langevin simulations, the stochastic forcing term, F (t), is

modelled as Gaussian white noise with zero mean and a second moment given by

⟨Fi(t)Fj(t′)⟩ = 2Dijδ(t − t′), where Dij is the diffusion coefficient tensor in the par-

ticle velocity space (in the current study, diffusion coefficient is in the pair relative

velocity space). Diffusion coefficient, Dij, is expressed in terms of a time-integral of

the Lagrangian fluid velocity correlation tensor. They, however, do not derive an

explicit expression for the diffusion coefficient, and instead compute it using the fluid

velocity autocorrelation data obtained from their DNS.

In a notable recent study, [8] performed a first-principles-based comparison

of three well-known approaches for closing the diffusion current in the particle PDF

kinetic equation. They are the Furutsu-Novikov-Donsker (FND) method, LHDI of

Reeks [71], and van Kampen’s operator representation technique [65]. Specifically,

they investigated whether the closures obtained from these approaches are all equiv-

alent, as is commonly accepted. Through a remarkably fundamental analysis of the

implications of these approaches, they prove that the equivalence breaks down in two

scenarios: (1) when the underlying turbulence is inhomogeneous, and (2) when the

particles are inertialess, i.e. fluid particles, in which case the zero-drift or the fully

mixed condition should be recovered. It is seen that only the FND method provides a

closure that satisfies the zero-drift condition in both homogeneous and inhomogeneous

incompressible systems.

In the current study, starting with the high-dimensional PDF equation gov-

erning the relative and correlated motion of particle pairs, we derive the transport

equation for the PDF Ω(r,U) of pair separation (r) and relative velocity (U) of
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high Stokes number particles. The transport equation for Ω(r,U), which is of the

Fokker-Planck type, contains a diffusion coefficient tensor that can be expressed as

1/τ 2v times the time-integral of the Lagrangian correlation of fluid relative velocities

along the pair trajectory. These Lagrangian correlations also need to be closed. One

way to overcome this closure problem is to perform DNS of particle-laden turbulence

and collect the correlation statistics. A different approach would be to develop a theo-

retical closure, which would necessitate certain assumptions. For example, in Zaichik

and Alipchenkov [100], the Lagrangian correlations are assumed to be correlations

along fluid particle trajectories. This assumption, however, is most appropriate in

the limit of small particle Stokes number. In the current study, we begin by devel-

oping an alternative closure in the the limit of StI ≫ 1 and Str ≫ 1. Here StI and

Str are the Stokes numbers based on the integral time-scale τI and the time-scale τr

of an eddy of size r, respectively. Subsequently, the closure is extended to StI ! 1

particles by accounting for the motion of the pair center-of-mass. It is to be noted

that the Str ≫ 1 requirement is much less stringent when compared to StI ≫ 1.

Finally, in the limit of Str ≫ 1 but StI ! 1, the Lagrangian two-point, two-time cor-

relation is systematically converted first into an Eulerian two-time correlation, and

subsequently into an Eulerian two-point correlation. For isotropic turbulence, these

Eulerian velocity correlations can be conveniently expressed as Fourier transforms of

the velocity spectrum tensor.

After deriving the closure for the diffusion tensor, the Fokker-Planck equation

is solved in a weak sense by solving the corresponding Langevin equations to evolve

the relative velocity and separation vectors of a large number of particle pairs. The
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Langevin simulations, also referred to as Monte-Carlo simulations, may be contrasted

with an approach in which the governing equations for the first few moments of

the PDF are derived and solved. The latter approach was adopted in Zaichik and

Alipchenkov [100].

The chapter is organized as follows: Section 2.3 presents the complete theoret-

ical basis of this study. Section 2.4 discusses the Langevin-equation-based simulations

used to compute the relative velocity PDFs, and the RDFs. Results from the Langevin

equation simulations are presented and their implications discussed in Section 2.5.

2.3 Theory

In Section 2.3.1, the particle-pair phase-space density equation along with the

pair Lagrangian governing equations are presented. In Section 2.3.2, the phase-space

density equation is shown to reduce to the Fokker-Planck equation in the limit of

Str ≫ 1. Closure is developed for the diffusion tensor, which is then extended to

StI ! 1 particles through a finite StI model for the relative velocity W between

the fluid eddies (that are advected past the particle-pair by integral-scale eddies) and

the pair center of mass; the expression for Wrms, the r.m.s. of W , needed for this

extension is derived in Section 2.3.3.

2.3.1 Phase-Space Density Equation

For a dispersion of high-Stokes-number particles in stationary homogeneous

isotropic turbulence, we consider the phase-space density (PSD), P (R1,R2,U1,U2; t),

that two particles take phase-space positions and velocities R1 and R2, and U1 and
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U2, respectively. The two-particle PSD is equivalent to P (r,U ,x,V ; t), which is the

PSD of a particle pair with separation r, relative velocity U , center-of-mass position

x, and center of mass velocity V . The current notation, definition, and significance

of the PSD are discussed in Section 2.7. The relative motion of particle pairs will

depend not only on their separation and relative velocity vectors, but also on the

dynamics of the pair center-of-mass that can influence the way the pair samples the

fluid velocity field. Conservation of PSD P yields:

∂P

∂t
+∇r · (ṙP ) +∇U · (U̇P ) +∇x · (ẋP ) +∇V · (V̇ P ) = 0 (2.2)

where ∇r, ∇x, ∇U , and ∇V represent gradients with respect to the corresponding

variables.

The governing equations for r, U , x, and V are:

dr

dt
= U (2.3)

dU

dt
= −

1

τv
[U(t)−∆u(r,x, t)] (2.4)

dx

dt
= V (2.5)

dV

dt
= −

1

τv

[
V (t)−

u(R1(t), t) + u(R2(t), t)

2

]
= −

1

τv
[V (t)− ucm(R1(t),R2(t), t)]

(2.6)

where τv is the particle response time, ∆u(r,x, t) = [u(R2(t), t)− u(R1(t), t)] is the

fluid relative velocity along the pair trajectory, and ucm(R1(t),R2(t), t) = [u(R1(t), t)+
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u(R2(t), t)]/2. Here ucm may be interpreted as the fluid velocity influencing the dy-

namics of the pair center-of-mass, but is not the fluid velocity at the center-of-mass

location. The velocity ucm can be determined from x and r since R2 = x + r
2 and

R1 = x− r
2 . In (2.4) and (2.6), we assume that the fluid drag force is the predominant

force acting on the particles and that the Stokes drag law is valid. Accordingly, the

particle response time is defined as τv = ρpd2p/18µ, where ρp is the particle density,

dp is the particle diameter, and µ is the dynamic viscosity of the fluid.

Substituting (2.3)-(2.6) into (2.2) yields

∂P

∂t
+∇r · (UP ) +∇x · (V P )−

1

τv
∇U · (UP )−

1

τv
∇V · (V P )

+
1

τv
∇U · (∆uP ) +

1

τv
∇V · (ucmP ) = 0 (2.7)

2.3.2 Perturbation Analysis

In this section, the PSD equation (2.7) is transformed into a Fokker-Planck

equation under the condition that the changes in pair relative velocity during the

correlation times of eddies impacting their relative motion are small compared to the

pair relative velocity itself. To model pair-eddy interactions as a Fokker-Planck-type

diffusion term, we begin by averaging (2.7) over an ensemble of flow realizations,

giving us:

∂⟨P ⟩
∂t

+∇r · (U⟨P ⟩) +∇x · (V ⟨P ⟩)−
1

τv
∇U · (U⟨P ⟩)−

1

τv
∇V · (V ⟨P ⟩)

+
1

τv
∇U · ⟨∆uP ⟩+

1

τv
∇V · ⟨ucmP ⟩ = 0 (2.8)
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where ⟨·⟩ represents ensemble averaging, and the terms ⟨∆uP ⟩ and ⟨ucmP ⟩ represent

turbulence-particle interactions. Since U and V are independent variables (like time

t), ⟨UP ⟩ = U⟨P ⟩ and ⟨V P ⟩ = V ⟨P ⟩.

As a first step toward modelling ⟨∆uP ⟩ and ⟨uP ⟩, consider

⟨∆uP ⟩ = ⟨∆u(⟨P ⟩+ P ′)⟩ = ⟨∆uP ′⟩

where we have used the relations: P = ⟨P ⟩+ P ′, and ⟨∆u⟩ = 0 for isotropic turbu-

lence. Here, P ′ is a fluctuation in P from the PDF ⟨P ⟩. Similarly, ⟨ucmP ⟩ = ⟨ucmP ′⟩.

We will show that in the limit of high Stokes number, we can express the last

two terms of (2.8) as Fokker-Planck-type diffusion terms. Substituting P = ⟨P ⟩+P ′

into (2.7), and moving terms containing ⟨P ⟩ to the RHS, we get:

∂P ′

∂t
+∇r · (UP ′) +∇x · (V P ′)−

1

τv
∇U · (UP ′)−

1

τv
∇V · (V P ′)

+
1

τv
∇U · (∆uP ′) +

1

τv
∇V · (ucmP

′) =

−
[
∂⟨P ⟩
∂t

+∇r · (U⟨P ⟩) +∇x · (V ⟨P ⟩)−
1

τv
∇U · (U⟨P ⟩)−

1

τv
∇V · (V ⟨P ⟩)

+
1

τv
∇U · (∆u⟨P ⟩) +

1

τv
∇V · (ucm⟨P ⟩)

]
(2.9)

Subtracting (2.8) from (2.9), and making terms dimensionless with the integral length

scale (L), integral time scale (τI), and isotropic turbulence r.m.s. fluctuating velocity
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(urms), yields:

∂P ′

∂t
+∇r · (UP ′) +∇x · (V P ′)−

1

StI
∇U · (UP ′)−

1

StI
∇V · (V P ′)

+
1

StI
∇U · (∆uP ′) +

1

StI
∇V · (ucmP

′) = −
1

StI
∇U · (∆u⟨P ⟩)

−
1

StI
∇V · (ucm⟨P ⟩) +

1

StI
∇U · ⟨∆uP ′⟩+

1

StI
∇V · ⟨ucmP

′⟩ (2.10)

Since ⟨P ⟩ accounts for averaging over fluid time scales, but particles relax

over longer timescales ∼ τv, one can expect a perturbation of P with respect to ⟨P ⟩.

Writing P as a perturbation expansion in terms of 1
StI

,

P = P0 +
1

StI
P1 +O

(
1

St2I

)
(2.11)

where StI = τv/τI is the particle Stokes number defined with respect to the turbulence

integral time-scale τI . Comparing P = ⟨P ⟩+P ′ with (2.11), we can see that ⟨P ⟩ = P0,

and that to leading order P ′ ∼ 1
StP1. We can now see from (2.10) that the last

four terms on the LHS and the last two terms on the RHS are O(1/St2I), while the

remaining terms are all O(1/StI).

Considering the O(1/StI) terms in (2.10), we get:

∂P1

∂t
+∇r · (UP1) +∇x · (V P1) = −∇U · (∆u⟨P ⟩)−∇V · (ucm⟨P ⟩) (2.12)
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Equation (2.12) is a Lagrangian evolution equation of P1 in the (r,x, t) space, with

U and V held fixed; (2.12) may then be written as

dP1

dt

∣∣∣∣
U ,V

= −∇U · (∆u⟨P ⟩)−∇V · (ucm⟨P ⟩) (2.13)

From (2.13), we can write:

P1 = −
∫ s

−∞

dt′ {∇U · [∆u (r(t′),x(t′), t′) ⟨P ⟩(r′,U ,x′,V ; t′)] +

∇V · [ucm (R1(t
′),R2(t

′), t′) ⟨P ⟩(r′,U ,x′,V ; t′)]}

= −
∫ s

−∞

dt′ {∆u (r(t′),x(t′), t′) ·∇U ⟨P ⟩(t′)+

ucm (R1(t
′),R2(t

′), t′) ·∇V ⟨P ⟩(t′)} (2.14)

where r′ = r(t′), x′ = x(t′), and s is a characteristic variable along the Lagrangian

trajectory such that dt
ds = 1, and dx′

dt′ |t′=s = V and dr′

dt′ |t′=s = U . At the upper

integration limit s, we have r(s) = r(t) = r. We have also used the shorthand

notation ⟨P ⟩(t′) = ⟨P ⟩(r′,U ,x′,V ; t′). The integral in (2.14) can be reduced to a

time integral at fixed positions if the two convective terms on the LHS of (2.12) can

be neglected compared to ∂P1

∂t , which would yield

⟨∆uP ′⟩ = −
1

St2I

∫ t

−∞

dt′ {⟨∆u(r,x, t) ∆u(r,x, t′)⟩ ·∇U ⟨P ⟩(t′) +

⟨∆u(r,x, t) ucm(R1(t),R2(t), t
′)⟩ ·∇V ⟨P ⟩(t′)} (2.15)
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⟨ucmP
′⟩ = −

1

St2I

∫ t

−∞

dt′ {⟨ucm(R1(t),R2(t), t) ∆u(r,x, t′)⟩ ·∇U ⟨P ⟩(t′)+

⟨ucm(R1(t),R2(t), t) ucm(R1(t),R2(t), t
′)⟩ ·∇V ⟨P ⟩(t′)} (2.16)

In (2.15) and (2.16), r and x are essentially constant during flow timescales. The

conditions under which the two convective terms on the LHS of (2.12) can be neglected

are derived after (2.22). In (2.15) and (2.16), the PDF ⟨P ⟩ is evaluated at time t′.

The two-time fluid velocity correlations in (2.15) and (2.16) are significant only in the

time interval t− t′ for which the fluid eddies are correlated. Therefore, we can write

⟨P ⟩(t′) ≈ ⟨P ⟩(t), since the timescales over which ⟨P ⟩ changes are much greater than

the fluid correlation timescales. Pulling ⟨P ⟩ out of the time integrals, and substituting

(2.15) and (2.16) into the dimensionless form of (2.8), the Fokker-Planck equation

can be written as:

∂⟨P ⟩
∂t

+∇r · (U⟨P ⟩) +∇x · (V ⟨P ⟩)−
1

StI
∇U · (U⟨P ⟩)−

1

StI
∇V · (V ⟨P ⟩)

−∇U · (DUU ·∇U ⟨P ⟩+ DUV ·∇V ⟨P ⟩)

−∇V · (DV U ·∇U ⟨P ⟩+ DV V ·∇V ⟨P ⟩) = 0 (2.17)
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where

DUU =
1

St2I
D̃UU =

1

St2I

∫ t

−∞

dt′ ⟨∆u(r,x, t) ∆u(r,x, t′)⟩ (2.18)

DUV =
1

St2I
D̃UV =

1

St2I

∫ t

−∞

dt′ ⟨∆u(r,x, t) ucm(R1(t),R2(t), t
′)⟩ (2.19)

DV U =
1

St2I
D̃V U =

1

St2I

∫ t

−∞

dt′ ⟨ucm(R1(t),R2(t), t) ∆u(r,x, t′)⟩ (2.20)

DV V =
1

St2I
D̃V V =

1

St2I

∫ t

−∞

dt′ ⟨ucm(R1(t),R2(t), t) ucm(R1(t),R2(t), t
′)⟩(2.21)

In (2.18)-(2.21), DUU and DV V are the diffusion coefficient tensors in the U -

space and V -space, respectively; DUV and DV U are the cross-diffusion coefficient

tensors in the mixed UV and V U spaces, respectively. These diffusion tensors (par-

ticularly DV V ) are analogous to the formulation of [73], who showed that the single-

particle diffusion tensor contains Lagrangian correlations of fluid velocities “seen”.

Subsequently, [55] demonstrated that the diffusion coefficient of the slow variable

may be expressed as a time-integral of the temporal correlation of the fast variable,

which is indeed what we observe in (2.18)-(2.21) as well. The diffusion coefficient

tensors can also be interpreted as the time integrals of the two-time correlations of

the accelerations of the pair relative and/or center-of-mass velocities caused by fluid

velocity fluctuations. For example,

DUU =

∫ t

−∞

〈
U̇(t) U̇(t′)

〉
dt′ (2.22)

where U̇(t) = 1
StI

∆u(t) +O
(

1
St2I

)
.
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We will now derive, using an order-of-magnitude analysis, the conditions to

be satisfied for neglecting the two convective terms in (2.12) so that the fluid velocity

correlations seen by the particles can be approximated as those at fixed positions in

space. The neglect of ∇x · (V P ′) compared with ∂P ′

∂t requires that the change in

the position of the pair center of mass during the integral-scale fluid correlation time

be small compared with the integral length scale, i.e., ⟨V 2⟩1/2 ≪ 1. Since it is well

known that ⟨V 2⟩ ∼ O
(

1
StI

)
[73], this condition is satisfied for StI ≫ 1.

Neglecting ∇r ·(UP ′) compared to ∂P ′

∂t requires that the change in pair separa-

tion (r) during the fluid correlation time τr of an eddy of size r to be small compared

with the eddy size, i.e., Uτr ≪ r. While this condition is not satisfied for all particle

pairs, we will see that it is satisfied for those pairs that are significantly influenced by

the fluid eddies of size r.

The relative velocity PDFs from Sundaram and Collins [91] indicate that at

separations smaller than the integral length scale (r/L < 1) the high inertia (Stη > 1)

particle pairs can be divided into two broad classes: “lingerers” and “flyers”. Lingerers

are low-relative-velocity pairs that are highly correlated and remain correlated far

longer than the timescales of fluid that influence their relative motion. Flyers are

uncorrelated pairs with large relative velocities, whose relative motion is unaffected

by the fluid eddies with length scales comparable with their separation. For a flyer

pair with separation r, the change in relative velocity ∆U due to their interaction with

a fluid eddy of size r is small compared with the pair relative velocity, i.e. ∆U ≪ U .

For lingerers, ∆U ∼ U .
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The change in the relative velocity of a pair while they interact at separation

r is given by the square root of the velocity-space diffusivity times their interaction

time, i.e., ∆U ∼ (DUUτr)1/2, where τr is the time-scale of the fluid eddy of size r.

For a “lingerer” pair, using ∆U ∼ U , we find that such pairs have a relative velocity

U ∼ (DUUr)
1/3. In dimensional form, the relative-velocity-space diffusion coefficient

is the product of the square of the acceleration due to the eddy (ueddy/τv)2 and the

correlation time of the eddy τr. Since ueddy ∼ r/τr, DUU ∼ r2/(τ 2v τr). Thus, the

relative velocity for the lingerers is U ∼ r/(τrτ 2v )
1/3, and the change of the relative

position during the fluid time-scale is Uτr = rSt−2/3
r , where Str = τv/τr is the Stokes

number defined based on the eddies of size r. We see then that the convective term

in r-space on the LHS of (2.12) can be neglected as long as the Stokes number based

on eddies of size r is large, i.e. Str = τv/τr ≫ 1.

In the previous discussion, we derived a conservation equation for the high

dimensional PDF, ⟨P ⟩(r,U ,x,V ; t). The dependence of ⟨P ⟩ on x can be dropped

owing to the spatial homogeneity of the flow. Since we are primarily interested in the

statistics of the pair relative velocity and relative position, we will consider a more

convenient, lower dimensional PDF defined as: Ω(r,U) =
∫
⟨P ⟩(r,U ,V ; t) dV . (The

effects of x and V are included in the diffusion coefficient closure.)

Integrating (2.17) over the V space, we get:

∂Ω

∂t
+∇r · (UΩ)−

1

StI
∇U · (UΩ)−

1

St2
∇U · (D̃UU ·∇UΩ) = 0 (2.23)
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As discussed in [55] and [73], the Fokker-Planck equation governing the PDF Ω(r,U)

is a consequence of the Stokes numbers of interest, Str ≫ 1. For these Stokes numbers,

one may represent the effects of the underlying turbulence on the relative velocity U

as a white noise term that is manifested as a phase-space diffusion tensor DUU .

In arriving at (2.23), we have used the divergence theorem in the center-of-

mass velocity space:

∫

V

∇V · (D̃V U ·∇U ⟨P ⟩+ D̃V V ·∇V ⟨P ⟩) dV

=

∫

∂V

(D̃V U ·∇U ⟨P ⟩+ D̃V V ·∇V ⟨P ⟩) · n dSV = 0

where
∫
∂V represents integration over a boundary in the V -space, and n is the normal

to this boundary. We take the boundary to be at a large velocity so that |V | ≫ ⟨V 2⟩ 1
2 ,

thereby ⟨P ⟩ is essentially zero on the boundary. Hence, the integration
∫
∂V is zero.

Also, note that

∇U · (D̃UV ·∇V ⟨P ⟩) = ∇U · [∇V · (D̃UV ⟨P ⟩)− ⟨P ⟩∇V · D̃UV ]

= ∇V · [∇U · (D̃UV ⟨P ⟩)] (2.24)

Hence, this term also vanishes when integrated over the V -space, where we have used

∇V · D̃UV = 0, as D̃UV is not a function of V .

Equation (2.23) is similar to equation (34) in Zaichik and Alipchenkov [100].

However, as discussed in Section 2.2, their formulation consists of two diffusion terms,

34



one of which is the same as DUU in the limit of StI ≫ 1. The next part of our theory

deals with the derivation of an analytical formulation for predicting DUU .

Derivation of diffusion coefficient tensor in the pair relative velocity space

We have already seen that the diffusion coefficient tensor DUU can be written

as:

DUU =
1

St2I
D̃UU

=
1

St2I

∫ t

−∞

⟨∆u(r,x, t) ∆u(r,x, t′) ⟩ dt′

=
1

St2I

∫ 0

−∞

⟨∆u(r,x, 0) ∆u(r,x, t) ⟩ dt (2.25)

where ∆u(r,x, t) = u[x+ 1
2r, t]−u[x− 1

2r, t], and x+ 1
2r and x− 1

2r represent the

positions of a pair of particles with separation r.

The Eulerian two-time fluid velocity correlations contained in ⟨∆u(r,x, 0) ∆u(r,x, t) ⟩

can be evaluated using DNS. The objective of this study, however, is to derive an an-

alytical, closed-form expression for DUU . To this end, the process of converting the

two-time correlations into two-point spatial correlations is discussed next.

Recall that in arriving at (2.25), we have assumed that StI ≫ 1 and Str ≫ 1.

With these assumptions, the particles are nearly stationary so that the temporal

evolution of the relative velocity of a particle pair is controlled primarily by the

evolution of the fluid velocity field at the particle positions. Moreover, the temporal

change in ∆u experienced by the particle pair is primarily due to the evolution of the

turbulence scales and not due to pair motion itself. We will represent the temporal

35



evolution of ∆u at two positions separated by r based on an approximation in which

a frozen turbulent velocity field associated with the eddies of size r is advected by

larger, integral scale eddies. Hence, one may replace the above Eulerian two-tme

correlation by a two-point spatial correlation between two pairs with the same r, but

with the centers of mass separated by uIt, where uI is the large-scale velocity. This

would give us:

DUU =
1

St2I

∫ 0

−∞

⟨∆u(r,x, t) ∆u(r,x+ uIt, t)⟩ dt (2.26)

In writing (2.26) from (2.25), it is assumed that the large-scale velocity uI remains

essentially constant during [t, 0]. This is reasonable because uI does not evolve sig-

nificantly during the time τr of interaction between an eddy of size r and a pair

at separation r, as the turnover time τr of eddies of size r is much smaller than the

turnover time of large-scale eddies. Though this approach is similar to Taylor’s frozen

turbulence hypothesis, the principal difference is that in Taylor’s hypothesis, frozen

turbulence is advected by the mean flow, whereas in the current approach, eddies of

size r (r is the pair separation) are advected by the integral-scale eddies.

One may relax the requirement of StI ≫ 1 so that for particles with StI ! 1,

the pair center-of-mass is not stationary. When Str ≫ 1 and StI ! 1, the difference is

that while the separation r does not change significantly, the center-of-mass position

may change due to interactions with eddies of timescales ∼ τv, the center-of-mass

response time. Therefore, one will have to account for the relative motion between

the large-scale eddies that are passively advecting eddies of size r and the center-
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of-mass position. This is done by replacing uI with the relative velocity W . This

change makes the theory applicable for large-inertia particles that satisfy Str ≫ 1

and not necessarily StI ≫ 1. Since W is principally influenced by the large-scale

fluid eddies, its PDF Φ(W ), can be considered Gaussian [5]:

Φ(W ) =
1√

(2πW 2
rms)

3
e
− W2

2W2
rms (2.27)

where Wrms is the r.m.s. fluctuating velocity of W and needs to be determined.

The diffusivity can then be expressed as an average over all values of the large scale

velocity W as:

DUU(r) =

∫
D̂UU(r,W ) Φ(W ) dW (2.28)

where

D̂UU =
1

St2I

∫ 0

−∞

⟨∆u(r,x, t) ∆u(r,x+W t, t)⟩ dt

=
1

St2I

∫ 0

−∞

〈[
u(x+

1

2
r, t)− u(x−

1

2
r, t)

]

×
[
u(x+W t+

1

2
r, t)− u(x+W t−

1

2
r, t)

]〉
dt

=
1

St2I

∫ 0

−∞

〈
u(x+

1

2
r, t) u(x+W t+

1

2
r, t)− u(x+

1

2
r, t) u(x+W t−

1

2
r, t)

−u(x−
1

2
r, t) u(x+W t+

1

2
r, t) + u(x−

1

2
r, t) u(x+W t−

1

2
r, t)

〉
dt(2.29)

In (2.29), there are four Eulerian two-point velocity correlation terms. Writing

the two-point velocity correlation tensors in terms of the velocity spectrum tensor,
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R(k), we get:

D̂UU =
1

St2I

∫
R(k)

(
2− e−ik·r − eik·r

)
dk

∫ 0

−∞

eik·W tdt (2.30)

where k is the wavenumber vector. The second (time) integral in (2.30) can be

conveniently evaluated using the standard Fourier transforms, giving us:

D̂UU =
1

St2I

∫
R(k) [1− cos(k · r)] δ

(
k ·W

2π

)
dk (2.31)

Note that δ
(
k·W
2π

)
is non-zero only when k ·W = 0, i.e. when k ⊥ W . Let ξ = (ξ,φ)

represent, in polar coordinates, the plane perpendicular to W . We can now write:

dk =
1

W
ξdξ dφ d(k ·W ) (2.32)

where W = |W |. This gives us:

D̂UU(r,W ) =
2π

St2I

1

W

∫ ∞

0

ξ dξ

∫ 2π

0

E(ξ)

4πξ2

(
δij −

ξiξj
ξ2

)
[1− cos(ξρcosφ)] dφ(2.33)

where, ρ is the projection of r into the ξ-plane, ρ = |ρ|, and we have written R(ξ) in

terms of the energy spectrum E(ξ).

For isotropic turbulence, we can write D̂UU as:

D̂UU,ij = D̂UU,⊥

(
δij −

rirj
r2

)
+ D̂UU,||

rirj
r2

(2.34)
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Using (2.33), we will develop expressions for D̂UU,⊥ and D̂UU,||.

2.3.2.1 Derivation of D̂UU,⊥ and D̂UU,||

Since ρ is the projection of r into the ξ-plane, we can write:

ρi =

(
δij −

WiWj

W 2

)
rj (2.35)

cosφ =
ρiξi
ρξ

=
riξi
rξ

(2.36)

It can be shown that D̂UU,ij can be expressed as follows:

D̂UU,ij =
2π

St2I

1

W

[
A

(
WiWj

W 2
+
ρiρj
ρ2

)
+D

(
δij −

WiWj

W 2
− 2

ρiρj
ρ2

)]
(2.37)

where

A =

∫ ∞

0

ξ dξ

∫ 2π

0

E(ξ)

4πξ2
[1− cos(ξρcosφ)] dφ (2.38)

D =

∫ ∞

0

ξ dξ

∫ 2π

0

E(ξ)

4πξ2
[1− cos(ξρcosφ)] cos2φ dφ (2.39)

Using (2.34) and (2.37), we can derive expressions for D̂UU,⊥ and D̂UU,||:

D̂UU,⊥ =
1

2
D̂UU,ij

(
δij −

ρiρj
ρ2

)

=
1

2

2π

St2I

1

W

(
A+Dsin2θ

)
(2.40)
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and,

D̂UU,|| = D̂UU,ij
ρiρj
ρ2

=
2π

St2I

1

W

(
A−Dsin2θ

)
(2.41)

where,

sin2θ =
ρiρj
ρ2

rirj
r2

; cos2θ =
WiWj

W 2

rirj
r2

(2.42)

We can now eliminate the dependence on W in (2.33) using (2.28). For

isotropic turbulence, we write DUU(r) as:

DUU,ij(r) = DUU,⊥(r)
(
δij −

rirj
r2

)
+ DUU,||(r)

rirj
r2

(2.43)

where

DUU,⊥ =
1

2

2π

St2I

∫
1

W

(
A +Dsin2θ

)
Φ(W ) dW

DUU,|| =
2π

St2I

∫
1

W

(
A−Dsin2θ

)
Φ(W ) dW (2.44)
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Using the expressions for A and D from (2.38) and (2.39), respectively, we get:

DUU,⊥(r) =
1

2

2π

St2I

∫
1

W
Φ(W ) dW

×
∫ ∞

0

ξ dξ

∫ 2π

0

E(ξ)

4πξ2
[1− cos(ξρcosφ)]

(
1 + cos2φsin2θ

)
dφ (2.45)

DUU,||(r) =
2π

St2I

∫
1

W
Φ(W ) dW

×
∫ ∞

0

ξ dξ

∫ 2π

0

E(ξ)

4πξ2
[1− cos(ξρcosφ)]

(
1− cos2φsin2θ

)
dφ (2.46)

where dW = W 2 sinθ dθ dψ dW ; ψ ∈ [0, 2π] is the azimuthal angle.

After integrating over W -space and over φ, equations (2.45) and (2.46) can

be simplified substantially, giving us:

DUU,⊥(r) =
1

2

2π2

St2I

√
1

(2π)3W 2
rms

×
∫ ∞

0

E(ξ)

ξ

[
8

3
−

4sin(rξ)

rξ
−

4cos(rξ)

r2ξ2
+

4sin(rξ)

r3ξ3

]
dξ (2.47)

DUU,||(r) =
2π2

St2I

√
1

(2π)3W 2
rms

×
∫ ∞

0

E(ξ)

ξ

[
4

3
+

4cos(rξ)

r2ξ2
−

4sin(rξ)

r3ξ3

]
dξ (2.48)

Equations (2.47) and (2.48) are substituted back into (2.43) to give us the averaged

diffusion coefficient, DUU,ij. To complete the closure of the diffusion current term,

however, we require an expression for Wrms. This is discussed next.
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2.3.3 Derivation of an expression for Wrms

In the limit of StI ≫ 1, Wrms ≈ urms, where urms is the Eulerian r.m.s. fluctu-

ating velocity of isotropic turbulence. But, when StI ! 1, Wrms needs to be estimated,

which is the purpose of this section. Using the definition of Wrms, we can write:

W 2
rms =

1

3

〈
(ui − Vi)

2
〉
=

1

3

[〈
u2
i

〉
+
〈
V 2
i

〉
− 2 ⟨Viui⟩

]
(2.49)

where Vi is the velocity of the pair center-of-mass, ui is the fluid velocity with which

eddies of size r are advected past the pair, and ⟨u2
i ⟩ = ⟨u2

1 + u2
2 + u2

3⟩ (⟨V 2
i ⟩ follows a

similar notation).

The velocity of the pair center-of-mass is governed by

dVi

dt
=

ucm,i − Vi

τv
(2.50)

where ucm,i was defined in (2.6). Multiplying (2.50) with Vi and ensemble-averaging

yields

d
〈
1
2V

2
i

〉

dt
=

⟨uiVi⟩ − ⟨V 2
i ⟩

τv
(2.51)

We have replaced ⟨ucm,iVi⟩ on the RHS of (2.51) with ⟨uiVi⟩. While this approximation

is not exact, it may be noted that both ui−Vi and ucm,i−Vi are determined by eddies

whose sizes are of the order of or smaller than r so that these two quantities may be

expected to have similar statistics.
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At steady state, ⟨Viui⟩ = ⟨V 2
i ⟩. This means that from (2.50)

W 2
rms =

1

3

[〈
u2
i

〉
−
〈
V 2
i

〉]
=

1

3

〈
u2
i

〉(
1−

⟨V 2
i ⟩

⟨u2
i ⟩

)

= u′2

(
1−

V ′2

u′2

)
(2.52)

where 1
3 ⟨u

2
i ⟩ = u′2, and similarly 1

3 ⟨V
2
i ⟩ = V ′2. Here, u′2 is the variance of the fluid

velocity seen by the center-of-mass, and V ′2 is the variance of the center-of-mass

velocity. Therefore, in order to close Wrms, one needs expressions for u′ and the ratio

V ′/u′.

