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ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree Doctor of Philosophy College/Dept. Engineering/Mechanical and

Aerospace Engineering

Name of Candidate Vijaya Krishna Rani

Title Analytical Investigation of Thermoacoustic Instabilities in

Premixed Combustion Systems

The primary objective of this dissertation is to develop and investigate various

analytical methods to predict thermoacoustic instabilities in premixed combustion

systems. The analytical models derived as part of this study are of four main types:

(1) Acoustically consistent, linear modal analysis method to predict the longitudinal

and transverse combustion instabilities in a dump combustor; (2) Novel level set

method for deriving flame surface-area response to incident acoustic fluctuations; (3)

Novel approximate analytical solutions to acoustic waves in inhomogeneous media;

and (4) Investigation of the limit-cycle behavior of nonlinear acoustic wave equation

with combustion source term.

The linear modal analysis method that was developed in this study, has a

number of novel and distinguishing features when compared to prior works on com-

bustion instability. (i) Combustion instabilities are a thermoacoustic phenomenon,

i.e. they are manifested as self-excited acoustic oscillations that are sustained by a

feedback loop between the acoustic perturbations and the flame heat-release fluctu-

ations. Therefore, first and foremost, an instability model must be able to predict

iv



the natural acoustic modes of the combustor in the absence of combustion. Our

model satisfies this criterion by successfully predicting the acoustic modes of ducts

with multiple discontinuities in cross-sectional area. Such a consistency testing of an

instability model had not been performed previously. (ii) New acoustically consistent

matching conditions with distinct forms for the purely axial and non-axial modes

were developed and applied at the zonal interfaces of a duct, whereas prior studies

employed the conventional mass, momentum, and energy balances at the interfaces.

For the purely axial modes, acoustic mass velocity and total pressure are mathced

across the interface while for non-axial modes, the continuity of acoustic velocity

and pressure fluctuations is applied. The new matching conditions are essential to

accurately predict the duct acoustic modes. (iii) Effects of edge conditions on the

linear modal analysis of ducts with area discontinuities are analyzed in great detail.

Edge conditions are constraints that need to be satisfied in addition to the matching

conditions at an area discontinuity. (iv) Through a novel approach, the effects of

the fluctuating heat-release source term in the acoustic wave equation are directly

incorporated into the modified axial wavenumbers in the combustion region. This

approach obviates the need for applying a separate matching condition across the

flame. (v) The analytical model presented in this work, is the first to account for

realistic mean flame shapes in combustion instability analysis, whereas prior models

assumed that combustion occurred in a cross-sectional plane of zero thickness.

A newG-equation level-set method was developed that describes flame surface-

area response to acoustic oscillations incident on the flame. This method presents

a different paradigm when compared to an approach that has existed for at least

v



two decades. In this method, we directly solve for the level set fluctuations G′ in

terms of velocity fluctuations, and relate the flame surface-area oscillations to G′,

whereas in the conventional f -approach, the level-set G is expressed as G(x, y, t) =

x − f(y, t) and a solution for f is sought. In the absence of turbulent flame-speed

fluctuations, the response functions from the present G-equation approach are in good

agreement with those from the conventional f -equation approach. However, when

turbulent flame-speed fluctuations are included, the two approaches differ, principally

in the flame response to axial velocity fluctuations. This G-equation approach is more

generalized since the effects of flame-speed fluctuations are reflected in both the axial

and tranverse velocity response functions; whereas in the f -equation approach, this

inclusion predominantly affects the axial velocity fluctuations.

As part of this work, an analytical Wentzel-Kramers-Brillouin (WKB)-type

approximation for a 2-D acoustic duct with axial gradients in temperature, axial

mean flow and duct cross-sectional area has been developed. Standard WKB method

uses two principal approximations: (i) the amplitude of the wave varies slowly com-

pared to its frequency and (ii) the mean properties vary slowly in space. The modified

WKB method developed in this study relaxes the latter assumption of slowly varying

mean properties. Using this novel WKB-type solutions along with the acoustically

consistent modal analysis framework that was developed earlier, we are able to com-

pute acoustic resonant frequencies as well as predict lonigtudinal unstable modes of

a duct with discontinuities, which has not been done before.

In this study, the effects of nonlinear acoustic and combustion source terms on

the limit-cycle behavior of thermoacoustic instabilities in a Rijke tube has also been
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CHAPTER 1

INTRODUCTION

Combustion instabilities are a significant concern when designing and operat-

ing combustors in a number of propulsion systems such as the low NOx gas turbines,

solid and liquid rocket motors, jet engine afterburners, and ramjets. Combustion

instabilities refer to the self-excited acoustic oscillations that are triggered by the

constructive interference between the flow perturbations in the combustor and the

flame heat-release fluctuations. The self-excited oscillations are sustained by a feed-

back loop between the combustor perturbations and the heat release fluctuations,

wherein the former generate the latter and the latter, in turn, pump energy into

the former. The persistent, high-amplitude pressure oscillations resulting from com-

bustion instability could compromise the structural integrity and performance of an

engine. Therefore, the ability to predict the unstable frequencies for a given com-

bustor configuration will facilitate the isolation and mitigation of these instabilities

using active and/or passive design modifications. Detailed experiments to map the

combustor stability boundaries are known to be cost- and time-intensive. Sufficiently

resolved numerical simulations are also computationally prohibitive due to the com-

plex coupling of turbulence, combustion, acoustics and multiphase flow.
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Figure 1.1: A new injector plate on the left and the same plate damaged due to

combustion instabilities on the right.

The design of gas-turbine combustors has been considerably improved in the

past decades to meet increasingly restrictive emission regulations. The major con-

cern of the emission control is on nitric oxides (NOx). Researchers have been working

seriously to develop low NOx combustors for gas turbines. So far, two approaches

have been taken. One involves various minor modifications to the conventional de-

signs, at the same time retaining the existing size and configuration. Therefore,

the improvements can be made without trespassing far outside the bounds of the

established technology. However, the end product is a tradeoff between the effec-

tiveness of emission control and the combustor performance. The other approach is

essentially a rejection of the traditional design philosophy based on heterogeneous

diffusion flames. Of the various advanced concepts now being actively studied, the

most promising ones appear to be lean-premixed (LPM) combustion, variable geom-

etry, and catalytic oxidation (Lefebvre, A. H., 1999). Among these developments,
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the concept of lean-premixed combustors, which are generally similar to combustion

system hardware used in conventional gas turbines, is believed to be the best solution.

In LPM combustion, the fuel and oxidizer are premixed upstream of the combustor.

Due to the lean-premixed condition, the temperature in the combustion chamber is

significantly reduced, consequently leading to the lower level of NOx emission.

While lean-premix technology shows promising prospect for the emission con-

trol of NOx, pressure oscillations driven by combustion have been a repeated problem

as the result of specific changes made to the combustor to accommodate the lean-

premix approach. Unlike diffusion-style combustors, most of the combustion air is

sent through the fuel injector in premix systems, eliminating the need for downstream

combustion air holes, which would otherwise provide acoustic damping that constrains

the occurrence of the oscillations (Richards, G.A., 2000). Furthermore, the coupling

between the heat- release and the acoustic perturbations is weak in diffusion systems

due to the distributed reaction associated with diffusion burning, while the likelihood

of this coupling is fairly high in LPM combustion systems. Slight disturbances in

pressure will create immediate variations in airflow, causing a subsequent change in

equivalence ratio. Near the lean combustion limit that is optimum for the operation

from the emission-control viewpoint, even minor changes in equivalence ratio can lead

to significant fluctuations in heat release, compared to the stoichiometric condition.

