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TthNuc was shown to use all of these metals, except calcium.  However due to the 

difficulties associated with formation of a precipitate during divalent metal ion tests, 

calcium should be reevaluated for activity. 

 

Nuclease Activity  

TthNuc was shown in vitro to act on ssDNA (Figure 3.8) and dsDNA (Figure 3.9) 

in a concentration dependent manner with a preference towards the smaller nucleic acid 

strands.  The DNA gels seem to indicate TthNuc is acting as an exonuclease because of 

the how the DNA bands are disappearing with little streaking on the gels.  The ability for 

TthNuc to catalyze the degradation of both ssDNA and dsDNA is not unique to 

nucleases.  For example, NucA is involved in cell death, DNase I that is part of cell 

nucleic acid nutrition, and CRISPR which is involved in cell defense all can degrade 

ssDNA and dsDNA [Wang 2011].  The location of the scissile phosphate in ssDNA 

substrate versus dsDNA substrate can put limits on the approach of the nucleophile in the 

reaction [Wang 2011].  The nucleophile must approach a double-strand nucleic substrate 

from outside the double helix because the inside is packed with sugars and bases [Wang 

2011].  However, ssDNA puts no restrictions on nucleophilic approach, especially if the 

bases are not stacked [Wang 2011].  The majority of nucleases, which act on dsDNA, 

approach from the minor groove side of the double helix [Wang 2011]. All of which use 

water as the nucleophile in DNA catalysis [Wang 2011].  This could mean that TthNuc 

could function in one of these pathways and uses water as the nucleophile.  TthNuc’s 

ability to degrade dsDNA may indicate an approach to substrate from the minor groove  
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Figure 3.8 2% Agarose Gel analysis of TthNuc catalytic degradation of ssDNA.  
Various concentrations of TthNuc (lane 1= 0.0 nmol, lane 2= 2.5 nmol, lane 3=10 nmol, 
lane 4= 20 nmol, lane 5= 40 nmol, lane 6= 60 nmol, lane 7= 80 nmol)  and 200 ng of 56-
mer oligo were mixed into a reaction buffer for 15 minutes at 75°C.  The reaction buffer 
consisted of 50 mM HEPES:NaOH pH 7.5 at 25°C, 50 mM NaCl, and 2 mM MnCl2.  
EDTA (0.5 M) was used to quench the reaction. DNA samples are compared to a standard 
DNA ladder ranging from 100 bp to 3000 bp (lane Mr).  
 

 

 
Figure 3.9 2.5% Agarose gel analysis of TthNuc catalytic degradation of dsDNA.  
The catalytic activity of TthNuc on ssDNA was visualized using 2.5% agarose gel using 
EtBr staining and UV light.  Various concentrations of TthNuc (lane 1= only TthNuc 100 
nmol and reaction buffer, lane 2= 0.0 nmol, lane 3= 2.5 nmol, lane 4= 10 nmol, lane 5= 
20 nmol, lane 6= 60 nmol, lane 7= 80 nmol) and 1000 ng of dsDNA PCR product and 
linearized plasmid were mixed into a reaction buffer for 15 minutes at 75°C.  The 
reaction buffer consisted of 50 mM HEPES:NaOH pH 7.5 at 25°C, 50 mM NaCl, and 2 
mM MnCl2.  EDTA (0.5 M) was used to quench the reaction. DNA samples are compared 
to a standard DNA ladder ranging from 100 bp to 3000 bp (lane Mr).  
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side.  This could also indicate that there is more than one active site located in the 

structure of TthNuc.  It cannot be ignored that the concentration of ssDNA and dsDNA 

substrate in the test reactions were significantly higher than what is found in vivo.  None 

of the experimentally characterized DHH family nucleases can degrade both ssDNA and 

dsDNA.  Therefore, this maybe an artifact of concentration similar to what is found with 

restriction enzymes when the concentrations of enzyme to substrate are not optimized.  