The well-known Tchen theory (see [42]) provides the following expression for

V ′2/u′2:

V ′2

u′2
=

TL/τv
1 + TL/τv

(2.53)

which was later refined by [42]:

V ′2

u′2
=
τη(τv + T ′) + τvT ′

(τη + τv)(τv + T ′)
(2.54)

where TL is the fluid Lagrangian integral time-scale, T ′ = Tfp − τη, τη is the Kol-

mogorov time scale and Tfp is the Lagrangian integral time-scale of fluid velocities

seen by the particles.

Tfp =

∫∞

0 dt ⟨u(t0)u(t+ t0)⟩
⟨u2(t0)⟩

(2.55)
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where u is the fluid velocity seen by the particles, and t0 is a reference time. [42]

provided the following expression for Tfp:

Tfp

TL
= 0.245e−[ln(Stη/1.2)/1.3]2 +

1 + (TE/TL)(0.025St)1.5

1 + (0.025St)1.5
(2.56)

where Stη = τv/τη. The [42] refined theory of (2.54) showed excellent agreement

with the DNS data. Hence, we will use (2.54) in the current study. Further, Jung

et al. (2008) plot the ratio of particle to fluid dispersion coefficients as a function

of Stη. From this plot, it can be inferred that for Stη " 4, u′2 = u2
rms, i.e. for high

St particles, the variance of the fluid velocity seen by the particles is nearly equal to

the variance of the turbulent fluid velocity. Equation (2.56) together with (2.52) and

(2.54) complete the closure for Wrms.

2.3.4 Consistency check of the pair diffusion coefficient

It is known that the pair diffusion coefficient of a particle pair at infinite

separation is twice the diffusion coefficient of a single particle. The diffusion coefficient

formulation derived above should also satisfy this requirement, and this is what we

will establish in the following discussion.

Let v(t) and y(t) represent the velocity and position vectors of a single high

Stokes number particle. The governing equation for v is (in dimensionless form):

dv

dt
= −

1

τv
[v(t)− u(y, t)] (2.57)
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Using β = 1
τv
, and multiplying both sides of (2.57) with eβt and simplifying gives us:

v(t) = β

∫ t

−∞

eβ(τ−t)u(y, τ) dτ (2.58)

Substituting (2.58) into (2.57), we get:

v̇(t) =
1

τv
u(y, t) +O

(
1

τ 2v

)
(2.59)

The diffusion coefficient for a single particle, Dv, can be defined as:

Dv =

∫ t

−∞

⟨v̇(t) v̇(t′)⟩ dt′

≈
1

τ 2v

∫ t

−∞

⟨u(y, t) u(y, t′)⟩ dt′

=
1

τ 2v

∫ 0

−∞

⟨u(y, 0) u(y, t)⟩ dt (2.60)

As seen previously, we will convert the two-time, two-point Lagrangian correlation in

(2.60) into a two-point Eulerian correlation:

Dv =
1

τ 2v

∫ 0

−∞

⟨u(y, t) u(y +W t, t)⟩ dt

=
1

τ 2v

∫
R(k)dk

∫ 0

−∞

eik·W tdt

=
π

τ 2v

∫
R(k) δ(k ·W ) dk (2.61)

Here, W represents the velocity of large scale eddies thare are advecting a frozen

turbulent flow field past the particle. Using a procedure similar to that in (2.30)-
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(2.33), we get:

Dv,ij(W ) =
π

τ 2v

1

W

∫ ∞

0

ξ dξ

∫ 2π

0

E(ξ)

4πξ2

(
δij −

ξi ξj
ξ2

)
dφ (2.62)

We can write for isotropic turbulence:

Dv,ij = Dv,⊥

(
δij −

ri rj
r2

)
+ Dv,||

ri rj
r2

(2.63)

where r = vt. Using a procedure similar to the one laid out in Section 2.3.2.1,

Dv,⊥ =
1

2
Dv,ij

(
δij −

ri rj
r2

)
=

π

4τ 2v

1

v
(2A+ Asin2θ) (2.64)

Dv,|| = Dv,ij
ri rj
r2

=
π

2τ 2v

1

v
(A + Acos2θ) (2.65)

A =
1

2

∫ ∞

0

E(ξ)

ξ
dξ (2.66)

In order to remove the dependence on W , we perform weighted integration of Dv,⊥

and Dv,|| using the PDF of W , Φ(W ), as follows:

Dv,⊥ =
π

4τ 2v

∫
1

v

(
2A+ Asin2θ

)
Φ(W ) dW (2.67)

Dv,|| =
π

2τ 2v

∫
1

v

(
A + Acos2θ

)
Φ(W ) dW (2.68)

After performing the above integrations using Φ(W ) from (2.27), it can be readily

shown that

Dv,⊥ = Dv,|| =
1

2
lim
r→∞

DUU,⊥ =
1

2
lim
r→∞

DUU,|| (2.69)
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which is exactly the desired result, where DUU,⊥(r) and DUU,||(r) are given by (2.47)

and (2.48).

2.4 Simulations

Using the diffusion coefficient formulation derived in Section 2.3, Lagrangian

stochastic simulations were performed to evolve the pair separations (r) and relative

velocities (U). The governing equations for r and U are:

dr

dt
= U (2.70)

dU = −
U

τv
dt+ B · dW (2.71)

Here, W represents a Wiener process, and the diffusion matrix B can be written in

terms of DUU as:

B · B
T = 2DUU(r) (2.72)

where BT is the transpose of B , and B is computed from a Cholesky decomposition of

DUU(r). The matrix B is a function of the state variable r. Consequently, the current

Langevin model captures the deviation from Gaussianity with r of the PDF of U . As

discussed in [55], in spite of the white-noise (Gaussian) treatment of the diffusion of

the slow variable U , the fact that the fast variable ∆u contained in the diffusion

coefficient depends upon the state variable r leads to the non-Gaussian behavior of

the slow variable.
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In order to compute DUU(r) and from it B , we will need to evaluate the

∫∞

0 integrals in (2.47) and (2.48). Numerical quadrature using the Gauss-Laguerre

polynomials is ideally suited for these integrals. In our simulations, we used the 150th-

order Gauss-Laguerre polynomials to evaluate these integrals. Although such high

order integration may not be needed, it was used since the additional computational

expense was negligible. The isotropic turbulence energy spectrum function in (2.47)

and (2.48) was evaluated using the following expression [64]:

E(k) = Cϵ2/3k−5/3 fL(kL) fη(kη) (2.73)

where C = 1.5, ϵ is the turbulence dissipation rate, and fL and fη are functions of

the integral and Kolmogorov length scales, L and η, respectively. Expressions for fL

and fη are provided in Pope [64] and are not reproduced here. The ratio L/η ≈ 156.5

in our simulations.

Particle pairs were evolved in isotropic turbulence with a micro-scale Reynolds

number, Reλ = 75. Six particle Stokes numbers were considered: Stη = τv/τη =

2, 4, 10, 20, 40 and 80. For each Stη, we evolved the separations and relative

velocities of 60 × 106 pairs. The particle simulation domain is a sphere of radius

4L. It was found that this domain size was sufficiently large, since the separation at

which particle pairs became uncorrelated was O(L) for all Stokes numbers considered

in the current study. As a result, a domain size of 4L is sufficient even for those

uncorrelated pairs that have initially large separations and relative velocities, but

become correlated as their separation decreases. For all Stη, the particle pairs were
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evolved for 8000 particle response times (τv) by which time they had attained a

statistically stationary state. From this point, statistics were collected for another

1000τv and averaged.

At the outer boundary, a specular reflection boundary condition (BC) was

imposed for the particles. This meant that when a particle collides with the outer

boundary, its velocity component tangential to the boundary remains unchanged,

while the velocity component normal to the boundary is simply reversed. Specular

reflection BC also maintains a constant number of pairs in the domain. In this sense,

a domain with a specular reflection BC is analogous to a domain with a specified

radially-inward particle flux BC that has attained a steady state. This is because at

steady state, a system with a specified inward particle flux BC will also have constant

number of pairs in the domain. The other advantages of the specular reflection BC are

that it conserves particle kinetic energy, and maintains a Gaussian particle velocity

PDF at the farfield boundary.

It was found that encountering pairs with separations r ∼ η (η is the Kol-

mogorov length scale) were low probability events. We, therefore, adopted the ap-

proach of Huber and Kim [36] that facilitates the capturing of these low probability

events. In this approach, a single pair is split into multiple, equally-weighted fractional

pairs whenever the separation of a pair goes below a certain value. When a parent

pair is split, initially the fractional pairs have the same position and velocity vectors

as the parent. Each of the fractional pairs is then evolved independently, except that

it only makes a fractional contribution when computing the statistics. In our simu-

lations, splitting is executed at three different radial locations, r = 2η, 5η, 10η. A
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parent pair is split whenever the separation falls below any of these radial distances,

but a fractional pair is not split again irrespective of whether the above criterion is

satisfied or not. We found that splitting a pair into 10 equally-weighted fractional

pairs gave us sufficient data at the smaller separations without excessively increas-

ing the number of pairs to be tracked. Recombination of fractional pairs when their

separations exceeded the specified radial distances was not undertaken.

2.5 Results and discussion

In this section, the results obtained using the closure formulation derived in

Section 2.3 are discussed. First, we will present the transverse and longitudinal com-

ponents of the diffusion coefficient tensor as a function of pair separation r. Subse-

quently, we will discuss in detail the particle statistics obtained from the Langevin

simulations.

2.5.1 Transverse and longitudinal components of the diffusion coefficient

tensor

The transverse and longitudinal components of the diffusion coefficient tensor

plotted as a function of the dimensionless separation r/L are shown in Figure 2.1 for

the Stη = 20 particles. For separations r < η, both DUU,⊥(r) and DUU,||(r) vary as

r2. This behavior arises from (2.25) in conjunction with the fact that fluid relative

velocity for r < η can be approximated as a linear function of r, i.e., ∆u ≈ r ·∇u

[18]. It may be noted that the r-space diffusion coefficient for the small Stokes number

particles (Stη < 1), which involves an autocorrelation of the fluid relative velocity, is
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Figure 2.1: Transverse component, DUU,⊥(r), and longitudinal component, DUU,||(r),
of the particle-pair diffusion coefficient tensor as a function of dimensionless pair
separation r/L for Stη = 20. Solid and dashed curves represent transverse and
longitudinal components, respectively. At small r, transverse and longitudinal com-
ponents asymptote to the lower and upper dashed lines represented by 4.77(r/L)2

and 9.54(r/L)2, respectively. At large r, transverse and longitudinal components
asymptote to the value of 0.74.

also proportional to r2 for r < η [18]. For r " L, DUU,⊥(r) and DUU,||(r) approach

each other, and asymptote to the same limit. This means that when the separation

r exceeds L, a particle pair essentially behaves like two uncorrelated particles, with

the pair diffusion coefficient being twice that of a single particle (see the discussion

in Section 2.3.4). This trend is also supportive of our earlier assertion that a domain

size of 4L was sufficiently large to capture those particle pairs that were initially

uncorrelated at a large separation, but have subsequently become correlated as they

moved closer. The other side of this picture is that we have also been able to show
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that pairs exhibit a transition from highly correlated motion at small separations to

uncorrelated motion at larger separations.

2.5.2 RDF and relative velocity PDF statistics

In this section, we present the pair relative motion statistics obtained from

the Langevin stochastic simulations. Figure 2.2 shows the radial distribution func-

tions (RDFs) as a function of the dimensionless separation r/η for the various Stokes

numbers. At separations of the order of the Kolmogorov scale, the Stη = 2 particles

show the maximum preferential concentration—i.e., the highest RDF values—among

the Stokes numbers considered. Preferential concentration at separations r ∼ O(η)

decreases with increasing Stokes number. One also notes that for the higher Stokes

numbers (Stη ≥ 10), the RDFs plateau, i.e. they are essentially independent of

r, below certain separations. A similar qualitative trend was seen in Zaichik and

Alipchenkov [100], but the plateauing was observed to begin at radial separations

larger than those in the current study. The “delayed” plateauing of RDFs observed

in the current study is also qualitatively supported by the study of Pan et al. [63].

In that study, Pan et al. investigated the preferential concentration of high Stokes

number particles in isotropic turbulence at Reλ = 250. The higher Stokes numbers

considered by Pan et al. include Stη = 10, 21, 43. The plateauing of RDFs can be

explained using the transport equations for the moments of the PDF Ω(r,U) (see

(2.23)). The moments of interest are:

Ω(r) =

∫
Ω(r,U) dU = Ω(r)

∫
Ω(U |r) dU (2.74)
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⟨U⟩ =
∫

U Ω(U |r) dU =
1

Ω(r)

∫
U Ω(r,U) dU (2.75)

where Ω(U |r) is the PDF of U conditioned on a given r.

The governing equation for Ω(r) is obtained by integrating (2.23) over the U

space, and that for ⟨U⟩ is obtained by premultiplying (2.23) with U/Ω(r) and then

integrating over the U space. The resulting equations, written using the Einstein

index notation, are:

∂Ω(r)

∂t
+
∂[Ω(r)⟨Uj⟩]

∂rj
= 0 (2.76)

∂⟨Ui⟩
∂t

+
∂⟨Ui⟩⟨Uj⟩

∂rj
+
∂⟨U ′

iU
′
j⟩

∂rj
= −

⟨Ui⟩
τv

−Dij
∂ lnΩ(r)

∂rj
(2.77)

For isotropic turbulence, ⟨Ui⟩ = 0, thereby (2.77) becomes

∂⟨U ′
αU

′
α⟩

∂rj
= −Dαα

∂ lnΩ(r)

∂rj
(2.78)

where α = 1, 2, 3 (repeated α does not denote a summation). The relationship be-

tween Ω(r) and the RDF g(r) is given by

g(r) =
Ω(r)[

N(N−1)
2V

] (2.79)

where N is the number of individual particles in the domain and V is the volume of

the domain. One can therefore see from (2.78) that the plateauing of the RDF g(r)

is related to the plateauing of ⟨U ′
αU

′
α⟩. To confirm this, Figure 2.3 plots ⟨U2⟩/u2

rms as

a function of r/L for the various Stη, where urms is the turbulence r.m.s. fluctuating
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Figure 2.2: RDFs from our stochastic simulations for the various Stokes numbers as
a function of dimensionless pair separation r/η. The radial location at which r/L = 1
is also indicated, where L is the integral length scale.

velocity. It is evident from Figure 2.3 that for Stη ≥ 10, ⟨U2⟩ indeed begins to

plateau at smaller separations, with the trend being more evident for Stη = 40, 80.

Consequently, following (2.78), a similar behavior was also observed for the RDFs in

Figure 2.2.

RDF as a function of Stη at various separations r/η is presented in Figure 2.4.

Results from the current theory are compared with the DNS data of Février et al. [29],

and also with the results from the theory of Zaichik and Alipchenkov [100]. Février

et al. [29] data was for Reλ = 53 and Reλ = 69, while the Zaichik and Alipchenkov

[100] results were for Reλ = 75. There is reasonable agreement between the cur-

rent theory and the DNS (note that Reλ = 75 in the current study). For Stη ≥ 2,
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Figure 2.3: ⟨U2⟩/u2
rms as a function of dimensionless pair separation r/L and particle

Stokes number Stη.

this theory agrees better with the DNS data than does the theory of Zaichik and

Alipchenkov [100]. This may be attributed to the approximation in their study that

the Lagrangian correlations of fluid relative velocities along inertial pair trajectories

are equal to those along inertialess fluid particle-pair trajectories. Such an approx-

imation is only appropriate for particle Stokes numbers Stη < 1. It can be inferred

from Figure 2.4(c) and (d) that as the separation r increases, the Stokes number for

which the maximum RDF occurs also increases. This is because the higher Stokes

number particles are more responsive to eddies bigger than the Kolmogorov-sized
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ones, and hence these pairs exhibit preferential concentration at length scales larger

than the Kolmogorov scale.
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Figure 2.4: RDF versus Stη at specific radial separations: (a) r/η = 6, (b) r/η = 12,
(c) r/η = 18, and (d) r/η = 24. In each plot, circles represent data from current
stochastic simulations at Reλ = 75; squares and triangles represent DNS data at
Reλ = 53 and Reλ = 69, respectively, taken from Février et al. [29]. Solid line
represents Zaichik and Alipchenkov [100] data for Reλ = 69.
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Next, we discuss the pair relative velocity PDF and its moments obtained from

our Langevin simulations. The DNS study of Sundaram and Collins [91] demonstrated

that the relative velocity PDF is Gaussian at separations of the order of the integral

length scale, and that it becomes increasingly non-Gaussian tending towards expo-

nential, as the separation decreases. It is important that the present theory captures

this trend. The transition in the nature of the PDF can be demonstrated quanti-

tatively using the relative velocity kurtosis ⟨U4⟩/⟨U2⟩2. It is well known that the

kurtosis = 3 for a Gaussian PDF, and a deviation from this value is indicative of

a non-Gaussian PDF. In Figure 2.5, kurtosis is plotted as a function of r/L for the

various Stη. When r " L, the relative velocity PDFs for all Stokes numbers are

essentially Gaussian. As the separation decreases, kurtosis increases above 3. This

trend is more prominent at the smaller Stη because these particles relax to the local

flow conditions, whereas the higher Stη particles still retain memory of their ballistic

motion at prior larger separations. It is interesting to note that at r/L ≈ 1/20, the

kurtosis ≈ 9 for the Stη = 4 particles, suggesting that at this radial separation, the

relative velocities of these particles have a nearly exponential distribution. But, as

the separation falls below L/20, kurtosis increases further implying that the relative

velocities of the Stη = 4 pairs no longer have an exponential distribution. The separa-

tion at which the exponential distribution is attained decreases as the Stokes number

increases.

Another interesting aspect of physics that can be gleaned from the relative

velocity statistics is regarding the Stokes number dependence of pair relative velocity

variance ⟨U2⟩. For high Stη particles, it is known that the single-particle velocity
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Figure 2.5: Kurtosis for various Stokes number pairs as a function of dimensionless
pair separation r/L.

variance ⟨v2⟩ ∝ 1
St . Also, we have shown in Section 2.3.4 that a pair at infinite

separation behaves like two independent particles. These two aspects would mean

that for large r, ⟨U2⟩ · Stη should become independent of both Stη and r. This is

precisely what we observe in Figure 2.6. In this figure, we plot ⟨U2⟩·Stη
u2
rms

as a function

of r/L for various Stη, where urms is the turbulence r.m.s. fluctuating velocity. For

Stη ≥ 20, ⟨U2⟩·St
u2
rms

asymptotes to nearly the same value at large r. The lower Stη pairs

show a greater variation of variance with radial position. This is because the faster

relaxation of the low Stη particles makes it easier for them to get trapped and linger

near each other.
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Figure 2.6: ⟨U2⟩/u2
rms as a function of dimensionless pair separation r/L and particle

Stokes number Stη.

Relative velocity PDFs conditioned on the separation r, Ω(U |r), are presented

for all Stη at r/L = 3, 1, 1/10, 1/20 (here η/L = 0.0064) . These values of pair

separation were chosen in order to track the transition of Ω(U |r) from a Gaussian

PDF at large r to a non-Gaussian PDF at small r. Shown in Figure 2.7(a)-(d) are the

PDFs at these four values of r plotted as a function of the relative velocity magnitude

U normalized with ⟨U2⟩1/2 at that value of r. At each r, we compare the PDFs for all

the Stη under consideration in this study. It can be seen in Figure 2.7(a),(b) that the

PDFs at r/L = 3, 1 are Gaussian for all Stη, and that there is a near-perfect collapse

of the PDFs for the various Stokes numbers. This collapse of PDFs when normalized
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by the standard deviation is to be expected for Gaussian PDFs. Figure 2.7(c) shows

that at r/L = 1/10, the PDFs for all Stη deviate from being Gaussian. As we

reduce the pair separation to r/L = 1/20, the non-Gaussianity of the PDFs increases,

particularly for the smaller Stη. This is because the smaller Stη particles relax to the

local flow, whereas the higher Stη particles still retain some memory of their earlier

ballistic motion at larger separations. Also shown in Figure 2.7(d) is the exponential

distribution. It is clear that the relative velocity PDFs are very nearly exponential,

especially for Stη ≤ 10, and seem to deviate from it only at the higher values of U .

The transition of the PDFs, as well as the exponential nature of the PDFs at smaller

separations match the trends observed in the DNS study of Sundaram and Collins

[91].

Thus, it is clear from Figure 2.7 that when r " L, particles become uncorre-

lated leading to Gaussian relative velocity PDFs. As r goes below L, particles become

correlated giving rise to exponential PDFs for certain separations. Eventually, as r

approaches η, the pairs can be classified into lingerers with low relative velocities, and

flyers with high relative velocities (corresponding to the tails of the PDF). We also

show in Figure 2.8 the PDF Ω(U |r) as a function of U at various separations r for

Stη = 20. The transition in Ω(U |r) from being Gaussian at large r (O(L)) to being

nearly exponential at small r is evident in in this figure.

We will now focus on the radial component of the relative velocity Ur =

U ·r/r and its PDF. The significance of Ur lies in the role it plays in determining the

interparticle collision rate. This is quantitatively illustrated by the collision kernel
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Figure 2.7: Relative velocity PDFs (Ω(U)) for the various Stokes numbers at specific
separations: (a) r/L = 3, (b) r/L = 1, (c) r/L = 1/10, (d) r/L = 1/20.

which for a monodisperse population of particles can be written as [91, 95]

4πσ2g(σ)

∫ 0

−∞

Ur P (Ur|σ) dUr , (2.80)

where σ is the particle diameter, g(σ) is the RDF at contact, and P (Ur|σ) is the PDF

of Ur conditioned upon a particle separation r = σ. Figure 2.9 shows the PDF of

61



3 2 1 0 1 2 310 4

10 3

10 2

10 1

100

101

= 1 20
= 1 10
=1 2
= 2
= 3.5

U

Ω
(U

|r
)

Figure 2.8: Comparison of relative velocity PDFs at various pair separations for
Stη = 20.

Ur for the various Stokes numbers at r/L = 1/20. It is clear that Ur is negatively

skewed, which is qualitatively consistent with the DNS study of Wang and Wexler

[95]. Further, the skewness of Ur increases as the Stokes number decreases.

2.6 Summary and conclusions

The principal contributions of this study are twofold: (1) Derivation of a novel

closure for the relative velocity-space pair diffusion coefficient for particle pairs whose

Stokes numbers Str ≫ 1, and (2) Relaxation of the limitation on Stokes numbers so

that the theory is valid for StI ! 1 particles as well. This relaxation significantly
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expands the Stokes number range in which the closure is applicable. In fact, the

results demonstrate that the theory shows good predictions for Stη ≥ 4.

The closure formulation was motivated by a DNS study result that the PDF of

particle-pair relative velocity of inertial particles was Gaussian at pair separations of

the order of turbulent integral length scale, and that this PDF became non-Gaussian

(exponential) at smaller separations [91]. The salient feature in this closure is that

Lagrangian two-time, two-point fluid velocity correlations are systematically and con-

sistently transformed into Eulerian two-point correlations in the limit of high Stokes

number.
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In the present study, the theory-predicted diffusion tensor is used to evolve,

in a Langevin sense, the pair separation and velocity vectors in isotropic turbulence.

When compared to solving a finite number of PDF moments equations, this approach

is higher order accurate in the sense that the Langevin simulations implicitly include

all moments of the pair PDF. The range of Stokes numbers considered, Stη = 2, 4, 10,

20, 40 and 80, clearly demonstrates the relative velocity dynamics and the prefer-

ential concentration behavior of high Stokes number particles. The closure theory

successfully captures the transition of relative velocity PDF from a Gaussian PDF

at separations of the order of the integral length scale to an exponential PDF at

smaller separations. This study is only an initial step in the effort to develop a pre-

dictive stochastic model for inertial particle dynamics. A more thorough quantitative

evaulation of our theory using DNS data will be undertaken in a future study.

2.7 Appendix: PDF notation used in the current study

The following notations are used in the manuscript:

• P is the particle-pair phase-space density.

• ⟨P ⟩ is the PDF.

The particle-pair microscopic phase-space density may be written as

f(r,x,U ,V ; t) =
N∑

i=1

δ(r − ri) δ(x− xi) δ(V − Vi) δ(U −Ui)
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where ri, xi, Vi, and Ui are the separation, center-of-mass position, center-of-mass

velocity, and the relative velocity vectors of the ith pair, and N is the total number

of pairs.

We now consider a smoothed phase-space density defined as

P (r,x,U ,V ; t) =
1

v

∫

v

f(r′
− r,x′

− x,U ′
−U ,V ′

− V ; t) dr′ dx′ dU ′ dV ′(2.81)

Here, the volume of integration v is a subvolume around (r,x,U ,V ) that is small

compared to the corresponding Kolmogorov scales, but is sufficiently large to ensure

that one is able to define a meaningful averaged quantity over v. Consequently, the

averaging does not affect the fluid quantities so that there are no “subgrid” scale

fluctuations.

The smoothed phase-space density P takes on added significance when there

exists an irreversible process that causes particles to lose memory of their initial con-

ditions. If particle motion exhibits deterministic chaos, then there is an exponential

separation of trajectories with nearly identical initial conditions. Even a single real-

ization of the turbulent flow leads to Lagrangian chaos for particle motion due to the

nonlinear dependence of the velocity on position. In this case, a very small stochastic

displacement of the particles can lead to the mixing of phase-space density over vol-

umes of order v so that f approaches P . In the present situation, the small stochastic

element could be the Brownian displacements of the particles. Although the Peclet

number Pe of high St particles is large (O(105-106)), the time required for mixing

in the phase space is only proportional to τ ln(Pe), where τ is the flow time-scale
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corresponding to the length scale within v. Thus, in practice even a very small-

scale stochastic process can lead to a smooth phase-space density. The smoothing of

phase-space density also plays an important role in kinetic theory and in statistical

mechanical approaches to classical molecular systems. In such systems, the New-

ton’s equations of motion that govern the system are deterministic (even including

collisions) and it is only the small quantum effects that lead to a stochastic element.

Nonetheless, the deterministic chaotic motion of the molecules leads to rapid am-

plification of these stochastic effects so that stochastically averaged approaches are

useful.

66



CHAPTER 3

STOCHASTIC THEORY AND DIRECT NUMERICAL

SIMULATIONS OF THE RELATIVE MOTION OF HIGH-INERTIA

PARTICLE PAIRS IN ISOTROPIC TURBULENCE

3.1 Abstract

The relative velocities and positions of monodisperse high-inertia particle pairs

in isotropic turbulence are studied using direct numerical simulations (DNS), as well

as Langevin simulations (LS) based on a probability density function (PDF) kinetic

model for pair relative motion. In a prior study [67], the authors developed a stochas-

tic theory that involved deriving closures in the limit of high Stokes number for the

diffusivity tensor in the PDF equation for monodisperse particle pairs. The diffusiv-

ity contained the time integral of the Eulerian two-time correlation of fluid relative

velocities seen by pairs that are nearly stationary. The two-time correlation was an-

alytically resolved through the approximation that the temporal change in the fluid

relative velocities seen by a pair occurs principally due to the advection of smaller

eddies past the pair by large scale eddies. Accordingly, two diffusivity expressions

were obtained based on whether the pair center of mass remained fixed during flow

time scales, or moved in response to integral-scale eddies.
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In the current study, a quantitative analysis of the Rani et al. [67] stochas-

tic theory is performed through a comparison of the pair statistics obtained using

Langevin simulations (LS) with those from DNS. LS consist of evolving the Langevin

equations for pair separation and relative velocity, which is statistically equivalent to

solving the classical Fokker-Planck form of the pair PDF equation. Langevin sim-

ulations of particle pair dispersion were performed using three closure forms of the

diffusivity—i.e., the one containing the time integral of the Eulerian two-time correla-

tion of the seen fluid relative velocities, and the two analytical diffusivity expressions.

In the first closure form, the two-time correlation was computed using DNS of forced

isotropic turbulence laden with stationary particles. The two analytical closure forms

have the advantage that they can be evaluated using a model for the turbulence en-

ergy spectrum that closely matched the DNS spectrum. The three diffusivities are

analyzed to quantify the effects of the approximations made in deriving them. Pair

relative-motion statistics obtained from the three sets of Langevin simulations are

compared with the results from the DNS of (moving) particle-laden forced isotropic

turbulence for Stη = 10, 20, 40, 80 and Reλ = 76, 131. Here, Stη is the particle

Stokes number based on the Kolmogorov time scale, and Reλ is the Taylor micro-scale

Reynolds number. Statistics such as the radial distribution function (RDF), the vari-

ance and kurtosis of particle-pair relative velocities, and the particle collision kernel

were computed using both Langevin and DNS runs, and compared. The RDFs from

the stochastic runs were in good agreement with those from the DNS. Also computed

were the PDFs Ω(U |r) and Ω(Ur|r) of relative velocity U and of the radial component

of relative velocity Ur respectively, both PDFs conditioned on separation r. The first
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closure form, involving the Eulerian two-time correlation of fluid relative velocities,

showed the best agreement with the DNS results for the PDFs.

3.2 Introduction

Turbulence-driven relative motion of high-inertia particles is relevant in as-

trophysical scenarios, such as the interstellar medium, protoplanetary disks, and the

atmospheres of planets and dwarf stars [16, 63]. Specifically, the “sticking” of dust

particles in protoplanetary disks is believed to be the mechanism for planetesimal

formation. An intriguing question that the astrophysicists are investigating concerns

the effects of turbulence on the dispersion, sedimentation, collisional coalescence and

fragmentation of dust grains. The viscous relaxation times, τv, of these particles are

significantly large, with estimated Stη ∼ 10-100 [63], where Stη = τv/τη is the Stokes

number based on the Kolmogorov time scale τη.

The two principal quantities describing the relative motion of inertial particles

in a turbulent flow are: (1) the radial distribution function (RDF), which is a measure

of the particle spatial clustering, and (2) the probability density function (PDF) of

pair relative velocities, which quantifies the particle encounter rate. The RDF and the

relative velocity PDF are both key inputs to the particle collision kernel, and depend

sensitively on the Stokes number. Both statistics can be determined through direct

numerical simulations (DNS) of particle-laden turbulent flows. However, DNS suffers

from the well-known computational limitation on the Reynolds numbers that can be

achieved. This drawback of DNS is one of the motivating factors for developing PDF

equation-based stochastic models for particle-laden turbulent flows.
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Recently, we developed a stochastic theory for the relative velocities and po-

sitions of high-inertia monodisperse pairs in forced isotropic turbulence [67]. The

theory involved deriving a closure for the diffusivity tensor characterizing the relative-

velocity-space diffusion current in the PDF kinetic equation of particle-pair separation

and relative velocity. Since we had considered the Str ≫ 1 limit, the pair PDF equa-

tion is of the classical Fokker-Planck form (Str is the Stokes number based on the

time-scale τr of eddies whose size is of the order of pair separation r). Using the dif-

fusivity formulation, one can perform Langevin simulations of pair relative velocities

and positions, which is equivalent to simulating the Fokker-Planck equation.

In this context, the current study has two main objectives. First, we perform

a quantitative analysis of the three forms of the diffusivity derived in [67]. The

insights gained will help us understand the implications of the approximations made

in deriving the diffusivities, as well as guide future improvements to the theory. In the

Str ≫ 1 limit, we perform a comparative analysis of the current and [100] diffusivity

closures, as well as the predictions of relative motion statistics by the two theories.

The second objective is to compute the relative motion statistics of particle pairs using

both direct numerical simulations (DNS) and Langevin simulations (LS), and compare

the corresponding results. The parametric inputs to the LS runs such as the Taylor

micro-scale Reynolds number, dissipation rate, Kolmogorov scales, integral length

scale, and the RMS fluctuating velocity were all obtained from DNS. Further, the

energy spectrum needed to compute the analytical diffusivities is modeled such that

it closely matches the DNS spectrum. Thus, the DNS and LS results are compared

under conditions where a broad set of flow parameters, and not just Reλ, is matched.
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Such a comparison will enable us to quantify the theory’s predictive abilities for pair

dynamics in isotropic turbulence.