These variations can induce severe combustion instabilities and cause serious damage

to the engine. Since the 1970s, with the development of LPM systems, substantial

attention has been given to the causes of and potential solutions for combustion insta-

bility in gas turbine combustors. The passive control technique, for instance, acoustic
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liners, and Helmholtz resonators have been used to suppress the acoustic waves when

combustion instability occurs. Meanwhile, active control methods also have been

developed and have made some progress.

Two fundamental origins can explain the prevalence of combustion instability

in various systems (Culick, 1998): (1) an exceedingly small part of the available en-

ergy is sufficient to produce unacceptable large unsteady motions; (2) the processes

tending to attenuate unsteady motions are weak relative to driving energy. In ad-

dition, gas turbine combustor chambers are almost entirely closed, which prevents

the perturbations from traveling out. Therefore, it is implied that the possibility of

instabilities occurring in a newly designed gas-turbine combustor must be recognized

and anticipated. In order to design systems with stable combustion operation, it is

an essential to understand the characteristics of combustion instability.

The primary objective of this dissertation is to develop and investigate vari-

ous analytical methods to predict thermoacoustic instabilities in premixed combustion

systems. The analytical models derived as part of this study are of four main types:

(1) Acoustically consistent, linear modal analysis method to predict the longitudi-

nal and transverse combustion instabilities in a dump combustor; (2) Novel level

set method for deriving flame surface-area response to incident acoustic fluctuations;

and (3) Novel approximate analytical solutions to acoustic waves in inhomogeneous

media; and (4) Investigation of the limit-cycle behavior of nonlinear acoustic wave

equation with combustion source term. Each of these four topics forms a chapter

in this study. Each chapter addresses a fundamental problem in the study of com-

bustion instabilities and progressively applies the ideas and techniques developed in
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the prior chapter to upcoming chapters that tackle a different problem concerning

thermoacoustic instabilities.

1.1 Derivation of the Acoustic Wave Equation

Analytical investigation of combustion instabilities involves predicting the nat-

ural acoustic modes of the combustor and modeling the flame transfer function (FTF)

that relates the heat-release fluctuations to acoustic pressure and velocity perturba-

tions. In order to study the problem of combustion instabilities, we first derive the

acoustic wave equation with combustion source term from the governing mass, mo-

mentum and energy balance equations. The continuity equation is given by

∂ρ

∂t
+ ∇ • (ρu) = 0 (1.1)

where ρ is the fluid density and u is the flow velocity. We decompose the flow

variables into mean and fluctuating quantities (e.g., ρ = ρ + ρ′) yielding the mean

and fluctuating forms of the continuity equation.

∇ρ+ ρ∇ • u = 0 (1.2)

∂ρ′

∂t
+ ∇ρ′ • u + ∇ρ • u′ + ∇ρ′ • u′ + ρ∇ • u′ + ρ′∇ • u + ρ′∇ • u′ = 0 (1.3)

The inviscid momentum balance equation is

ρ

(
∂u

∂t
+ u •∇u

)
= −∇p (1.4)
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where p is the fluid pressure. Mean and fluctuating forms (upto first order) of the

momentum equation are

ρ

(
∂u

∂t
+ u •∇u

)
= −∇p (1.5)

ρ
∂u′

∂t
+ρ′

∂u′

∂t
+ρ(u•∇)u′+ρ′(u•∇)u+ρ′(u•∇)u′+ρ′(u′•∇)u+ρ(u′•∇)u′+ρ′(u′•∇)u′ = −∇p′

(1.6)

The energy balance equation written in terms of pressure with the viscous dissipation

terms dropped is [14]

∂p

∂t
+ u •∇p+ γp∇ • u = (γ − 1)q (1.7)

where γ is the ratio of specific heats and q is the heat-release rate per unit volume.

The mean and the fluctuating forms of the energy equation are

∂p

∂t
+ u •∇p+ γp∇ • u = (γ − 1)q (1.8)

∂p′

∂t
+u•∇p′+ u′ •∇p+ u′ •∇p′+γ(p•∇u′+p′ •∇u +p′ •∇u′) = (γ−1)q′ (1.9)

Multiplying Eq. (1.9) with 1
c2

(where c is the mean speed of sound) and taking the

time derivative of the resulting equation and subtracting it from the divergence of

(1.6), yields

1

c2

∂2p′

∂t2
−∇2p′ = F1 + F2 + F3 (1.10)
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where

F1 =∇ •
(
ρ
∂u′

∂t

)
+ ∇ • (ρ(u •∇)u′) + ∇ • (ρ(u′ •∇)u) + ∇ •

(
p′

c2 (u •∇)u

)
− 1

c2

∂

∂t
(u •∇p′)− 1

c2

∂

∂t
(u′ •∇p)− γ

c2

∂

∂t
(p∇ • u′)− 1

c2

∂

∂t
(p′∇ • u)

(1.11)

F2 =∇ •
(
p′

c2 (u′ •∇)u

)
+ ∇ •

(
p′

c2 (u′ •∇)u′
)
− 1

c2

∂

∂t
(u′ •∇p′)

− 1

c2

∂

∂t
(p′∇ • u′) + ∇ • (ρ(u′ •∇)u′) + ∇ •

(
p′

c2

∂u′

∂t

) (1.12)

F3 =
γ − 1

c2

∂q′

∂t
(1.13)

Equation (1.10) is an inhomogeneous acoustic wave equation where the left hand side

(LHS) is the standard wave part and the right hand side (RHS) contains the linear

source terms in F1, the nonlinear source terms in F2 and the combustion source term

in F3.
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CHAPTER 2

AN ACOUSTICALLY CONSISTENT INVESTIGATION OF

COMBUSTION INSTABILITIES IN A DUMP COMBUSTOR

2.1 Abstract

An acoustically consistent, linear modal analysis-based analytical method is

presented to predict the longitudinal and transverse combustion instabilities in a two-

dimensional (2-D) cartesian dump combustor. At first, rigorous acoustical analysis

(without combustion) is performed of two duct configurations with one and two dis-

continuities in cross-sectional area. Novel, acoustically consistent jump or matching

conditions are developed and applied at the duct cross-sectional interface(s), with

distinct forms for the purely axial and non-axial modes. The effects of uniform and

non-uniform mean flow, cross-sectional area ratio, as well as of different types of

boundary conditions on the duct acoustic modes are investigated. Acoustic modal

frequency predictions are in excellent agreement with the analytical and numerical re-

sults of Meissner [1]. In the second part, combustion instabilities of a 2-D, cartesian

dump combustor are investigated. The instability analysis employs the developed

acoustically consistent jump conditions, instead of the conventional mass, momen-

tum, and energy balance-based conditions. Effects of the fluctuating heat-release
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source term in the acoustic wave equation are incorporated directly into the longitu-

dinal wavenumber, obviating the need for a separate energy matching condition across

the flame. A detailed investigation of the parametric space and boundary conditions

affecting combustion instabilities is undertaken, and the consistency of the modal

analysis with the Rayleigh criterion is explicitly demonstrated. Further, the present

approach enables the consideration of arbitrary mean flame shapes in determining

the unstable modes. Instabilities are demonstrated for the fundamental longitudinal

mode and its harmonics, as well as for the fundamental transverse mode. Effects of

cross-sectional area ratio and flow Mach number on the unstable-mode growth rates

are also presented.

2.2 Introduction

Combustion instabilities are a significant concern when designing and operat-

ing combustors in a number of propulsion systems such as the low NOx gas turbines,

solid and liquid rocket motors, and jet engine afterburners. Combustion instabilities

are manifested as self-excited acoustic oscillations that are triggered by the construc-

tive interference between the flow perturbations in the combustor and the flame heat-

release fluctuations. The self-excited oscillations are sustained by a feedback loop

between the combustor perturbations and the heat release fluctuations, wherein the

former generate the latter and the latter, in turn, pump energy into the former. The

persistent, high-amplitude pressure oscillations resulting from combustion instability

could compromise the structural integrity and performance of an engine. Therefore,

the ability to predict the unstable frequencies for a given combustor configuration
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will facilitate the isolation and mitigation of these instabilities using active and/or

passive design modifications. Detailed experiments and well-resolved computations

to map the combustor stability boundaries are known to be cost- and time-intensive.