 

Metal Ion Requirement 

The metal ion requirement for TthNuc DNA degradation was assessed varying the 

monovalent ion (NaCl, LiCl, CsCl, KCl) and the divalent ion in the reaction buffer 

(MnCl2, MgCl2, CoCl2, NiCl2, CaCl2, CuCl2, CuSO4, ZnCl2, FeCl3).  Altering the 

concentration and type of monovalent ion did not qualitatively alter TthNuc activity 

(Figure 3.10).  However, TthNuc did not catalyze ssDNA without a divalent metal ion 

present in the reaction (Figure 3.11).  TthNuc is able to digest ssDNA and dsDNA using 

MnCl2, MgCl2, CoCl2, and NiCl2.  TthNuc was not able to degrade ssDNA using CaCl2, 

CuCl2, CuSO4, and ZnCl2.  A white precipitate was found in the CuCl2, CuSO4, and 

ZnCl2 reaction tubes prior to quenching the reaction with EDTA.  FeCl3 was not able to 

be properly assayed due to precipitation of iron in the reaction buffer prior to 

experimentation.  Reaction buffers containing MnCl2, MgCl2, CoCl2, and NiCl2 all 

showed activity with ssDNA and dsDNA.  TthNuc was not able to degrade nucleic acids 

using CaCl2, CuCl2, CuSO4, and ZnCl2. It is interesting to note that the divalent metal 

ions, which showed TthNuc activity, are found in higher concentrations at hydrothermal 

vents versus the surrounding seawater (except MgCl2).  The inability of TthNuc to  
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Nuclease Polarity 

A phosphorothioate modification was used to determine the polarity TthNuc 

degradation of ssDNA.  The modifications were added on the 3’, 5’, or both the 3’ and 5’ 

ends of an 18-mer oligomer.  Exonuclease I (Exo I), λ exonuclease (λ Exo), and DNase I 

were used to test the reliability of the phosphorothioate modification to stop exonuclease 

activity on the 18-mer oligomer.  Exo I degrades ssDNA in a 3’ to 5’ direction and 

requires a divalent metal for activity [Stahl et al. 1979].  λ Exo is 5’ to 3’ exonuclease 

which selectively digests dsDNA [Mitsis & Kwagh 1999].  DNase I is a metal dependent, 

nonspecific endonuclease that cleaves ssDNA and dsDNA [Campbell & Jackson 1980].  

Phosphorothioate modification on ssDNA has been shown to prevent the ability of an 

exonuclease to degrade DNA at that particular [Kunkel et al., 1981].  For example, the 3’ 

and the 3’5’-end modified oligomers should resist degradation from Exo I.  The 5’-end 

modified oligomer should not resist degradation from Exo I.  As expected, Exo I 

degraded the 5’-blocked oligomer and did not degrade the 3’-blocked or 3’/5’ blocked 

oligomers (Figure 3.14).  Phosphorothioate modified ssDNA did not prevent DNase I 

from catalyzing the modified ssDNA because DNase I is an endonuclease and should not 

be impeded by end modified oligomers (Figure 3.14).  The reaction with λ Exo and the 

modified ssDNA should show no catalytic activity because λ Exo is specific to dsDNA 

(Figure 3.14).  None of the three types of modified oligomers were able to prevent 

TthNuc degradation of the nucleic acid strand.  This could imply that TthNuc is an 