Zaichik and Alipchenkov [100] developed a stochastic model for particle pairs

that was conceived to be applicable for all Stokes numbers, provided that the Stokes

drag force is applicable and is the dominant force acting on the particles. Although

[67] and Zaichik and Alipchenkov [100] are both based on a kinetic equation descrip-

tion of pair interactions, there are important fundamental distinctions between the

two studies. The principal difference lies in the approach adopted to close the diffu-

sion current in the PDF equation. Zaichik & Alipchenkov closed the diffusion current

by using the Furutsu-Novikov-Donsker (FND) formula. The FND formula relates the

diffusion current to a series expansion in the cumulants of the fluid relative velocities

seen by the pairs (∆u) and the functional derivatives of the PDF with respect to ∆u

[9]. They further assumed that ∆u had a Gaussian distribution, for which the series

expansion exactly reduces to only the second-order cumulant of ∆u [9]. In contrast,

Rani et al. [67] developed a closure for the diffusion current based on a perturbation

analysis of the pair PDF equation in the limit of high Stokes number. Another im-

portant difference concerns the simulation approach used in the two studies. Zaichik

and Alipchenkov [100] computed the statistics of pair separation and relative velocity

by solving the equations for the zeroeth, first and second relative-velocity moments of

the master PDF equation. Rani et al. simulated the Langevin equations to evolve the

relative velocities and positions of a large number of particle pairs. When compared

to solving a finite number of moments equations, the Langevin approach is higher

order accurate in the sense that the Langevin simulations (LS) inherently include all
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moments of the pair PDF. Another advantage of the LS approach is that it allows

us to explicitly compute the PDFs of pair relative velocity at various separations,

enabling us to track the transition in the nature of the PDF as the separations are

reduced from the order of integral scale to that of Kolmogorov scale.

Bragg and Collins [9] performed a first-principles-based comparison of the

Chun et al. [18] and Zaichik and Alipchenkov [103, 104] stochastic models for inertial

pair dynamics in isotropic turbulence. The focus of that paper was to compare and

analyze the predictions of particle clustering at sub-Kolmogorov scale separations by

the two theories. In the limit of Stη ≪ 1, Chun et al. [18] developed closures for

the drift and diffusion fluxes in the PDF equation for pair separation, where Stη is

the Stokes number based on the Kolmogorov time scale τη. Using these closures,

they derived a power-law expression for the radial distribution function (RDF) at

sub-Kolmogorov separations, which showed good agreement with the DNS results.

The Zaichik and Alipchenkov [103] study improved upon their earlier study [100] by

accounting for the unequal Lagrangian correlation timescales of the strain-rate and

rotation-rate tensors. Bragg & Collins showed that the power-law exponents in the

RDFs predicted by the two theories were in good agreement for Stη ≪ 1. They

elaborated that this agreement was because the drift velocity predicted by Chun

et al. was the same as the leading order term in the drift velocity of Zaichik and

Alipchenkov [103]. As is to be expected, for Stη ∼ 1, the theories diverge. Bragg &

Collins also showed that the clustering of Stη ≪ 1 particles was mainly due to the

centrifuging process, whereas that of Stη ∼ 1 particles was due to their path-history

interactions with the turbulence.
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In an accompanying study, Bragg and Collins [10] analyzed the theories of

Zaichik and Alipchenkov [104], Pan and Padoan [57], and Gustavsson and Mehlig [35]

by focusing on the second-order structure function of pair relative velocities, Sp
2 (r, t),

predicted by these theories, where r is the separation vector. Formulation of Sp
2 (r, t)

is required to solve the governing equations for the moments of the pair PDF [104].

One may also compute the variances of the pair relative velocity and its components

longitudinal and transverse to r—⟨U2⟩, ⟨U2
r ⟩ and ⟨U2

t ⟩ respectively—using S
p
2 (r, t)

[57]. By comparing the predictions (primarily of the first two theories) with the

DNS-computed S
p
2 (r, t), Bragg and Collins [10] identified possible discrepancies in

the theories. In the case of Gustavsson and Mehlig [35] theory, only qualitative

insights could be drawn regarding its predictions of the structure function and the

RDF, since some coefficients were left unspecified in their theory.

Ireland et al. [39] performed an extensive parametric study of the effects of

Reynolds number on inertial particle statistics through DNS of forced isotropic tur-

bulence. They considered a wide range of Taylor micro-scale Reynolds numbers (88 ≤

Reλ≤ 597), and computed the statistics of single particles, as well as pairs for Stokes

numbers 0.05 ≤ Stη ≤ 30. It was observed that for Stη ! 1, the RDF is essentially

independent of Reλ, whereas for Stη ≥ 10, the RDF increased with Reλ at nearly all

separations. The latter trend is captured by our theory as well. As identified in Bragg

and Collins [9], the effects of preferential concentration on pair relative-velocity statis-

tics were important for Stη ! 0.1, while the non-local effects due to particle sampling

of turbulence become important for Stη " 0.2. The relative velocity statistics of the

Stη ≥ 10 particles were found to increase strongly with Reλ because these particles
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retain for long times the effects of their interactions with the inertial and integral

scale eddies.

Some of the most detailed theoretical and computational studies of high Stη

particles were undertaken by Pan, Padoan, and coworkers [57, 63, 58, 59, 60, 61, 62].

Pan and Padoan [57] derived an analytical model for the relative velocity variance of

inertial particles that is conceptually generalized across the entire range of particle

Stokes numbers (this study will be hereafter referred to as PP10). The PP10 model

is based on expressing the pair relative-velocity structure function S
p
2 (r, t) in terms of

the fluid relative-velocity structure function S
f
2 (r, t), where S

f
2 (r, t) is the Lagrangian

correlation of fluid relative velocities along inertial particle-pair trajectories. Subse-

quently, they approximated S
f
2 (r, t) as the product of the Eulerian structure tensor

of turbulence and the Lagrangian autocorrelation of fluid relative velocities. Using

this theory, they calculated the statistics of pair relative velocity (up to the second

moment) for 1 ≤ Stη ≤ 100, and compared these predictions with DNS data over

a smaller Stokes-number range 1 ≤ Stη ≤ 10. Good agreement between the model

and DNS results was obtained. However, PP10 is limited to modeling the lower order

moments of pair relative velocity, and does not provide any means to obtain the RDF,

or the PDF of relative velocities.

Pan et al. [63] performed a DNS study of particle clustering in isotropic tur-

bulence for 1 ! Stη ! 100. In agreement with prior DNS and theoretical studies

(e.g., Chun et al. [18]), they observed that the RDF shows a power-law scaling for

pair separations in the dissipative range, with the exponent being a function of Stokes

number. Further, particles whose response times scale with inertial-range time scales
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show clustering at inertial separations, which is manifested as the peaking of RDF

for these separations and subsequent plateauing for smaller separations. As seen in

Chun et al. [18], the RDF of bidisperse pairs becomes flat at small scales, confirming

that such pairs show weaker clustering than monodisperse ones.

Perhaps the broadest range of Stokes numbers considered thus far in particle-

laden isotropic turbulence is by Pan and Padoan [58]. In that study, relative velocity

statistics of 0.1 ≤ Stη ≤ 800 particles were computed using both DNS and the

model of PP10 [57]. Their goal was to investigate the relative motion statistics for

separations smaller than the Kolmogorov scale, so as to draw insights on the collision

rates of dust particles in protoplanetary disks. In protoplanetary turbulence, dust

particles are much smaller than the Kolmogorov length scale (η ∼ 1 km). Therefore,

they focused on understanding and quantifying pair relative motion for separations

r → 0. Since such a fine resolution of separations is computationally prohibitive,

Pan and Padoan [58] computed relative velocity statistics for separations as small as

0.25η, and then extrapolated these insights to smaller r. The extrapolation involved

grouping the pairs into two categories: continuous and caustic types. Continuous-

type pairs are those that may have started their journey as uncorrelated particles

with high relative velocities at large separations, but decelerate as their separations

decrease and remain correlated far longer than the flow time scales that influence

their relative motion. Caustic-type pairs are those that remain uncorrelated with

large relative velocities throughout their flight. It is believed that caustic pairs may

significantly enhance collision rates, and that they dominate collision rates as r → 0.
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Predictions using PP10 of relative velocity and its components parallel and transverse

to the separation vector showed good agreement with their DNS data.

Under the limits Str ≫ 1 and StI ≫ 1, Rani et al. [67] derived the transport

equation for the PDF Ω(r,U) of pair separation (r) and relative velocity (U). Here,

the Stokes number Str is based on the time scale τr of eddies whose size scales with

separation r, and StI is based on the integral time scale τI . The transport equation

for Ω(r,U), which is of the Fokker-Planck type, contains a diffusivity tensor in the

U space. We showed that the diffusivity is equal to 1/τ 2v times the time-integral of

the Eulerian two-time correlation of fluid relative velocities seen by nearly stationary

pairs (τv is the particle viscous relaxation time). In the current study, the two-time

correlation is directly computed using DNS of forced isotropic turbulence containing

stationary particles. The DNS-computed correlation when integrated in time yields

what we will refer to as the first closure form of diffusivity (CF1). An advantage

of the CF1 diffusivity is that it will provide us a means to assess the the diffuvisity

formulation of [105, 103] in the Str ≫ 1 limit.

Alternatively to CF1, the Eulerian two-time correlation may be resolved an-

alytically through the approximation that the temporal change in the fluid relative

velocities seen by a pair is primarily due to the advection of size r eddies past the

pair by larger eddies. Based on this physical picture and through an analogy with

the Taylor hypothesis, one may transform the two-time correlation into two-point

correlations of fluid velocities, allowing us to analytically formulate the diffusivity

in terms of the energy spectrum. Rani et al. [67] derived two expressions based on

whether the pair center of mass was held fixed or allowed to move during integral
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time scales, the latter being an improvement over the former at finite StI . We will

refer to these expressions as the second and third closure forms of diffusivity (CF2

and CF3), respectively.

In the current study, we first undertake a detailed analysis of the three closure

forms of the diffusivity. Such an analysis will provide quantitative insights into the

effects of the approximations entailed in deriving the closures, i.e. that the pairs are

essentially fixed, and that the Eulerian two-time correlation may be expressed in terms

of two-point correlations. Second, we perform both Langevin and direct numerical

simulations to compute a number of statistics quantifying pair relative motion. Three

sets of Langevin simulations are performed, corresponding to the three diffusivity

forms. The LS results are compared with each other and with the DNS data. To

our knowledge, this study presents the first comparison of the stochastic and DNS

predictions of the relative velocity PDFs at separations spanning the entire range of

turbulent scales. The pair statistics from LS are compared with those from DNS

of particle-laden isotropic turbulence for Stη = 10, 20, 40, 80 and Reλ = 76, 131.

Statistics such as the RDF, relative velocity moments and PDFs, and the collision

kernel are compared. Furthermore, we compare the present results with those from

[105, 104] where available.

The organization of the chapter is as follows: Section 3.3 presents the impor-

tant details of the closure theory, as well as identifies the three closure forms that are

analyzed in this study. Section 3.4 discusses the computational details of the direct

numerical and Langevin simulations. Section 3.5 presents an analysis of the diffusiv-
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ity forms, as well as a comparison of the pair relative-motion statistics obtained from

LS and DNS. We conclude by summarizing our findings in Section 3.6.

3.3 Theory

We begin with an overview of the Rani et al. [67] stochastic model for particle

pairs in the limit of high Stokes number. A review of the theory will provide the

necessary background for the subsequent discussion of the three closure forms that

are investigated in this study.

[67] considered the pair phase-space density (PSD) P (r,U ,x,V ; t), which is

the PSD of a particle pair with separation r, relative velocity U , and center-of-mass

position and velocity x and V , respectively. The inclusion of x and V in the state

vector was motivated by the physical scenario that the dynamics of pair center-of-

mass can influence the way a pair samples turbulence. Conservation of PSD P yields

∂P

∂t
+∇r · (UP ) +∇U · (U̇P ) +∇x · (V P ) +∇V · (V̇ P ) = 0 (3.1)

where ∇r, ∇x, ∇U , and ∇V denote gradients with respect to the corresponding

state variables.

Assuming Stokes drag law to be valid, the governing equations for monodis-

perse pairs are:

dU

dt
= −

1

τv
[U(t)−∆u(r,x, t)] (3.2)
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dV

dt
= −

1

τv

[
V (t)−

u(R1(t), t) + u(R2(t), t)

2

]
= −

1

τv
[V (t)− ucm(R1(t),R2(t), t)]

(3.3)

where τv is the particle response time, R1(t) and R2(t) are the particle positions

at time t, ∆u(r,x, t) = [u(R2(t), t)− u(R1(t), t)] is the seen fluid relative velocity,

and ucm(R1(t),R2(t), t) = [u(R1(t), t) + u(R2(t), t)]/2. The velocity ucm can be

determined from x and r since R1 = x− r
2 and R2 = x+ r

2 .

Substitution of the pair governing equations into (3.1) followed by ensemble

averaging over flow realizations gives the equation for the probability density function

(PDF) ⟨P ⟩:

∂⟨P ⟩
∂t

+∇r · (U⟨P ⟩) +∇x · (V ⟨P ⟩)−
1

τv
∇U · (U⟨P ⟩)−

1

τv
∇V · (V ⟨P ⟩)

+
1

τv
∇U · ⟨∆uP ⟩+

1

τv
∇V · ⟨ucmP ⟩ = 0 (3.4)

where ⟨·⟩ denotes ensemble averaging, and the terms ⟨∆uP ⟩ and ⟨ucmP ⟩ require

closure. These terms represent turbulence-pair interactions and turbulence-center

of mass interactions, respectively. In the limit of high Stokes number, they can be

expressed as Fokker-Planck-type diffusion terms in the phase space.

Using the decomposition P = ⟨P ⟩ + P ′, we can write ⟨∆uP ⟩ = ⟨∆uP ′⟩ and

⟨ucmP ⟩ = ⟨ucmP ′⟩, since ⟨∆u⟩ = 0 and ⟨ucm⟩ = 0 in isotropic turbulence. This

suggests that one may derive closures for these terms by solving for P ′ in terms

of ⟨P ⟩. Substituting P = ⟨P ⟩ + P ′ into (3.1) and subtracting (3.4), the governing
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equation for P ′ can be obtained as:

∂P ′

∂t
+∇r · (UP ′) +∇x · (V P ′)−

1

StI
∇U · (UP ′)−

1

StI
∇V · (V P ′)

+
1

StI
∇U · (∆uP ′) +

1

StI
∇V · (ucmP

′) = −
1

StI
∇U · (∆u⟨P ⟩)

−
1

StI
∇V · (ucm⟨P ⟩) +

1

StI
∇U · ⟨∆uP ′⟩+

1

StI
∇V · ⟨ucmP

′⟩ (3.5)

where StI = τv/τI , and terms are made dimensionless using integral length scale (L),

integral time scale (τI), and RMS fluctuating velocity (urms).

Recognizing that P ′ may be expressed as a perturbation expansion in 1/StI

(StI ≫ 1), we can write to leading order P ′ = 1
StP1. Retaining O(1/StI) terms in

(3.5), we get

∂P1

∂t
+∇r · (UP1) +∇x · (V P1) = −∇U · (∆u⟨P ⟩)−∇V · (ucm⟨P ⟩) (3.6)

Equation (3.6) is a Lagrangian evolution equation of P1 in the (r,x, t) space, with U

and V held fixed.

In the limit of StI ≫ 1 and Str ≫ 1, Rani et al. [67] showed that the two

convective terms on the LHS of (3.6) can be neglected compared to ∂P1

∂t . We can now

solve for P1 such that r and x remain fixed, giving us

⟨∆uP ′⟩ = −
1

St2I

∫ 0

−∞

dt {⟨∆u(x, r, 0) ∆u(x, r, t)⟩ ·∇U ⟨P ⟩(t) +

⟨∆u(x, r, 0) ucm(R1(0),R2(0), t)⟩ ·∇V ⟨P ⟩(t)} (3.7)
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⟨ucmP
′⟩ = −

1

St2I

∫ 0

−∞

dt {⟨ucm(R1(0),R2(0), 0) ∆u(x, r, t)⟩ ·∇U ⟨P ⟩(t)+

⟨ucm(R1(0),R2(0), 0) ucm(R1(0),R2(0), t)⟩ ·∇V ⟨P ⟩(t)} (3.8)

where r, x, particle positions R1 and R2, and the PDF ⟨P ⟩ undergo little change

during flow time scales.

At this point, it is pertinent to discuss the similarities and differences between

the above perturbation analysis, and the renormalized perturbation approach used

in Reeks [70]. Reeks [70] pioneered the application of the LHDI method of Kraich-

nan [45] to derive the PDF equation for particle position and velocity, as well as a

closure for the phase-space diffusion current. The derivation of the closure using the

LHDI method entailed a renormalized perturbation expansion, which is effectively an

expansion with 1/StI as the perturbation parameter. Section 3.7 presents a detailed

comparison of the two perturbation methods.

The time integrals of the four correlations on the RHS of equations (3.7)-(3.8)

are, respectively, the diffusivities DUU , DUV , DV U , and DV V . Here DUU and DV V

are diffusivities in the U -space and V -space, respectively; DUV and DV U are cross

diffusivities. Equation (3.4) for the probability density function (PDF) ⟨P ⟩ may now

be written as:

∂⟨P ⟩
∂t

+∇r · (U⟨P ⟩) +∇x · (V ⟨P ⟩)−
1

τv
∇U · (U⟨P ⟩)−

1

τv
∇V · (V ⟨P ⟩)

−∇U · (DUU ·∇U ⟨P ⟩+ DUV ·∇V ⟨P ⟩)

−∇V · (DV U ·∇U ⟨P ⟩+ DV V ·∇V ⟨P ⟩) = 0 (3.9)
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3.3.1 Three closure forms for diffusivity DUU

Since our primary interest is in the statistics of pair relative motion, we will

consider a more tractable, lower dimensional PDF Ω(r,U) =
∫
⟨P ⟩(r,U ,x,V ; t) dV ,

where the dependence on x was dropped due to homogeneity. In Rani et al. [67], we

showed that (3.9) yields the following equation (in dimensional form) for Ω(r,U) :

∂Ω

∂t
+∇r · (UΩ)−

1

τv
∇U · (UΩ)−∇U · (DUU ·∇UΩ) = 0 (3.10)

where τv is the particle viscous relaxation time, and r and U are the pair separation

and relative velocity, respectively. The diffusivity DUU is given by

DUU =
1

τ 2v

∫ 0

−∞

⟨∆u(r,x, 0) ∆u(r,x, t) ⟩ dt (3.11)

where the integrand is the Eulerian two-time correlation of fluid relative velocities,

with both pair separation r and center-of-mass position x held fixed. This formulation

of diffusivity is valid under the conditions Str ≫ 1 and StI ≫ 1.

In this study, DUU in (3.11) is resolved using three approaches, giving rise

to three closure forms. In the first closure form (CF1), the two-time correlation in

(3.11) is directly computed from DNS of forced isotropic turbulence with stationary

particles, and integrated in time to yield DUU . In the second closure form (CF2),

the Eulerian two-time correlation of relative velocities is converted into two-point

correlations of fluid velocities, allowing us to derive an expression in terms of an

integral over the wavenumber. In the third closure form (CF3), r remains fixed
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during flow time scales, but x responds to integral-scale eddies, i.e. x changes during

integral time scales. Thus, CF3 attempts to improve upon and extend CF2’s validity

to StI ∼ 1. The effects of CF3, however, are anticipated to be seen only at the lower

end of the Stokes-number range considered. At higher Stokes numbers, CF2 and CF3

should show very similar behavior.

One may regard CF1 as the most accurate among the three closure forms since

a DNS-based evaluation of the Eulerian two-time correlation would entail no further

approximations. But, CF2 and CF3, the latter inspite of its improvements, contain

approximations made to obtain analytical expressions for diffusivity. The differences

between CF1 and CF2/CF3, and their implications for pair statistics are extensively

analyzed in this study.

In the following discussion, we present the salient features of the derivation

of CF2 and CF3 (details are in Rani et al. [67]). The computational details of the

evaluation of DUU for CF1 are discussed in Section 3.4.1.

3.3.2 CF2 and CF3

In arriving at (3.11), Rani et al. [67] considered the limits Str ≫ 1 and StI ≫ 1.

In these Stokes number regimes, particles are nearly stationary so that the temporal

change in ∆u experienced by pairs is primarily due to the evolution of turbulent

scales and not due to pair (relative) motion itself. Rani et al. [67] approximated the

temporal evolution of ∆u at two positions separated by r as arising due to the passive

advection of eddies of size r by larger, integral-scale eddies. Hence, one may replace

the Eulerian two-time correlation in (3.11) by a correlation of relative velocities seen
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by two pairs with the same r, but with the centers of mass separated by uIt, where

uI is the large-scale fluid velocity. This would give us closure form 2 (CF2) for DUU :

D
[2]
UU =

1

τ 2v

∫ 0

−∞

⟨∆u(x, r, 0) ∆u(x+ uIt, r, 0)⟩ dt (3.12)

Relaxing the StI ≫ 1 criterion to StI ∼ 1 enables us to account for the

change in center-of-mass position due to interactions with eddies of timescales ∼ τv,

the center-of-mass response time. This is done by replacing uI with the relative

velocity W between the large-scale eddies and the center of mass, yielding closure

form 3 (CF3):

D
[3]
UU(r,W ) =

1

τ 2v

∫ 0

−∞

⟨∆u(x, r, t) ∆u(x+W t, r, t)⟩ dt (3.13)

In the discussion that follows, we will focus on CF3, since the final expressions for

CF2 and CF3 differ only by a constant factor.

The CF3 diffusivity can then be expressed as an average over all values of W

as:

D
[3]
UU(r) =

∫
D

[3]
UU(r,W ) Φ(W ) dW (3.14)
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where Φ(W ) is the PDF of W , and

D
[3]
UU(r,W ) =

1

τ 2v

∫ 0

−∞

⟨∆u(x, r, t) ∆u(x+W t, r, t)⟩ dt

=
1

τ 2v

∫ 0

−∞

〈[
u(x+

1

2
r, t)− u(x−

1

2
r, t)

]

×
[
u(x+W t+

1

2
r, t)− u(x+W t−

1

2
r, t)

]〉
dt

=
1

τ 2v

∫ 0

−∞

〈
u(x+

1

2
r, t) u(x+W t+

1

2
r, t)− u(x+

1

2
r, t) u(x+W t−

1

2
r, t)

−u(x−
1

2
r, t) u(x+W t+

1

2
r, t) + u(x−

1

2
r, t) u(x+W t−

1

2
r, t)

〉
dt(3.15)

Since W is principally influenced by the large-scale fluid eddies, its PDF can be

considered as Gaussian [5]:

Φ(W ) =
1√

(2πW 2
rms)

3
e
− W2

2W2
rms (3.16)

where Wrms is the RMS fluctuating velocity ofW . The two-point velocity correlations

in (3.15) may be expressed in terms of the velocity spectrum tensor R(k), allowing

us to further analytically resolve this equation.

For isotropic turbulence, we can write DUU as:

DUU,ij = DUU,⊥

(
δij −

rirj
r2

)
+ DUU,||

rirj
r2

(3.17)
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For CF3, Rani et al. [67] derived the following forms for DUU,⊥ and DUU,||:

D
[3]
UU,⊥(r) =

1

2

2π2

τ 2v

√
1

(2π)3W 2
rms

×
∫ ∞

0

E(ξ)

ξ

[
8

3
−

4sin(rξ)

rξ
−

4cos(rξ)

r2ξ2
+

4sin(rξ)

r3ξ3

]
dξ (3.18)

D
[3]
UU,||(r) =

2π2

τ 2v

√
1

(2π)3W 2
rms

×
∫ ∞

0

E(ξ)

ξ

[
4

3
+

4cos(rξ)

r2ξ2
−

4sin(rξ)

r3ξ3

]
dξ (3.19)

where E(ξ) is the energy spectrum, ξ is the wavenumber, and the analytical expression

for Wrms is presented in Section 3.3.3. The corresponding forms for CF2 can be

obtained by simply replacing Wrms with urms in (3.18) and (3.19), where urms is

the fluid fluctuating RMS velocity. It is anticipated that at high Stokes numbers,

Wrms → urms so that CF2 and CF3 approach each other.

3.3.3 Expression for Wrms

Wrms is the RMS of the relative velocity between large-scale eddies and the

center-of-mass velocity. It is given by

W 2
rms =

1

3

〈
(ui − Vi)

2
〉
=

1

3

[〈
u2
i

〉
+
〈
V 2
i

〉
− 2 ⟨Viui⟩

]
(3.20)

where Vi is the velocity of the pair center-of-mass, ui is the fluid velocity with which

eddies of size r are advected past the pair by larger eddies, and ⟨u2
i ⟩ = ⟨u2

1 + u2
2 + u2

3⟩

(⟨V 2
i ⟩ follows a similar notation).
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The velocity Vi is governed by

dVi

dt
=

ucm,i − Vi

τv
(3.21)

where ucm,i was defined in (3.3). Multiplying (3.21) with Vi and ensemble-averaging

yields

d
〈
1
2V

2
i

〉

dt
=

⟨uiVi⟩ − ⟨V 2
i ⟩

τv
(3.22)

where ⟨ucm,i Vi⟩ is approximated with ⟨uiVi⟩ on the RHS of (3.22). This is reasonable

since both ui − Vi and ucm,i − Vi are determined by eddies with sizes of the order of

or smaller than r, so that these two quantities are expected to have similar statistics.

At steady state, ⟨Viui⟩ = ⟨V 2
i ⟩. This means that from (3.21)

W 2
rms =

1

3

[〈
u2
i

〉
−
〈
V 2
i

〉]
=

1

3

〈
u2
i

〉(
1−

⟨V 2
i ⟩

⟨u2
i ⟩

)

= u′2

(
1−

V ′2

u′2

)
(3.23)

where 1
3 ⟨u

2
i ⟩ = u′2, and similarly 1

3 ⟨V
2
i ⟩ = V ′2. To close Wrms, one needs expressions

for u′ and the ratio V ′/u′. The latter was obtained from [42]:

V ′2

u′2
=
τη(τv + T ′) + τvT ′

(τη + τv)(τv + T ′)
(3.24)

where TL is the fluid Lagrangian integral time-scale, T ′ = Tfp − τη, τη is the Kol-

mogorov time scale and Tfp is the Lagrangian integral time-scale of fluid velocities

seen by the particles. Jung et al. (2008) provided an expression for Tfp in terms of
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fluid Eulerian and Lagrangian integral time scales. Further, it can be inferred from

their study that u′2 = u2
rms for high St particles, i.e. variance of fluid velocity seen by

high-inertia particles is nearly equal to the variance of turbulent velocity fluctuations.

3.4 Computational Details

In this section, we present a discussion of the two types of simulations per-

formed in this study: direct numerical simulations and Langevin simulations. DNS

with stationary particles were used to compute the Eulerian two-time correlation in

(3.11) that is needed for CF1. DNS with moving particles were used to validate

the LS predictions for four Stokes numbers Stη = 10, 20, 40, 80, at two Reynolds

numbers Reλ = 76, 131.

3.4.1 DNS

Fluid Phase

In homogeneous isotropic turbulence (HIT), there is no inherent production of

turbulent kinetic energy. As a result, when performing DNS of HIT, the turbulence

decays monotonically in time. To achieve statistical stationarity, one applies forcing

to the low wavenumber velocity components, i.e., one adds energy to the large scales

of turbulence. The assumption implicit to the forcing of low wavenumbers is that the

time-averaged small-scale quantities are not significantly influenced by the mechanism

of energy production at the large scales, but will only depend on the gross effects such

as the turbulent kinetic energy and its production rate [25]. For this assumption to

88



be appropriate, it is necessary that the high-wavenumber regions of the computed

spectral quantities do not depend on the details of the forcing scheme. Eswaran

and Pope [25] investigated the effects of a stochastic forcing scheme on the isotropy

of small-scale statistics. They concluded that the forcing scheme did not have an

undue effect on the values of the spectral statistics at high wavenumbers. However,

it is not entirely clear from their study if the forcing affects the spatial and temporal

coherence of large scale eddies. Since the coherence of eddies has a direct effect on the

diffusivity tensor DUU through the fluid relative velocity correlations, the nature of

the forcing may impact the dynamics of particle pairs for the Stokes numbers under

consideration. This aspect needs to be studied in greater detail, and is outside the

scope of the current work.

Direct numerical simulations of forced isotropic turbulence were performed

using a discrete Fourier-expansion-based pseudospectral method. Simulations were

performed over a cubic domain of length 2π discretized using N3 grid points, with

periodic boundary conditions. The fluid velocity is advanced in time by solving the

Navier-Stokes equations in rotational form, as well as the continuity equation for an

incompressible fluid [12, 38]:

∇ · u = 0

∂u

∂t
+ ω × u = −∇

(
p/ρf + u2/2

)
+ ν∇2u+ ff

(3.25)

where u is the fluid velocity, ω = ∇ × u is the vorticity, ρf is the fluid density, p

is the pressure, ν is the kinematic viscosity, and ff is the external forcing applied
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Table 3.1: Flow parameters in DNS of isotropic turbulence (arbitrary units). N is
the number of grid points in each direction, Reλ ≡ urmsλ/ν is the Taylor micro-scale
Reynolds number, urms ≡

√
(2k/3) is the fluid RMS fluctuating velocity, k is the tur-

bulent kinetic energy, ν is the fluid kinematic viscosity, ϵ ≡ 2ν
∫ κmax

0 κ2E(κ)dκ is the
turbulent energy dissipation rate, L ≡ 3π/(2k)

∫ κmax

0 E(κ)/κdκ is the integral length

scale, λ ≡ urms

√
(15ν/ϵ) is the Taylor microscale, η ≡ ν3/4/ϵ1/4 is the Kolmogorov

length scale, Teddy ≡ L/u′ is the large-eddy turnover time, τη ≡
√

(ν/ϵ) is the Kol-
mogorov time scale, κmax is the maximum resolved wavenumber, ∆t is the time step,
and Np is the number of particles per Stokes number.

Parameter DNS I DNS II

N 128 256

Reλ 76 131
urms 0.9683 1.0894
ν 0.0071 0.0028

ϵ 0.3189 0.4315
L 1.4942 1.4225

λ 0.5622 0.3438
η 0.0327 0.0152

Teddy 1.5431 1.3057
τη 0.1499 0.0814

κmaxη 1.9610 1.8287

∆t 0.0025 0.0010
Np 100000 262144

to maintain a statistically stationary turbulence. The particle loading is assumed

to be dilute so that the influence of particles on the fluid is negligible. The various

turbulence parameters for the two Reλ are summarized in Table 3.1. Further details

of the pseudospectral algorithm may be found in Ireland et al. [38] and Brucker et al.

[12].
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Figure 3.1: The Eulerian two-time correlation of fluid relative velocities R(r, τ) =
⟨∆u(r, t) ∆u(r, t+ τ) ⟩. The longitudinal and transverse components of R(r, τ),
i.e. R||(r, τ) and R⊥(r, τ), are shown as a function of time at separations r/L =
0.2, 0.5, 1. Figures (a,b) Reλ = 76, and (c,d) Reλ = 131. The integral length scale
L = π/(2u′2)

∫ κmax

0 E(κ)/κ dκ, and time scale Teddy = L/urms.
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Relative Velocity Correlation in CF1

For closure form 1 (CF1), computing the diffusivity DUU requires the correla-

tion ⟨∆u(r,x, 0) ∆u(r,x, t) ⟩ as input. This correlation was evaluated using DNS

of forced isotropic turbulence with stationary disperse particles. Two simulation pa-

rameters that impact the computed correlation are the number of particles (thereby,

pairs), and the bin size (∆r) for pair separations. Bin size refers to the thickness of

the radial shell spanning r−∆r/2 to r+∆r/2, within which we search for pairs. An

important consideration in determining the number of particles is the need to obtain

converged correlations at separations r ∼ η, where η is Kolmogorov length scale. In

this regard, we varied the number of particles from 105 to 106. Although smooth

statistics were obtained for 5×105 particles, we used 106 particles or ∼ 5×1011 pairs

for computing the two-time correlation. It may be recalled that these particles are

stationary, and are to be distinguished from those indicated in Table 3.1 that are

in motion. The “optimal” bin size for pair separations is determined by balancing

two competing requirements: convergence of statistics at r ∼ η, and the reduction of

statistical noise associated with too small a bin size. We considered bin sizes varying

between η/20 and 2η, and found that a bin size of η/8 satisfied the two constraints.

Evaluation of the two-time correlation of seen fluid relative velocities for nearly

half a trillion pairs is a highly computationally intensive process. We adopted the

following procedure to compute these correlations from DNS of isotropic turbulence

with fixed particles. Considering two snapshots of flow separated by a time inter-

val τ in a DNS run, the longitudinal and transverse components of the product
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∆u(r,x, t)∆u(r,x, t+ τ) for a particle pair are stored in the appropriate r bin, and

then averaged over all pairs within a bin. Next, we average the two components over

pairs of flow snapshots with the same time separation τ . For each value of τ , we

averaged over 200 such pairs of flow snapshots. In Figure 3.1(a) and (b), we show

the longitudinal and transverse components, respectively, of the relative velocity cor-

relation as a function of τ at separations r = L/5, L/2, L for Reλ = 76. Here L

is the integral length scale. The corresponding plots for Reλ = 131 are shown in

Figure 3.1(c) and (d). The correlations at various separations are then integrated in

time to yield DUU for CF1.