It is in this context that reduced-order analytical approaches are attractive

because such methods can provide reasonably accurate predictions in a time- and

cost-effective manner. Principally, these methods are based on utilizing the inher-

ently acoustic nature of combustion instabilities. Analytical investigation of combus-

tion instabilities entails two broad aspects: acoustics and combustion. The former

involves calculating the resonant frequencies of a given combustor configuration, while

the latter consists of deriving the flame response function and incorporating it into

the broader acoustic model to determine the unstable modes. Each of these aspects

is quite complex in and of itself, so we have adopted a step-by-step approach with

rigorous validation at every stage. This allows us to both study the individual as-

pects of physics in great detail and explore an extensive parametric space impacting

combustion instability.

The current study comprises a number of novel and distinguishing features

when compared to prior works on combustion instability, including that by one of

the current authors [4]. These features can be summarized as follows: (1) Rigorous,

a priori acoustical analysis of two different duct configurations with area disconti-

nuities is performed. The effects on acoustic mode predictions of a wide space of

parameters, non-uniform mean flow profiles, and various types of boundary condi-

tions are exhaustively explored. The impact of non-uniform mean velocity profile

on combustor acoustics has been investigated for the first time, where in both lami-
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nar parabolic and turbulent power-law profiles are considered; (2) Novel acoustically

consistent matching conditions are developed and applied at the zonal interfaces of

a duct, whereas the conventional mass, momentum, and energy balances were em-

ployed in prior studies [4]; (3) Effects of edge conditions on linear modal analysis of

ducts with area discontinuities are discussed in substantial detail. Edge conditions

are constraints that need to be satisfied in addition to jump conditions at an area dis-

continuity; and (4) Through a novel approach, effects of the fluctuating heat-release

source term in the acoustic wave equation are directly incorporated into the modified

axial wavenumbers in the combustion region. This approach obviates the need for

applying an energy matching condition across the flame.

Crucial to the reliable prediction of combustion instabilities is the accurate

determination of combustion chamber acoustics because it is seen that the unstable

frequencies are close to the natural frequencies of the combustor. In the absence

of combustion, the acoustic modes of a chamber with uniform cross-section are the

well-known normal modes. However, most combustion chambers have non-uniform

cross-sections (e.g., an area discontinuity in a dump combustor). The longitudinal,

transverse and mixed acoustic modes will therefore have to be determined for the

entire duct inclusive of area changes. Further, in combustors, one will have to include

in the acoustical analysis the regions of high heat release rates. In the proximity

of discontinuities such as a change in cross-section, the high-frequency mixed (axial-

transverse) modes also become significant. These mixed modes are generally evanes-

cent, i.e., they decay exponentially away from the discontinuity. The presence of

combustion could, however, excite one of these higher modes making them unstable.
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Linear modal analysis is a well-established approach to determine the unstable

modes of a combustion chamber. Dowling and Stow [5] provided a comprehensive,

tutorial-like review of this method in the context of lean premixed prevaporized gas

turbine combustors. Most prior works employing modal analysis belong to one of two

broad categories. The first consists of studies that include geometrical complexities

such as discontinuities in cross-section, but perform a 1-D analysis by considering only

the purely axial modes [6–8]. The coupling of axial and non-axial modes is ignored

primarily because of the analytical complexity it introduces. The second category

consists of studies that include both axial and non-axial modes, but consider only

simplified geometries whose resonant frequencies are the well-known normal modes,

e.g., a uniform cross-section duct [9,10]. In addition, the vast parametric space affect-

ing instabilities including the mean velocity profile, ratio of the areas of cross-section,

realistic flame shapes, boundary conditions, and the time-lag between pressure and

heat release fluctuations have not been thoroughly investigated, especially over a

broad frequency space consisting of axial and non-axial modes.

Hubbard and Dowling [11] performed a 1-D linear stability analysis of a simpli-

fied premixed gas turbine geometry. Two flame shapes, a 1-D planar flame and a 2-D

conical flame, were considered both occurring immediately downstream of the primary

premix duct. Entropy fluctuations were also included in the stability analysis. It is

shown that the time-lag between fuel injection and combustion is an important pa-

rameter, and instability occurs when the product of frequency and time-lag Ωτ ∼ 0.5,

which is when Rayleigh’s criterion is also satisfied. In a study similar to [11], Hub-

bard and Dowling [12] concluded that the form of the flame response function does
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not significantly impact the eigenmode predictions, but the phase lag Ωτ determines

whether a mode is stable or not. Dowling and Hubbard [13] also investigated the

instability characteristics of a number of 1-D combustor configurations including: (1)

a duct with rigid and open ends, (2) a duct with choked inlet and outlet boundaries

and a 1-D planar flame, (3) a duct with a bluffbody-stabilized 2-D flame, and (4) a

duct with a choked inlet and an open outlet and a 1-D planar flame.

Lieuwen [7] performed a 1-D linear modal analysis to determine the combustion

stability boundaries of a simplified low NOx gas turbine configuration. The turbine

geometry consisted of a fuel line, an inlet duct, and a larger cross-section combustion

chamber. A 2-D conical mean flame shape was considered in conjunction with a flame

response function that related flame heat-release fluctuations to the equivalence ratio

fluctuations at the flame. The flame response function also included a time-lag in

the form of an averaged convective time-scale that accounted for the mean distance

between the fuel line and the flame base. The parametric space investigated included

the variation of fuel-line length and location, mean equivalence ratio, and the inlet

Mach number.

You [14] performed a comprehensive investigation of combustion instabilities

in a 3-D combustion chamber with an axially varying circular cross-section into which

fuel was introduced through swirl injectors. This study is remarkable for the multi-

tude of the physics included in the instability analysis, including: 3-D acoustic fluctu-

ations comprising velocity, pressure, vorticity and entropy fluctuations; detailed flame

response function relating heat release fluctuations to the acoustic fluctuations using

separate response functions for the pressure fluctuations, as well as the three velocity
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fluctuations. Modal analysis was performed by discretizing the varying cross-section

chamber into a large number of axial segments, with matching conditions at the

interfaces between neighboring segments. The matching conditions included mass,

momentum and entropy balances across an interface. It is interesting that the effects

of heat release were incorporated into the modal analysis through the entropy match-

ing condition, and not through an explicit energy balance. While You’s study [14] is

quite comprehensive in its inclusion of physics, a thorough mapping of the parametric

space impacting instabilities, such as the effects of inflow Mach number and boundary

conditions, was not considered.

Rani [4] developed an analytical approach to predict the combustion instabil-

ities of a 2-D bluffbody stabilized flame. In that study [4], a 2-D modal analysis was

used in conjunction with a flame response function that related flame heat-release

fluctuations to those in the flame surface area. A detailed G-equation approach was

used to derive the flame response function. The fluctuating field included entropy

and vorticity fluctuations in addition to acoustic fluctuations. Mean flow and tem-

perature and mean heat-release rate, needed as inputs to the model, were obtained

from highly resolved 2-D large eddy simulation (LES) data for the bluffbody flame.

Reasonable quantitative agreement was found between the modal analysis and LES

instability predictions.

The principal objective of this study is to develop a reduced-order analyti-

cal model to determine the combustion stability characteristics of a 2-D cartesian

dump combustor. To this end, an acoustically consistent linear modal analysis-based

method is presented. Prior to determining the combustion instabilities, a detailed
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investigation was undertaken of the acoustics of ducts with discontinuities in cross-

section. Using linear modal analysis, the axial, transverse and mixed acoustic modes

were determined for two duct configurations with one and two area discontinuities.