endonuclease, has endonuclease and exonuclease activity, or phosphorthioate 

modifications did not prevent TthNuc activity on ssDNA (Figure 3.14). 
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Figure 3.14 Polarity Assay.  Phosphorothioate substitutions replaced the none-bridging 
oxygen at the 5’ or 3’ end of the ssDNA strand (18-mer oligos).  Polarity of cleavage was 
determined by the inability of the exonuclease to catalyze degradation due to the 
modification at a specifically modified ssDNA end.  Endonucleases should not be 
hampered by modifications to the ends of ssDNA, due to their cleavage sites starting 
within the strand.  A. DNase I (sugar nonspecific nuclease) was incubated for 30 minutes 
per manufacturer instructions: blocked on 3’ end (Lane 3), blocked on 5’ end (Lane 5), 
and blocked on both ends (Lane 7).  The concentration of DNase I was 2 acitivty units 
per µl.  Lanes 2, 4, and 6 are control lanes with only substrate and buffer.  B. 
Exonuclease I (3’ to 5’ exonuclease) was incubated for 30 minutes per manufacturer 
instructions: 5’ blocked (lane 3), 3’ blocked (lane 4), and both ends blocked (lane 5).  
Lane 1 and lane 2 are control lanes, buffer and enzyme (lane 1) and substrate and buffer 
(lane 2).  The concentration of Exo 1 was 1 activity unit per µl.  C. TthNuc was incubated 
with modified ssDNA 30 min. at 75°C: blocked on 3’ end (Lane 3), blocked on 5’ end 
(Lane 4), and blocked on both ends (Lane 6).  The concentration of TthNuc was 2 nmol.  
Lane 1 is a control with only TthNuc and Buffer (50 mM Tris:HCL pH 7.5 at 25°C, 50 
mM NaCl, and 2mM MnCl2.  Lane 2 is a control lane with only substrate and buffer.  
Lane 5 and Lane 7 are assays with λ exonuclease (λ Exo, 5’ to 3’ dsDNA) and Exo I, 
respectively.  The substrate for lane 5 was an 18-mer with both ends blocked, and the 
substrate for lane 7 is a substrate with the 3’ end blocked.  The DNA ladder (Mr) has a 
range between 100 t0 3000 bp.  All reactions were stopped with 4 µl of 500 mM EDTA.  
The assay was visualized using UV and a 2.0% agarose gel stained with EtBr.   
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Protein Purification 

 The purification of TthNuc took advantage of the theoretical calculations by 

ProtParam.  The theoretical isoelectric point and the estimated molecular weight were 

used to separate TthNuc by charge and size, respectively.  Also, an assumption of TthNuc 

heat tolerance was based on the source organism being classified as a hyperthermophile 

[Pikuta et al. 2007].  TthNuc heat tolerance was used to precipitate out thermolabile host 

E. coli proteins from the crude lysate after ultrasonication [Saraswat et al. 2013]. 

Purification was a three step process: capture, intermediate purification, and polishing 

[Saraswat et al. 2013].  

 The methods chosen in the capture step were DNase I treatment and heat 

precipitation.  These methods were chosen for their ability to isolate the target protein 

quickly to prevent contaminating host proteases from degrading and environmental 

conditions from denaturing TthNuc.  DNase I treatment helped make the crude lysate less 

viscous.  However, the DNase I treatment did not seem to help separate contaminating 

DNA from TthNuc.  This may be due to the DNA binding ability of TthNuc.  Heat 

precipitation of the crude lysate drastically increased the purity of the crude lysate from 

48% to 90% TthNuc in the supernatant.  This increase in purity came at a great cost to 

protein yield with a 40% loss of the target protein. 

The intermediate purification step chosen to remove the bulk of the impurities in 

the supernatant was anion exchange (AIX).  ProtParam calculated the pI of TthNuc to be 

around 6.15.  Therefore, the pH of the lysis buffer, AIX low salt, and the AIX high salt 

buffers were chosen to be at least one pH unit above the theoretical pI of TthNuc (pH 

8.2).  This should make the overall charge of TthNuc to be negative allowing it to bind 
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the positively charged stationary phase of the AIX column.  Three major peaks eluted 

from the column.  Coomassie blue staining was used to confirm that peak 1 and 3 did not 

contain protein (Figure 3.15).  SDS-PAGE analysis confirmed the presence of a protein 

with a molecular weight near the theoretical weight of 53 kDa estimated for TthNuc in 

fractions 7, 8, and 9 (Figure 3.16).  These fractions were pulled together for a final 

volume of 17 ml.  A centrifugal concentrator with a 30 kDa cutoff was used to prepare 

AIX fractions for a buffer switch and reduce the volume of to less than 5% of the size 

exclusion (SE) column volume.  A final volume to be loaded onto the SE column was 

roughly 200 µl.  The AIX purification step increased purity to 98%.  However, the 

percent yield was down to 16%. 

 The last step in the purification scheme of TthNuc was the polishing step.  

SE was chosen for the polishing step to accomplish a buffer switch into the storage buffer 

and achieve the highest level of purity.  The elution/storage buffer contained 50 mM 

HEPES:NaOH and 50 mM NaCl pH 7.5 at 25°C.  Coomassie blue staining was used to 

confirm that a broad, tailing peak spanning from fractions 24 to 30 contained TthNuc 

(Figure 3.17).  SDS-PAGE analysis confirmed the presence of a protein with a molecular 

weight near the theoretical weight of TthNuc in fractions 25, 26, and 27 (Figure 3.18).  