Particle phase

The governing equations for the motion of a dense spherical particle smaller

than the Kolmogorov length scale may be written as [51]

dxp

dt
= vp, (3.26)

dvp

dt
=

u(xp, t)− vp

τv
, (3.27)

where xp and vp are the particle position and velocity, respectively, and τv = ρpd2p/18µ

is the particle response time (ρp is the particle density, dp its diameter, and µ is fluid

dynamic viscosity). In Eq. (3.27), u(xp, t) is the fluid velocity at the particle’s lo-

cation. In the DNS runs, the seen fluid velocity is evaluated through an 8th order

Lagrange interpolation method involving a stencil of 8 × 8 × 8 fluid velocities sur-

rounding the particle location.
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Temporal update of particle motion is achieved through a modified second-

order Runge-Kutta (RK2) method in which the standard RK2 weights are replaced

by exponential integrators as follows [38]:

vp(t0 + h) = e−h/τv vp(t0) + w1 up[xp(t0)] + w2 u[xp(t0) + vp(t0)h] (3.28)

where h is the time step, and the exponential integrators w1 and w2 are given by

w1 ≡
(
h

τv

)[
φ1

(
−h

τv

)
− φ2

(
−h

τv

)]
, w2 ≡

(
h

τv

)
φ1

(
−h

τv

)
(3.29)

φ1(z) ≡
ez − 1

z
, φ2(z) ≡

ez − z − 1

z2
(3.30)

In the DNS runs, the particles are evolved for at least 6τv’s for the Stη = 80

particles, and 45τv’s for the Stη = 10 particles, before we begin collecting their

statistics. Subsequently, the particle statistics are averaged for nearly 10τv’s for the

Stη = 80 particles, and 75τv’s for the Stη = 10 particles.

3.4.2 Langevin simulations

Using the CF1, CF2 and CF3 closures for DUU discussed in Section 3.3, three

sets of Langevin stochastic simulations were performed to evolve pair separations r
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and relative velocities U . The governing equations for r and U are:

dr

dt
= U (3.31)

dU = −
U

τv
dt+ B · dW (3.32)

Here, W represents a Wiener process, and the diffusion matrix B can be written in

terms of DUU as:

B · B
T = 2DUU(r) (3.33)

where BT is the transpose of B , and B is computed from a Cholesky decomposition of

DUU(r). Simulation of Langevin equations (3.31) and (3.32) is statistically equivalent

to solving the Fokker-Plank equation (3.10) for the PDF Ω(r,U).

To be able to consistently compare pair statistics from the Langevin and DNS

runs, it is important that the Langevin simulations use the same turbulence param-

eters as those in statistically stationary DNS. Hence, inputs to Langevin runs such

as the Kolmogorov and integral length scales, dissipation rate, kinematic viscosity,

urms, and Reλ are all identical to those in Table 3.1. In particular, one also has to

ensure that the model energy spectrum used in CF2 and CF3 closely matches the

DNS energy spectrum. This was achieved by suitably selecting the parametric inputs

to the model spectrum provided in Pope [64], as follows:
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Table 3.2: Parameters for the model energy spectrum. After determining cL and cη,
the parameter C was adjusted to match the DNS energy spectrum. [64] suggested
C = 1.5.

Parameter Reλ = 76 Reλ = 131

C 1.908 1.866
cL 0.3855 0.3643

cη 0.4165 0.4078
κmax 60 120

E(κ) = Cϵ2/3κ−5/3fL(κL)fη(κη) (3.34)

fL(κL) =

(
κL

[(κL)2 + cL]1/2

)5/3+p0

(3.35)

fη(κη) = exp
{
−β
(
[(κη)4 + c4η]

1/4 − cη
)}

(3.36)

where β = 5.2 and p0 = 2 [64]. The parameters cL and cη are determined from the

following constraints:

3

2
u2
rms =

∫ κmax

1

E(κ)dκ (3.37)

ϵ = 2ν

∫ κmax

1

κ2E(κ)dκ (3.38)

where ϵ is the dissipation rate, and the wavenumber limits [1, κmax] are the same as in

DNS. These wavenumber limits are also used in (3.18) and (3.19) for CF2 and CF3.

The parameters cL and cη are numerically evaluated using the DNS values of urms, ϵ

and ν from Table 3.1. The resulting values are shown in Table 3.2. In Figure 3.2, the

model spectra calculated from Eqs. (3.34)-(3.36) are compared with the DNS energy
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Figure 3.2: Comparison of the DNS and model energy spectra at Reλ = 76 and
Reλ = 131. The model spectrum is used to compute the CF1 and CF2 diffusivities.

spectra for Reλ = 76 and Reλ = 131. Good agreement is seen between the model and

DNS spectra.

The computational domain in the Langevin simulations is a sphere of diameter

8L, where L is the integral length scale. This domain size is sufficiently large, since

particle pairs become decorrelated at separations of O(L) for all the Stokes numbers

considered in this study. A specular reflective boundary condition was imposed at the

outer boundary of the domain. This meant that a particle colliding with the outer

boundary is reflected back into the domain, with its velocity component tangential

to the boundary unaffected, and the velocity component normal to the boundary

reversed.
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For each Stη, pair statistics are averaged for at least 1000τv’s. Such a large

averaging time was necessary due to the strong dependence of the statistical errors

on the sample size in Langevin simulations. Further, in order to increase the sample

size at separations of the order of Kolmogorov length scale, a single pair is split into

multiple, equally-weighted fractional pairs whenever the separation of a pair goes

below a certain value [67]. When a parent pair is split, initially the fractional pairs

have the same position and velocity vectors as the parent. Each of the fractional pairs

is then evolved independently, except that it only makes a fractional contribution

when computing the statistics. In our simulations, splitting is executed at three

different radial locations, r = 2η, 5η, 10η. However, fractional pairs are not split

again. We found that splitting a pair into 10 equally-weighted fractional pairs gave us

sufficient data at the smaller separations without excessively increasing the number

of pairs to be tracked. Recombination of fractional pairs when their separations

exceeded the specified radial distances was not undertaken.

3.5 Results and discussion

Langevin and DNS runs were performed for Stokes numbers Stη = 10, 20, 40, 80

at Reλ = 76 and 131. Three sets of Langevin simulations—a total of 24 simulations—

were conducted corresponding to the closure forms CF1, CF2 and CF3. In each LS,

60 × 106 pairs per Stokes number were considered. The number of particles in the

DNS runs are provided in Table 3.1.

The discussion of the results is presented in three subsections. In Section 3.5.1,

we first compare the three forms of the diffusivity DUU . Subsequently, CF1 and the
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Zaichik et al. [105], Zaichik and Alipchenkov [103] theory are compared in the limit

of Str ≫ 1. In Section 3.5.2, the radial distribution functions (RDFs) obtained using

CF1, CF2 and CF3 are compared with the respective DNS RDFs. The trends in the

RDFs obtained from the closures are explained through the moments equations of the

master PDF equation (3.10). After the RDF discussion, the relative velocity statistics

and relative velocity PDFs obtained from the LS and DNS runs are presented and

compared in Section 3.5.3. Throughout the discussion of the results, we will regard

CF1 as being the most accurate among the three closures. We will elaborate on

the differences in the statistical predictions of CF1 and CF2/CF3, as well as provide

quantitative and qualitative explanations for the differences.

3.5.1 Diffusivity tensor

We first compare the diffusivity tensors from the three closure forms considered

in this study. In addition, the CF1 and CF2 diffusivities are analyzed in greater detail

for pair separations in the integral range, where one can derive analytical estimates

for these. Subsequently, we compare CF1 with the diffusivity closure of [100, 103].

As CF1 is computed through DNS, it is essentially exact for Str ≫ 1, presenting us

an opportunity to assess the Zaichik & Alipchenkov closure in this limit. Such an

analysis of their diffusivity had not been undertaken previously.

In Figure 3.3, the longitudinal and transverse components of the diffusivity

for CF1, CF2 and CF3 are plotted as a function of the dimensionless separation r/L

(L is the integral length scale). Shown in Figure 3.3(a) and (b) are the diffusivity

components at Reλ = 76 and 131, respectively, for the Stη = 10 pairs. It may be
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Figure 3.3: The transverse component, DUU,⊥(r), and the longitudinal component,
DUU,||(r), of the diffusivity tensor for Stη = 10 as a function of dimensionless pair sep-
aration r/L. Diffusivity tensor components for CF1, CF2 and CF3 are shown. Upper

black solid line denotes CF3 transverse component, and lower grey solid line denotes CF2

transverse component. (a) Reλ = 76, and (b) Reλ = 131. Transverse and longitudinal
components of DUU for CF1, CF2 and CF3 in the viscous range at Reλ = 76 and 131 are
shown in Table 3.3. 100



Table 3.3: Transverse and longitudinal components of DUU for CF1, CF2 and CF3
in the viscous range at Reλ = 76 and 131. The values shown are for Stη = 10. The
following notation is used:

D
[1,2,3],⋆
UU,|| =

[
D

[1,2,3]
UU,|| × τ 2v /(u

2
rms × Teddy)

]
/(r/L)2.

Reλ D
[1],⋆
UU,|| D

[1],⋆
UU,⊥ D

[2],⋆
UU,|| D

[2],⋆
UU,⊥ D

[3],⋆
UU,|| D

[3],⋆
UU,⊥

76 0.98 1.96 0.81 1.62 1.37 2.74

131 1.52 3.04 1.35 2.70 2.06 4.12
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Figure 3.4: Transverse component, DUU,⊥(r), and longitudinal component, DUU,||(r),
of the diffusion coefficient tensor for Stη = 80 as a function of dimensionless pair
separation r/L at: (a) Reλ = 76, and (b) Reλ = 131. CF2 and CF3 diffusivities are
compared.
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Figure 3.5: Comparison of Closure Form 1 (CF1) of DUU with the diffusivity of Zaichik
and Alipchenkov [100, 103] in the limit Str ≫ 1. DUU,||(r) and DUU,⊥(r) are the longitu-
dinal and transverse components of DUU , respectively. “Zaichik” refers to the diffusivity
calculated from Equation 3.51-Equation 3.53. Diffusion coefficient is plotted as a function
of dimensionless pair separation r/L at: (a) Reλ = 76, and (b) Reλ = 131. Also shown
in figure (a) are the diffusivities obtained using the two scaling expressions for the viscous
time scale: Equation 3.44 and Equation 3.47, and Equation 3.44 and Equation 3.48. In (b)
we show diffusivities obtained from the scaling expressions in the inertial subrange: Equa-
tion 3.45 and Equation 3.49. For the viscous range, two forms of scaling expressions are
plotted: one in which strain-rate and rotation-rate have identical time scales (τσ = τω), and
the second in which they are different (τσ ̸= τω).
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noted that DUU × τ 2v is independent of the Stokes number for CF1 and CF2, but

not for CF3 due to the presence of Wrms on the RHS of Eqs. (3.18) and (3.19). The

diffusivities are shown for the lowest Stokes number Stη = 10, since the differences

between CF2 and CF3 are more pronounced at low Stokes numbers. For Kolmogorov

scale separations, i.e. r ∼ η, DUU,⊥(r) and DUU,||(r) show an r2 scaling for all three

closures (numerical values of the scaling coefficients are shown in Table 3.3). This

scaling arises because for r < η, the fluid velocity field may be regarded as locally

linear, i.e. ∆u ≈ r ·∇u, which in conjunction with (3.11) gives rise to the r2 scaling.

At both Reλ = 76 and 131, it is seen that CF3 is in reasonable agreement with CF1

for inertial range separations. However, in the transition region between the inertial

and integral ranges, as well as in the integral range, CF1 is higher than CF3. The

diffusivity components of CF1 exceed those of CF2 at all separations. These trends

are to be expected, especially at Stη = 10, since CF3 does a better job at lower Stokes

numbers than does CF2.

For integral scale separations, i.e. r " L, one can perform a more detailed

comparison of CF1 and CF2, since one can derive estimates for these closures in this

region. It may recalled that in deriving the CF2 diffusivity expression, we assumed

that the temporal change of the fluid relative velocities seen by a pair is primarily

due to the passive advection of size r eddies past the pair by large-scale eddies with

velocity uI . This physical picture is valid only when r/uI ≪ r/ur = τr, i.e. when r

is small enough such that the time taken to advect the size r eddies past the pair is

smaller than their turnover time. Therefore, one expects CF2 to perform poorly at

large separations.
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For r " L, the particle pairs are effectively uncorrelated and behave like two

independent particles. Consequently, the pair diffusivity is equal to twice the single-

particle diffusivity. Using this principle, we can write for CF1:

D
[1]
UU(r " L) =

1

τ 2v

∫ 0

−∞

⟨∆u(r,x, 0) ∆u(r,x, t) ⟩ dt

≈
2

τ 2v

∫ 0

−∞

⟨u (x, 0)u (x, t)⟩ dt =
2

τ 2v
u2
rmsTEδij (3.39)

where TE is the Eulerian integral time scale.

In the case of CF2, noting that D [2]
UU,|| = D

[2]
UU,⊥ when r " L, we have

D
[2]
UU(r " L) ≈ δij

2π2

τ 2v

√
1

(2π)3u2
rms

×
4

3

∫ ∞

0

E(ξ)

ξ
dξ (3.40)

= δij
2π2

τ 2v

√
1

(2π)3u2
rms

×
4

3
×

u2
rms

π
L (3.41)

=
0.53

τ 2v
u2
rmsTeddyδij (3.42)

where we replaced Wrms with urms in Eqs. (3.18) and (3.19), and the RHS of (3.40) is

the limiting value of the RHS of ((3.18)) as r → ∞. We have also used the identity

∫∞
0

E(ξ)
ξ dξ = u2

rms

π L, and Teddy = L/urms, where L is the integral length scale. The

ratio Teddy/TE ∼ 1.2-1.5 so that from (3.39) and (3.42), the ratio D
[1]
UU/D

[2]
UU is now

estimated to be ∼ 2.5-3.2 for r " L.

In Figure 3.3, for r " L, we see that D
[1]
UU/D

[2]
UU ≈ 2.05 when Reλ = 76,

and ≈ 3.45 when Reλ = 131, in accordance with the preceding scaling estimate.

Further, D [1]
UU/D

[3]
UU ≈ 1.5 when Reλ = 76, and ≈ 2.29 when Reλ = 131. The lower
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values of D [1]
UU/D

[3]
UU are because CF3 exceeds CF2 for smaller Stη. We will also see in

Section 3.5.3 that for r " L, the pair relative-velocity variance computed using CF1

is in good agreement with an analytical expression for the relative velocity variance

of uncorrelated pairs [58]. However, both CF2 and CF3 underpredict this analytical

variance by nearly the same factors as D [1]
UU/D

[2]
UU and D

[1]
UU/D

[3]
UU for r " L in Figure 3.3.

In Figure 3.4, we compare only CF2 and CF3 for the highest Stokes number

considered. Figure 3.4(a) and (b) show the diffusion tensor components for the Stη =

80 particles at Reλ = 76 and 131, respectively. At high Stokes numbers, Wrms ≈ urms,

so that one expects CF2 and CF3 to have similar diffusivities, which is confirmed in

Figure 3.4.

We now present a comparative analysis of CF1 and the Zaichik and Alipchenkov

[100, 103] closures. As already mentioned, CF1 may be regarded as “exact” for

Str ≫ 1. In this limit, the Zaichik & Alipchenkov diffusivity in U -space may be

written as:

D
Zaichik
UU =

1

τv

TLr

τv + TLr
S(r) →

1

τ 2v
S(r)TLr (3.43)

where S(r) is the Eulerian structure function tensor, and TLr is the Lagrangian two-

point time scale at separation r. We can now calculate DZaichik
UU using the well-known

scaling expressions of S(r) and TLr for separations r in the dissipative, inertial and

integral ranges. The expressions for the longitudinal and transverse components of
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S(r) are [100]:

Viscous range: S||(r) =
ϵr2

15ν
; S⊥(r) =

2ϵr2

15ν
(3.44)

Inertial range: S||(r) = C1(ϵr)
2/3; S⊥(r) =

4

3
C1(ϵr)

2/3 (3.45)

Integral range: S||(r) = S⊥(r) = 2u2
rms (3.46)

where C1 = 2.0.

The corresponding expressions for TLr(r) are also provided in Zaichik and

Alipchenkov [100]. It is, however, relevant to elaborate on TLr in the dissipative

range. To determine TLr in this range, [100] approximated the fluid relative velocity

as being linear in the separation vector: ∆u ≈ r · ∇u. Accordingly, the viscous

TLr would need to be found in terms of the correlation time scales, τσ and τω, of

the strain-rate and rotation-rate tensors constituting the velocity gradient. [105]

considered τσ = τω = A1τη, where τη is the Kolmogorov time scale. Subsequently,

[103] reconsidered this analysis with separate forms for τσ and τω. We can now write

the expressions for TLr(r) as:

Viscous range [Z & A (2003)]: TLr = A1τη (3.47)

Viscous range [Z & A (2007)]: τσ = Aστη; τω = Aωτη

TLr,|| = τσ; TLr,⊥ =
(τσ
5

+
τω
3

)
(3.48)

Inertial range: TLr = A2ϵ
−1/3r2/3 (3.49)

Integral range: TLr = TL (3.50)
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where A1 =
√
5 [47], Aσ = 2.3, Aω = 7.2, A2 = 1/

√
6, and TL is the Lagrangian

integral time scale. The relationship between the viscous-range TLr,⊥ and τσ and τω

in (3.48) was obtained from the [13] study of tracer pair diffusion and coagulation in

isotropic random velocity fields.

Conveniently, the scaling expressions given in [105] can be combined into uni-

fied forms for the entire range of turbulent scales. These are [101, 58]:

S||(r) = 2u2
rms

[
1− exp

(
−

(r/η)

(15CK)3/4

)]4/3 [ (r/η)4

(r/η)4 +
(
2u2

rms/(CKu2
η)
)6

]1/6
(3.51)

S⊥(r) = 2u2
rms

[
1− exp

(
−

(r/η)4/3

(15CKn/2)

)][
(r/η)4

(r/η)4 +
(
2u2

rms/(CKnu2
η)
)6

]1/6
(3.52)

TLr(r) = TL

[

1− exp

(

−
(
CT√
5

)3/2(r

η

))]−2/3 [
(r/η)4

(r/η)4 + (TL/(CT τη))
6

]1/6
(3.53)

where uη is the Kolmogorov velocity scale, CK = 2, CKn ≈ 2.5, and CT = 0.4.

We now compare CF1 with DZaichik
UU (r) in Figure 3.5. The latter is computed

from Eq. (3.43) in conjunction with Eqs. (3.51)-(3.53). The agreement between CF1

and DZaichik
UU is good at Reλ = 76 and reasonable at Reλ = 131. In the dissipative

range, DZaichik
UU,|| and DZaichik

UU,⊥ are higher than their CF1 counterparts at Reλ = 131.

It is to be noted that in the integral range TL ≈ TE/1.1 is used [58], where TE is

the Eulerian integral time scale evaluated from DNS using TE = u2
rms ×

∫∞
0 ρ(t) dt.

Here ρ(t) is the Eulerian autocorrelation of fluid velocities. The unified expressions

(3.51)-(3.53) result in a rather broad inertial region at Reλ = 76. Moreover, at

Reλ = 131, it is surprising that the Zaichik transverse component falls below even

the CF1 longitudinal component in the inertial region. These trends suggest that
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the combined expressions need improvement in the inertial range, as well as in the

transition region between the inertial and integral ranges. To elaborate on this aspect,

in Figure 3.5(b), we also plot the scaling expressions S||(r)× TLr and S⊥(r)× TLr for

inertial range r, computed from Eqs. (3.45) and (3.49). These are in good agreement

with D
[1]
UU,|| and D

[1]
UU,⊥ in the inertial region, suggesting that the scaling laws for the

inertial subrange are accurate, but the unified expressions fail to accurately capture

the transition from the inertial to integral scale separations. The effects of the unified

expressions on the RDF predictions of [105] are elaborated in Section 3.5.2.

We also explored the differences between the viscous time scale of [100] (Eq. (3.47)),

and of [103] (Eq. (3.48)). The transverse and longitudinal diffusivities obtained from

these two forms of the viscous time scale are plotted in Figure 3.5(a). It can be

seen that the longitudinal diffusivities from the two Zaichik & Alipchenkov studies

are identical, and are in good agreement with D
[1]
UU,||(r). The transverse diffusivity

corresponding to (3.47) is also in good agreement with D
[1]
UU,⊥(r), but that computed

using (3.48) significantly overpredicts the current D [1]
UU,⊥(r). The transverse diffusiv-

ity based on a Lagrangian time scale [103] exceeding that based on an Eulerian time

scale (CF1) is evidently problematic. The viscous time scale TLr,⊥ = (τσ/5 + τω/3)

arises in the context of tracer pair diffusion in isotropic random velocity fields [13].

It is not clear if this time scale can be applied for isotropic turbulence. We believe

that the rather simple scaling TLr = A1τη with A1 =
√
2 [47] is sufficiently accurate,

obviating the need for the more complex form presented in [103] at least for Stokes

numbers greater than one.
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Figure 3.6: Radial distribution function (RDF) as a function of Stη at specific
separations: (a) r/η = 6, (b) r/η = 12, (c) r/η = 18, and (d) r/η = 24. In each plot,
squares and circles represent data from CF1 and current DNS at Reλ = 76; triangles
represent DNS data of [29] at Reλ = 69. Solid line represents data from Zaichik et al.
[105] theory for Reλ = 69.

3.5.2 Radial distribution function

The radial distribution function (RDF) is a well-established measure of particle

clustering. In Figure 3.6, the RDF is presented as a function of Stη at four separations

109



10 0 10 1 10 2
1

1.5

2

2.5

3

1
2

DNS
CF1

Stη

R
D
F

Figure 3.7: Radial distribution function (RDF) versus Stη at separation r/η = 1.
Squares and circles represent data from CF1 and current DNS at Reλ = 76. Curve
1 represents Zaichik et al. [105] theory for Reλ = 69; and Curve 2 represents Zaichik
and Alipchenkov [104] theory for Reλ = 75.

r/η = 6, 12, 18, and 24. The results from the CF1-based Langevin simulations are

compared with the data from the current DNS, the Février et al. [29] DNS, and

also with the results from the Zaichik et al. [105] theory. The Février et al. [29]

data were for Reλ = 69, while the current DNS data are for Reλ = 76. There is

excellent agreement between the CF1 RDF and the two sets of DNS RDFs at all

four separations, particularly for Stη > 10. The RDFs obtained from the Zaichik

and Alipchenkov [100] theory are significantly higher than the DNS values at all

separations.

In subsequent studies [103, 104], they endeavored to improve the theory, prin-

cipally by dropping their earlier assumption that the Lagrangian correlation time

scales of the strain-rate and rotation-rate tensors are equal. For Stη < 1, the power-

law exponent C3 of the RDF (∼ (η/r)C3 for r ≪ η) obtained using the modified
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theory showed good agreement with the RDF exponents computed using DNS and

the theory of [18]. In Figure 3.7, we compare the RDFs from CF1 and the current

DNS with those from the Zaichik and Alipchenkov [104] theory at separation r/η = 1.

Also shown are the RDF values from Zaichik and Alipchenkov [100]. We observe that

the RDFs computed using their modified theory move closer to, but still overpredict,

the current DNS data for Stη " 10.

We attribute this overprediction to two features of the Zaichik & Alipchenkov

theory. First, we believe that the discrepancy may principally be due to the way

in which the RDFs were computed in their study, i.e. through the solution of the

transport equations for the moments of the PDF Ω(r,U) (see ((3.10))). This aspect

is elaborated in the following discussion.

Considering the pair PDF Ω(r,U), the moments of interest are

ω(r) =

∫
Ω(r,U) dU

⟨Ui⟩ =
1

ω(r)

∫
Ui Ω(r,U) dU

⟨UiUj⟩ =
1

ω(r)

∫
UiUj Ω(r,U) dU

The governing equation for the marginal PDF ω(r) is obtained by integrating (3.10)

over the U space, and that for ⟨Ui⟩ is obtained by premultiplying (3.10) with Ui/ω(r)

and then integrating over U . Similarly, one also obtains the transport equation for

⟨UiUj⟩ by taking the second relative-velocity moments of (3.10). It may be noted

that ω(r) and the RDF g(r) are related through g(r) = ω(r)/ω(r → ∞).
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The transport equation for ω(r) is given by [100]

∂ω

∂t
+
∂(ωUk)

∂rk
= 0 (3.54)

which only tells us that at steady state, in isotropic turbulence ⟨Ui⟩ = 0. In fact, ω(r)

has to be obtained from the ⟨Ui⟩ equation. However, when one attempts to solve the

equations for the first or higher moments (of Ui), one encounters additional closure

problems. For instance, the equation for ⟨Ui⟩ contains the unclosed moment ⟨UiUj⟩

[100]. To obtain ⟨UiUj⟩, one writes the transport equation for ⟨UiUj⟩, which in turn

involves ⟨UiUjUk⟩, and so on. This leads to an infinite hierarchy of moments equations,

which is typically broken by introducing further closure approximations. For example,

in Zaichik and Alipchenkov [100], a “quasi-Gaussian” approximation (QGA) was

introduced for Ui, allowing them to approximate the fourth-order moments of relative

velocities in terms of the second-order moments. Even for Stη ≫ 1 particles, QGA

may be problematic for separations r < L, where the relative velocity PDF is far from

Gaussian and the second moments may be transported over distances much larger

than r. Further, as pointed out by Bragg and Collins [10], for larger Stokes numbers,

the PDF of U in the dissipation range may be extremely intermittent. These closure

approximations may be an important contributing factor to the the errors in the

RDFs of Zaichik & Alipchenkov. A more detailed analysis of the predictions of the

Zaichik & Alipchenkov theory may be found in Bragg and Collins [9, 10].

The second reason for the differences between the DNS and Zaichik RDFs in

Figure 3.6 may be the use of the unified expressions for the diffusivity in their theory.
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As shown in Figure 3.5(b) and in the discussion following Eq. (3.43), the unified

expressions used for S and TLr need improvement in the inertial region, as well as the

transition region between the inertial and integral ranges. The discrepances in the

diffusivity in these regions may have contributed to the overprediction of RDFs by

their theory, since the high Stη particles preferentially respond to these scales.

Figure 3.8(a) and (b) compare the RDFs obtained using CF1, CF2 and CF3

with the DNS RDF for Stη = 10 and 80, respectively, at Reλ = 76. Figure 3.8(c)

and (d) show the corresponding plots at Reλ = 131. For Stη = 10, the CF1 and

CF3 RDFs show good qualitative and quantitative agreement with the DNS RDF at

both Reynolds numbers. For Stη = 10 and both Reλ, CF2 overpredicts clustering

as compared to DNS for both viscous and inertial separations. For Stη = 80, all

the RDFs are close to unity, suggesting only a small amount of particle clustering.

One also notices that the RDFs plateau, i.e. become essentially independent of r, for

separations in the inertial subrange. The plateauing is delayed, i.e. starts at smaller

separations, for the Stη = 10 pairs than for the Stη = 80 pairs. The above RDF

trends can be deduced by considering the governing equation for ⟨Ui⟩, given by:

∂⟨Ui⟩
∂t

+
∂⟨Ui⟩⟨Uj⟩

∂rj
+
∂⟨U ′

iU
′
j⟩

∂rj
= −

⟨Ui⟩
τv

− ⟨U ′
iU

′
j⟩
∂ lnω(r)

∂rj
(3.55)

For isotropic turbulence, ⟨Ui⟩ = 0, so that (3.55) becomes

∂⟨U ′
αU

′
α⟩

∂rα
= −⟨U ′

αU
′
α⟩
∂ lnω(r)

∂rα
(3.56)
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Figure 3.8: RDFs from Langevin simulations (CF1, CF2, and CF3) and from DNS
as a function of dimensionless pair separation r/η for the indicated values of Stη =
10, 80. (a,b) Reλ = 76, and (c,d) Reλ = 131.
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Figure 3.9: ⟨U2⟩/u2
rms as a function of r/L for all Stokes numbers. (a) Reλ= 76,

and (b) Reλ= 131. Lines denote CF1 and symbols denote CF2.

where α = 1, 2, 3 (repeated α does not denote a summation). We can now write

∂ ln⟨U ′
αU

′
α⟩

∂rα
+
∂ lnω(r)

∂rα
= 0 (3.57)

which yields the rather elegant result for Str ≫ 1 pairs:

ω(r) = C(St) ⟨U ′
αU

′
α⟩

−1(r) = C(St) ⟨U2⟩−1
(3.58)

where C(St) is an unknown coefficient that depends on the Stokes number. This

dependence of the RDF may be contrasted with the power-law scaling of the RDF

for the Stη ≪ 1 particles at separations r ! η [18]:

g(r) = C2

(
r

η

)−C3

(3.59)
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where C3 ∼ Stη.

From (3.56), we can readily see that the flattening of the RDFs is related to the

flattening of ⟨U2⟩. By reading Figure 3.8(a) and (c) in conjunction with Figure 3.9(a)

and (b), one can see that the delayed plateauing of RDF for the Stη = 10 particles is

related to the correspondingly delayed plateauing of ⟨U2⟩ at both Reynolds numbers.

The overprediction of RDFs by CF2 for the viscous and inertial separations may also

be inferred from (3.58) which shows that the RDF is inversely proportional to the

relative-velocity variance. Since CF2 yields the lowest variances among the three

closures, we see the associated overprediction of RDFs.

Figure 3.9(a) and (b) also suggest that ⟨U2⟩ remains finite as the separation

r → 0 for all the Stη considered in this study. Bec et al. [7] performed a DNS

study of the low order velocity structure functions of inertial particles in isotropic

turbulence, and found that the structure functions were independent of separation in

the dissipation range for Stη > 7. In Rani et al. [67], we had classified high-inertia

particle pairs into “lingerers” and “flyers”. Lingerers are low-relative-velocity particles

that are highly correlated and remain correlated far longer than the timescales of

fluid that influence their relative motion. Flyers are uncorrelated particles with large

relative velocities, i.e., they undergo essentially ballistic motion so that their relative

motion is unaffected by fluid eddies with sizes comparable to the pair separation.

Flyers are responsible for maintaining a finite ⟨U2⟩ as the separation r → 0.

In Figure 3.10, the RDFs from CF1, CF2, CF3, and DNS are plotted as

a function of Stη at four separations for Reλ = 76. The corresponding plots for

Reλ = 131 are shown in Figure 3.11. In general, the CF1 RDFs show the best
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Figure 3.10: RDF versus Stη at Reλ= 76 and at specific pair separations: (a) r/η
= 1, (b) r/η = 11, (c) r/η = 22, and (d) r/η = 44 (≈ L). CF1, CF2, CF3, and DNS
are compared.
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Figure 3.11: RDF versus Stη at Reλ= 131 and at specific pair separations: (a) r/η
= 1, (b) r/η = 23, (c) r/η = 46, and (d) r/η = 92 (≈ L). CF1, CF2, CF3, and DNS
are compared.
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Figure 3.12: RDF versus pair separation r/η for (a) Stη = 10, and (b) Stη = 20.
Black curves are for Reλ= 131, and green curves are for Reλ= 76. CF1, CF3 and
DNS are compared.

agreement with the DNS RDFs. At larger separations (r = L/2, L), one notices that

the agreement of CF1 with DNS improves with Stokes number, while the agreement

of CF2 and CF3 with DNS deteriorates at higher Stokes numbers. This may be

attributed to the underprediction of DUU at large separations by CF2 and CF3. For

lower Stokes numbers at both Reλ, CF3 shows better agreement with DNS than CF2.

At higher Stokes numbers, CF2 and CF3 approach each other, as is to be expected.

In Figure 3.12, the effects of Reλ on particle accumulation are shown by com-

paring the RDFs for Stη = 10, 20 at Reλ = 76 and 131. The RDFs are shown for the

two lower Stokes numbers (and for CF1 and CF3 only) so as to clearly illustrate the

effects of Reλ variation on clustering. It can be seen from Figure 3.12(a) and (b) that

for both Stokes numbers, the RDFs increase with Reλ. This is because the response
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times of the particles considered are of the order of inertial time scales. An increase

in Reλ, with its concomitant broadening of the inertial subrange, would mean that

the particles respond to a greater number of scales, thereby resulting in increased

clustering at these separations. This observation is consistent with the findings in the

study of Ireland et al. [39].