The effects of uniform and non-uniform mean flow, mean inflow Mach number, cross-

sectional area ratio, as well as of the different types of boundary conditions on the

duct acoustic modes were investigated. For the case with no mean flow and closed-

closed boundary conditions at the duct inlet and outlet, the current acoustic mode

predictions are compared with those of Meissner [1]. Meissner used a 1-D impedance-

based analytical approach to determine the longitudinal acoustic modes, and numer-

ical simulations based on a forced oscillator method to compute the non-longitudinal

modes. Excellent agreement was observed for the axial, transverse, as well as the

mixed modes. The novel jump or matching conditions used at the cross-sectional

interface(s) are such that the analytically known dispersion relations governing the

acoustic modes of ducts with discontinuities are consistently recovered. This is the

reason for characterizing the linear modal analysis developed in this study as acous-

tically consistent.

Building upon the detailed acoustical analysis, combustion instabilities of a

2-D cartesian dump combustor are investigated. Conventionally, to determine the

unstable modes, the homogeneous acoustic wave equation is solved for the acoustic

fluctuations, and the effects of combustion are incorporated a posteriori using an

explicit energy matching condition across the flame. In this study, a novel approach is

presented in which the inhomogeneous wave equation with the fluctuating heat-release

source term is directly solved. As a result, the combustion effects are incorporated

15



into the modified axial wavenumbers in the combustion region, thereby obviating

the need for applying an energy matching condition across a presumed 1-D planar

flame. This approach is validated using the study of Yu et al. [2], who studied

the combustion instability of a dump combustor using both experiments and a 1-D

linear modal analysis. It is seen that the current predictions show good agreement

with the Yu et al. experiments. Finally, the effects of a wide range of parameters

on combustion instability have been studied, including mean flow Mach number,

cross-sectional area ratio, flame length, and the time-lag between the acoustic and

heat-release fluctuations in the flame response function.

2.3 Theory

In linear modal analysis of acoustics and combustion instabilities, the funda-

mental governing equation is the acoustic wave equation (Eq. (1.10)). We begin by

considering a generic, linear inhomogeneous acoustic wave equation of the form

1

c2

D
2
p′

Dt2
−∇2p′ = f (2.1)

where

D

Dt
=

∂

∂t
+ u •∇,

u is the mean velocity vector, p′ represents the acoustic pressure oscillations, c is the

mean speed of sound, and f is a generic linear source term that may include effects

such as non-uniform mean flow and fluctuating heat release. For the purposes of
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linear modal analysis, mean flow is considered to be in the axial (x-)direction, i.e.

u = u(y) êx, where u(y) accounts for non-uniform mean velocity such as the laminar

parabolic profile or turbulent power-law profile.

Most combustion instability studies only consider the homogeneous form of

Eq. (2.1), which imposes two significant restrictions. First, such an approach would

mean that one can only consider a uniform mean flow. Second and more important in

the context of predicting combustion instabilities, an explicit “energy matching con-

dition” will have to be employed across the flame. The use of the energy matching

condition restricts the flame shape to a few idealized forms—e.g., a 1-D planar flame

occurring at a specified axial location. The planar flame approach, in turn, is based on

the compact flame assumption. In our approach, we avoid both the above restrictions

by directly solving the inhomogeneous wave equation Eq. (2.1) with the appropriate

source term(s). The most significant advantage of this approach is that source terms

due to non-uniform mean flow and to fluctuating heat release are directly incorpo-

rated into the axial wavenumber, obviating the need for a separate energy matching

condition.

The theory section consists of two main parts: Acoustics (Section 2.3.1),

and Combustion Instabilities (Section 2.3.2). In the discussion on acoustics (Sec-

tion 2.3.1), we begin by presenting the generic forms of acoustic fluctuations for a

2-D cartesian duct, but without specifying the form of the axial wavenumbers in these

fluctuations. This is because axial wavenumbers depend on the nature of inhomo-

geneity (or the source term) in the acoustic wave equation. Subsequently, the specific

forms of axial wavenumbers are presented for cases with uniform and non-uniform

17



mean velocity profiles. This is followed by the linear modal analysis to determine the

acoustics of two ducts with one and two discontinuities in cross-section. A detailed

discussion on the “edge conditions” accounting for the velocity singularities at the cor-

ners of the cross-sectional interface(s) is also presented. In the section on combustion

instabilities (Section 2.3.2), the approach for the acoustically consistent combustion

instability analysis of a 2-D dump combustor is presented, where in the wave equa-

tion with the fluctuating heat-release source term is considered. A flame response

function is used to relate the fluctuating heat release to the fluctuating axial velocity,

but with a time-lag. In solving the wave equation, a modified axial wavenumber is

derived that accounts for heat release fluctuations in the combustion zone.

2.3.1 Acoustics

2.3.1.1 Generic Acoustic Fluctuation Forms

Acoustic pressure fluctuations in a 2-D cartesian, uniform cross-section duct

can be written as

p′(x, y, t) = eiΩt
∞∑
n=0

(
A+
n e

ik+
n x + A−n e

ik−n x
)

cos

(
2nπ

S
y

)
(2.2)

where n is the transverse mode index, A±n and k±n are the amplitudes and axial

wavenumbers, respectively, of the waves propagating in the positive and negative

x-direction, and S is the duct height.
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Density fluctuations (ρ′) due to p′ are given by

ρ′(x, y, t) =
p′(x, y, t)

c2 =
1

c2 e
iΩt

∞∑
n=0

(
A+
n e

ik+
n x + A−n e

ik−n x
)

cos

(
2nπ

S
y

)
(2.3)

The axial component of fluctuating velocity u′(x, y, t) can be derived from the lin-

earized (inviscid) axial momentum equation:

∂u′

∂t
+ u

∂u′

∂x
= −1

ρ

∂p′

∂x
(2.4)

Using Eq. (2.2) in (Eq. (2.4)), u′(x, y, t) can be obtained as

u′(x, y, t) = −1

ρ
eiΩt

∞∑
n=0

(
k+
n

Ω + uk+
n

A+
n e

ik+
n x +

k−n
Ω + uk−n

A−n e
ik−n x

)
cos

(
2nπ

S
y

)
(2.5)

Similarly, the transverse component of velocity fluctuations v′(x, y, t) can be

derived from the linearized transverse momentum equation:

∂v′

∂t
+ u

∂v′

∂x
= −1

ρ

∂p′

∂y
(2.6)

giving us

v′(x, y, t) =
1

ρ
eiΩt

∞∑
n=0

(
1

Ω + uk+
n

A+
n e

ik+
n x +

1

Ω + uk−n
A−n e

ik−n x

)
2nπ

S
sin

(
2nπ

S
y

)
(2.7)

Equations Eq. (2.2), Eq. (2.3), Eq. (2.5) and Eq. (2.7) represent the generic

forms of acoustic fluctuations whose axial wavenumbers, k±n , are yet unknown. The
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forms of k±n depend upon the specific inhomogeneity in the wave equation Eq. (2.1),

and are demonstrated below for various cases.