These fractions were pooled for a final volume of 7.5 ml.  TthNuc sample was divided 

into 2 ml samples with a concentration of 1 mg/ml using the experimentally derived 

extinction coefficient (0.67).  SE increased purity to 99% TthExo, but protein loss was 

substantial with an 11% yield.  Quality control samples from each phase (200 µl) of the 

purification scheme were analyzed using SDS-PAGE (Figure 3.19).  On average, a 2000 

mg (w/v) pellet gave a target protein yield of 22.9 mg when purified to 99% TthNuc.   
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Figure 3.15 Anion Exchange elution profile of TthNuc. An increasing linear, salt 
gradient was used to elute TthNuc from a Bio-Scale 5 ml Mini Macro-Prep High Q 
column for 20 column volumes.  The red arrow indicates the TthNuc target peak 
(fractions 6,7,8).  The red curve is the buffer gradient and the blue curve is the 
absorbance at 280 nm.  Green circles are the fractions collected.  The peak marked FT is 
the flow through from the loading step.  The light blue circles indicate the start and end 
the purification run.  Fractions 5 to 12 were evaluated for the presence of TthNuc. 
 

 

 
Figure 3.16 12% SDS-PAGE GEL of Anion Exchange Fractions.  Protein fractions 
are compared to a standard molecular weight ranging from 11 kDa to 180 kDa (Mr).  The 
gel was stained with Coomassie Brilliant Blue and visualized with white light 
illumination.  Samples from loading step flow through (lane 1) and fractions 5 through 12 
(lanes 2 through 9, respectively) were loaded into the gel.  Fractions 7, 8, 9 contained 
TthNuc and were pooled.   
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DNA contamination was high through most of the purification scheme despite DNase I 

treatment.  Gel filtration was required to remove most of the DNA contamination, but 

protein loss was significant.  If overall protein yield is of the utmost importance and DNA 

contamination is not an issue, then the heat fractionation step should be considered as a 

possible end point for TthNuc purification (Table 3.4). 

 

 

 
Figure 3.17 Size Exclusion (SE) elution profile of TthNuc.  Sephacryl S-200 High 
Resolution media was used to purify TthNuc with a loading sample volume of 200 μl 
TthNuc.  Red arrow indicates target peak.  Red line is the normalized conductivity of the 
50 mM HEPES:NaOH and 50 mM NaCl pH 7.5 at 25°C elution buffer.  The blue curve is 
the absorbance at 280 nm. 
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Figure 3.18 12% SDS-PAGE GEL of Size Exclusion Fractions.  Protein fractions are 
compared to a standard molecular weight ranging from 11 kDa to 180 kDa (Mr).  The gel 
was stained with Coomassie Brilliant Blue and visualized with white light illumination.  
Samples from concentration step flow through (lane 1) and fractions 24 through 30 (lanes 
2 through 8, respectively) were loaded into the gel.  Lanes 3, 4, and 5 corresponded to the 
fractions, which contain the absorbance TthNuc peak, and were pooled to a final volume 
of 17 ml.   
 

 

 
Figure 3.19 12% SDS-PAGE Analysis of TthNuc Purification Steps.  Samples from 
crude extract of induced recombinant bacteria (lane 1); heat-fractionated cell lysate  (lane 
2); and purified fraction from anion exchange (lane 3) and size exclusion chromatography 
(lane 4) were loaded into each lane.  Each sample contained approximately 15 μg of 
protein and was resolved in 12% polyacrylamide.  Protein samples are compared to 
standard molecular weight markers ranging from 11kDa to 180 kDa (lane Mr).  The gel 
was stained with Coomassie Brilliant Blue and visualized with white light illumination.  
The red arrow indicates the molecular weight where TthNuc is expected.  
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Table 3.4 Purification Summary for TthNuc. 

Step Vol. 
(ml) 

280 
260 D.F. Conc. 