3.5.3 Pair relative velocity statistics

Figure 3.13 shows the pair relative-velocity variance as a function of Stokes

number at four separations for Reλ = 76. The variances obtained from the Langevin

simulations using the three diffusivities are compared with the DNS variances. It is

seen that CF1 shows the best agreement with the DNS for all Stokes numbers and

separations. CF3 agrees better with DNS than does CF2, especially at the smaller

Stokes numbers considered. One also notices a slow change in the variances from

r ≈ 4.5η in Figure 3.13(b) to r ≈ 2.5η in Figure 3.13(a). This may be attributed to the

high inertia of particles because of which they retain memory of their relative velocities

even after their separations have transitioned from the inertial range to the dissipative

range. In Figure 3.13(c) and (d), i.e. at r/L = 1/2 and 1 respectively, one can see

that CF1 overpredicts the DNS variances for Stη = 10, but the comparison improves

significantly for Stη > 10. This is to be expected since CF1 involves modeling DUU as

the time integral of the two-time correlation of fluid relative velocities seen by nearly

stationary pairs. Thus, CF1 becomes more accurate at high Stokes numbers where

the modeled pair dynamics approaches the pair behavior in DNS. In Figure 3.13(d),

corresponding to r ≈ L, we also show the analytical expression for the relative velocity
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Figure 3.13: ⟨U2⟩/u2
η versus Stη at Reλ= 76 for various separations. (a) r/L = 1/20,

(b) r/L = 1/10, (c) r/L = 1/2, and (d) r/L = 1. Dashed line in (d) corresponds to
the analytical expression for the variance of uncorrelated pairs, ⟨U2⟩ = 2u2

rms
TL

TL+τv
,

where TL is the Lagrangian integral time scale. TL is obtained using TL = TE/1.1
[58].
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variance of uncorrelated pairs, ⟨U2⟩ = 2u2
rmsTL/(TL + τv), where TL is the Lagrangian

integral time scale of turbulence [58]. Except at Stη = 10, CF1 shows excellent

agreement with this expression.

In Figure 3.13(d), the CF1 to CF2 and CF1 to CF3 variance ratios are 2.12

and 1.52 for Stη = 10, and 2.13 and 2.00 for Stη = 80. As already seen in Figure 3.3,

for Stη = 10 and r " L, we see that D
[1]
UU/D

[2]
UU ≈ 2.05 and D

[1]
UU/D

[3]
UU ≈ 1.50. For

Stη = 80 and r " L, Figure 3.4 shows that D [1]
UU/D

[2]
UU and D

[1]
UU/D

[3]
UU are 2.05 and 1.93,

respectively. The correspondence between the variances and diffusivities at integral-

scale separations becomes evident from these ratios. From (3.39) and (3.42), when

r " L, the relative velocity variance limits to 2
τv
u2
rmsTE for CF1, and to 0.53

τv
u2
rmsTeddy

for CF2.

In Figure 3.14, the relative velocity variances computed using CF1, CF2 and

CF3 are compared with the DNS variances for Reλ = 131. Both CF2 and CF3

underpredict the DNS variances, although CF3 performs better for smaller Stokes

numbers. In contrast to its behavior at Reλ = 76, CF1 now overpredicts the DNS

variances, although the comparison gets better as the Stokes number increases. The

improved agreement at higher Stη is expected, since the validity of the principal

approximation in CF1—pairs are essentially fixed during flow time scales—improves

as the Stokes number increases. It will also be seen in subsequent discussion that the

CF1 behavior at Reλ = 131 can be explained by considering the effects of Reλ on the

diffusivity DUU . In Figure 3.14(d), at r/L = 1, CF1 approaches the analytical limit,

except for Stη = 10.
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Figure 3.14: ⟨U2⟩/u2
η versus Stη at Reλ= 131 for various separations. (a) r/L =

1/20, (b) r/L = 1/10, (c) r/L = 1/2, and (d) r/L = 1. Dashed line in (d) corresponds
to ⟨U2⟩ = 2u2

rms
TL

TL+τv
, where TL is the Lagrangian integral time scale. TL is obtained

using TL = TE/1.1 [58].
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Figure 3.15: ⟨U2⟩/u2
rms versus Stη. (a) r/L = 1/20, and (b) r/L = 1. Open symbols

denote Reλ= 131, and filled symbols Reλ= 76.

The effects of Reλ on the relative velocity variances are illustrated in Fig-

ure 3.15. In Figure 3.15(a), the variances obtained from CF1, CF3 and DNS are

compared for Reλ = 76, and 131 at r = L/20. The corresponding comparison of vari-

ances for r = L is shown in Figure 3.15(b). At both separations, increase in Reλ has

only a marginal impact on the DNS variances. The variation of Reλ, however, has a

substantial effect on the CF1 variances at both separations. This can be attributed

to the strong dependence of the CF1 diffusivity on Reλ, as will be demonstrated in

the following discussion. The CF3 variances also show a rather weak dependence on

Reλ. This behavior of CF3, as compared to CF1, seems surprising, but will also be

explained below.

We will now elucidate the trends in Figure 3.14 and Figure 3.15, specifically

those concerning the effects of increase in Reλ on the CF1 and CF3 variances. First,

we present the ratios of dimensionless diffusivities at Reλ = 131 and Reλ = 76, where
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the diffusivities are normalized using integral scale quantities. These ratios are (at

Stη = 10 and r > L):

D̃
[1]
UU(Reλ = 131)

D̃
[1]
UU(Reλ = 76)

≈ 1.32

D̃
[3]
UU(Reλ = 131)

D̃
[3]
UU(Reλ = 76)

≈ 0.86

where D̃UU = DUU/(u2
rms × Teddy), and the values of urms and Teddy = L/urms for

the respective Reλ are obtained from Table 3.1. It is interesting to note that at large

separations, the CF1 diffusivity shows a significant increase, while the CF3 diffusivity

shows a marginal decrease with the Reynolds number.

The principal reason for the strong and weak dependence of CF1 and CF3,

respectively, on Reλ may be attributed to the relevant time scales for these closures.

For CF1, the relevant time scale at large separations is the Eulerian integral time scale,

TE , while for CF2 and CF3, the time scales are L/urms and L/Wrms respectively. It is

clear from Table 3.1 that L and urms, and thereby Teddy, do not change significantly

between the two DNS runs. This is because the turbulent kinetic energy also changes

slowly in the two DNS runs. Consequently, the integral length scale L, which is

determined by the mean dissipation rate and urms, is also nearly the same in the two

DNS runs. However, for CF1, we find that TE(Reλ = 131)/TE(Reλ = 76) ≈ 1.4,

which is close to the ratio of diffusivities D [1]
UU(Reλ = 131)/D [1]

UU(Reλ = 76) for r > L.

Since D
[1]
UU(r " L) = ⟨U2⟩(r " L)/τv, an increase in the diffusivity directly results

in higher relative velocity variances at large separations. The “flyer” pairs with high

variances at large separations then result in increased variances at smaller separations
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Figure 3.16: Dimensionless DUU × St2η is plotted as a function of r/η for Reλ =
76, 131. Effects of Reλ on the CF1 closure are shown. The longitudinal and transverse
components of D [1]

UU are compared at the two Reλ. DUU is made dimensionless with
the Kolmogorov-scale quantities, and then multiplied with St2η.

through their ballistic motion. We believe that the increase in TE may be due to the

forcing methodology used to achieve stationary isotropic turbulence. As in [38], we use

a deterministic forcing method that involves resupplying the energy dissipated during

each simulation time step. The dissipated energy is added at low wavenumbers so

that the medium and high wavenumbers are, hopefully, not significantly influenced

by the forcing. From the current DNS runs, it seems that the deterministic forcing of

small wavenumbers has the effect of increasing the temporal coherence of large scale

eddies as Reλ is increased.
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We now present further illustration of the effects of increasing Reλ on the CF1

closure of DUU . In Figure 3.16, the dimensionless D [1]
UU × St2η is plotted as a function

of r/η at Reλ = 76 and 131, where DUU has been made dimensionless using the

Kolmogorov scale quantities.

In CF1, we have

D
[1]
UU =

1

τ 2v

∫ 0

−∞

⟨∆u(r,x, 0) ∆u(r,x, t) ⟩ dt (3.60)

The effects of Reλ on CF1 can be understood by approximating the Eulerian two-

time relative velocity correlation on the right-hand side of (3.60) as the product of

the Eulerian two-point structure function and an Eulerian autocorrelation of fluid

relative velocities. This allows us to write:

D
[1]
UU × τ 2v ≈ S(r) Tr (3.61)

where S(r) is the structure function, and Tr is the Eulerian two-point time scale at

separation r. In both viscous and inertial ranges, it can be shown from Eqs. (3.44)-

(3.45) and (3.47)-(3.49) that S(r)Tr/(u2
ητη) is independent of Reλ.

In the integral range, however, S||/u2
η and S⊥/u2

η ∼ (u′/uη)2. Using u′/uη

values from Yeung and Pope [99], one arrives at the following scaling: u′/uη =

0.50505
√
Reλ − 0.0061 for 38 ≤ Reλ ≤ 93. Using the DNS data of Ireland et al.

[39], we get the scaling: u′/uη = 0.50626
√
Reλ + 0.018761 for 88 ≤ Reλ ≤ 597,

which to leading order is nearly identical to the Young & Pope scaling. For the
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Eulerian integral time scale TE, we obtain the following scaling from Ireland et al.

[39]: TE/τη = 0.1039Reλ + 2.8525. Therefore, at integral-scale separations, the Reλ

dependence of D [1],non-dim
UU arises from both S and Tr. It can be seen in Figure 3.16

that in the dissipative and inertial ranges, the Reλ effects on D
[1],non-dim
UU are weak,

but in the integral range, increase in Reλ dependence leads to the higher values of

diffusivity for Reλ = 131.

In Figure 3.17, the PDF of relative velocity conditioned on separation r,

i.e. Ω(U |r), normalized by ⟨U2⟩1/2 is presented at r = L/20 for Stη = 10, 80 and

Reλ = 76. The normalization of a PDF by the standard deviation sheds light on

the shape of the PDF, e.g., its deviation from Gaussianity. In Figure 3.17, the PDFs

obtained from LS using CF1 and CF3 are compared with the DNS PDFs. It is

known that for separations of the order of the integral length scale L, particle pairs

are effectively uncorrelated so that they behave like individual particles. In such a

scenario, the relative velocity PDF should be Gaussian. Indeed, this is what we see

in the DNS, as well as LS (figure not shown here). As seen in Figure 3.17, at smaller

separations, the PDFs become non-Gaussian (increasingly so as the separation de-

creases). The non-Gaussianity is manifested in the form of PDFs with wider tails

and sharper peaks than a Gaussian PDF. The wider tails are representative of un-

correlated pairs with high relative velocities, referred to as flyers. The higher peaks

at low relative velocities are representative of pairs whose relative motion is strongly

correlated, referred to as lingerers. Thus, the transition from a Gaussian PDF at

large separations to non-Gaussian PDF at small separations is characterized by two

distinct trends: flyers that become lingerers, and flyers that remain as flyers. At
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Figure 3.17: Relative velocity PDF Ω(U |r) normalized by ⟨U2⟩1/2 for Reλ= 76 and
at r/L = 1/20. (a) Stη = 10, and (b) Stη = 80. Grey line represents the normal
distribution.

129



-4 -2 0 2 410-4

10-3

10-2

10-1

100

101

U
urms

Ω
(U

|r
)
·u

rm
s

(a)

-2 -1 0 1 210-4

10-3

10-2

10-1

100

101

DNS
CF1
CF3

U
urms

Ω
(U

|r
)
·u

rm
s

(b)

Figure 3.18: Relative velocity PDF Ω(U |r) scaled by urms for Reλ= 76 and at
r/L = 1/20. (a) Stη = 10, and (b) Stη = 80.

r = L/20, the transition of pairs into lingerers is more prominent for the Stη = 10

pairs than for the Stη = 80 pairs, as manifested by the higher peak in Figure 3.17(a).

This is because the smaller Stη particles relax to the local flow more effectively than

do the higher Stη particles that still retain some memory of their ballistic motion at

larger separations. For both Stokes numbers, the PDFs of CF1 and CF3 have wider

tails than the DNS PDF, suggesting that they overpredict the number of flyers. For

Stη = 10, the inset of Figure 3.17(a) shows that both CF1 and CF3 underpredict the

occurrence of lingerers.

The PDF Ω(U |r) scaled by the turbulence intensity urms is shown in Fig-

ure 3.18. The PDFs obtained using CF1 and CF3 are compared with those computed

from DNS. These PDFs enable us to understand the trends in relative velocity statis-

tics such as the variance ⟨U2⟩. Among the closures, the CF1 PDF’s show the best
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Figure 3.19: Relative velocity PDF Ω(U |r) normalized by ⟨U2⟩1/2 for Reλ= 131 and
at r/L = 1/20. (a) Stη = 10, and (b) Stη = 80. Grey line represents the normal
distribution.
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Figure 3.20: Relative velocity PDF Ω(U |r) scaled by urms for Reλ= 131 and at
r/L = 1/20. (a) Stη = 10, and (b) Stη = 80.

agreement with the DNS PDF’s. At r = L/20, the CF1 PDF’s for Stη = 10 have

wider tails than the corresponding DNS PDF’s, which leads to an overprediction of

variance by CF1, as seen in Figure 3.13(a). For Stη = 80, however, we see that

the CF1 PDF has narrower tails than the DNS PDF, which explains the lower CF1

variance compared to the DNS variance in Figure 3.13(d). These trends suggest that

CF1 overpredicts (underpredicts) the number of high-relative-velocity flyers at low

(high) Stokes numbers. At both Stokes numbers, the CF3 PDFs are narrower than

the DNS PDFs.

In Figure 3.19, we present the normalized relative velocity PDFs at Reλ = 131.

For both Stη = 10 and Stη = 80, CF1 shows good agreement with DNS for low to

moderate relative velocities (−4 ! U/⟨U2⟩1/2 ! 4), but has wider tails than DNS for

higher relative velocities. For Stη = 10, when the relative velocity U/⟨U2⟩1/2 ∼ ±2,
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Figure 3.21: PDF of radial relative velocity Ω(Ur|r) scaled by urms for Stη = 10, 80
at Reλ= 76 and at specific separations: (a) r/L = 1/20, and (b) r/L = 1.

one notices an inflection point in the DNS PDF. It is interesting to note that CF1

captures the inflection point, but not CF3. Further, CF3 predicts lower peaks than

DNS for Stη = 10, and higher peaks than DNS for Stη = 80.

The PDF Ω(U |r) scaled by urms for Reλ = 131 is shown in Figure 3.20. We

see that CF1 gives rise to PDFs with wider tails than does DNS, particularly for

Stη = 10. This is consistent with the significiant overprediction of variances by CF1

for low Stokes numbers at Reλ = 131 (Figure 3.14). However, for Stη = 80, the CF1

PDF shows reasonable agreement with the DNS PDF. For Stη = 80, the CF3 PDF

is narrower than the DNS PDF. As a result, CF3 underpredicts the DNS variances.

Next, we present in Figure 3.21 the PDF of the radial component of relative

velocity Ur = U · r/r at Reλ = 76. The PDF Ω(Ur|r) is of interest since it is a key

input to the collision kernel. We compare CF1 and CF3 with the DNS for Stη =
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10 and 80 at two separations r = L/20 and L. The most important property of

these PDFs is the transition from a negatively skewed PDF at r = L to a nearly

symmetric PDF at r = L/20. The transition in skewness suggests that the clustering

of high-inertia particles at small separations is driven by the inward-migration bias

occurring at much larger separations. At both r = L/20 and L, the PDFs for the

Stη = 10 particles are more negatively skewed than those for the Stη = 80 particles.

This means that lower Stokes-number particles tend to have higher radially inward

relative velocities, which may cause the increased clustering of these particles. For

r = L/20 and Stη = 10, the CF1 PDF is more negatively skewed than the DNS

PDF, which explains the higher RDF for CF1 in Figure 3.10. The CF3 PDF is less

negatively skewed than the DNS PDF, and hence the lower RDF of CF3.

The transition from Gaussian to non-Gaussian relative velocities can also be

demonstrated using the kurtosis of relative velocity, ⟨U4⟩/⟨U2⟩2. A kurtosis of 3

denotes a Gaussian distribution, and a deviation from this value is indicative of a

non-Gaussian PDF. In Figure 3.22(a) and (b), the kurtosis is plotted as a function

of separation r/L for the various Stη at Reλ = 76 and 131. In Figure 3.22(a), at

Reλ = 76, we see that CF1 and CF3 compare well with DNS at larger separations.

For smaller pair separations (r/L ! 0.5), CF1 shows the best agreement with DNS.

It is also evident that for r ∼ L, kurtosis approaches 3, indicating the gaussianity of

relative velocities. At smaller r, the kurtosis for the Stη = 80 pairs deviates more

slowly from 3 when compared to the Stη = 10 pairs. This suggests that the relative

motion of the former pairs retains the ballistic nature for a wider range of separations

as compared to the latter pairs. In Figure 3.22(b), for Reλ = 131 and Stη = 10,
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the CF1 kurtosis exceeds the CF3 kurtosis at all separations. As already seen, the

increased Reλ leads to a noticeably higher CF1 diffusivity at large separations, which

in turn impacts the CF1 kurtosis. When we compare Figure 3.22(a) and (b), it can

be seen that the non-Gaussianity increases with Reynolds number.

3.5.4 Collision kernel

The collision kernel K(σ) for monodisperse particles is [68]:

K(σ) = 4πσ2g(σ)

∫ 0

−∞

(−Ur)P (Ur|σ)dUr (3.62)

where σ is the particle diameter, g(σ) the RDF of particle pairs at contact, Ur =

U · r/r is the radial component of relative velocity, and P (Ur|σ) is the probability

density function (PDF) of Ur at contact. Equation (3.62) shows that the collision

kernel depends on the RDF and the PDF of Ur, the former a measure of particle spatial

concentration, and the latter a measure of the rate of particle encounters. Figure 3.23

and Figure 3.24 show the collision kernels for all Stη and at Reλ = 76 and 131,

respectively. It is relevant to mention that the “collision kernels” for CF1, CF3, and

the current DNS are presented at separation r = 2.3η for Reλ = 76, and r = 4.7η for

Reλ = 131, since these are the smallest separations for which a statistically stationary

P (Ur|r) could be computed in the respective Langevin simulations. At both Reλ, CF1

shows the best agreement with DNS. At Reλ = 131, the comparison of CF1 with DNS

improves with Stokes number.
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Figure 3.22: Kurtosis as a function of dimensionless pair separation r/L at: (a)
Reλ = 76, and (b) Reλ = 131. CF1, CF3 and DNS are compared for Stη = 10 and
80.
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In Figure 3.23, curve 2 represents the collision kernel at r = η computed by

Zaichik and Alipchenkov [104] from [95]

K(d) = 2πd2⟨|Ur(d)|⟩g(d) (3.63)

where the particle diameter d = η, and ⟨|Ur(d)|⟩ =
√

2
π ⟨U2

r (d)⟩. Curve 3 represents

the collision kernel of Abrahamson [1] (cf. Zaichik and Alipchenkov [104]). Curve 4

represents the collision kernel computed from the theory of Mehlig et al. [53]. Finally,

curve 5 is the kernel computed from eq. (3.63), with ⟨|Ur(d)|⟩ and g(d) values from

the current DNS. It can be seen that the collision kernel of Zaichik and Alipchenkov

[104] overpredicts the DNS values for Stη < 20, and approaches the DNS for Stη > 40.

One also notices that curve 5 obtained from eq. (3.63) is in good agreement with the

curve computed from eq. (3.62).

The use of ⟨|Ur|⟩ =
√

2
π ⟨U2

r ⟩ by Zaichik and Alipchenkov [104] assumes that

the pair relative velocities are normally distributed. They recognized that such an

assumption was, at the best, reasonable only at large Stokes numbers. However, it

was shown by Wang et al. [97] that even for zero Stokes number particles, the ratio

⟨|Ur|⟩/
√
⟨U2

r ⟩ = 0.77, which is quite close to
√

2
π = 0.798 for normally distributed

relative velocities.

Also indicated in Figure 3.23 and Figure 3.24 are the collision kernels when

particle pairs are uncorrelated, corresponding to g(r) = 1 and P (Ur|r) being Gaussian.

Interestingly, the collision kernels of high-Stokes-number pairs in isotropic turbulence

are smaller than the collision rates of uncorrelated pairs. Since g(r) > 1 when particles
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cluster, we can attribute the higher collision kernels for the uncorrelated pairs as

arising from the integral over Ur in the kernel equation (3.62). This scenario is

confirmed in Figure 3.25, where we compare the PDF P (Ur|r) for the Stη = 10, 80

pairs at both Reλ with the Gaussian PDF for uncorrelated velocities. It is clear

that the wider tails of the Gaussian PDF result in the corresponding higher collision

kernels. In addition, comparison of Figure 3.23 and Figure 3.24 shows that the

collision kernel increases with Reλ, due to an increase in both the RDF and the

relative velocities (i.e., relative velocity PDFs with wider tails) with Reλ. This is

confirmed in Figure 3.25 where we see that for a given Stη, the PDF tails become

wider as Reλ is increased. The higher collision kernels for CF1 than CF3 at all Stη

and both Reλ can also be explained by the PDFs in Figure 3.25.

3.6 Conclusions

We performed a detailed assessment of the [67] stochastic model for the rela-

tive motion of high-Stokes-number particle pairs in statistically stationary isotropic

turbulence. The principal contributions of the [67] study were to: (1) derive a for-

mulation for the relative-velocity-space diffusivity in the PDF kinetic equation for

pairs with Str ≫ 1, and (2) develop closure(s) for this diffusivity. The fundamental

diffusivity formulation (CF1) in [67] involved the time-integral of the Eulerian two-

time correlation of fluid relative velocities “seen” by nearly stationary particles. The

two-time correlation was resolved by converting it into a combination of Eulerian two-

point correlations of fluid velocities. As a result, two closed-form expressions were

obtained for the diffusivity, referred to as CF2 and CF3, depending upon whether
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Figure 3.23: Collision kernel as a function of Stokes number at Reλ = 76. CF1,
CF3 and DNS are compared. Curve 1 shows the collision kernel when the RDF
g(r) = 1 and the PDF P (Ur|r) is Gaussian. Curve 2 represents the collision kernel
computed using the Zaichik and Alipchenkov [104] theory. Curve 3 represents the
collision kernel computed using the Abrahamson theory [1, 104]. Curve 4 represents
the collision kernel from the Mehlig et al. [53] theory. Curve 5 represents the collision
kernel computed using eq. (56) of Zaichik and Alipchenkov [104]. Curves 2 through
4 are at r/η = 1 and Reλ = 75. Curve 5 is at r/η = 2.3 and Reλ = 76.

the center-of-mass position was held fixed or allowed to move during flow time scales.

That study, however, involved only a preliminary analysis of the developed closures.

A detailed comparison of the relative motion statistics predicted by the model with

DNS data was also not undertaken.

In the current study, a detailed analysis of the CF1, CF2 and CF3 diffusivities

was performed by: (1) comparing their limiting values for separations in the integral

range, and (2) comparing CF1 with the Zaichik and Alipchenkov [100] closure that

involved expressing the diffusivity as the product of an Eulerian structure function
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Figure 3.24: Collision kernel as a function of Stokes number at Reλ = 131. CF1,
CF3 and DNS are compared.
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Figure 3.25: Effects of Reynolds number on the PDF of radial relative velocity
Ω(Ur|r) for Stη = 10, 80. (a) CF1 closure, and (b) CF3 closure. The PDFs for
Reλ = 76 are shown for r = 2.3η, and those for Reλ = 131 are for r = 4.7η.
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and a Lagrangian time scale of eddies whose size scales with the pair separation.

These comparisons establish that CF1 is the most accurate among the three closure

forms considered.

Subsequently, a rigorous quantitative analysis of the stochastic model was

performed through a direct comparison of Langevin simulation results with the DNS

data for four Stokes numbers at two values of the Taylor micro-scale Reynolds number.

Langevin simulations were performed using the three closure forms of the diffusivity.

We compared LS predictions of the RDF, relative velocity variance and kurtosis, and

the relative velocity PDF with the corresponding DNS data. For each of the statistics,

it is evident that the predictions of CF1 follow the trends one would expect from the

original premise of the [67] theory for high-inertia particles.

The RDFs obtained from the Langevin simulations based on CF1 showed

excellent agreement with the DNS RDFs. The differences between the RDFs from the

[100] theory and the DNS RDFs were attributed to: (1) the moments-based approach

used to compute the RDFs, and (2) the inaccuracies in the inertial-range diffusivity

as calculated from the unified expressions for the Eulerian structure function and the

Lagrangian time scale. We derived an elegant power-law expression relating the RDF

to the inverse of the relative-velocity variance. Relative velocity variances computed

using CF1 showed good agreement with the variances from DNS, particularly at

higher Stokes numbers. For separations in the integral range, the CF1 variances

showed good agreement with the analytical limit for the relative velocity variance of

two uncorrelated particles.
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The effects of Reynolds number on the relative velocity statistics were also

considered, where it was established that CF1 has a stronger dependence on Reλ

than CF2 and CF3. Consequently, we see that as the Reynolds number is increased,

the CF1 variances were significantly higher than the DNS variances, especially for

low Stokes numbers at small separations. However, at large separations, the CF1

variances showed good agreement with the expression for the relative velocity variance

of uncorrelated pairs. The PDFs Ω(U |r) when normalized with the standard deviation

⟨U2⟩1/2 and when scaled with urms were presented separately. The former allow us to

understand the deviation of the PDFs from Gaussianity at various pair separations,

as well as provide insights into how uncorrelated pairs at large separations transition

into lingerers. The PDF of the radial component of the relative velocity, Ω(Ur|r),

presents the startling picture of the transition from a negatively skewed PDF at

large separations to a nearly symmetric PDF at small separations. The smaller the

Stokes number, the greater the skewness of the PDF Ω(Ur|r). The transtion in the

PDF Ω(Ur|r) suggests that the clustering of high-Stokes-number particles at small

separations originates in the inward-migration bias at much larger separations. This

physical picture is analogous to the [9] analysis that the clustering of Stη ∼ 1 particles

was primarily due to their path-history interactions with turbulence.

The transition from Gaussian to non-Gaussian relative velocities as pair sep-

arations decreased was also quantified through the kurtosis of relative velocity. Kur-

tosis was presented both as a function of Stokes number and Reynolds number, and

the predictions of CF1 and CF3 were compared with the DNS data. It was observed

that the lower the Stokes number, the higher the Kurtosis. Finally, collision ker-
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nels were also computed, and good agreement was found between CF1 and DNS.

More importantly, in the context of planetesimal formation, it was found that the

collision kernels increased with the Reynolds number due to an increase in both the

RDF and the relative velocities with Reλ. Equally relevant is the observation that at

high Stokes numbers, the collision kernels were smaller than those of particles with

randomly distributed relative velocities and positions.

The analysis and validation of the CF1 closure have established that the

stochastic model of [67] captures both the qualitative and quantitative features of

the relative motion of high-inertia particle pairs. The limitations of CF2 and CF3

were also clearly identified. In this context, two advancements to the closure that

will be considered in a future study are: (1) improve the behavior of CF1 at higher

Reynolds numbers, and (2) improve CF3 so that it approaches the consistent limit at

large separations.

3.7 Appendix: Comparison with Renormalized Perturbation Expansion

of LHDI

In Rani et al. [67], the diffusion current was closed through a perturbation

analysis of the pair PDF equation in the limit of high Stokes number. In the dis-

cussion that follows, this perturbation method is compared with the renormalized

perturbation approach used in the LHDI approximation [45, 70]. We begin by pre-

senting an overview of Reeks’ application of the LHDI method for closing the diffusion

current in the particle phase space [70]. Our focus is on the salient features of this

approach, rather than on its rigorous mathematical formalism. Subsequent to the
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discussion of the LHDI method, we will present the relevant aspects of the current

method, and draw comparisons and contrasts between the two methods.

In deriving a closure for the diffusion current, Reeks begins by considering the

instantaneous phase-space density Ĝ(r,U , t; r1,U1, t1) arising from the introduction

into the flow of a particle pair with relative position r1 and relative velocity U1 at time

t1. (Here, we are applying Reeks’ original formulation for single particle dynamics

to the relative motion of particle pairs.) The Green’s function Ĝ is governed by the

Liouville’s equation, namely

∂Ĝ

∂t
+∇r · (UĜ) +∇U · (U̇Ĝ) = 0 ∀ t > t1 (3.64)

and Ĝ(r,U , t; r1,U1, t1) = δ(r − r1) δ(U − U1) δ(t − t1) when t = t1. In equation

(3.64), ∇r and ∇U represent gradients with respect to r and U , respectively.

Substituting the particle-pair governing equation

dU

dt
= −

1

τv
[U(t)−∆u(r(t), t)] (3.65)

into (3.64) gives

∂Ĝ

∂t
+∇r · (UĜ)−

1

τv
∇U · (UĜ) = −

1

τv
∇U · [∆u(r(t), t)Ĝ] (3.66)

Ensemble averaging (3.66) over flow realizations yields

∂G

∂t
+∇r · (UG)−

1

τv
∇U · (UG) = −

1

τv
∇U · ⟨∆uĜ⟩ (3.67)
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where G = ⟨Ĝ⟩. The correlation ⟨∆uĜ⟩ presents a closure problem, which is resolved

through the LHDI method.

An important step in the LHDI approach of Reeks is to transform (3.66) to a

new phase space such that the convective terms on the LHS of (3.66) drop out. This

is achieved through the transformation

w = Uet/τv (3.68)

y = r + τvU(1− et/τv ) (3.69)

Applying this transformation, and introducing the generalized Lagrangian Green’s

function in place of the above Ĝ as in Kraichnan [45], the transformed Liouville’s

equation becomes

∂Ĝ

∂t
= −

1

τv
∆u · lĜ (3.70)

where the Ĝ = Ĝ(y,w, t|s;y1,w1, t1|s1) is the generalized Green’s function in the

transformed space, and the operator l is given by

l = −et/τv∇w − τv(1− et/τv )∇y (3.71)

Broadly speaking, the next step in LHDI is to solve (3.70) for Ĝ. This could be

readily accomplished by expressing Ĝ as a series expansion in terms of Ĝ(0) that is the

solution of (3.70) with its RHS set to zero. This series expansion involving functional
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powers of Ĝ(0) is often referred to as a primitive perturbation series. Truncated

forms of primitive expansions are quite inaccurate, except for very small values of

the perturbation parameter. To avoid the problems with the primitive perturbation

method, Kraichnan applied the renormalized perturbation expansions.

Renormalization involves inverting the original series so as to express Ĝ(0) in

terms of G, where G = ⟨Ĝ⟩; this method was outlined in Kraichnan [45] for the case of

a random oscillator. Eventually, by replacing Ĝ(0) with the renormalized expression,

one is able to write Ĝ(y,w, t|s;y1,w1, t1|s1) as an expansion in terms of functional

powers of G(y,w, t|s;y1,w1, t1|s1). It may be pointed out that this renormalized

expansion is effectively a series in terms of 1/τv, or in dimensionless sense 1/StI ,

where StI is the Stokes number based on the integral time scale. However, unlike

a primitive expansion, the renormalized expansion does not require 1/StI to be a

small quantity, making such expansions reliably accurate even after truncation of

the series. Substituting the renormalized Ĝ series into ⟨∆uĜ⟩, retaining only the

first term containing G, and transforming back to the original phase space gives us

a closure for the diffusion current in terms of G(r,U , t; r1,U1, t1) and the dispersion

tensors. Further averaging over the initial conditions of particle pairs yields the final

desired closure for ⟨∆uW ⟩ in terms of ⟨W (r,U , t; r1,U1, t1)⟩, where W is the fine-

grained phase space density, and ⟨W ⟩ is the PDF of particle pair relative position and

velocity. Having set the background for the LHDI method, we will now compare and

contrast LHDI with the perturbation expansion based closure derived in the current

study.
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It is to be noted that the current method was developed independently of the

LHDI-based method of Reeks. In this study, we begin by considering the following

conservation equation for the phase space density P (r,U ,x,V ; t)

∂P

∂t
+∇r · (UP ) +∇U · (U̇P ) +∇x · (V P ) +∇V · (V̇ P ) = 0 (3.72)

which upon ensemble averaging (and dropping the x and V terms in the interest of

brevity) yields the PDF transport equation

∂⟨P ⟩
∂t

+∇r · (U⟨P ⟩)−
1

τv
∇U · (U⟨P ⟩) = −

1

τv
∇U · ⟨∆uP ⟩ (3.73)

The closure problem is now represented by the term ⟨∆uP ⟩ on the RHS of (3.73).

Quite analogous to the renormalized expansions in LHDI but without its detailed

mathematical formalism, we write P as an expansion in which ⟨P ⟩ is the first term,

and 1/StI is the small quantity. The motivation for writing such an expansion was

that while the ensemble averaging ⟨· · · ⟩ is equivalent to averaging over flow time

scales, P evolved over longer time scales of the order of the particle response time τv.