2.3.1.2 Acoustic Fluctuations with Uniform Mean Flow

For the case of uniform axial mean flow without combustion, Eq. (2.1) can be

written in 2-D cartesian coordinates as [4]

1

c2

∂2p′

∂t2
+

2M

c

∂2p′

∂t∂x
+ (M

2 − 1)
∂2p′

∂x2
− ∂2p′

∂y2
= 0 (2.8)

where M = u/c is the mean flow Mach number. Equation Eq. (2.8) can be solved for

p′ using separation of variables along with the hard-wall boundary conditions in the

transverse direction, i.e. dp′/dy = 0 at y = ±S/2, where S is the duct height. This

gives us the form of p′ as shown in Eq. (2.2), where the axial wavenumbers specific

to uniform mean flow are

k±n =

ΩM
c
∓
√

Ω2

c2
− (1−M2

)(2nπ
S

)2

1−M2 (2.9)

Equations Eq. (2.2), Eq. (2.3), Eq. (2.5) and Eq. (2.7) coupled with Eq. (2.9) provide

the forms of p′, ρ′, u′ and v′ for the case of uniform mean flow.
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2.3.1.3 Acoustic Fluctuations with Non-Uniform Mean Flow

In this section, we derive the specific form of the axial wavenumbers for the

case of non-uniform axial mean flow. For this case, wave equation Eq. (2.1) becomes

1

c2

∂2p′

∂t2
+

2M(y)

c

∂2p′

∂t∂x
+
[
M

2
(y)− 1

] ∂2p′

∂x2
− ∂2p′

∂y2
= 2ρ

du

dy

∂v′

∂x
(2.10)

where u = u(y) and consequently M = M(y). Two mean velocity profiles, namely

laminar parabolic and turbulent power-law profiles, are considered.

First, we present the derivation for the case of laminar parabolic velocity profile

given by

u(y) = α

(
S2

4
− y2

)
(2.11)

Here α = 6 Mbulk c/S
2, where Mbulk is the mean Mach number based on the bulk

mass flow. We substitute into Eq. (2.10) the mean velocity profile given by Eq. (2.11),

as well as the following fluctuation forms:

p′ = eiΩt An e
iknx cos (kyy) (2.12)

ρ′ =
1

c2 e
iΩt An e

iknx cos (kyy) (2.13)

u′ = −1

ρ
eiΩt

kn
Ω + ukn

An e
iknx cos (kyy) (2.14)

v′ =
1

ρ
eiΩt

1

Ω + ukn
An e

iknx ky sin (kyy) (2.15)

where kn is the axial wavenumber to be determined and ky = 2nπ
S

is the wavenumber

of the nth transverse mode. The above substitutions yield the following equation for
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kn:

cos(kyy)

(
k2
n + k2

y −
Ω2

c2 −
knΩS2α

2c2 − S4k2
nα

2

16c2

)
+ cos(kyy)

(
2kΩαy2

c2 +
S2k2

nα
2y2

2c2 − k2
nα

2y4

c2

)
=

sin(kyy)

[
−4iknkyy

Ω + α
(
S2

4
− y2

)
kn

]
(2.16)

It can be seen from Eq. (2.16) that for uniform mean flow, we recover Eq. (2.9).

For non-uniform mean flow and n = 0 (i.e., for purely axial modes), Eq. (2.16) is

quadratic in the axial wavenumber kn, which can be solved to yield:

k±0 =

ΩMbulk

c
∓
√

Ω2

c2

(
1− 1

5
M

2

bulk

)
1− 6

5
Mbulk

(2.17)

By comparing Eq. (2.17) with Eq. (2.9) for n = 0, one can see the effects of the laminar

parabolic profile on the wavenumbers of the purely axial modes. For n 6= 0, to solve for

kn, we multiply Eq. (2.16) with cos(kyy) and integrate from −S
2

to S
2
. Subsequently,

on the LHS of Eq. (2.16), we utilize the orthogonality of the cosine function, but the

integration on the RHS can only be performed numerically. Therefore, the expression

for kn when n 6= 0 is not explicitly provided here.

The procedure discussed above is also used to compute the axial wavenumbers

for the turbulent mean velocity profile given by

u(y) = Mbulk c

(
1− 4y2

S2

) 1
7

(2.18)
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Equations Eq. (2.2), Eq. (2.3), Eq. (2.5) and Eq. (2.7) coupled with the axial wavenum-

bers derived above provide the forms of p′, ρ′, u′ and v′ for the case of non-uniform

mean flow. The effects of including non-uniform mean flow on duct acoustics are

demonstrated in Section 2.4.1.4 for both the laminar and turbulent mean velocity

profiles. It will be seen that for a given bulk mean Mach number, there is not a

significant difference between the acoustic mode predictions for the uniform and non-

uniform mean flow cases. This conclusion is particularly significant when predicting

combustion instabilities.

We now discuss the modal analysis for determining the acoustic modes of

ducts with discontinuities. This a priori acoustics exercise is crucial in order to have

confidence in the subsequent combustion instability analysis.

2.3.1.4 Fluctuations Forms for Ducts with Discontinuities

Ducts with one and two discontinuities in cross-section, shown in Figs. Fig-

ure 2.1 and Figure 2.2 respectively, are considered for the acoustic analysis. These

duct configurations were chosen so as to compare our modal predictions with the

analytical and numerical data of Meissner [1].
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Figure 2.1: Geometry of duct with single discontinuity. Duct dimensions L1 = 0.3m
and L2 = 0.7m are chosen from Meissner [1]. Coordinate axes are also shown.

Duct with Single Discontinuity

The pressure, density and velocity fluctuations for the duct in Fig. Figure 2.1 are:

p′β(x, y, t) = eiΩt
∞∑
n=0

(
A+
n,βe

ik+
n,βx + A−n,βe

ik−n,βx
)

cos

(
2nπ

Sβ
y

)
ρ′β(x, y, t) =

1

c2
β

eiΩt
∞∑
n=0

(
A+
n,βe

ik+
n,βx + A−n,βe

ik−n,βx
)

cos

(
2nπ

Sβ
y

)
u′β(x, y, t) = − 1

ρβ
eiΩt

∞∑
n=0

(
k+
n,β

Ω + uβk
+
n,β

A+
n,βe

ik+
n,βx +

k−n,β
Ω + uβk

−
n,β

A−n,βe
ik−n,βx

)
cos

(
2nπ

Sβ
y

)
v′β(x, y, t) =

1

ρβ
eiΩt

∞∑
n=0

(
β

Ω + uβk
+
n,β

A+
n,βe

ik+
n,βx +

β

Ω + uβk
−
n,β

A−n,βe
ik−n,βx

)
2nπ

Sβ
sin

(
2nπ

Sβ
y

)
(2.19)

where β = 1, 2 is the zonal index.

As discussed in the previous sections, the axial wavenumbers k±n,β will assume

the appropriate form depending upon the nature of the source term in the wave

equation. The unknown coefficients in Eq. (2.19) are A±n,β, β = 1, 2.
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Figure 2.2: Geometry of duct with two discontinuities. Duct dimensions are L1 =
0.475m, L2 = 0.05m and L3 = 0.520m (Meissner [1]). Coordinate axes are also shown.

Duct with Two Discontinuities

The fluctuating pressure, density and velocity in zones 1, 2 and 3 (see Figure 2.2)

are similar to those in Eqs. (2.19). The unknown coefficients for this case are A±n,β,

with β = 1, 2, 3. The necessary equations to solve for the unknown coefficients are

obtained from the various boundary and matching conditions. Since the imperme-

ability boundary condition in the transverse direction has already been applied (see

Eq. (2.2)), we have at our disposal the inlet and exit boundary conditions, as well as

the matching conditions at zonal interfaces.

2.3.1.5 Edge Conditions

The velocity fluctuation forms in Eq. (2.19) are fundamentally valid for uniform

cross-section ducts. Therefore, when using these forms for ducts with discontinuities,

one has to impose additional constraints at the zonal interface(s) (see Figure 2.1 and

Figure 2.2). For the duct in Figure 2.1, u′1 and v′1 should satisfy the following interface
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boundary conditions in addition to the hard-wall boundary condition at y = ±S1/2:

u′1(0−, y) = 0, y ∈
[
S2

2
, S1

2

]
and y ∈

[
−S1

2
,−S2

2

]
(2.20)

v′1(0−, y) = 0, y ∈
[
S2

2
, S1

2

]
and y ∈

[
−S1

2
,−S2

2

]
(2.21)

u′1(0, y) = u′2(0, y), y ∈
[
−S2

2
, S2

2

]
(2.22)

Further, the following edge conditions should also be satisfied at the interface corner

points in Figure 2.1:

u′1

(
0,±S2

2

)
= u′2

(
0,±S2

2

)
= 0 (2.23)

v′1

(
0,±S2

2

)
= v′2

(
0,±S2

2

)
= 0 (2.24)

Satisfying the edge conditions is necessary in order to obtain a unique fluctuating

velocity field at the interface [15]. It is evident that the fluctuation forms in Eq. (2.19)

do not satisfy the above constraints Eq. (2.20)-Eq. (2.24).