(mg/ml) 

Total 
Protein 

(mg) 

% 
Purity  

Target 
Protein 

(mg) 

% 
Yield 

Crude 
Lysate 30 0.51 150 15 450 48 216 100 

Heat Frac. 29 0.42 100 5 145 90 131 61 
Anion 

Exchange  17 0.44 100 2 34 98 33 15 
Size 

Exclusion  7.5 1.35 20 3 23 99 22.9 11 
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CHAPTER IV 

 

 

Conclusion 

 

 

The general workflow for the study of TthNuc began with the isolation of a 

microorganism from an environmental sample (Figure 4.1).  This was followed by 

locating the TthNuc open reading frame in the organism’s genome, purifying the 

recombinant TthNuc protein, and studying TthNuc enzyme activity.  Finally, 

bioinformatic tools were used to help identify the protein family by locating conserved 

domains, locating the five highly conserved motifs that are indicative of the DHH protein 

family, and identifying homologous protein crystal structures,.   

Thermococcus thioreducens was isolated from a “black smoker” hydrothermal 

vent at the Rainbow Hydrothermal vent site located at a depth of 2300 meters on the Mid-

Atlantic Ridge [Pikuta et al. 2007].  These hydrothermal vents are dynamic environments 

with rapidly changing temperature, pH, and chemical gradients [Perner et al. 2013].  Vent 

fluids arising from Rainbow hydrothermal vents are hot (365°C), acidic (pH 2.8), and 

metal-rich [Von Damm et al. 1985].  Mg2+ ions do not remain in solution at the 

temperature and pressure found at the T. thioreducens sampling site.  Therefore, a wide 

range of temperatures (100°C, 95°C, 37°C, 30°C) and metals (Mn2+, Mg2+, Co2+, Ni2+, 

Ca2+, Cu2+, Zn2+) were analyzed for TthNuc activity on nucleic acids.T. thioreducens is a 

hyperthermophilic, sulfer-reducing, organo-heterotrophic archaeon that was shown to 
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grow within a pH range of 5.0 - 8.5, a NaCl concentration range of 1 – 5% (w/v), and a 

temperature range of 55 – 95°C [Pikuta et al. 2007].  The genome of T. thioreducens was 

sequenced using Thermococcus kodakaraensis as a reference genome to locate putative 

protein coding open reading frames.  The open reading frame for TthNuc was originally 

predicted to code for a dehalogenase enzyme. 

 

 

 
Figure 4.1 Research Workflow for TthNuc.   
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On average, a 2000 mg (w/v) pellet was able to yield 216 mg of TthNuc when 

purified to 99%.  Inclusion bodies and poor protein production were not issues during the 

recombinant expression of TthNuc.  DNA contamination was high through most of the 

purification scheme despite DNase I treatment.  This could be due to TthNuc’s DNA 

binding characteristics.  Gel filtration was required to remove most of the DNA 

contamination, but protein loss was significant.  The 99% pure TthNuc was shown in 

vitro to require a divalent metal for activity on ssDNA and dsDNA substrates with a 

preference for smaller nucleic acid strands.  TthNuc was shown to be active between 37-

95°C and between pH 5.2-8.5.  These wide temperature and pH ranges of TthNuc activity 

are not surprising when considering the constantly changing environment T. thioreducens 

inhabits.  Additionally, the pH range of activity for TthNuc mirrors those reported for the 

growth range of T. thioreducens.  Reaction buffers containing MnCl2, MgCl2, CoCl2, and 

NiCl2 all showed activity with ssDNA and dsDNA.  However, TthNuc was not able to 

degrade nucleic acids using CaCl2, CuCl2, CuSO4, and ZnCl2. It is interesting to note that 

the divalent metal ions, which showed TthNuc activity, are found at the Rainbow 

hydrothermal vents in high concentrations when compared to seawater (except MgCl2).  