Hence, one may anticipate a perturbation in P with respect to ⟨P ⟩. It is important

to note that the expansion of P in terms of ⟨P ⟩ and higher order terms is analogous

to the renormalized expansion of Ĝ in terms of G (= ⟨Ĝ⟩), and NOT to that of Ĝ in

terms of G(0). The expansion of Ĝ in terms of G(0) is a primitive perturbation series,

and we do not consider an analogous expansion of P in terms of P (0).
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In spite of this similarity between the present and renoramlized expansions,

the current method is only applicable when Str ≫ 1, whereas LHDI, in principle,

is valid for all Stokes numbers. The reason for this limitation may be attributed

to an important assumption in the current method—i.e., the pair relative position

r remains essentially constant during flow time scales. This assumption effectively

means that U = 0 so that the two convective terms on the LHS of (3.72) dropout

(without any transformation of the phase space). Thus, the PSD P is governed by

the equation

∂P

∂t
= −

1

τv
∇U · (∆uP ) ≈ −

1

τv
∇U · (∆u⟨P ⟩) (3.74)

which may be solved for P in terms of ⟨P ⟩. Substitution of the resulting P into ⟨∆uP ⟩

yields the diffusion current closure. Comparison of (3.70) and (3.74) shows that (3.70)

reduces to (3.74) for asymptotically large particle Stokes numbers. Consideration of

this limit allows us to go one step beyond LHDI in deriving a closed form expression for

the diffusivity characterizing the phase-space diffusion current. Here, we are referring

to our conversion of the Eulerian two-time correlation of fluid relative velocities to

an Eulerian two-point correlation, which then allowed us to derive an expression for

diffusivity that is closed to an integration in the wavenumber.

As the above discussion elaborates, the present expansion is, in fact, qualita-

tively similar to the renormalized perturbation series. The reason for the 1/StI ≪ 1

requirement is due to effectively neglecting the convective terms on the LHS of the

phase space density equation; whereas, in Reeks’ approach, the singularly important
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step is to perform a phase space transformation so that the convective terms are

naturally zeroed out.

Finally, a brief comment on the source of perturbations in the current and

LHDI methods. In the LHDI method of Reeks [70], the perturbation in the particle

phase-space density arises due to the introduction into the flow of a particle pair

with relative position r1 and relative velocity U1 at time t1. In the current study,

the source of perturbation lies in the fact that the particles relax over times longer

than flow time scales. Therefore, when one averages over flow realizations, there is a

perturbation in the particle phase space density.
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CHAPTER 4

EFFECTS OF DETERMINISTIC AND STOCHASTIC FORCING

SCHEMES ON THE RELATIVE MOTION OF INERTIAL PARTICLES

IN DNS OF ISOTROPIC TURBULENCE

4.1 Abstract

In direct numerical simulations (DNS) of isotropic turbulence, statistical sta-

tionarity is achieved by artificially forcing, i.e. adding energy to, the low-wavenumber

scales of turbulence. In this work, the effects of two such forcing schemes on the

relative positions and velocities of heavy, monodisperse, “point” particle pairs are

studied. The first forcing scheme considered is a deterministic method in which the

turbulent kinetic energy is maintained constant [98] by resupplying the energy dissi-

pated during a time step to the velocity components in a low-wavenumber band. The

second is the stochastic forcing method of Eswaran and Pope [25], where one adds a

random acceleration to the fluid momentum equation at the low wavenumbers. The

stochastic approach involves three main input parameters that allow us to estimate,

a priori, the approximate value of the Taylor micro-scale Reynolds number Reλ that

can be obtained in a DNS run. One of these parameters is the correlation time scale
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Tf of the random acceleration. Among our objectives is to assess the effects of varying

Tf on the relative-motion statistics of particle pairs.

Direct numerical simulations of isotropic turbulence containing disperse parti-

cles were undertaken using both the deterministic and the stochastic forcing schemes

for three grids sizes (1283, 2563, and 5123). At each grid size, DNS runs based

on the stochastic forcing were performed for five values of the forcing time scale

Tf = TE/4, TE/2, TE , 2TE, and 4TE, where TE is the large-eddy time scale ob-

tained from the corresponding DNS run with deterministic forcing. Thus, six DNS

runs (one deterministic and five stochastic) were performed for each grid resolution,

with Reλ held nearly constant (varying by less than 5%) among these runs. The

nominal values of Reλ were ≈ 80, 131, and 210 for the three grids. In each DNS

run, heavy, monodisperse particles were tracked corresponding to twelve Stokes num-

bers ranging from Stη = 0.05 to 40, where Stη is the Stokes number based on the

Kolmogorov time-scale τη. The motivation was to determine how the applied forc-

ing impacted particle-pair relative motion in the three main Stokes number regimes,

namely Stη < 1, Stη ∼ 1, and Stη > 1. We focus our attention on three statistics

quantifying the relative positions and velocities of particles: the radial distribution

function (RDF), and the variance and the probability density function (PDF) of the

component of pair relative velocity along the separation vector (Ur). Using the RDF

and the PDF P (Ur), we computed the particle collision kernel for the various DNS

cases. The pair statistics are also compared with those from the deterministic DNS

study of Ireland et al. [39], whose objective was to study the effects of variation in

Reλ and Stη on the relative-motion statistics.
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At all three Reynolds numbers, we find that the forcing method and the time

scale Tf have a noticeable effect on the RDFs for both Stη < 1 and Stη > 1. For

Stη < 1 (at a given Reλ), the differences between the RDFs for the various forcing

cases increased with Stokes number, reaching a maximum around Stη = 0.4. However,

for Stη ∼ 1 (Stη = 0.7 and 1), the RDFs seem to be relatively unaffected by the forcing

schemes. When Stη > 1, we find that the RDFs for the various forcings differed the

most at Stη = 2, with the differences decreasing thereafter for higher Stokes numbers.

When considering the effects of Reλ, it is seen that the RDFs computed from the DNS

with deterministic forcing were more sensitive to Reλ variation than those obtained

from DNS with stochastic forcing of various time scales. For Stη ≤ 0.4, we notice that

the deterministic RDFs decreased significantly as Reλ varied from 80 to 131, but then

increased as Reλ increased to 210. In the study of Ireland et al. [39], the RDFs were

found to be essentially independent of Reλ for Stη ≤ 1. But, a distinguishing feature

of their study was that they hold the fluctuating RMS velocity urms, mean dissipation

rate ⟨ϵ⟩, and the resolution parameter kmaxη constant even as Reλ is increased (kmax

and η are the maximum resolved wavenumber and the Kolmogorov length scale,

respectively). In the current study, however, our focus was only on keeping Reλ fixed

across the various forcing cases.

For Stη < 1, the variance ⟨U2
r ⟩ showed only a weak sensitivity to forcing at the

two lower Reynolds numbers, but a much clearer dependence is seen for Reλ = 210.

When Stη ≥ 1, forcing has a relatively significant impact on the variances at all

Reynolds numbers, and these effects are amplified as Reλ is increased. The effects of

forcing, Stokes number, and pair separation on the relative velocity PDFs are shown.
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It is seen that the shapes of the PDFs were little affected by forcing. Using the RDF

and P (Ur), we also computed the collision kernels. At the two lower Reλ, collision

kernels were found to be weakly dependent on Reλ for Stη < 1, but showed significant

increase with Reλ for Stη " 1. However, when Reλ is increased to 210, the collision

kernel is seen to increase at all Stokes numbers.

4.2 Introduction

The collision kernel K for a monodisperse population of particles suspended

in isotropic turbulence is given by [91, 95, 68]

K(σ) = 4πσ2g(σ)

∫ 0

−∞

(−Ur)P (Ur|σ)dUr (4.1)

where σ is the particle diameter, g(σ) is the radial distribution function (RDF) at

contact (i.e., when particle-pair separation is equal to the sum of particle radii), Ur is

the component of pair relative velocity along the pair separation vector (referred to as

the radial relative velocity), and P (Ur|σ) is the probability density function (PDF)

of Ur at contact. It is evident from Eq. (4.1) that the two key statistics needed

to compute the collision kernel are the RDF, and the PDF of pair radial relative

velocity. When particles are smaller than the Kolmogorov length scale (η), the most

accurate way to compute these statistics is via direct numerical simulations (DNS)

of isotropic turbulence laden with disperse “point” particles. However, homogeneous,

isotropic turbulence is inherently not stationary, due to the absence of the production

of turbulent kinetic energy. To achieve stationarity in DNS of isotropic turbulence,
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low-wavenumber turbulent scales are numerically forced, with the expectation that

the forcing does not unduly alter the dynamics of high-wavenumber, i.e. small scale,

turbulence. In this study, we consider two such forcing schemes, one “deterministic”

[98] and the other “stochastic” [25], to perform DNS of isotropic turbulence containing

monodisperse, non-settling particles. The effects of forcing on pair relative positions

and velocities are quantified and compared. In the case of the stochastic method,

we are also interested in understanding the sensitivity of pair relative motion to

the correlation time scale of the forcing. Three grid resolutions and twelve particle

Stokes numbers ranging from Stη < 1 to Stη ≥ 1 are considered, where Stη is the

particle Stokes number defined with the respect to the Kolmogorov time scale. These

parameters were chosen so as to explore how the effects of forcing on relative motion

varied with the Reynolds and Stokes numbers.

The forcing schemes for pseudo-spectral DNS of isotropic turbulence are com-

monly categorized into deterministic and stochastic schemes. The former are princi-

pally based on keeping fixed through the entire simulation either the energy E(κ) in

certain wavenumber shells, or the total kinetic energy
∫
E(κ)dκ [86, 14, 90, 98]. For

instance, in the forcing method of Sullivan et al. [90], they fix E(κ) in the wavenumber

shells 0 < κ ≤ 2
√
2 by multiplying the velocities in these shells with a real number

evaluated from the energy change during a time step. Similarly, Wang et al. [96]

maintained the energy levels of the first two wavenumber shells (0.5 < κ < 1.5 and

1.5 < κ < 2.5) constant. In the current study, we employ the deterministic scheme

of Witkowska et al. [98], which is based on keeping the total kinetic energy constant

during the simulation.

154



In stochastic schemes, typically, a random acceleration that is active in a

low-wavenumber band is added to the fluid momentum equations. Alvelius[2] devel-

oped a scheme in which the applied force f̂(κ, t) = A(κ, t)e(1)(κ) + B(κ, t)e(2)(κ),

where e(1) and e(2) are unit vectors orthogonal to each other and to the wavenumber

vector κ, and A and B are random complex functions that are computed from a

prescribed spectrum of the applied force. In this study, we implemented the Eswaran

and Pope[25] stochastic scheme that computes the complex acceleration using six

independent Uhlenbeck-Ornstein processes.

A forcing scheme for isotropic turbulence should satisfy two essential criteria.

First, it should not significantly affect the high-wavenumber turbulent structure [25,

15, 90, 56]. Further, it should not destroy the homogeneity and isotropy of the

flow field. For instance, it was seen in the study of Eswaran and Pope [25] that

small-scale statistics, such as the fourth-order velocity derivative moment and the

dissipation skewness, showed a rather weak dependence on the correlation time scale

of the stochastic forcing. Eswaran and Pope [25] also showed that the variation of

forcing parameters had little effect on the high-wavenumber regions of the energy

and dissipation spectra. While the effects of forcing on the statistics of turbulence

have been extensively studied and established, the influence of forcing on the relative-

motion statistics of inertial particle pairs remains relatively unexplored. Accordingly,

the focus of this work is investigate and quantify the dependence, if any, of pair

statistics such as the RDF and the relative velocity PDF on forcing.

Indeed, there are multiple reasons to suggest that pair statistics may show a

non-negligible dependence on both the nature and the parameters of forcing. Firstly,
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it is known that pair relative positions and velocities are most influenced by eddies

whose size scales with separation r. This is evident from the governing equations for

the relative-motion statistics such as the RDF, and the second-order particle velocity

structure function ⟨Up(t)Up(t)⟩r, whereUp(t) is the instantaneous relative velocity of

a particle pair, and ⟨· · · ⟩r denotes ensemble averaging conditioned upon the separation

being equal to the configuration space value r. These governing equations contain

dispersion tensors that are, broadly speaking, functions of the fluid velocity structure

function (a detailed discussion of the equations may be found in the references [100,

103, 104, 9, 10]). The fluid velocity structure function is a covariance tensor of the fluid

relative velocities “seen” by the particle pairs, with the implication that pair relative

motion is principally driven by eddies of size r. Consequently, when the large-scale

eddies are forced, it may be anticipated that for separations in the energy-containing

range, forcing may affect pair relative motion. Indeed, at smaller Reynolds numbers,

where there may not be a clear separation among turbulent scales, the effects of

forcing may even be felt for separations in the inertial subrange. Another reason

for the expectation that forcing may influence pair statistics is related to the effects

of Stokes number on pair relative motion. It has recently been established that for

Stη " 1, particle clustering at sub-Kolmogorov-scale separations is governed by a non-

local phenomenon referred to as the “path history, symmetry breaking mechanism”

[9, 10, 11]. Due to this Stη-dependent non-local mechanism, pair interactions with

eddies at larger separations continue to influence their relative motion even after

their separations have decreased substantially. In view of the preceding discussion,
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this work aims to not only quantify the effects of forcing on the relative motion, but

also determine how these effects depended on the Reynolds and Stokes numbers.

Two recent studies [75, 74] considered the dependence of particle relative posi-

tions and velocities on the forcing scheme in DNS of isotropic turbulence. Rosa et al.

[75] studied the collision statistics of monodisperse, settling and non-settling particles,

using both the deterministic scheme of Wang et al. [96] and the stochastic scheme

of Eswaran and Pope [25]. They considered six grid resolutions from 323 to 10243,

and fourteen Stokes numbers in the range 0.063 ≤ Stη ≤ 2.28. It was observed that

for a given grid, deterministic forcing yielded significantly higher Reλ than stochastic

forcing. Thus, only the grid size, and not a flow parameter or a turbulence statistic,

was the common factor when comparing deterministic and stochastic DNS runs. In

the current study, however, the DNS runs with the two forcings have essentially the

same Reλ for a given grid size. Rosa et al. [75] studied the effects of Stη, Reλ, and

forcing scheme on the RDF and the radial relative velocities, both statistics computed

when the particles are in contact. They found that for the non-settling particles, at

all Reλ, the RDFs obtained using the two forcing schemes were close to each other

for Stη < 0.5, but the deterministic scheme predicted higher RDFs for Stη ≥ 0.5.

Rosa et al. [75] noticed that the gravity and Reλ had no effect on the radial relative

velocities for Stη < 0.5 particles. However, for Stη > 0.5, the relative velocities for

settling particles were significantly lower than those for non-settling particles. Also,

for Stη > 0.5, the relative velocities decreased with Reλ for the non-settling particles,

whereas the opposite trend was observed for the settling particles. The radial relative

velocities for both settling and non-settling particles were found to be independent
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of the forcing scheme. Rosa et al. [75] then computed the collision kernels using

the RDFs and radial relative velocities. They observed that the collision kernels for

Stη < 0.5 were independent of the forcing scheme, Reλ, and of whether the particles

were settling or not. For Stη > 0.5, the collision kernels for non-settling particles

were higher than those for settling particles. They also saw that for Stη > 0.5,

deterministic forcing yielded higher collision kernels than did stochastic forcing.

In a subsequent study, Rosa et al. [74] considered the stochastic scheme of

Eswaran and Pope [25], and studied the effects of varying the forcing time scale

(Tf) on the relative motion of settling particles in DNS of isotropic turbulence. They

considered six forcing time scales in the range 0.1 ≤ Tf/τη ≤ 594, where τη is the Kol-

mogorov time scale. In their simulations, they kept constant the reference dissipation

rate ϵ0, which is an input parameter to the stochastic scheme. Here ϵ0 = 4Nfσ2
fTf ,

where σ2
f is the acceleration variance, and Nf is the number of wavenumbers that are

forced. In contrast, we focus on varying the forcing time scale Tf while keeping Reλ

nearly constant. Rosa et al. [74] observed that Reλ and the dissipation rate ⟨ϵ⟩ are

independent of forcing time scale when Tf ≤ τη, but decrease with Tf for Tf > τη. As

in their earlier study [75], they computed statistics such as the RDF and the mean

radial relative velocity ⟨|Ur|⟩, both at contact, for nine Stokes numbers in the range

0.063 ≤ Stη ≤ 2.28, and at two grid resolutions of 1283 and 2563. For Stη < 0.5

and both grid sizes, the RDFs and radial relative velocities were found to be weakly

sensitive to the forcing time scale for Tf/τη < 594. When Tf/τη = 594, they found

that for the 1283 case, the RDFs showed a marginal decrease for Stη > 0.5, but for the

2563 case, the RDFs showed a strong decrease for Stη > 0.5. Finally, they concluded
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that the flow and particle statistics became independent of the forcing time scales for

Tf ≤ τη.

In the current study, we perform direct numerical simulations of forced isotropic

turbulence laden with monodisperse, non-settling particles. The deterministic scheme

of Witkowska et al. [98], and the stochastic scheme of Eswaran and Pope [25] are con-

sidered, and their effects on the statistics of particle pairs are studied. DNS are

performed for three grid sizes 1283, 2563, and 5123, where the nominal values of Reλ

were ≈ 80, 131, and 210, respectively. For DNS with stochastic forcing, we consider

five forcing time scales Tf = TE/4, TE/2, TE , 2TE, and 4TE , where TE is the large-

eddy time scale obtained from the corresponding DNS run with deterministic forcing.

Particles with twelve Stokes numbers ranging from Stη = 0.05 to 40 were considered.

The organization of the chapter is as follows. Section 4.3 presents the com-

putational details of the direct numerical simulations. In Section 4.4, we present a

comparison of pair relative-motion statistics such as the RDF, and the variances and

PDFs of radial relative velocity obtained from the various DNS runs. Section 4.5

summarizes the key findings.

4.3 Computational Method

4.3.1 Fluid Phase

Direct numerical simulations of forced isotropic turbulence were performed

using a pseudo-spectral method that utilizes discrete Fourier expansions of flow vari-

ables. Simulations were performed over a cubic domain of length 2π discretized into
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N3 grid points, with periodic boundary conditions along the three directions. The

details of the pseudospectral algorithm are identical to those in Ireland et al. [38] and

Brucker et al. [12]

We consider the Navier-Stokes equations in rotational form and the continuity

equation [12, 38]

∂u

∂t
+ ω × u = −∇

(
p/ρf + u2/2

)
+ ν∇2u+ f (4.2)

∇ · u = 0 (4.3)

where ω = ∇ × u is the vorticity, ρf is the fluid density, p is the pressure, and f is

the external forcing applied to maintain a statistically stationary turbulence.

Transforming Eqs. (4.2) and (4.3) into Fourier space and eliminating pressure

using the spectral form of continuity yields

(
∂

∂t
+ νk2

)
û = −

(
I−

kk

k2

)
· ω̂ × u+ f̂ (4.4)

where k2 = k · k. Direct evaluation of the convolution ω̂ × u is extremely compu-

tationally intensive. Hence, a pseudo-spectral approach is adopted wherein ω × u is

first computed in physical space, and then transformed into the spectral space.

Since the time-derivative and viscous stress terms on the LHS of Eq. (4.4)

are linear in û, one may evolve these terms in time exactly by multiplying Eq. (4.4)

with the integrating factor, exp(νk2t). This yields the following equation (in index
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notation):

∂

∂t

[
exp

(
νk2t

)
ûi

]
= RHSi exp

(
νk2t

)
, (4.5)

where RHSi =
(
−δim + kikm

k2

)
ϵmjkF{ωjuk} represents the right-hand side of Eq. (4.4),

and ϵmjkF{ωjuk} represents the convolution ω̂ × u, and ϵmjk is the Levi-Civita ten-

sor.

Equation (4.5) is then discretized in time using the second-order Runge-Kutta

(RK2) method giving

ûi
n+1 = ûi

n exp
[
− νk2t

]
+
{
RHSn

i exp
[
−νk2t

]
+ RHSn+1

i

}
(4.6)

where n is the the previous time-step level and h is the time-step size. To prevent

convective instabilities, time-step size h is chosen such that the CFL number ≤ 0.5.

The pseudospectral algorithm introduces aliasing errors which are removed by zeroing

the fluid velocities in spectral space for wavenumbers satisfying k ≥ kmax, where k

is the wavenumber magnitude, kmax =
√
2N/3 and N is the number of grid points

along each dimension. A brief description of the deterministic and stochastic forcing

schemes used in the current study is provided next.

4.3.1.1 Deterministic Forcing Scheme

We employ the deterministic forcing method developed by Witkowska et al.

[98], wherein the turbulent kinetic energy dissipated during a time step is added

back to the flow at the low wavenumbers. It may be noted that in this method, as

opposed to the stochastic scheme, there is no explicit forcing term f added to the
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Navier-Stokes equations. Instead, one scales the velocity components in the forcing

wavenumber band [κmin, κmax] by a factor such that the energy dissipated during a

given time step is resupplied, as follows.

û(κ, t+∆t) = û(κ, t)

√

1 +
∆Ediss(∆t)∫ κmax

κmin
E(κ, t+∆t)dκ

∀ κ ∈ [κmin, κmax] (4.7)

where û(κ) is the Fourier coefficient of the velocity at wavenumber κ, ∆Ediss is the

total energy dissipated during ∆t, and E(κ, t +∆t) is the spectral turbulent kinetic

energy in a wavenumber shell with magnitude κ at time t+∆t. In the current study,

the velocity components in the range κ ∈ (0, 2] are forced using eq. (4.7).

4.3.1.2 Stochastic Forcing Scheme

The stochastic forcing scheme implemented in this study is that proposed by

Eswaran and Pope [25]. Unlike the deterministic forcing discussed above, in this

method an explicit acceleration term is added to the Navier-Stokes equations. The

forcing term f̂ in equation (4.4) is non-zero only in the wavenumber band κ ∈ (0, 2],

and is computed using six independent Uhlenbeck-Ornstein (UO) processes at each

of the forced wavenumbers.

The UO processes denoted by b̂(κ, t) can be written as [17]

b̂(κ, t+∆t) = b̂(κ, t)

(
1−

∆t

Tf

)
+ θ

(
2σ2∆T

Tf

)1/2

(4.8)
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where∆t is the time step, θ is a vector of complex random numbers whose components

are drawn from a standard normal distribution, and σ2 and Tf are the variance and

time-scale respectively, of the UO process. The stochastic process b̂(κ, t) has the

following properties[25]:

⟨b̂(κ, t)⟩ = 0 (4.9)

⟨b̂(κ, t)b̂∗(κ, t+ s)⟩ = 2σ2 δij exp(−s/Tf ) (4.10)

where an asterisk denotes the complex conjugate. The forcing term, f̂ in eq. (4.4) is

the projection of b̂(κ, t) onto the plane normal to κ

f̂ = b̂(κ, t)− κκ · b̂(κ, t)/(κ · κ) (4.11)

When investiating the effects of stochastic forcing, we considered five values of the

forcing time scale Tf = 4TE , 2TE , TE , TE/2, and TE/4, where TE = L/urms is the large-

eddy turnover time obtained from the corresponding DNS run based on deterministic

forcing, and L and urms are the integral length scale and the RMS fluctuating velocity,

respectively.
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4.3.2 Particle Phase

The governing equations of motion for a heavy spherical particle, whose diam-

eter is much smaller than the Kolmogorov length scale, may be written as

dxp

dt
= vp, (4.12)

dvp

dt
=

u(xp, t)− vp

τv
, (4.13)

where we assumed Stokes drag to be the principal force on the particle, xp and vp are

the particle position and velocity, respectively, and τv is the particle viscous relaxation

time. In Eq. (4.13), u(xp, t) is the fluid velocity at the particle’s location. In order

to solve Eqs. (4.12) and (4.13) numerically, u(xp, t) needs to be evaluated. This is

achieved by interpolating to the particle position fluid velocities at a stencil of grid

points surrounding the particle. We use the 8th order Lagrange interpolation method

that is based on a stencil of 8 × 8 × 8 fluid velocities. Also, the particle loading is

assumed to be dilute in this study so that the influence of particles on the fluid is

negligible.

Temporal update of particle motion is achieved through a modified second-

order Runge-Kutta (RK2) method in which the standard RK2 weights are replaced

by exponential integrators as follows [38]:

vp(t0 + h) = e−h/τv vp(t0) + w1 up[xp(t0)] + w2 u[xp(t0) + vp(t0)h] (4.14)
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where h is the time step, and the exponential integrators w1 and w2 are given by

w1 ≡
(
h

τv

)[
φ1

(
−h

τv

)
− φ2

(
−h

τv

)]
, w2 ≡

(
h

τv

)
φ1

(
−h

τv

)
(4.15)

φ1(z) ≡
ez − 1

z
, φ2(z) ≡

ez − z − 1

z2
(4.16)

4.4 Results

Direct numerical simulations of homogeneous, isotropic turbulence were con-

ducted using both deterministic forcing (DF) and stochastic forcing (SF) at three

values of Reλ ≈ 80, 131, and 210, corresponding to grid sizes of 1283, 2563, and

5123, respectively. At each Reλ, one DNS run using DF, and five DNS runs using

SF with different forcing time scales Tf were performed. The DNS + SF simulations

corresponded to Tf = 4TE , 2TE , TE , TE/2, and TE/4, which are denoted as SF1, SF2,

SF3, SF4, and SF5, respectively. Here TE is the eddy turnover time obtained from

the DNS + DF case. In each DNS run, monodisperse, non-settling, inertial particles

of twelve Stokes numbers ranging from Stη = 0.05 to 40 were tracked, where Stη is

the Stokes number based on the Kolmogorov time scale. The statistics of particle-

pair relative motion obtained from these simulations are compared and analyzed to

understand the effects of variations in the forcing scheme (and time scale for SF),

Reλ, and Stη. Results from a second set of deterministic forcing (DF2) simulations,

obtained from the study of Ireland et al. [39], are also included for comparison. The

current DF runs and the DF2 simulations of Ireland et al. [39] differ in the values of
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turbulence parameters such as urms, ⟨ϵ⟩, and kmaxη. Further, they maintained these

parameters constant while varying Reλ, but our focus was on keeping Reλ nearly the

same for the DF and SF1-SF5 simulations at a given grid size.

The turbulence parameters for the three grids and the various forcings are

summarized in Table 4.1-Table 4.3. In all the simulations, the flow field is first

allowed to achieve statistical stationarity by evolving it for more than 12TL, where

TL = L/urms is the respective large-eddy turnover time. The particles are then

introduced into the flow and evolved for about 6TL, before collecting their statistics.

The particle statistics are then collected for the next 10-12TL and averaged over

this duration. Note that the particles do not modify the flow turbulence, and are

also collision-free. The DF2 turbulence parameters of Ireland et al. [39] are given in

Table 4.4.

In Figure 4.1, the energy spectra obtained from the 2563 and 5123 DNS runs

are compared. Figure 4.1(a) and (b) compare the energy spectrum of DF with the

spectra from SF1-SF5 for the two grids. For both grids, the forcing type and the

forcing time scale (for SF) do not significantly affect the spectra. Figure 4.1(c) and

(d) show the normalized energy spectra on a log-linear scale. Also included are the

corresponding energy spectra from the DF2 simulations of Ireland et al. [39]. These

figures clearly show that the current DNS simulations have a higher kmaxη, i.e. resolve

smaller scales, than the DF2 runs. Next, we present the particle statistics obtained

from the DF and SF1-SF5 cases, as well as from DF2 where available.
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Table 4.1: Flow parameters in 1283 DNS of isotropic turbulence (arbitrary
units). Reλ ≡ urmsλ/ν is the Taylor micro-scale Reynolds number, urms ≡√

(2k/3) is the fluid RMS fluctuating velocity, ν is the fluid kinematic vis-
cosity, ϵ ≡ 2ν

∫ κmax

0 κ2E(κ)dκ is the turbulent energy dissipation rate, L ≡
3π/(2k)

∫ κmax

0 E(κ)/κdκ is the integral length scale, λ ≡ urms

√
(15ν/ϵ) is the Taylor

microscale, η ≡ ν3/4/ϵ1/4 is the Kolmogorov length scale, TE ≡ L/u′ is the large-eddy
turnover time, τη ≡

√
(ν/ϵ) is the Kolmogorov time scale, κmax is the maximum re-

solved wavenumber, ∆t is the time step, and Np is the number of particles per Stokes
number.

Parameter DF SF1 SF2 SF3 SF4 SF5
Reλ 80.712 82.008 78.136 77.519 76.216 77.110
urms 1.067 1.106 1.029 0.992 0.953 0.970
ν 0.0071 0.0071 0.0071 0.0071 0.0071 0.0071
ϵ 0.421 0.475 0.392 0.345 0.304 0.318
L 1.482 1.479 1.461 1.487 1.505 1.507
λ 0.539 0.530 0.543 0.559 0.574 0.568
η 0.0304 0.0298 0.031 0.032 0.033 0.033
TE 1.388 1.336 1.420 1.499 1.579 1.553
τη 0.130 0.125 0.138 0.147 0.158 0.153

κmaxη 1.829 1.789 1.879 1.938 2.001 1.977
∆t 2.5× 10−3 2.5× 10−3 2.5× 10−3 2.5× 10−3 2.5× 10−3 2.5× 10−3

Np 262,144 262,144 262,144 262,144 262,144 262,144

Table 4.2: Flow parameters in 2563 DNS of isotropic turbulence (arbitrary units).
Definitions of parameters is provide in the caption of Table 4.1.

Parameter DF SF1 SF2 SF3 SF4 SF5
Reλ 128.24 133.134 134.06 129.43 130.6 128.82
urms 0.999 1.135 1.126 1.072 1.073 1.042
ν 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028
ϵ 0.321 0.503 0.487 0.423 0.416 0.384
L 1.466 1.401 1.258 1.416 1.426 1.427
λ 0.366 0.337 0.341 0.345 0.348 0.353
η 0.016 0.0149 0.015 0.0154 0.0155 0.0158
TE 1.467 1.241 1.257 1.32 1.328 1.369
τη 0.0945 0.0779 0.079 0.084 0.084 0.088

κmaxη 1.969 1.784 1.801 1.855 1.858 1.899
∆t 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Np 262,144 262,144 262,144 262,144 262,144 262,144
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Table 4.3: Flow parameters in 5123 DNS of isotropic turbulence (arbitrary units).
Definitions of parameters is provide in the caption of Table 4.1.

Parameter DF SF1 SF2 SF3 SF4 SF5
Reλ 212.16 214.35 208.26 210.02 207.32 207.7
urms 1.114 1.136 1.124 1.119 1.089 1.092
ν 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012
ϵ 0.438 0.472 0.488 0.473 0.431 0.425
L 1.426 1.342 1.338 1.348 1.359 1.384
λ 0.225 0.222 0.218 0.221 0.224 0.225
η 0.0078 0.0077 0.0077 0.0077 0.0079 0.0079
TE 1.281 1.182 1.189 1.204 1.247 1.267
τη 0.052 0.050 0.050 0.0511 0.053 0.053

κmaxη 1.891 1.861 1.852 1.869 1.908 1.912
∆t 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4

Np 2,097,152 2,097,152 2,097,152 2,097,152 2,097,152 2,097,152

Table 4.4: DF2 flow parameters in DNS of isotropic turbulence (arbitrary units)
study of Ireland et al. [39]. N is the number of grid points in each direction, and
definitions of other parameters is provide in the caption of Table 4.1.

Parameter DNS I DNS II DNS III
N 128 256 512
Reλ 88 140 224
urms 0.914 0.914 0.915
ν 0.005 0.002 0.0008289
ϵ 0.270 0.267 0.253
L 1.46 1.41 1.40
η 0.026 0.0132 0.0068
TE 1.60 1.54 1.53
τη 0.137 0.087 0.057

κmaxη 1.59 1.59 1.66
Np 262,144 262,144 2,097,152
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Figure 4.1: Energy Spectra at (a) 2563 and (b) 5123 grid resolutions, and for DF,
SF1, SF2, SF3, SF4, and SF5 forcings. Normalized energy Spectra at (c) 2563 and
(d) 5123 grid resolutions, and for DF, DF2, SF1, SF2, SF3, SF4, and SF5 forcings.
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4.4.1 Particle Clustering

The radial distribution function (RDF) is a widely used statistical measure

of particle clustering in isotropic turbulence. It is also a key input to the collision

kernel of particle pairs. The RDF, g(r), is defined as the ratio of the actual number

of particle pairs at a given separation r to the expected number of particle pairs at

that separation when the particles are uniformly distributed [39], giving us

g(r) =

[
Npair(r)
∆Vp

]

[
N(N−1)

2V

] (4.17)

In Eq. (4.17), Npair(r) is the actual number of particle pairs that lie within a spherical

shell whose average radius is r, radial thickness is ∆r and volume is ∆Vp; whereas V is

the total volume of the flow domain containing N number of particles. In the absence

of clustering, particles would be uniformly distributed throughout the volume, so that

the RDF is unity. Accordingly, g(r) > 1 is indicative of particle clustering.