According to Mittra and Lee [16], the criterion for a fluctuating field quantity

to be consistent with the edge condition is that the integral of the field energy in the

neighborhood of the interface corner point be finite. This criterion can be written as

∫
V

|u|2 dV → 0 as σ → 0 (2.25)
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where σ is the distance from the edge (see Figure 2.3), u is the velocity vector, and the

differential volume dV = σdσdφdz is defined in terms of local cylindrical coordinates

with the edge as the origin.

b

σ

θ

Figure 2.3: Corner of an interface where edge condition is applied.

Mittra and Lee [16] showed that the implication of Eq. (2.25) is that the

fluctuating velocities u′ and v′ should not grow more rapidly than σ−1+η as σ → 0,

where η > 0 is determined by the internal wedge angle θ as shown in Figure 2.3.

Therefore, for the solution to converge

u′(σ), v′(σ) ∼ O(σ−1+η)

Collins [17] provided an the expression for η in case of a wedge with an internal angle

θ as

η =
π

2π − θ
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For the ducts under consideration, θ = π
2
, hence η = 2

3
. Therefore

u′(σ), v′(σ) ∼ O(σ−
1
3 )

In order that the interface boundary and edge conditions are satisfied, Hermentcov-

schi and Miles [15] rewrote the interface velocity using Gegenbauer polynomials as

the basis functions in the y-direction since these polynomials are naturally defined

in the interval y ∈ [−1, 1], and can be scaled to y ∈ [−S1/2, S1/2]. It is, how-

ever, not necessary that one replace the Fourier basis functions with the Gegenbauer

polynomials. In fact, it can be shown that the above additional constraints can be

satisfied by appropriately modifying the amplitudes only—e.g., by modifying A±n,{1,2}

in Eq. (2.19) [16, 18, 19]. This is rigorously demonstrated in Appendix A. The pre-

ceding realization is important in the context of a linear modal analysis where the

final assembled system of equations is homogeneous, and one is only interested in the

dispersion relation obtained by equating the determinant of the coefficient matrix to

zero, i.e. one does not explicitly solve for the amplitudes. Consequently, the modified

amplitudes do not impact the overall linear stability analysis. However, one has to

be mindful of the edge conditions when performing a non-linear analysis.

2.3.1.6 Zonal Matching Conditions

This section presents the acoustically consistent matching conditions that are

applied at the interface(s) between zones in a duct with discontinuities in cross-

section. There are important differences between the matching conditions used in
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the current study and those used conventionally in combustion instability studies.

Firstly, in order to be acoustically consistent, separate matching conditions are ap-

plied for the purely axial modes, and the non-axial (transverse and mixed) modes [20].

By acoustical consistency, we mean that by using the current matching conditions,

one consistently recovers the analytical dispersion relations governing the purely ax-

ial modes for ducts with discontinuities. Secondly, the current matching conditions

eliminate the problem of overdetermined system of equations, i.e. a situation where

the number of matching and boundary conditions exceeds the number of unknown

amplitudes. This predicament arises when the momentum conservation matching

condition is applied at the zonal interface, which gives rise to three equations when

only one is needed. Thirdly, an explicit energy matching condition is not needed since

the wave equation is directly solved with the heat release source term included in it.

Acoustic Velocity Matching

Velocity matching condition for the purely axial modes is prescribed in terms of the

continuity of acoustic mass velocity V [20, 21], which is defined as

V =

∫
S

ρu dy (2.26)

where ρ and u are instantaneous density and streamwise velocity, respectively. The

continuity of mass velocity at the interface between zones 1 and 2 is given by

∫
S1

ρ1u1 dy =

∫
S2

ρ2u2 dy (2.27)
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Linearizing Eq. (2.27) yields

∫
S1

[ρ′1u1 + ρ1u
′
1] dy =

∫
S2

[ρ′2u2 + ρ2u
′
2] dy (2.28)

It is to be noted that when a fluctuating quantity is integrated over the cross-section of

the corresponding zone, e.g. u′1 is integrated over S1 (
∫
S1
u′1 dy), only the zeroth-mode

(purely axial) contribution remains. Accordingly, the velocity matching condition for

the purely axial modes is given by:

[ρ
(0)
1 u1 + ρ1 u

(0)
1 ] S1 = [ρ

(0)
2 u2 + ρ2 u

(0)
2 ] S2 (2.29)

where the superscript (0) represents the zeroth mode (n = 0) of a fluctuating quantity.

Writing Eq. (2.29) in terms of the amplitudes gives the following form of the velocity

matching condition for the purely axial modes.

S1

{(
M1

c1

− k+
0,1

Ω + u1k
+
0,1

)
eik

+
0,1xA+

0,1 +

(
M1

c1

− k−0,1
Ω + u1k

−
0,1

)
eik
−
0,1xA−0,1

}
=

S2

{(
M2

c2

− k+
0,2

Ω + u2k
+
0,2

)
eik

+
0,2xA+

0,2 +

(
M2

c2

− k−0,2
Ω + u2k

−
0,2

)
eik
−
0,2xA−0,2

} (2.30)

For the non-axial modes, the acoustic velocity matching condition at the zonal

interface is inspired by the pioneering study of Karal [20], who investigated acoustical

impedances in waveguides with cross-sectional discontinuities. Based on Karal [20],

one can write the velocity matching condition for non-axial modes as

u′1 = u′2 (2.31)
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It is relevant to mention here that prior works have applied an alternative set of

matching conditions based on the conservation of mass and axial momentum over a

differential control volume spanning the interface. A brief derivation of this alternative

approach and a discussion of its implications are provided in Appendix B. However,

Eq. (2.31) is more rigorous since it ensures the uniqueness of both the mean and

fluctuating velocities at the interface. Equation Eq. (2.31) contains an infinite series

summation on both the LHS and RHS. We reduce this complexity by utilizing the

orthogonality property of the cosine function. Multiplying Eq. (2.28) with cos
(

2Nπ
S1
y
)

(N > 0 is an integer), and integrating over y ∈ [−S1/2, S1/2] yields

S1

2

{(
k+
N,1

Ω + u1k
+
N,1

)
eik

+
N,1xA+

N,1 +

(
k−N,1

Ω + u1k
−
N,1

)
eik
−
N,1xA−N,1

}
=

N∑
n=0

αn

{(
k+
n,2

Ω + u2k
+
n,2

)
eik

+
n,2xA+

n,2 +

(
k−n,2

Ω + u2k
−
n,2

)
eik
−
n,2xA−n,2

} (2.32)

where

αn =

S1
2∫

−S1
2

cos

(
2nπ

S2

y

)
cos

(
2Nπ

S1

y

)
dy (2.33)

Equation Eq. (2.32) is the final form of the velocity matching condition for the non-

axial modes.