Cleavage polarity was not able to be determined.  Phosphorothioate modification at the n 

and c terminus of an 18 oligomer ssDNA did not prevent TthNuc from catalyzing the 

nucleic acid strand.  This could be an indication that TthNuc is an endonuclease, may 

have both exonuclease and endonuclease activity, or the phosphorothioate modification 

does not alter TthNuc activity.  DNA gels seem to indicate that TthNuc is an exonuclease 

because of the lack of smearing of the DNA bands on the gels and the discrete 

degradation of the DNA bands.   
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Two physical characteristics of TthNuc were experimentally derived: molecular 

weight and the extinction coefficient.  The molecular weight of TthNuc was 

approximated by size exclusion chromatography to be 50 kDa which was consistent with 

the theoretically derived molecular weight of 53 kDa.  The extinction coefficient (0.67 

A280 ε0.1%) is about 15% lower than the theoretically calculated value of 0.786 A280 

ε0.1%.  This difference could be due to variations in experimental procedure.  In fact 

differences of 10% or more have been reported when experimentally determining the 

extinction coefficient of a protein between different labs [Mach et al. 1991].   

 The preliminary BLASTp sequence similarity search of the NR database indicated 

the TthNuc amino acid sequence was closely related to an uncharacterized ssDNA-

specific recombinase J exonuclease from the same genus (85% identical).  A BLASTp 

search of the PDB database using the TthNuc amino acid sequence did not find any 

statistically meaningful protein crystal structures.  However, a DELTA-BLAST search of 

the PDB returned query results that agreed with the initial BLASTp results of the NR 

database and experimental data indicating TthNuc is a nuclease.  The top two scoring 

crystal structure had 92% query coverage, 18% identical residues, and an E-value of 1e-

46.  Both structures were RecJ enzymes from Thermus thermophilus: the entire enzyme 

(ttRecJ, PDB 2ZXO) and the catalytic domain of the same RecJ enzyme (cdttRecJ, PDB 

1IR6).  The ttRecJ amino acid sequence is 33% identical to the ecRecJ amino acid 

sequence and share the five highly conserved motifs found in RecJ enzymes [Yamagata 

et al. 2001].  TtRecJ is 527 amino acid residues in length.  It functions as a 5’ to 3’ 

exonuclease that is divalent metal-ion dependent (Mg2+, Mn2+, Co2+) and requires no 
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ATP.  The metal ion requirements of activity of ttRecJ and TthNuc are similar, but their 

substrates are not.  TtRecJ degrades in vitro only ssDNA.   

Recombination is a regulated process involved in DNA repair and the production 

of genetic variability in Escherichia coli [Smith 1989].  In E. coli there are two major 

recombination pathways: RecBCD and RecF that act independently in the initiation of 

recombination [Horii & Clark 1973].  There are three essential enzymatic activities 

required for the recombination of dsDNA breaks:  helicase, 5’ to 3’ exonuclease, and 

RecA attaching to ssDNA tails [Ivancic-Bace et al. 2005].  The recombinase J enzyme in 

E. coli (ecRecJ) functions as the nuclease in the RecF pathway.  EcRecJ is the 

representative enzyme for the DHH protein family [Aravind & Koonin 1998].  It is a 

Mg2+-dependent, ssDNA-specific exonuclease with a 5’-3’ polarity [Lovett & Kolodner 

1989].  Adenosine triphosphate (ATP) is not required for its catalytic activity [Lovett & 

Kolodner 1989].  Other divalent metal ions like Mn2+, Cu2+, Fe2+, Co2+, Ca2+, and Zn2+ 

inhibit the activity of ecRecJ in vitro [Lovett & Kolodner 1989].  The optimal pH for 

ecRecJ activity was reported to be between pH 8.0-8.5, and its activity is enhanced by the 

presence of single-strand DNA binding protein (SSB) [Lovett & Kolodner 1989; Han et 

al. 2006].  DsDNA is neither a substrate nor a competitive inhibitor of ecRecJ [Han et al. 

2006].  These characteristics do not match the experimental profile of TthNuc, 

specifically substrate and metal ion requirements. 

Jpred3 predicts the secondary structure of TthNuc to be a mixture of α-helices and 

β-sheets.  This prediction is consistent with the predicted domains found by a CD-Search 

in the NR database: n-terminal DHH and c-terminal DHHA1.  These domains are 

indicative of the DHH phosphodiesterase family which is made up of α/β proteins.  The 



 

 65 

DHH domain is assumed to have a phosphodiesterase function because enzymes that 

contain this domain usually bind nucleic acid [Aravind & Koonin 1998].  The DHHA1 

domain is believed to have an RNA binding function because this domain is found in 

alanyl tRNA synthetase [Aravind & Koonin 1998].  The DHH protein superfamily is 

made up of α/β proteins consisting of parallel beta sheets (βαβ units) [Andreeva et al. 