During the past three decades, significant insights have been gained into the

effects of turbulence on the clustering of particles smaller than the Kolmogorov length

scale. For instance, it is now well-known that heavy, low-Stokes-number particles

cluster because they are centrifuged out of high-vorticity regions into high strain-rate

regions, the so-called “centrifuge mechanism” [52, 89, 23, 18]. Recent studies have

also made vital contributions in elucidating the mechanisms by which turbulence

drives the spatial clustering and the relative velocities of spherical particles [9, 10,

11]. Through detailed theoretical analyses, supported by DNS data, these studies

[9, 10, 11] identified that the centrifuging is the dominant clustering mechanism only
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when the particle Stokes number Stη is ≪ 1. It was further recognized that the

mechanism responsible for particle clustering when Stη ≥ O(1) is of an entirely

different nature. Namely, when Stη ≥ O(1) the centrifuge mechanism gives way

to a “path-history symmetry breaking mechanism” [11]. We anticipate that these

differences in the clustering mechanisms for the Stη < 1 and Stη ≥ 1 particles will

be important when considering the effects of forcing, Reynolds number Reλ, and

separation r on the RDFs. Therefore, we will discuss the RDF results separately for

the two Stokes number regimes.

We begin by comparing the RDFs of the Stη < 1 particles obtained from the

DF, DF2 and SF1-SF5 simulations at each of the three values of Reλ in Figure 4.2-

Figure 4.4. Here, DF refers to the DNS with deterministic forcing in the current

study, and DF2 refers to that in Ireland et al. [39]. SF1-SF5 are the DNS runs using

stochastic forcing, with the forcing time scale varying from Tf = 4TE to TE/4, where

TE is the large-eddy turnover time obtained from DF. This comparison will enable

us to quantify the effects of forcing on the RDFs, as well as discern how these effects

vary with Reλ. In Figure 4.2, the RDFs are plotted as a function of dimensionless

pair separation r/η at Reλ ≈ 80 and for Stη = 0.05, 0.2, 0.4 and 0.7. It is to be

noted that Reλ = 88 for the DF2 simulation, and that η represents the respective

Kolmogorov length scale for each of the seven forcing cases (DF, DF2 and SF1-SF5).

Firstly, we note from Figure 4.2 that forcing can significantly influence the values of

RDF for separations r ! η. By the effects of forcing, we are referring to the differences

between the RDFs for a given r and Stη.
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Figure 4.2: RDFs from stochastic (SF1-SF5) and deterministic (DF and DF2) forc-
ing schemes as a function of dimensionless pair separation r/η for the indicated values
of Stη at Reλ = 80 .
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Figure 4.3: RDFs from stochastic (SF1-SF5) and deterministic (DF and DF2) forc-
ing schemes as a function of dimensionless pair separation r/η for the indicated values
of Stη at Reλ = 131.
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Figure 4.4: RDFs from stochastic (SF1-SF5) and deterministic (DF and DF2) forc-
ing schemes as a function of dimensionless pair separation r/η for the indicated values
of Stη at Reλ = 210.
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Figure 4.2(a)-(d) indicate that the RDFs show increasing sensitivity to forcing

as the Stokes number is varied from Stη = 0.05 till at least Stη = 0.4. The RDFs are

affected by both the nature of forcing (DF versus SF), and the forcing parameters

(SF1-SF5). The RDFs for DF and DF2 are also significantly different, with DF

and DF2 forming the upper and lower extrema, at the grid size of 1283 (or Reλ ≈

80). Although the DF and DF2 simulations are essentially identical in terms of the

numerical algorithm and the forcing scheme, there are substantial differences in their

large-scale statistics. For instance, their RMS fluctuating velocities are urms = 1.067

and 0.914, and the mean dissipation rates are ⟨ϵ⟩ = 0.421 and 0.27, respectively.

Consequently, in the Stη < 1 regime, where pair relative motion is largely determined

by the Kolmogorov-scale eddies, we see the differences between the RDFs of DF and

DF2. Among the five stochastic forcing cases, the SF1/SF2 and SF5 RDFs have the

highest and lowest RDFs, where SF1, SF2 and SF5 correspond to the forcing time

scales Tf = 4TE , 2TE and TE/4, respectively. In general, SF3 and SF4, corresponding

to Tf = TE and TE/2, respectively, are quite close to each other for the four Stokes

numbers shown in Figure 4.2.

In Figure 4.3, we compare the RDFs from DF with those from SF1-SF5 at

Reλ ≈ 131. Also shown are the RDFs from DF2 at Reλ = 140. The RDFs of

DF are the lowest, while those of SF5 are the highest at all four Stokes numbers,

although the differences between the two extrema are smaller as compared to those

for Reλ ≈ 80. The RDFs for the two deterministic cases again show substantial

differences. Furthermore, the differences among the various RDFs seem to persist

till Stη = 0.4, and decrease thereafter as the Stokes number is increased. The time
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scale Tf of stochastic forcing seems to have only a marginal effect on the RDFs. The

DF2 case shows good agreement with all of the stochastic cases (except for the small

variation from SF5).

Analogous to Figure 4.2 and Figure 4.3, in Figure 4.4 we compare the RDFs

obtained from the various forcings for Reλ = 210 (DF2 corresponds to Reλ = 224).

The trends in the RDFs for this case present a rather interesting and clarificatory

picture. First, the RDFs for DF, DF2, SF3 and SF4 are reasonably close to one

another for all four Stokes numbers Stη = 0.05, 0.2, 0.4 and 0.7. This trend may be

attributed to the higher grid resolution, which yields a relatively clearer separation

between the numerically forced low-wavenumber velocity components and the dissi-

pative high-wavenumber components. Due to this scale separation, the small-scale

dynamics driving the clustering of Stη < 1 particles are nearly uniform across the

various cases. The RDFs of SF1 and SF5 with Tf = 4TE and TE/4 form the lower

and upper bounds, where as those of SF2-SF4 are in reasonable agreement with the

DF and DF2 results. This suggests that stochastic forcing with artificially high/low

forcing time scales may result in seemingly unphysical trends in the particle clustering

statistics.

We now discuss the clustering behavior of Stη ≥ 1 particles. In Figure 4.5, we

compare the RDFs of the various forcing cases for Stη = 1, 2, 4 and 10 at Reλ = 80.

For Stη = 1, the RDFs of DF, DF2, SF3 and SF4 are in reasonable agreement. For

Stη = 2 and 4, we notice that SF5 shows significant deviations from the other RDFs.

At Stη = 2, except for SF5, the other RDFs are close to one another, but at Stη = 4,

we see some differences among the DF and SF cases. For Stη = 10, DF and DF2 have
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Figure 4.5: RDFs from stochastic (SF1-SF5) and deterministic (DF and DF2) forc-
ing schemes as a function of dimensionless pair separation r/η for the indicated values
of Stη at Reλ = 80. DF2 data is not available for Stη = 4 in (c).
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Figure 4.6: RDFs from stochastic (SF1-SF5) and deterministic (DF and DF2) forc-
ing schemes as a function of dimensionless pair separation r/η for the indicated values
of Stη at Reλ = 131. DF2 data is not available for Stη = 4 in (c).
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Figure 4.7: RDFs from stochastic (SF1-SF5) and deterministic (DF and DF2)forcing
schemes as a function of dimensionless pair separation r/η for the indicated values of
Stη at Reλ = 210. DF2 data is not available for Stη = 4 in (c).
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the lowest and highest RDFs, respectively, although the overall difference between

them is less than 10%. The general conclusion here is that forcing has a smaller effect

on the clustering of Stη ≥ 1 particles than on the clustering of Stη < 1 particles at

Reλ = 80.

In Figure 4.6, we consider the dependence of the RDFs on forcing for Stη ≥ 1

particles at Reλ = 131. Figure 4.6(a) shows that the RDFs at Stη = 1 are essentially

independent of forcing. For Stη = 2, shown in Figure 4.6(b), the RDF of DF is higher

than the rest, which is also the case for Stη = 4. However, for Stη = 2, DF2 is in

reasonable agreement with the stochastic forcing cases (DF2 data not available for

Stη = 4). At Stη = 10, shown in Figure 4.6(d), we see that there is good agreement

among the RDFs of DF, DF2, SF3, and SF4. At all Stokes numbers, SF5 forms the

lower bound of the RDFs, again indicating that the forcing time scale of Tf = TE/4

is artifically low.

Figure 4.7 shows the effects of forcing on the RDFs of Stη ≥ 1 particles at

Reλ = 210. Again, we notice that forcing has virtually no impact on the RDFs at

Stη = 1. For Stη = 2, 4 and 10, SF1 and SF5 consistently form the upper and lower

bounds of the RDFs. We also see that there is good agreement among the RDFs of

DF, DF2, SF3, and SF4 at all Stokes numbers. The inference one may draw from

these trends is that at higher Reλ, where well-defined energy-containing, inertial, and

viscous ranges of turbulence exist, the nature of forcing and the forcing parameters

(within some constraints) do not unduly influence the clustering behavior of Stη ≥ 1

particles.
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Figure 4.8: RDFs as a function of dimensionless pair separation r/η for the indicated
values of Stη. DF, SF3, and SF4 are compared. Curves without symbols correspond
to Reλ = 80 data, filled and open symbols correspond to Reλ = 131 and 210 data,
respectively.
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Figure 4.9: RDFs as a function of dimensionless pair separation r/η for the indicated
values of Stη. DF, SF3, and SF4 are compared. Curves without symbols correspond to
Reλ = 80, filled and open symbols correspond to Reλ = 131 and 210 data respectively.
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Next, we focus on the impact of Reλ variation on the clustering of Stη <

1 particles first, and of Stη ≥ 1 particles thereafter. In Figure 4.8, we illustrate

the effects of Reλ on the RDFs for Stη < 1 particles. The RDFs of only three

forcing cases—DF, SF3 and SF4—are compared at the three values of Reλ. The

corresponding DF2 results are not shown since Ireland et al. [39] concluded that the

RDFs were only weakly sensitive to the Reynolds number for Reλ up to 600. Let us

focus first on the trends with regard to the current DF. At all Stokes numbers, we

see that the RDFs of DF decrease with the increase in Reλ from 80 to 131. However,

when going from Reλ = 131 to 210, the RDFs of DF increase, but are still smaller

than the respective RDFs at Reλ = 80. As compared to DF, the RDFs of SF3 and

SF4 show lesser sensitivity to an increase in Reλ. It is clear from Figure 4.8 that the

Reλ effects on the RDF are not insignificant as seen in Ireland et al. [39]. As already

discussed, the differences between the two studies may be because Ireland et al. [39]

explicitly maitained a number of large- and small-scale turbulence statistics constant

when increasing Reλ, whereas we make no such effort.

The corresponding plots for Stη ≥ 1 are shown in Figure 4.9. Firstly, at

Stη = 1, we can see from Figure 4.9(a) that the Reλ variation has a relatively weak

impact on the RDFs of all three forcings. However, at Stη = 2, we see that the RDFs

increase for all three forcings as we increase Reλ from 80 to 131. This increase is

the highest for DF. With a further increase in Reλ from 131 to 210, the DF case is

not significantly affected, but the RDFs of SF3 and SF4 are again augmented. From

Figure 4.9(c) and (d), we see that the RDFs increase monotonically with Reλ for

Stη = 4, and more so for Stη = 10. These trends, particularly those for Stη = 4, 10
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are consistent with the results of Ireland et al. [39]. At these high Stokes numbers,

particle response times are in the inertial subrange, which means that their relative

motion is most responsive to the inertial eddies. As a result, the RDFs begin to

plateau earlier, i.e. at higher r, than the RDFs for smaller Stokes numbers.

The Reynolds number effects on clustering may be further illustrated by plot-

ting the RDFs as a function of Stη at four separations r/η = 0.25, 4, 10 and 20, as

shown in Figure 4.10. The dependence of RDFs on Reλ is particularly discernible

for both higher Stokes numbers and larger separations. In Figure 4.10(d), we notice

that for Stη < 1, the RDFs are not sensitive to the change in Reλ from 80 to 131,

but then show a clear increase for Reλ = 210. At all four separations, the RDFs

for Stη > 1 particles show greater sensitivity to an increase in Reλ than those for

Stη < 1 particles. Further, the Reλ dependence of RDFs for Stη > 1 is augmented

as the separation increases. These trends are along expected lines, since at higher

Reynolds numbers, there is clearer separation between the energy-containing and

energy-dissipating turbulent scales, i.e., the inertial subrange becomes more distinct

as Reλ increases. As a result, particles with relaxation times of the order of inertial

time scales respond to these eddies and show increased clustering with Reλ at these

separations.

In Figure 4.11, we plot the RDFs as a function of Stη at four separations

r/η = 0.25, 4, 10 and 20 for Reλ = 210. The RDFs are shown for DF and SF1-SF5.

We see that at the smallest separation, the maximum RDF occurs at Stη = 1.0. As

the separation is increased, the RDF peaks at progressively higher Stη. Thus, for

r/η = 4 and 10, the RDF peaks at Stη ≈ 2.0 and 4.0, respectively. For r/η = 20,
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Figure 4.10: RDFs versus Stη at the indicated pair separations. DF, SF3, and SF4
are compared. Curves without symbols correspond to Reλ = 80 data, filled and open
symbols correspond to Reλ = 131 and 210 data, respectively.
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Figure 4.11: RDF versus Stη at Reλ = 210. DF, SF1, SF2, SF3, SF4, and SF5
results are compared. Red, green, blue and black curves correspond to separation of
r = 0.25η, r = 4η, r = 10η and r = 20η, respectively.

the maximum RDF occurs in the Stη ∼ 4-10 range. This is consistent with our

earlier observation that at higher Stokes numbers, the particles are more responsive

to inertial-scale eddies, so that they show maximum clustering at separations lying

in the inertial subrange.
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4.4.2 Variance of Radial Relative Velocities

In this section, we discuss the effects of forcing, Reynolds number and Stokes

number on the variance ⟨Ur
2⟩, where Ur = U · r/r is the radial relative velocity, and

U and r are the relative velocity and separation vectors, respectively. Following the

approach adopted for the RDF discussion, we will first present the variances for the

Stη < 1 particles, and subsequently for the Stη ≥ 1 particles.

Figure 4.12 plots ⟨Ur
2⟩ as a function of pair separation r/η for Stη < 1 at

Reλ = 80. For the Stη = 0.05 and 0.2 particles, ⟨Ur
2⟩ follows an r2 scaling for

separations ranging from r < η to those nearly as large as 6-8η. This behavior is

consistent with earlier observations based on DNS of isotropic turbulence [40] that the

fluid velocity variance followed the dissipation-range scaling for separations r ≤ 10η.

Similar scaling behavior for the low Stη particles was also seen in Ireland et al. [39].

The r2 scaling is to be expected for small Stη since these particles only deviate

marginally from fluid particles whose relative velocities are known to have an r2

scaling in the dissipation range [67]. However, for Stη ≥ 0.4, we see a deviation

away from this behavior, which is manifested as higher variances for separations

r ! η. The higher relative velocities at small separations may be attributed to a

“bifurcation” in the mechanism responsible for the radially inward drift of particle

pairs. The bifurcation involves a shift from the local centrifuge mechanism that

drives the drift when Stη < 1 [18] to the non-local, path-history symmetry breaking

mechanism [9, 10, 11] that is dominant when Stη ≥ 1. That is, with an increase in

Stokes number, particle pairs retain greater memory of their interactions with the
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Figure 4.12: ⟨Ur
2⟩/u2

η from stochastic (SF1-SF5) and deterministic (DF and DF2)
forcing schemes as a function of r/η for the indicated values of Stη at Reλ = 80.
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Figure 4.13: ⟨Ur
2⟩/u2

η from stochastic (SF1-SF5) and deterministic (DF and DF2)
forcing schemes as a function of r/η for the indicated values of Stη at Reλ = 131.
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Figure 4.14: ⟨Ur
2⟩/u2

η from stochastic (SF1-SF5) and deterministic (DF and DF2)
forcing schemes as a function of r/η for the indicated values of Stη at Reλ = 210.
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turbulence at larger separations, where their relative motion was driven by (more

energetic) eddies whose size scaled with the pair separation. One also notices that

the variances show a rather weak sensitivity to forcing. For Stη = 0.7, we see that

SF5 leads to marginally higher variances, which may be an artifact of the low forcing

time scale for this case. The above trends at Reλ = 80 are more or less repeated for

Reλ = 131, as shown in Figure 4.13.

Variances ⟨Ur
2⟩ as a function of r/η for Stη < 1.0 at Reλ = 210 are shown in

Figure 4.14. The effects of forcing on ⟨Ur
2⟩ are far more discernible here than at the

two lower Reλ. For all Stokes numbers, the variances for the deterministic forcing

case DF2 of Ireland et al. [39] are higher than the variances of DF and SF1-SF5. But,

SF3 and SF4 are in good agreement with DF, where as SF5 and SF1 form the upper

and lower bounds for the six cases simulated in this study. We again notice that the

variances for Stη = 0.05 and 0.2 show an r2 scaling in the dissipation range. We will

revisit the differences between DF2 and the current cases in a subsequent discussion

of the effects of Reλ on the variances.

Having considered the effects of forcing on the variances at low Stokes numbers,

we now turn our attention to the high Stokes number particles. Figure 4.15 shows

⟨Ur
2⟩ as a function of pair separation for the Stη ≥ 1 particles at Reλ = 80. In

general, when Stη ≥ 1, forcing has a more significant effect on ⟨Ur
2⟩ as compared to

that seen for Stη < 1. For separations r ! 6-8η and Stη = 1 and 2, the DF2 variances

are smaller than the variances for DF, as well as SF1-SF5. But for Stη = 10, the DF2

variances are in good agreement with the DF, SF1 and SF4 variances. Further, for

Stη = 1, 2 and 4, the variances for SF2 and SF5 form the lower and upper bounds
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Figure 4.15: ⟨Ur
2⟩/u2

η from stochastic (SF1-SF5) and deterministic (DF and DF2)
forcing schemes as a function of r/η for the indicated values of Stη at Reλ = 80. DF2
data is not available for Stη = 4 in (c).
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Figure 4.16: ⟨Ur
2⟩/u2

η from stochastic (SF1-SF5) and deterministic (DF and DF2)
forcing schemes as a function of r/η for the indicated values of Stη at Reλ = 131.
DF2 data is not available for Stη = 4 in (c).
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Figure 4.17: ⟨Ur
2⟩/u2

η from stochastic (SF1-SF5) and deterministic (DF and DF2)
forcing schemes as a function of r/η for the indicated values of Stη at Reλ = 210.
DF2 data is not available for Stη = 4 in (c).

194



of the six cases considered in this study. For the Stη = 10 particles, the variances

are nearly independent of separation for r ! η, indicating that the relative velocities

of these particles are not affected by the small-scale eddies and that they undergo

ballistic motion in the dissipative regime.

The variances for the Stη ≥ 1 particles at Reλ = 131 are shown in Figure 4.16.

It is seen that the variances show increased sensitivity to forcing, as Reλ is augmented

from 80 to 131. For Stη = 1, 2 and 10, DF and DF2 are in reasonable agreement,

although DF2 slightly overpredicts DF for smaller r (note that DF2 data is not

available for Stη = 4). At all Stokes numbers except Stη = 10 and at separations

r ! 10η, the variances for SF1-SF5 are all higher than those for DF.

As can be seen in Figure 4.17, the effects of forcing on the variances are further

amplified at Reλ = 210. We see that at all Stokes numbers (except Stη = 4), the

DF2 variances are higher than the variances for all six forcing cases considered in

this study (note that DF2 data is not available for Stη = 4). This behavior of DF2

from Ireland et al. [39] is surprising, particularly because the DF2 variances at the

two smaller Reλ are in reasonable agreement with the variances from at least some of

the current cases. For all Stokes numbers, DF/SF4 and DF/SF3 are in excellent and

reasonable agreement, respectively, while the SF5 and SF1 variances are the highest

and lowest. We now examine the Reλ dependence of ⟨Ur
2⟩, first for Stη < 1 particles,

and then for Stη ≥ 1 particles.

The effects of Reynolds number on ⟨Ur
2⟩ for the low-Stokes-number particles

(Stη < 1) are shown in Figure 4.18. We only show a comparison of the DF, SF3 and

SF4 forcing cases. It can be seen that the change inReλ from 80 to 131 has only a weak
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Figure 4.18: ⟨Ur
2⟩/u2

η as a function of r/η for the indicated values of Stη. DF, SF3,
and SF4 are compared. Curves without symbols correspond to Reλ = 80 data, filled
and open symbols correspond to Reλ = 131 and 210 data, respectively.
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Figure 4.19: ⟨Ur
2⟩/u2

η as a function of r/η for the indicated values of Stη. DF, SF3,
and SF4 are compared. Curves without symbols correspond to Reλ = 80 data, filled
and open symbols correspond to Reλ = 131 and 210 data, respectively.
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effect on the variances for the three forcings shown. However, the increase in Reλ from

131 to 210 leads to a decrease in the variances at all four Stη. The corresponding plots

for the Stη ≥ 1 particles are shown in Figure 4.19. At Stη = 1, 2, and 4, the trends are

similar to those for Stη < 1, i.e. there is only a weak dependence on Reynolds number

for the two lower values of Reλ = 80 and 131, but there is a significant decrease in

variances with further increase in Reλ to 210. However, at smaller separations, the

DF variances do show a decrease going from Reλ = 80 to 131. For the Stη = 10

particles, we observe that the variances increase as Reλ is increased from 80 to 131,

but then decrease as Reλ is increased from 131 to 210. Figure 4.19 also shows us

that, in general, the DF, SF3 and SF4 variances are in reasonable agreement for all

four Stokes numbers and the three Reynolds numbers. For Stη = 10 and Reλ = 210,

however, SF3 variances are smaller than those of both DF and SF4.

We will now discuss the effects of separation r on the variance ⟨Ur
2⟩, while si-

multaneously focusing on the differences arising due to different forcings. Figure 4.20,

Figure 4.21 and Figure 4.22 show ⟨Ur
2⟩ as a function of Stη for Reλ = 80, 131, and

210, respectively, and at four separations ranging from the sub-Kolmogorov range to

the inertial range. These plots allow us to better illustrate the effects of forcing on the

variances at various separations. Figure 4.20(a)-(d) show the variances at four sepa-

rations r/η = 0.25, 4, 10, and 20, respectively. At Reλ = 80 and r/η = 0.25, shown

in Figure 4.20(a), the forcing scheme has only a marginal effect on the variances at

all Stokes numbers. These effects are, however, amplified at larger separations. For

instance, in Figure 4.20(c) at r/η = 10, DF underpredicts the variances of SF1-SF5 at

the smaller Stokes numbers, but agrees well with variances of SF3 and SF4 at higher
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Stokes numbers. At r/η = 20, SF1 and DF5 have the highest and lowest variances

for Stη ! 2. The general conclusion one can draw from Figure 4.20 is that at larger

separations, the variances for all Stη show a reasonably strong dependence on the

nature of forcing (DF versus SF), as well as the forcing time scale. Similar trends

are seen at Reλ = 131, shown in Figure 4.21. We do see, however, see an increased

sensitivity to forcing at this Reynolds number.

⟨Ur
2⟩ as a function of Stη at four separations r/η = 0.25, 4, 10 and 20, and

Reλ = 210 are shown in Figure 4.22. The effects of forcing are much more apparent at

Reλ = 210 than at the two lower Reλ. At r/η = 0.25, DF, SF3 and SF4 are in good

agreement. At all the separations, SF1 and SF5 form the lower and upper bounds

of the variances, respectively. The increased dependence of variance on forcing at

larger separations may be anticipated, since at these separations, pair relative motion

is primarily driven by the large-scale eddies that are also most directly impacted by

the forcing.

Next, we illustrate the effects of Reλ on ⟨Ur
2⟩ at the four separations under

consideration. In Figure 4.23, ⟨Ur
2⟩ is plotted as a function of Stη at r/η = 0.25, 4, 10

and 20. At each separation, we compare the variances of DF, SF3 and SF4 for

Reλ = 80, 131, and 210. The general trend here is that at the two lower values

of Reλ, the variances show weak sensitivity to the Reynolds number. However, at

Reλ = 210, the variances are smaller than those at the lower Reynolds numbers. The

effects of increase in Reλ from 131 to 210 on the variances become more prominent

as the separation becomes larger. Further, at the two larger separations of r/η = 10
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Figure 4.20: ⟨Ur
2⟩/u2

η versus Stη at Reλ = 80 and at the indicated pair separations.
DF, SF1, SF2, SF3, SF4, and SF5 results are compared.
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Figure 4.21: ⟨Ur
2⟩/u2

η versus Stη at Reλ = 131 simulations and at the indicated
pair separations. DF, SF1, SF2, SF3, SF4, and SF5 results are compared.
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Figure 4.22: ⟨Ur
2⟩/u2

η versus Stη at Reλ = 210 simulations and at the indicated
pair separations. DF, SF1, SF2, SF3, SF4, and SF5 results are compared.
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Figure 4.23: ⟨Ur
2⟩/u2

η versus Stη at the indicated pair separations. DF, SF3, and
SF4 are compared. Curves without symbols correspond to Reλ = 80 data, filled and
open symbols correspond to Reλ = 131 and 210 data, respectively.

and 20, we see that for Stη " 4, the variances do show an increase from Reλ = 80 to

131.

203



The Reynolds-number-dependence of the variances in the current study presents

an interesting contrast with the trends seen in Ireland et al. [39]. They presented plots

analogous to those in Figure 4.23 at r/η = 0.25, 1.75 and 9.75, with Reλ varying from

88 to ∼ 600. They observed that for Stη " 10, the variances increased strongly and

monotonically with Reλ, but only a weak dependence was seen at smaller Stokes

numbers (both trends were observed at all three separations). In the current study,

however, we see that the dependence of variances on Reλ is a bit more complex and

not necessarily monotonic. We also observe here that the sensitivity of variances to

Reλ becomes more prominent at larger r/η. Furthermore, for Stη " 10, we see an

increase in the variances as Reλ is increased from 88 to 131, but observe a decrease

in the variances as Reλ goes from 131 to 210. For St ≤ 3, Ireland et al. [39] observed

that the relative velocity variances are only weakly dependent on Reλ. Upon closer

examination, a weak increase with Reλ was seen for the variances when Stη ! 1 (at

r = 0.25η). However, we see a weak decrease in variances when Reλ is increased

from 88 to 131, but a stronger decrease when Reλ becomes 210. For 1 ! Stη ! 3,

Ireland et al. [39] observed an overall decrease in variances with increasing Reλ. A

similar behavior is seen in our study as well. The inference we can draw from the

comparison of RDFs and variances for DF and DF2 is that the observations of Ireland

et al. [39] are attributable to their tightly controled set of DNS runs. Specifically, in

that study, a number of large- and small-scale turbulence statistics were maintained

constant even while varying Reλ significantly. No such effort was made explicitly in

our study, but that we attempted to keep Reλ constant across the DF and SF1-SF5

runs for a given grid size.
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In the next section, we will discuss the PDF, P (Ur), of radial relative velocities,

and its dependence on the forcing, Reynolds number, and separation.

4.4.3 PDF of Radial Relative Velocities

Figure 4.24 shows the PDF P (Ur) of the radial relative velocity Ur for Stη =

0.2, 0.4, 2 and 10 at Reλ = 210. In each of the Figure 4.24(a)-(d), we plot the PDFs

for two separations r = 2η, L/2, shown in blue and green curves, respectively. Here

η and L are the Kolmogorov and integral length scales respectively. In these figures,

we compare the PDFs for DF, SF3 and SF4. The PDFs are normalized with ⟨U2
r ⟩1/2

so that we can visualize and understand their proximity to (or deviation from) a

normal distribution. We can see in Figure 4.24(a) and (b) that the PDFs for both

Stη = 0.2 and 0.4 are negatively skewed at r = 2η, and nearly symmetric for r = L/2.

In fact, at r = L/2, the PDFs for Stη = 0.2 and 0.4 are appreciably closer to the

normal PDF than at r = 2η. The forcing scheme also seems to have no significant

effect on the shapes of the PDFs. At the higher Stokes numbers, one notices from

Figure 4.24(c) and (d) that the PDFs at r = 2η are now nearly symmetric, with

sharp peaks and wide tails, whereas at r = L/2, the PDFs are negatively skewed.

The negative skewness at r = L/2 is higher for the Stη = 10 particles than for the

Stη = 2 particles. Again, the forcing seems to have essentially no effect on the PDF

shapes at the higher Stokes numbers.

In Figure 4.25, we present the effects of Stokes number on P (Ur) at four

separations and for Reλ = 210. Only the PDFs obtained from the DF runs are

shown, since we have already seen that forcing has a minimal effect on the shapes
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Figure 4.24: PDF of radial relative velocity Ω(Ur|r) normalized by ⟨Ur
2⟩1/2 at Reλ =

210, and at the indicated values of Stη. DF, SF3, and SF4 are compared. Blue and
green curves correspond to PDF at pair separation of r = 2η and r = L/2 respectively.
Black curve represents the normal distribution.
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Figure 4.25: PDF of radial relative velocity Ω(Ur|r) normalized by ⟨Ur
2⟩1/2 at Reλ =

210, and at the indicated values of Stη and pair separations. PDFs shown correspond
to DF forcing scheme. Black curve represents the normal distribution.
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Figure 4.26: PDF of radial relative velocity Ω(Ur|r) normalized by ⟨Ur
2⟩1/2 at Reλ =

210 and DF forcing scheme. PDFs shown are at r = 2η. Solid and dashed curves
correspond to Stη = 0.4 and 2, respectively. Blue, green, and red curves represent
Reλ = 80, 131, and 210 data, respectively. Normal distribution is shown by black
curve.
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of these PDFs. Figure 4.25(a) shows that at r = 2η, PDFs for low Stη (= 0.2 and

0.4) are negatively skewed, whereas the PDFs for high Stη (= 2 and 10) are nearly

symmetrical. The PDF for Stη = 0.4 has a wider negative tail compared to the PDF

for Stη = 0.2 particles. This suggests that the Stη = 0.4 particles have higher inward

(negative) radial relative velocities, which leads to increased clustering and higher

RDFs at r = 2η. Further, in Figure 4.25(a), it can be seen that the PDF for Stη = 2

is marginally negatively skewed, while that for Stη = 10 is nearly symmetric. The

trends in the PDFs at r = 4η are qualitatively similar to those at r = 2η. However,

the PDF tails are not as wide as those at r = 2η. As the pair separations are further

increased, we see in Figure 4.25(c) and (d) that the PDFs for Stη = 0.2 and 0.4

become less negatively skewed and the tails become less wide, as compared to the

PDFs at smaller separations. This suggests a decrease in the net inward relative

velocity, and thereby a reduction in particle accumulation at higher r. However, the

PDFs for Stη = 2 and 10 become more negatively skewed compared to those at the

two smaller separations. The higher negative skewness of the PDF for Stη = 10 as

compared to that for Stη = 2 suggests that the Stη = 10 particles will have higher

clustering at large separations than the Stη = 2 particles.

In Figure 4.26, we present the effects of Reλ on the PDF P (Ur) for Stη = 0.4

and 2 at r = 2η. We only show the PDFs for the DF runs. The PDF for Stη = 0.4

shows only a weak sensitivity to increase in Reλ from 80 to 131. But the increase

in Reλ from 131 to 210 leads to a PDF with much wider tails that are negatively

skewed. For Stη = 2, we see a marginal widening of the PDF with the increase in

Reλ from 80 to 131, and a much greater widening when Reλ goes from 131 to 210. In

209



general, the PDFs for Stη = 2 are less skewed (more symmetric) compared to those

for Stη = 0.4. The higher negative skewness of the Stη = 0.4 particles at r = 2η is

also responsible for the greater accumulation and higher RDFs of these particles at

these separations, as compared to the Stη = 2 particles.

4.4.4 Collision Kernel

We evaluate the collision kernel K(σ) using Eq. (4.1) at the separation r =

0.25η (= σ), which is the smallest separation at which we have well-averaged data.

Figure 4.27 and Figure 4.28 show the collision kernel normalized in two ways. In

Figure 4.27, we plot K(σ)/(σ2uη), and in Figure 4.28, K(σ)/
(
σ2 ⟨U2

r ⟩
1/2
)
. The

former normalization has been extensively used in prior studies [39, 105, 103, 104],

while the latter is being used for the first time (to our knowledge). It is important

to consider both forms since one gets rather different pictures of the collision kernel

from them.