Acoustic Pressure Matching

Acoustic pressure matching is achieved through the continuity of the total pressure

(static + dynamic) at the zonal interfaces [21]. Again, separate matching conditions

are needed for the purely axial and non-axial modes.
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For the axial modes, the pressure matching condition (for the duct in Fig-

ure 2.1) is written as [20]

∫
S1

{
p1 +

1

2
ρ1u

2
1

}
dy =

∫
S1

{
p2 +

1

2
ρ2u

2
2

}
dy (2.34)

which upon linearization yields

∫
S1

{
p′1 + ρ1 u1 u

′
1 +

1

2
ρ′1 u1 u1

}
dy =

∫
S1

{
p′2 + ρ2 u2 u

′
2 +

1

2
ρ′2 u2 u2

}
dy (2.35)

Substituting the appropriate fluctuating forms into the above equation and integrating

results in different behaviors on the LHS and RHS. On the LHS of Eq. (2.35), only

the zeroth mode terms remain since the fluctuating quantities in zone 1 are being

integrated across S1; whereas on the RHS, fluctuations in zone 2 are being integrated

across S1. Consequently, both purely axial (n = 0) and non-axial modes (n 6= 0)

contribute to the RHS.

For the purely axial modes, the pressure matching condition is obtained by

retaining only the n = 0 terms on the RHS of Eq. (2.35), as follows:

(
M

2
1

2
+ 1− u1

k+
0,1

Ω + u1k
+
0,1

)
A+

0,1 +

(
M

2
1

2
+ 1− u1

k−0,1

Ω + u1k
−
0,1

)
A−0,1 =(

M
2
2

2
+ 1− u2

k+
0,2

Ω + u2k
+
0,2

)
A+

0,2 +

(
M

2
2

2
+ 1− u2

k−0,2

Ω + u2k
−
0,2

)
A−0,2

(2.36)
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For the non-axial modes, the acoustic pressure matching condition is given

by [21]

p1 +
1

2
ρ1u

2
1 = p2 +

1

2
ρ2u

2
2 (2.37)

which upon linearization can be written as

p′1 + ρ1 u1 u
′
1 +

1

2
ρ′1 u1 u1 = p′2 + ρ2 u2 u

′
2 +

1

2
ρ′2 u2 u2 (2.38)

Substituting the appropriate fluctuation forms, multiplying Eq. (2.38) with cos
(

2Nπ
S1
y
)

(N > 0 is an integer), and integrating over y across the cross-section S1 yields

S1

2

{(
M

2

1

2
+ 1− u1

k+
N,1

Ω + u1k
+
N,1

)
A+
N,1 +

(
M

2

1

2
+ 1− 2u1

k−N,1
Ω + u1k

−
N,1

)
A−N,1

}
=

N∑
n=0

αn

{(
M

2

2

2
+ 1− u2

k+
n,2

Ω + u2k
+
n,2

)
A+
n,2 +

(
M

2

2

2
+ 1− u2

k−n,2
Ω + u2k

−
n,2

)
A−n,2

}

(2.39)

where αn is same as that in Eq. (2.33). The matching conditions are similarly formu-

lated for zones 2 and 3 of the two-discontinuity duct (see Figure 2.2).

2.3.1.7 Inlet and Exit Boundary Conditions

In this study we considered three kinds of boundary conditions (BCs): closed,

open and choked. Closed boundary condition is where the normal (to the boundary)

derivative of pressure is zero: dp′

dx
= 0. Open boundary condition is a specified pressure

boundary condition. This means that pressure fluctuations at this boundary are zero:

p′ = 0. Choked boundary condition is used when the flow is choked at the outlet, and

33



is given by [4]: 2u′

u
+ ρ′

ρ
− p′

p
= 0. After utilizing the matching conditions, we apply the

chosen boundary condition at the inlet/outlet boundary. The BCs are then simplified

into algebraic equations using the orthogonality property.

2.3.1.8 Equation Assembly and Solution

The matching and boundary conditions are assembled to get a homogeneous

matrix system of equations of the form CA = 0, where C is the coefficient matrix

and A is the vector of unknowns containing the modal amplitudes A±n . A unique

and non-trivial solution to CA = 0 exists only when det(C) = 0, which gives us

a dispersion relation that can be solved to obtain the modal frequencies. Next, we

present the modal analysis to determine the combustion instabilities.

2.3.2 Combustion Instabilities

To predict combustion instabilities, we consider the inhomogeneous wave equa-

tion with the fluctuating heat-release source term [4]:

1

c2

D
2
p′

Dt2
−∇2p′ =

γ − 1

c2

Dq′

Dt
(2.40)

where q′ is the fluctuating volumetric heat-release rate. The fluctuating heat-release

rate q′ is expressed in terms of acoustic fluctuations using the flame response function

(FRF) adopted from Dowling [5]. Incorporating an additional time-lag factor into
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the FRF of Dowling [5] gives us

q′

q
=
u′(t− τ)

u
(2.41)

where q is the mean volumetric heat release rate which is non-zero only in the com-

bustion zone, u′(t − τ) = exp(−iΩτ) u′(t), and τ is the time-lag between the heat

release (q′) and velocity (u′) perturbations. Substituting Eq. (2.41) into the RHS of

Eq. (2.40) gives

γ − 1

c2

Dq′

Dt
=
γ − 1

c2 q

[
1

u

∂

∂t
u′(t− τ) +

∂

∂x
u′(t− τ)

]
(2.42)

Before proceeding further with the combustion instability analysis, it is perti-

nent to discuss the combustor geometry under consideration. The geometry of the 2-D

dump combustor is shown in Figure 3.1. The combustor is divided into three zones:

an inflow zone (zone 1), the combustion zone (zone 2), and the outflow zone (zone 3).

The mean flame shape being considered is shown in zone 2 in Figure 3.1. Therefore,

the fluctuating heat release source term on the RHS of Eq. (2.40) is non-zero only in

zone 2, and is absent in zones 1 and 3. We assume a uniform mean velocity profile,

which is reasonable since it will be seen that for a given bulk mean Mach number,

the mean velocity profile does not significantly affect the duct acoustics.

The acoustic fluctuation forms in zones 1 and 3 are known completely, and

are given in Section 2.3.1.1, with the axial wavenumbers corresponding to those for

a uniform mean flow. Our goal is to determine the modified axial wavenumbers
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for the combsution zone (i.e. zone 2). To this end, we follow the same procedure

as that outlined in Section 2.3.1.3. Substituting the fluctuation forms Eq. (2.12)-

Eq. (2.15) into Eq. (2.40) and utilizing the orthogonality of the cosine function yields

a quadratic equation governing the combustion-modified axial wavenumbers. The

resulting modified wavenumbers that account for the heat release fluctuations are

given by:

k±n,2 =
1

2ρ2(c2
2 − u2

2)
e−iΩτ (G∓H) (2.43)

where G and H are given by

G = 2ρ2u2ΩeiΩτ − i(γ − 1)q

H =
√
−q2(γ − 1)2 − 4i q ρ2 u2 Ω eiΩτ − 4 ρ2

2 c
2
2 e

2iΩτ (c2
2 k

2
y − u2

2 k
2
y − Ω2)

and ky = 2nπ/S2. The mean volumetric heat release rate, q, for the mean flame

shape under consideration is given by

q =
Q

S2Lf
(2.44)

where Q is the total heat release rate is obtained by integrating over the flame surface

area:

Q = 2ρ2u2cp(T 2 − T 1)

S1
2∫

0

(
y − S1

2

)(−2Lf
S1

)
dy (2.45)
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Here T 1, T 2 are the mean temperatures in zones 1 and 2, ρ2 and u2 are the mean

density and axial velocity in zone 2, and cp is the specific heat at constant pressure.

The factor 2 in Eq. (2.45) accounts for the flame above and below the duct centerline.

zone 1

zone 2

zone 3

y = S1

2

y = −S1

2

y = S2

2

y = −S2

2

x

y

O

L1 L2

Lf

Figure 2.4: Geometry of the combustor with the mean flame shape indicated in red.
Duct dimensions L1 = 0.3m and L2 = 0.7m. Coordinate axes are also shown.

