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Figure 3.2: This figure shows thread level workloads divided within the b matrix,
thread storage in the k matrix, and the resultant vectors.

GPU’s memory. This stage counts the number of bins for each packet that exceed the

upper and lower thresholds, resulting in packet anomaly scores. The same workload

distribution implementation as in the bin counting stage: each thread only processes

one packet. Each thread goes through each bin of its assigned packet in the b matrix,

compares the value to the over and under value for that particular bin, and stores

the anomaly score tally in a resultant vector. Then the overall anomaly score average

and variance is calculated using the parallel reduction method across a single vector

as depicted in the Figure Figure 3.3. Each thread is assigned a certain section of the

resultant anomaly score vector and stores the sum of its section into the first index

it is assigned. Finally a single thread is used to compute the average and variance of

all the results.
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Figure 3.3: Generating the packet anomaly score thresholds are depicted above.
Using a similar workload distribution

3.2.4 Evaluation Results

This section discusses the test methods and performance of the parallelized

PBD algorithm. The parallel implementation was tested on a lab machine running

Ubuntu 14.04 Linux version 12.04.2, 4GHz AMD FX-8350 CPU with 32GB of RAM,

and an nVidia GTX 780 with 3GB of on-board memory. The network data sets were
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comprised from HTTP web traffic captured from a web server located at the university

and were properly sanitized of any malformed or duplicate packets. The training data

set used came from the first one hundred thousand packets in chronological order.

The remaining sixty thousand packets were used for the testing data set. The attack

data set originated from the DARPA attack data sets, which had 2487 packets. The

focus of this thesis is not the true and false positive performance of the algorithms, as

they were tested for this metric in the original literature. To reiterate, the speedup

performance of the PBD algorithm through the use of a SIMD implementation is the

focus of this chapter. All results provided are within 1% with a 99% confidence.

3.2.4.1 Speedup

There is a balancing act when it comes to choosing the number of threads to

use per block. The goal is to choose the amount of threads that will mask the cost of

the memory operations required by the code. The term occupancy is used to describe

the ratio of active warps and max possible warps in a streaming multi-processor (SM).

The block size, or number of threads per block, and the amount of registers required

by threads affects the occupancy the most. An occupancy of 1 means the max number

of active warps are running on the SM and is a seemingly desirable goal. But during

testing, various thread counts were used ranging from 1 thread to 1024 threads. An

occupancy of approximately 0.33 to 0.5 yielded the fastest results amongst the thread

counts tested. For this particular implementation’s code, 32 threads per block was

chosen as it gave the best speedup results, consistently.
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The speedup from the serial implementation is show in Table Table 3.1 for each

of the stages along with the expected number of iterations for each phase. The bin

counting stage is only required to convert a batch of packets from the p matrix to the

b matrix, thus bin counting is not required for subsequent retraining or tuning of the

algorithm. Bin statistics also only requires one iteration, as the averages and standard

deviations only need to be calculated once. Finally, the anomaly scoring stage is the

stage that may require upwards to 2,500 iterations to find the appropriate threshold

scalars as mentioned in [1]. The speedups presented are comparable to other works

related to this approach.

Table 3.1: Speed up over CPU implementation

Operation Speed up Occurrence per
each new packet

Bin counting 8.5 N/A
Bin stat. 55.6 1×

Packet scoring 28.7 up to 2500×

3.2.4.2 Memory Footprint

The memory breakdown is shown in table Table 3.2 for all of the required

data structures in the GPU implementation. GPU devices have shown a growth in

on-board memory allowing for further offloading onto these devices with regards to

data storage. By having larger amounts of onboard memory, training packets may

reside on the device reducing the costly data transfer times. For the GTX 780, an

estimate of over 1 million packets may reside on the device and still be able to run

the PBD algorithm.
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Table 3.2: Memory Footprint

Name Footprint (Bytes)

matrix p n × 1500
matrix b n × 256 × 4
BinStats (n × 1028) + (k × 3072) + 9216

PacketScoring (n × 8) + (k × 8) + 5120
Total (n × 2536) + (k × 3080) + 9216
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CHAPTER 4

ALTERNATIVE APPROACHES AND SOLUTIONS

Mask selection is the key to utilizing LiSPI effectively for a given network.

Because of the variability across different traffic patterns, it is not feasible to pre-

generate mask pairs that work across different systems. Therefore, each deployment

instance requires evaluation of different potential mask pairs. Evaluating each mask

pair requires the training and testing for effectiveness on data sets consisting of tens

to hundreds of thousands of packets. For example, on a fast, modern computer

(tested on a 4GHz AMD FX-8350 CPU), searching through the entire problem space

required roughly 4 weeks for a training set consisting of only 20,000 packets. If online

updates are desirable, this wait time cost is too high. During the wait time, the traffic

characteristics of the network may actually change before finding the best performing

mask pair. Therefore, instead of a brute-force approach, some form of analysis of

the traffic is required to try and hypothesize which sets of bit-patterns may work

best on the given training set. In [29], various sets of features were tested to cover

byte ranges that included all possible values [0-255] and splitting the byte value range

into 8 ranges [0,31],[23,63],...,[224,255]. A number of such heuristics approaches were

attempted, all of which required hand-tuning on a trial and error basis.
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Fortunately, the LiSPI algorithm is lightweight enough to be run in parallel

using GPUs and also has an attribute that makes the algorithm well suited to use a

genetic algorithm to search the solution space for strongly performing mask pairs. In

the following sections are descriptions of how a GPU is used to brute force search for

the optimal mask pair solution and also a genetic algorithm design ran on a CPU to

search for strong mask pairs within the solution space.

4.1 GPU Solution

The LiSPI algorithm is able to be sped up using the same approach as the

PBD algorithm, but another opportunity is available for further parallelization of the

algorithm in order to assure the best mask pairs are found given the bitmask and

bitmap sizes. A parallel brute force approach to finding the optimal mask pairs may

be implemented allowing for massive amounts of possible mask pairs to be computed

hundreds of times faster than a sequential brute force calculation.

4.1.0.3 Mask Pair Reduction

Recapping the LiSPI background from Chapter 2, an 8-bit length mask was

chosen for this thesis, yielding over 43 million combinations of 8-bit mask pairs (316

= 43,046,721). Looking further into the mask pairs, some redundancy was found as

about half of the mask pairs have a mirrored matching mask pair. For example, the

mask pair (XXXX0000, 1111XXXX) mirrors (1111XXXX, XXXX0000). Removal of

one of these pairs are justified since the resulting bitmap of these two mask pairs are

simply transposed versions of one another with the same attack detection and false
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