Figure 4.27(a)-(c) present the collision kernel K(σ)/(σ2uη) as a function of

Stη at Reλ = 80, 131 and 210, respectively. Collision data from the DF and SF1-SF5

cases are presented. At all three Reλ, the collision kernels initially increase rapidly

and then decrease with Stokes number. The Stokes numbers where the peak collision

rate occurs are Stη ∼ 1, 4 and 10 at Reλ = 80, 131 and 210, respectively. Thus, the

peak shifts toward higher Stη with increasing Reλ. At the two lower Reλ, forcing has

only a marginal effect on the collision kernel for Stη < 1, but has a greater impact

on the collision kernel for Stη ≥ 1. At Reλ = 210, the collision kernel is sensitive to

forcing at all Stokes numbers. Also shown in Figure 4.27(a)-(c) are the collision ker-
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Figure 4.27: Collision Kernel a function of Stη at (a) Reλ = 80, (b) Reλ = 131, and
(c) Reλ = 210. DF, SF1, SF2, SF3, SF4, and SF5 are compared in (a)-(c). DF, SF3,
and SF4 are compared in (d). Curves without symbols represent data for Reλ = 80,
filled and open symbols correspond to data for Reλ = 131 and 210, respectively in
(c).
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Figure 4.28: Collision Kernel a function of Stη at (a) Reλ = 80, (b) Reλ = 131,
and (c) Reλ = 210. DF, SF1, SF2, SF3, SF4, and SF5 are compared. Black circles
represent the collision kernel when RDF g(r) = 1 and the PDF P (Ur|r) is Gaussian.
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Figure 4.29: Collision Kernel a function of Stη is shown. DF, SF3, and SF4 are
compared. Curves without symbols represent data at Reλ = 80, filled and open
symbols correspond to data at Reλ = 131 and 210 , respectively.

nels for particles that are uniformly distributed in the flow, i.e. g(σ) = 1, and whose

relative velocities are uncorrelated, i.e. P (Ur) is normally distributed. With the nor-

malization used in this figure, it would seem that turbulence-driven particle clustering

and relative velocities suppress the collision kernel. This trend contradicts the view

that turbulence enhances the collision rates of inertial particles, as compared to the

collision rates of uncorrelated particles. The apparent contradiction can be resolved
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by considering the second normalization discussed above. Finally, in Figure 4.27(d),

we compare the collision kernels for DF, SF3 and SF4 at the three Reynolds numbers.

For Stη < 1, the collision kernel shows a relatively weaker dependence on Reλ, while

for Stη ≥ 1, the collision kernel shows a clear, significant, and monotonic increase

with Reλ.

In Figure 4.28, the collision kernel K(σ)/
(
σ2 ⟨U2

r ⟩
1/2
)
is shown as a function of

Stη for the three values of Reλ at r = 0.25η. These collision kernels are computed by

using the PDFs of Figure 4.24 in Eq. (4.1). The normalization of the PDFs performed

in Figure 4.24 allows us to make a direct comparison of the collision kernels from

the current cases with those for uncorrelated particle pairs. Thus, we also show in

Figure 4.28 the collision kernels corresponding to uncorrelated particle pairs, i.e., pairs

with g(r) = 1 and P (Ur) normally distributed. One observes important differences

between Figure 4.28 and Figure 4.27. Firstly, and rather strikingly, the peak value

of the collision kernel in Figure 4.28 occurs at Stη ∼ 1 at the three Reλ, whereas in

Figure 4.27, we see that the peak value shifts towards higher Stη. Secondly, for Reλ =

80 and 131, we see that the collision kernel of uncorrelated particles exceeds that of

inertial particles for very low and high Stokes numbers, i.e., Stη < 0.1 and Stη > 10.

However, for Reλ = 210, we see that the collision kernel of uncorrelated particles

is always smaller than of inertial particles. The comparison of the inertial-pair and

uncorrelated-pair collision kernels has important implications in cloud physics, where

turbulence-driven particle clustering and turbulence-enhanced relative velocities are

considered to be the mechanisms for the hastening of rain formation.
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Finally, we consider the effects ofReλ on the collision kernelK(σ)/
(
σ2 ⟨U2

r ⟩
1/2
)
.

In Figure 4.29, the collision kernels obtained using DF, SF3 and SF4 are presented

for the three Reλ. At the two lower values of Reλ, i.e. Reλ = 80 and 131, we see a

weak dependence on Reλ for Stη ≤ 0.7. However, a further increase in Reλ to 210

results in an increase in the kernel for Stη ≤ 0.7. For Stη " 1, we see that the collision

kernels show a consistent increase with Reλ. These trends may again be compared

with the observations in Ireland et al. [39]. When Stη ! 0.2, the collision rates in

Ireland et al. [39] were essentially independent of Reλ. For larger Stη, they observed

a weak decrease in the collision kernel with Reλ. For 1 < Stη ≤ 3, the collision kernel

increases weakly as Reλ increases. Finally, for Stη ≥ 10, collision kernels increase

strongly with Reλ. The principal difference in the collision kernel statistics of the

two studies is that we observe a consistent and significant increase in collision rates

as Reλ increases, for Stη > 1.

4.5 Concluding Remarks

We investigated the effects of forcing on the relative-motion statistics of inertial

particles in DNS of isotropic turbulence. Both deterministic and stochastic forcing

schemes, DF and SF respectively, were considered. In the case of SF, the effects of

varying the forcing time scale on particle relative motion were studied by considering

five values of Tf ranging from 4TE to TE/4, where TE is the large-eddy turn over time

obtained from DF. Statistics such as the RDF, the PDF of radial relative velocities,
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and the collision kernel obtained using DF, SF1-SF5 and DF2 (from the study of

Ireland et al. [39]) are compared for Stη < 1, Stη ∼ 1 and Stη > 1 at three Reλ.

For Stη < 1, the RDFs show an appreciable dependence on both the nature

of forcing (DF versus SF), and the forcing time scale (SF1 through SF5). The differ-

ences between the RDFs for DF and SF1-SF5 increase with Stη, with the maximum

difference being observed for Stη = 0.4. The effects of forcing on the RDFs manifested

most clearly at Reλ = 210, which may be due to the clear separation of turbulent

scales at this high Reλ. At Reλ = 210, the RDFs for SF3 and SF4 (corresponding to

forcing time scales Tf = TE and TE/2, respectively) were in the best agreement with

the RDFs of DF. The forcings seemed to have no effect on the RDFs for Stη ∼ 1

(specifically, Stη = 0.7 and 1) particles.

For Stη > 1, the RDFs again reflected a substantial impact of both the forcing

type, and the forcing time scale for SF. The differences among the RDFs for DF and

SF1-SF5 were maximum for Stη = 2, and decreased thereafter with an increase in

Stη. We also considered the effects of Reλ on the RDFs. For Stη ≤ 0.4, the RDFs

computed using DF decreased while going from Reλ = 80 to 131, and then increased

when Reλ was increased to 210. The RDFs obtained using DNS with SF showed less

sensitivity to Reλ. The RDFs for Stη ≥ 4 showed a monotonic increase with Reλ for

DF and all the SF cases.

We also considered the effects of forcing on the relative velocity statistics. For

Stη < 1, the variance of radial relative velocity ⟨Ur
2⟩ showed only a weak dependence

on forcing for Reλ = 80 and 131, but the forcing effects were much clearer and

significant for Reλ = 210. At Reλ = 210, the DF2 variances [39] were higher than
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those of DF and SF1-SF5. For Stη > 1, forcing had a significant impact on the

variances in the dissipation-range separations for Reλ = 80 and 131, and at all pair

separations for Reλ = 210. Similar to the trends observed for the RDFs, the variances

from SF3 and SF4 showed the best agreement with those obtained using DF. For

Stη < 1 and 1 ≤ Stη < 10, ⟨Ur
2⟩ showed weak dependence on Reλ while going from

Reλ = 80 to 131, but ⟨Ur
2⟩ decreased when Reλ was further increased to 210. For

Stη = 10, the variances initially increased from Reλ = 80 to 131, and then decreased

for Reλ = 210.

Finally, collision kernels were computed from the RDFs and relative velocity

PDFs. Two types of normalizations were used for the collision kernel, one based on

σ2uη, and the other using σ2 ⟨U2
r ⟩

1/2. The collision kernels showed weaker dependence

on Reλ for Stη < 1, but the dependence became stronger for Stη " 1. For Stη ≥ 1,

the collision kernels showed a monotonic increase with Reynolds number for all three

Reλ. Ireland et al. [39], who also used the first normalization, observed similar trends

for the collision rates. It is shown that when comparing the collision rates of inertial

particle pairs with those of uncorrelated particle pairs, normalization using σ2 ⟨U2
r ⟩

1/2

provides a more physically accurate comparison.

Perhaps, the most important inference that one can draw from this study is

that the conclusions on pair relative motion arrived at by Ireland et al. [39] will have

to be interpreted in light of the fact that they undertook a set of well-controled DNS

runs, wherein many of the determining large- and small-scale statistics were kept fixed

while varying the Reynolds number. Further, even when considering a fixed Reλ, the

deviations between the DF and DF2 results may be attributed to the differences in
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statistics such as urms, ⟨ϵ⟩, and more importantly, the resolution parameter kmaxη.

Finally, the relative motion statistics of inertial particles obtained using SF3 and

SF4 (corresponding to forcing time scales Tf = TE , TE/2, respectively) showed good

agreement with those of DF. But, too high (Tf = 4TE) or too low (Tf = TE/4) forcing

time scales may lead to artificial extrema in the values of these statistics.
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CHAPTER 5

CONCLUSIONS

5.1 Summary

1. In Chapter 2, a novel closure was developed for the relative velocity-space diffu-

sion current in the PDF equation describing the relative positions and velocities

of Str ≫ 1 particle pairs in isotropic turbulence.

(a) We began the development of closure form for diffusivity tensor in the the

limit of StI ≫ 1 and Str ≫ 1. Subsequently, the closure was extended to

StI ! 1 particles by accounting for the motion of the pair center of mass.

(b) The diffusion tensor contained the time-integral of the Lagrangian corre-

lation of fluid relative velocities along particle pair trajectories.

(c) In the limit of Str ≫ 1 but StI ! 1, the Lagrangian two-point, two-time

correlation was systematically converted first into an Eulerian two-time

correlation, and subsequently into an Eulerian two-point correlation.

(d) For isotropic turbulence, Eulerian fluid-velocity correlations were expressed

as Fourier transforms of the velocity spectrum tensor, enabling us to derive

a closed-form expression for the diffusivity tensor.

219



(e) Using this diffusivity closure, Langevin equations were solved to evolve

particle-pair relative velocities and separations in stationary isotropic tur-

bulence.

(f) The radial distribution functions (RDFs) computed from these simulations

showed good quantitative agreement with those from the DNS study of

Février et al. [29] for Stη ≥ 10.

(g) The stochastic theory successfully captured the transition of relative veloc-

ity PDF from a Gaussian PDF at separations of the order of the integral

length scale to an exponential PDF at smaller separations, consistent with

the study of Sundaram and Collins [91].

2. In Chapter 3, a quantitative analysis of the stochastic theory presented in Chap-

ter 2 was performed through a comparison of the particle pair statistics obtained

using Langevin simulations with those from DNS.

(a) Simulations were performed at Reλ = 76 and 131, and for Stη = 10,20,40

and 80.

(b) Langevin simulations were performed using three closure forms (CF) of

diffusion tensor:

• CF1: Here, the diffusion tensor was closed by computing the Eulerian

two-time correlation via DNS containing disperse stationary particles,

and integrating the correlation in time.
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• CF2: This refers to the closure form of the diffusivity tensor derived

in Chapter 2 for stationary particles having both the pair separation

and the pair center-of-mass position stationary.

• CF3: This refers to the closure form of the diffusivity tensor for parti-

cle pairs whose separation does not change, but whose center-of-mass

position changes during flow time scales.

(c) CF1 was most accurate among three closure forms as the two-time Eulerian

relative velocity correlations are computed using DNS.

(d) The RDFs obtained from the Langevin simulations based on CF1 showed

excellent agreement with the DNS RDFs.

(e) The relative velocity variances computed using CF1 showed good agree-

ment with the variances from DNS, particularly at higher Stokes numbers.

(f) The effects of Reynolds number on the relative velocity variances were

also considered, and it was seen that the CF1 variances showed a stronger

dependence on the Reynolds number than did the CF2 and CF3 variances,

especially at lower Stokes numbers.

(g) The collision kernels obtained using CF1 were found to be in good agree-

ment with those obtained using DNS. It was also found that the collision

kernels increased with the Reynolds number due to an increase in both the

RDF and the relative velocities.

3. In Chapter 4, we investigated the effects of the forcing of large-scale eddies on

the relative motion of dense inertial particles in DNS of isotropic turbulence.
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Two forcing schemes—deterministic (DF) and stochastic (SF)—were consid-

ered.

(a) The effects of varying the forcing time scale on particle relative motion

were studied by considering five values of Tf ranging from 4TE to TE/4,

where TE is the large-eddy turn over time obtained from DF. These fives

stochastic cases are referred to as SF1-SF5.

(b) For Stη < 1, forcing had a significant effect on the RDFs, and the differ-

ences between the RDFs for DF and SF1-SF5 increased with Stη. The

maximum difference was observed for Stη = 0.4.

(c) For Stη > 1, the differences among the RDFs for DF and SF1-SF5 were

maximum for Stη = 2, and decreased thereafter with an increase in Stη.

(d) The RDFs obtained using DNS with SF showed less sensitivity to Reλ.

The Reynolds number had only a marginal impact on RDFs for Stη ∼ 1

particles at all forcings.

(e) For Stη < 1, the variance of radial relative velocity ⟨Ur
2⟩ showed only a

weak dependence on forcing for Reλ = 80 and 131, but the forcing effects

were much clearer and significant for Reλ = 210.

(f) For Stη < 1 and 1 ≤ Stη < 10, ⟨Ur
2⟩ showed weak dependence on Reλ

while going from Reλ = 80 to 131, but ⟨Ur
2⟩ decreased when Reλ was

further increased to 210. For Stη = 10, the variances initially increased

from Reλ = 80 to 131, and then decreased for Reλ = 210.
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(g) Collision kernels were computed using two types of normalizations, one

based on σ2uη, and the other using σ2 ⟨U2
r ⟩

1/2.

(h) The collision kernels obtained using the first kind of normalization were

independent of Reλ for Stη < 1, but showed strong dependence on Reλ for

Stη " 1. Ireland et al. [39], who also used the first normalization, observed

the same trends in collision kernels.

(i) The collision kernels corresponding to the second type of normalization

showed weak dependence on the type of forcing used and peaked around

Stη ∼ 1. The collision kernels for Stη < 0.7 showed weak dependence

on the Reynolds number for Reλ = 80 and 131, but increased for Reλ =

210. For Stη ≥ 1, the collision kernels showed a monotonic increase with

Reynolds number for all three Reλ.

(j) The relative motion statistics of inertial particles obtained using SF3 and

SF4 (corresponding to forcing time scales Tf = TE , TE/2, respectively)

showed good agreement with those of DF. But, too high (Tf = 4TE) or

too low (Tf = TE/4) forcing time scales may lead to artificial extrema in

the values of these statistics.

5.2 Future work

1. It was noted in Chapter 3 that the relative velocity variances obtained using

CF1 showed a stronger dependence on Reynolds number than CF2 and CF3.

The goal of a future study can therefore be to improve the behavior of CF1 at
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higher Reynolds numbers, thereby extending the applicability of the stochastic

theory to larger range of Reynolds numbers.

2. Another future direction can be to develop a stochastic theory to study the

effects of gravity on the pair relative motion. A preliminary effort to derive this

theory is presented in Appendix A, where the stochastic theory presented in

Chapter 2 has been modified to include the effects of gravitational sedimenta-

tion on the particle-pair relative motion. The next step will be to perform a

quantitative analysis of the theory by comparing particle relative motion statis-

tics obtained using theory with those computed using DNS.
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APPENDIX A

STOCHASTIC THEORY FOR MONODISPERSE SETTLING

PARTICLE PAIRS

The objective of this appendix is to appropriately modify the stochastic theory of

Rani et al. [67] to include the effects of gravitational settling on particle-pair relative

motion. In this appendix, only monodisperse settling particles are considered so that

there is no differential settling.

The governing equations for the relative position (separation vector) r, relative

velocity U , center-of-mass position x, and center-of-mass velocity V of a settling, like

particle pair are:

dr

dt
= U (A.1)

dU

dt
= −

1

τv
[U(t)−∆u(r(t),x(t), t)] (A.2)

dx

dt
= V (A.3)

dV

dt
= −

1

τv

[
V (t)−

u(R1(t), t) + u(R2(t), t)

2

]
+g = −

1

τv
[V (t)− ucm(R1(t),R2(t), t)]+g

(A.4)

whereR1 andR2 are the positions of the two particles. For a monodisperse suspension

of particles, gravity influences pair relative motion only through the modified sampling
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of the “seen” fluid relative velocity, ∆u(r(t),x(t), t), by the settling pair. However,

the center-of-mass dynamics is directly influenced by gravity, as seen in (A.4).

The governing equation for the PDF P (r,U ,x,V ; t) is given by

∂P

∂t
+∇r · (UP ) +∇x · (V P ) +∇U ·

(
dU

dt
P

)
+∇V ·

(
dV

dt
P

)
= 0 (A.5)

Using (A.2) and (A.4) in (A.5) yields

∂P

∂t
+∇r · (UP ) +∇x · (V P )−

1

τv
∇U · (UP ) +

1

τv
∇V · ((−V + gτv)P )

+
1

τv
∇U · (∆uP ) +

1

τv
∇V · (ucmP ) = 0 (A.6)

Averaging (A.6) over an ensemble of flow realizations yields

∂⟨P ⟩
∂t

+∇r · (U⟨P ⟩) +∇x · (V ⟨P ⟩)−
1

τv
∇U · (U⟨P ⟩) +

1

τv
∇V · ((−V + gτv)⟨P ⟩)

+
1

τv
∇U · ⟨∆uP ⟩+

1

τv
∇V · ⟨ucmP ⟩ = 0(A.7)

Substituting P = ⟨P ⟩ + P ′ into (A.6), and moving terms containing ⟨P ⟩ to

the RHS, we get:

∂P ′

∂t
+∇r · (UP ′) +∇x · (V P ′)−

1

τv
∇U · (UP ′) +

1

τv
∇V · ((−V + gτv)P

′)

+
1

τv
∇U · (∆uP ′) +

1

τv
∇V · (ucmP

′) =

−
[
∂⟨P ⟩
∂t

+∇r · (U⟨P ⟩) +∇x · (V ⟨P ⟩)−
1

τv
∇U · (U⟨P ⟩) +

1

τv
∇V · ((−V + gτv)⟨P ⟩)

+
1

τv
∇U · (∆u⟨P ⟩) +

1

τv
∇V · (ucm⟨P ⟩)

]
(A.8)
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Subtracting (A.7) from (A.8), and making terms dimensionless with the integral

length scale (L), integral time scale (τI), and isotropic turbulence r.m.s. fluctuat-

ing velocity (urms), yields:

∂P ′

∂t
+∇r · (UP ′) +∇x · (V P ′)−

1

StI
∇U · (UP ′) +

1

StI
∇V · ((−V + SvIeg)P

′)

+
1

StI
∇U · (∆uP ′) +

1

StI
∇V · (ucmP

′) = −
1

StI
∇U · (∆u⟨P ⟩)

−
1

StI
∇V · (ucm⟨P ⟩) +

1

StI
∇U · ⟨∆uP ′⟩+

1

StI
∇V · ⟨ucmP

′⟩ (A.9)

where eg is the unit vector along the direction of gravity.

One may consider two settling regimes depending on the order of magnitude

of SvI = gτv/urms. The first is SvI ∼ StI ≫ 1, and the second is SvI ∼ 1.

A.1 SvI ∼ StI ≫ 1 Regime

In this regime, the center-of-mass terminal velocity is far greater than even

the large-scale fluid velocity, i.e. gτv ≫ urms. Therefore, equation (A.4) governing

center-of-mass velocity V essentially becomes (in dimensionless form):

dV

dt
=

1

StI
(−V (t) + SvIeg) (A.10)

whose solution is simply V (t) = SvIeg, i.e. the center of mass undergoes a ballistic

motion.

228



We now perform perturbation analysis similar to that in Rani et al. [67].

Considering the O(1/StI) terms in (A.9), we get:

∂P1

∂t
+∇r · (UP1) +∇x · (V P1) = −∇U · (∆u⟨P ⟩)−∇V · (ucm⟨P ⟩) (A.11)

Equation (A.11) is a Lagrangian evolution equation of P1 in the (r,x, t) space, with

U and V held fixed; (A.11) may then be written as

dP1

dt

∣∣∣∣
U ,V

= −∇U · (∆u⟨P ⟩)−∇V · (ucm⟨P ⟩) (A.12)

From (A.12), we can write:

P1 = −
∫ s

−∞

dt′ {∇U · [∆u (r(t′),x(t′), t′) ⟨P ⟩(r′,U ,x′,V ; t′)] +

∇V · [ucm (R1(t
′),R2(t

′), t′) ⟨P ⟩(r′,U ,x′,V ; t′)]}

= −
∫ s

−∞

dt′ {∆u (r(t′),x(t′), t′) ·∇U ⟨P ⟩(t′)+

ucm (R1(t
′),R2(t

′), t′) ·∇V ⟨P ⟩(t′)} (A.13)

where r′ = r(t′), x′ = x(t′), and s is a characteristic variable along the Lagrangian

trajectory such that dt
ds = 1, and dx′

dt′ |t′=s = V and dr′

dt′ |t′=s = U . At the upper

integration limit s, we have r(s) = r(t) = r. We have also used the shorthand

notation ⟨P ⟩(t′) = ⟨P ⟩(r′,U ,x′,V ; t′). The integral in (A.13) can be reduced to a

time integral at fixed positions with two simplifications. First, the r-space convective

term on the LHS of (A.11) is neglected in the asymptotic limit of Str ≫ 1. Second,
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the pair center of mass x is assumed to move only due to settling, which is valid in

the limit StI ≫ 1. This would yield

⟨∆uP ′⟩ = −
1

St2I

∫ t

−∞

dt′ {⟨∆u(r,x, t) ∆u(r,xg, t
′)⟩ ·∇U ⟨P ⟩(t′) +

⟨∆u(r,x, t) ucm(R1,g(t),R2,g(t), t
′)⟩ ·∇V ⟨P ⟩(t′)} (A.14)

⟨ucmP
′⟩ = −

1

St2I

∫ t

−∞

dt′ {⟨ucm(R1(t),R2(t), t) ∆u(r,xg, t
′)⟩ ·∇U ⟨P ⟩(t′)+

⟨ucm(R1(t),R2(t), t) ucm(R1,g(t),R2,g(t), t
′)⟩ ·∇V ⟨P ⟩(t′)}(A.15)

where the subscript g on a position vector denotes an increment of gτv(t′ − t) due to

gravity. For instance, xg = x + gτv(t′ − t), and R1,g(t) = R1(t) + gτv(t′ − t). Ac-

cordingly, the PDF ⟨P ⟩(t′) = ⟨P ⟩(r,U ,xg,V ; t′) after the above two simplifications.

Using homogeneity, we may write ⟨P ⟩(r,U ,xg,V ; t′) as simply ⟨P ⟩(r,U ,x,V ; t′).

The two-time fluid velocity correlations in (A.14) and (A.15) are significant only in

the time interval t − t′ for which the fluid eddies are correlated. Therefore, we can

write ⟨P ⟩(t′) ≈ ⟨P ⟩(t), since the timescales over which ⟨P ⟩ changes are much greater

than the fluid correlation timescales.

Further adopting the procedure outlined in [67], we get the following equation

for the pair diffusion coefficient DUU :

DUU =
1

St2I
D̃UU =

1

St2I

∫ 0

−∞

dt ⟨∆u(r,x, 0) ∆u(r,x+ gτvt, t)⟩ (A.16)
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Note that the effects of gravity are reflected through the shifting of the pair center-

of-mass position by gτvt. In the above equation, the fluid-relative-velocity correlation

inside the integral is not an Eulerian one-time correlation. Our aim is to convert it

into one. But the approach to achieve this objective has to be different from that

developed for non-settling particles in Rani et al. [67].

At this stage of the theory, the particle viscous response times are such that

the conditions Str ≫ 1 and StI ≫ 1 are both satisfied. Therefore, with gravity g

being an O(1) quantity and SvI = gτv/urms ≫ 1, we can say that particle pairs settle

through eddies whose size scales with separation r in times much quicker than the

eddy turnover time τr, i.e., r/(gτv) ≪ τr. The physical implication of this is that

the fast-settling pairs essentially experience a frozen field of size r eddies during [0, t].

Thus, we may write ∆u(r,x, 0) ≈ ∆u(r,x, t), i.e. we now have an Eulerian one-time

correlation in DUU that is given by

DUU, SvI≫1 =
1

St2I
D̃UU =

1

St2I

∫ 0

−∞

dt ⟨∆u(r,x, t) ∆u(r,x+ gτvt, t)⟩ (A.17)

Contrast this with DUU for non-settling pairs:

DUU, SvI=0 =
1

St2I
D̃UU =

1

St2I

∫ 0

−∞

dt ⟨∆u(r,x, t) ∆u(r,x+W t, t)⟩ (A.18)

where W is the relative velocity between the large-scale fluid eddies advecting past

the pair and the pair center of mass that is moving purely due to the effects of

turbulence (i.e. no settling).
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A.2 SvI ∼ 1 Regime

One may want to relax the condition SvI = gτv/urms ≫ 1 such that SvI ∼ 1,

which may be achieved when g ≪ 1. In this regime, the term containing (−V +SvIeg)

on the LHS of (A.9) is anyway O(1/St2I). Therefore, it will not contribute to the

perturbation analysis. Again considering the O(1/StI) terms in (A.9), we get the

same equation as for the previous regime:

∂P1

∂t
+∇r · (UP1) +∇x · (V P1) = −∇U · (∆u⟨P ⟩)−∇V · (ucm⟨P ⟩) (A.19)

Equation (A.19) may then be written as

dP1

dt

∣∣∣∣
U ,V

= −∇U · (∆u⟨P ⟩)−∇V · (ucm⟨P ⟩) (A.20)

Thus, even when SvI ∼ 1, the only eddies through which pairs do not settle

faster than their turnover times are the integral-scale ones. However, for separations

r ∼ L, the pair essentially behaves as two independent particles. The point being

that even for SvI ∼ 1, particles settle faster than the turnover times of most eddies.

As a result, (A.17) should still be valid when SvI ∼ 1.
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A.3 Derivation of diffusion coefficient tensor in the settling particle pair

relative velocity space

D̂UU =
1

St2I

∫ 0

−∞

⟨∆u(x, r, t) ∆u(x+ gτvt, r, t)⟩ dt

=
1

St2I

∫ 0

−∞

〈[
u(x+

1

2
r, t)− u(x−

1

2
r, t)

]

×
[
u(x+ gτvt +

1

2
r, t)− u(x+ gτvt−

1

2
r, t)

]〉
dt

=
1

St2I

∫ 0

−∞

〈
u(x+

1

2
r, t) u(x+ gτvt+

1

2
r, t)− u(x+

1

2
r, t) u(x+ gτvt−

1

2
r, t)

−u(x−
1

2
r, t) u(x+ gτvt +

1

2
r, t) + u(x−

1

2
r, t) u(x+ gτvt−

1

2
r, t)

〉
dt(A.21)

In (A.21), there are four Eulerian two-point velocity correlation terms. Writing the

two-point velocity correlation tensors in terms of the velocity spectrum tensor, R(k),

we get:

⟨u(x, t) u(x′, t)⟩ =
∫

R(k) eik·(x−x′) dk (A.22)

where k is the wavenumber vector. For isotropic turbulence, velocity spectrum tensor,

R(k), can be written exactly as:

R(k) =
E(k)

4πk2

(
I−

k k

k2

)
(A.23)
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where k = |k|, E(k) is the energy spectrum tensor, and I is the identity tensor.

〈
u(x+

1

2
r, t) u(x+ gτvt +

1

2
r, t)

〉
=

∫
R(k) eik·gτvt dk (A.24)

〈
u(x+

1

2
r, t) u(x+ gτvt−

1

2
r, t)

〉
=

∫
R(k) eik·gτvt e−ik·r dk (A.25)

〈
u(x−

1

2
r, t) u(x+ gτvt +

1

2
r, t)

〉
=

∫
R(k) eik·gτvt eik·r dk (A.26)

〈
u(x−

1

2
r, t) u(x+ gτvt−

1

2
r, t)

〉
=

∫
R(k) eik·gτvt dk (A.27)

Substituting (A.24)-(A.27) into (A.21) and simplifying, we get:

D̂UU =
1

St2I

∫
R(k)

(
2− e−ik·r − eik·r

)
dk

∫ 0

−∞

eik·gτvtdt (A.28)

where k is the wavenumber vector. The second (time) integral in (A.28) can be

conveniently evaluated using the standard Fourier transforms,

∫ 0

−∞

eik·gτvtdt =

∫ ∞

−∞

H(τ) e−ik·gτvτdτ, where H is the Heaviside function

=

∫ ∞

−∞

[
1

2
+

1

2
sgn(τ)

]
e−ik·gτvτdτ, where sgn is the sign function

=
1

2
δ

(
k · gτv
2π

)
+

1

ik · gτv
, using standard Fourier transforms(A.29)

giving us:

D̂UU =
1

St2I

∫
R(k) [2− 2cos(k · r)]

[
1

2
δ

(
k · gτv
2π

)
+

1

ik · gτv

]
dk (A.30)
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Recognizing that 1
ik·gτv

is an odd function of k, the integral containing 1
ik·gτv

goes to

zero. This gives us:

D̂UU =
1

St2I

∫
R(k) [1− cos(k · r)] δ

(
k · gτv
2π

)
dk (A.31)

We know
∫ ∞

−∞

f(x)δ(x)dx = f(0)

Therefore, we want the integrand variable ‘x’ to be the same as the variable inside

δ(‘x’). Note that δ
(
k·gτv
2π

)
is non-zero only when k · gτv = 0, i.e. when k ⊥ gτv. Let

k = ξ satisfy this property, where ξ = (ξ1, ξ2, 0).

Now,

k · gτv
2π

= −
k3gτv
2π

, g = |g|

d

(
k · gτv
2π

)
= d

(
−
k3gτv
2π

)

d(k3) = −
2π

gτv
d

(
k · gτv
2π

)

Therefore, by plugging dk = dk1 dk2 dk3 = dξ1 dξ2
2π
gτv

d
(
k·gτv
2π

)
in (A.31) we get

D̂UU =
2π

St2Igτv

∫∫∫
R(ξ) [1− cos(ξ · r)] δ

(
k · gτv
2π

)
d

(
k · gτv
2π

)
dξ1 dξ2

=
2π

St2Igτv

∫∫
R(ξ) [1− cos(ξ · r)] dξ1 dξ2 (A.32)
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Let ρ is the projection of r into the ξ-plane, ρ = |ρ| we can write:

ρi = (δij − δi3δj3) rj (A.33)

cosφ =
ρiξi
ρξ

=
riξi
rξ

(A.34)

Equation (A.32) can be rewritten in terms of ρ and by writing R(ξ) in terms of the

energy spectrum E(ξ) as:

D̂UU,ij =
2π

St2Igτv

∫ ∞

0

ξ dξ

∫ 2π

0

E(ξ)

4πξ2

(
δij −

ξiξj
ξ2

)
[1− cos(ξρcosφ)] dφ (A.35)

Integrating D̂UU,ij over φ we get:

D̂UU,ij =
π

St2Igτv

∫ ∞

0

E(ξ)

ξ

(
δij −

ξiξj
ξ2

)
[1− J0(ξρ)] dξ (A.36)

where J0 is the Bessel function of the first kind. We can also write D̂UU,ij as:

D̂UU,ij =
π

St2Igτv

∫ ∞

0

E(ξ)

ξ

(
δij −

ξiξj
ξ2

)
[1− J0(ξrsinθ)] dξ (A.37)

where cos(θ) = g · r/(gr); θ ∈ [0, π]. We can also write D̂UU as:

D̂UU,ij = λ1 (δij − δi3δj3) + λ2δi3δj3 (A.38)
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The expression for λ1 can be obtained by multiplying with (δij − δi3δj3) on

both sides of (A.38)

D̂UU,ij (δij − δi3δj3) = λ1 (δij − δi3δj3) (δij − δi3δj3) + λ2δi3δj3 (δij − δi3δj3) (A.39)
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