2014].  The DHH protein family is found in archaea, bacteria, and eukarya, and includes 

phosphodiesterases, inorganic pyrophosphatases, recombinases, and exopolyphosphatases 

[Aravind & Koonin 1998; Swairjo et al. 2004; Gates et al. 1997].  This family is one of 

several families of phosphodiesterase with a broad spectrum of substrates and functions 

despite having similar domain architecture [Aravind & Koonin 1998].  The common 

evolutionary pattern in this family includes: multiple duplication of an ancestral gene 

encoding a phosphoesterase with low substrate specificity [Aravind & Koonin 1998].  It 

is interesting to point out that the cdttRecJ and the ttRecJ sequences both had n-terminal 

DHH and c-terminal DHHA1 domains found in their amino acid sequence by CD-Search.  

This seems to imply that the full enzyme (ttRecJ) may have multiple DHH and DHHA1 

domains.   

An attempt at locating homologous three dimensional protein structures were 

conducted using SMART and VAST+  to search the NR and PDB databases.  A SMART 

search in the NR database using the spatial organization of DHH-DHHA1 found:  nano-

RNases from M. smegmatis (msNrnA) and T. thermophilus (ttNrnA), and a DHH family 

protein from S. haemolyticus.  These same proteins were also found by a VAST+ search 

in the PDB database.  These newly found proteins had similar domain organization and 

statistically significant three dimensional structures, but they had extremely poor 
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sequence similarity.  However, sequence alignments of TthNuc with msNrnA constrained 

by the conserved domains gave the best query coverage (88%) with 22% identical 

residues.  In contrast, the same alignment of TthNuc and ttRecJ was 40% query coverage 

and 23% identical residues.  A MSA of ttRecJ, cdttRecJ, msNrnA, ttNrnA, TthNuc, and 

the DHH protein family representative enzyme (ecRecJ) revealed the 5 motifs indicative 

and essential to the DHH protein family within the TthNuc amino acid sequence, which 

further proves TthNuc is a DHH nuclease.  A literature search of NrnA DHH family 

proteins shows similar divalent metal ion requirements for activity.  Unfortunately, none 

report activity with dsDNA.  MsNrnA is 341 amino acid residues in length, which is 

smaller than TthNuc.  MsNrnA and TthNuc both require a divalent metal for activity: 

Co2+, Mn2+, Zn2+, Mg2+, Ca2+, and Ni2+ [Wakamatsu et al. 2010].  However, TthNuc is 

not able to use calcium or zinc as cofactors in nucleic acid degradation. 

In conclusion, TthNuc is a DHH protein family nuclease from the 

hyperthermophilic, archaeon T. thioreducens genome.  It catalyzes the degradation of 

double stranded and single stranded DNA, and requires a divalent metal for activity.  

Future research on TthNuc should consider: determining catalytic activity (kcat), finding 

additional substrates (RNA, single-stranded circular plasmid, double-stranded circular 

plasmid), additional cofactors (protein complex), polarity of cleavage, determine if it is 

an endonuclease or exonuclease, minimum and maximum substrate length, cleavage 

products, full pH range (specifically acidic portion), solve crystal structure, and ligand 

binding sites.  A summary of TthNuc data can be found in Table 4.1. 
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Table 4.1 Summary of TthNuc Characteristics 
Sample Site Rainbow Hydrothermal Vent Field 

Source Organism Thermococcus thioreducens 

Organism Description Archaeon, hyperthermophile, sulfure-reducer 

Molecular weight 50 kDa 
Sequence Length 475 

ε0.1% 0.67 

Metal Ion Dependent Yes (Mg2+, Mn2+, Co2+, Ni2+) 

Substrate ssDNA, dsDNA, RNA (suspected) 

Cleavage Polarity unknown, PTO modification does not alter activity 

Temperature Range of Activity ≈37-95°C 

pH Range of Activity ≈ not determined -8.5 

Protein Family DHH subfamily I 

Conserved Domains DHH, DHHA1 
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