2.4 Results

This section again consists of two main parts: (1) Acoustics (Section 2.4.1),

and (2) Combustion Instabilities (Section 2.4.2). In the former, we present the results

from the purely acoustical analysis of the two ducts under consideration. In the latter,

we present the results from the combustion instability analysis of a dump combustor.

2.4.1 Acoustics

Motivated by the acoustics study of Meissner [1], two duct configurations were

considered with one and two discontinuities in cross-sectional area. While Meissner

only studied duct acoustics for closed-closed boundary conditions, i.e. with no mean
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flow, this study also considered open-open (with and without mean flow). The various

acoustic cases considered in this study are as follows:

• Case 1(a)–Single discontinuity duct with no mean flow and closed-closed bound-

ary conditions (BCs) at the inlet and outlet.

• Case 1(b)–Single discontinuity duct with uniform mean flow and open-open

BCs.

• Case 2–Two discontinuity duct with no mean flow and closed-closed BCs.

• Case 3–Single discontinuity duct with non-uniform mean flow and open-open

BCs.

2.4.1.1 Case 1(a)

Here we consider a single discontinuity duct with no mean flow and closed-

closed boundary conditions (BCs) at the inlet and outlet. The frequency space ex-

plored includes the first six axial modes (Ω1,0 to Ω6,0), the first transverse mode (Ω0,1)

and the first oblique mode (Ω1,1). All frequencies are normalized with the fundamen-

tal axial mode Ω0 of a uniform cross-section duct with the same length (L1 + L2) as

the duct under consideration. Modal frequencies as a function of the cross-sectional

area ratio S2/S1 are shown in Figure 2.5. Axial mode frequencies are compared

with the analytical predictions of Meissner [1], while the transverse and oblique mode

frequencies are compared with the numerical data of Meissner.

It can be seen from Figure 2.5 that the current axial modes are identical

to those of Meissner. This is to be expected because for the purely axial modes,
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dispersion relation obtained from det(C) = 0 is identical to that in Meissner’s study,

who used a 1-D impedance approach to determine the dispersion relation. The fifth

axial mode (Ω50) in Figure 2.5(c) is interesting as it does not depend on S2/S1.

Meissner concluded that this is an artifact of the specific value of the zonal length

ratio considered. Predictions of the transverse and oblique modes from the current

theory also agree quite well with the corresponding numerical results of Meissner, with

the peak deviation being less than 5%. One can conclude from Figure 2.5(a)-(d) that

the cross-sectional area ratio has a significant effect on the longitudinal, transverse

and oblique modes of the duct.

An interesting aspect that merits discussion is regarding the area ratio param-

eter S2/S1. It is clear that this ratio can be varied by decreasing or increasing S2

and/or S1. However, it can be shown that changing S2/S1 through a reduction of S2

or S1 prevents one from capturing the lower modes using modal analysis. This can

be explained in terms of the cut-off frequency. Consider the axial wavenumber given

by Eq. (2.9) with zero mean flow (M = 0):

k±n = ∓
√

Ω2

c2 −
(

2nπ

S

)2

(2.46)

where S is the zonal cross-sectional area of interest (S2 or S1) and n is the modal

index. For a given value of n and S, there is a critical value of Ω below which the

wavenumber (k±n ) is purely imaginary. This frequency is called the cut-off frequency

and is given by Ωcut-off = c2nπ
S

.
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It is clear from Eq. (2.46) that a reduction in S leads to an increase in the

cut-off frequency, preventing one from capturing lower frequencies. This suggests

that the ratio S2/S1 has to be changed by increasing either S1 or S2, and not by

reducing either cross-sectional area. Therefore, in this study we chose to increase S1.

With increasing S1, zone 1 acts like a large buffer that stabilizes the modes, thereby

enabling us to mitigate the effects of cut-off frequency, as well as capture the modes

of interest.
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Figure 2.5: Comparison of modal predictions from the current theory with Meissner [1] for Case
1(a). Frequencies are normalized with the fundamental axial mode Ω0 for a uniform cross-sectional
duct of same length. (a) Ω1,0, (b) Ω2,0, (c) Ω5,0, (d) Ω6,0 and Ω1,1. —– Meissner’s theoretical
results for axial modes; - - - - Meissner’s computational results for non-axial modes; • Current
theoretical results for axial modes; N Current theoretical results for non-axial modes.

2.4.1.2 Case 1(b)

This case investigates the effects of mean flow Mach number on the modal

frequency predictions for a single discontinuity duct with open-open (inlet and outlet)

boundary conditions. Results from only the current study are presented as Meissner’s

impedance-based approach did not include the mean flow. However, current results
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are validated at one point, i.e., for S2/S1 = 1, where the axial mode frequencies can

be analytically calculated as:

Ωn = (1−M2
)c

2nπ

S
. (2.47)

where S is the constant cross-sectional area of the duct.

The inlet Mach numbers considered are M = 0, 0.01, 0.1, 0.2, 0.3. The upper

limit for inlet Mach number is set at M = 0.3 because at higher mean flow velocities,

the Mach number in zone 2 may approach unity at which point there is a singularity

in the axial wavenumber (see Eq. (2.9)). The M = 0.01 case was chosen since modal

frequencies for this Mach number should be nearly equal to those for M = 0. This

was found to be the case thereby acting as an indirect validation of our approach.

The first and fourth axial modes are shown in Figure 2.6(a)-(b). It can be

seen that the M = 0 and M = 0.01 curves almost overlap, as expected. Transverse

and oblique modes are not presented due to the lack of validation data. It is evident

from Figure 2.6 that the mean flow significantly impacts modal frequencies even at

inflow Mach numbers as low as M = 0.1. For a given area ratio S2/S1, as the

Mach number increases, there is a monotonic decrease in frequencies. This trend

can be inferred from Eq. (2.47). The conclusion one can draw is that the neglect of

mean flow in combustion systems can result in significant errors in the prediction of

unstable modes. For a given inflow Mach number M1, the Mach number in zone 2,

M2, increases as the area ratio S2/S1 decreases. For a certain value of S2/S1, M2 = 1
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which leads to a singularity in Eq.Eq. (2.9). The area ratios where the singularity

occurs is indicated using vertical dashed lines in Figure 2.6(a).
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Figure 2.6: (color online) Axial mode predictions from the current theory for Case 1(b) as a
function of mean inflow Mach number. Frequencies are normalized with the fundamental axial mode
Ω0 for a uniform cross-sectional duct of the same length. (a) Ω1,0, (b) Ω4,0. (—– M = 0); (−·− ·−
M = 0.01); (• M = 0.1); (N M = 0.2); (* M = 0.3). Red, blue and green dashed lines represent the
area ratios at which the axial wavenumber singularity occurs for M = 0.1, M = 0.2 and M = 0.3,
respectively.

2.4.1.3 Case 2

This case considers the duct with two discontinuities, closed-closed boundaries

and no mean flow. The cross-sectional areas of zones 1 and 3 are taken to be the same,

S1 = S3, so that there is only one area ratio to be varied, S2/S1. In Figure 2.7, the

first and fifth axial modes are compared with the theoretical predictions of Meissner,

while the first transverse mode is compared with the numerical data of Meissner.

Excellent agreement is seen for both the axial and transverse modes. The particularly

good agreement observed for the Ω0,1 transverse mode, when compared to that in

Case 1(a), may be attributed to the stabilizing effects on the modes due to the two
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larger cross-section zones on either side of the smaller cross-section zone. It is to be

noted that the limit S2/S1 → 0 is arrived at differently in the current study and in

Meissner [1]. In the current study, this limit is achieved by increasing S1 due to the

restrictions imposed on modal analysis by the cut-on frequency; whereas Meissner

achieved this limit simply by reducing S2 to zero. Therefore, as S2/S1 → 0, the two

analyses asymptote to different limiting cases. In the current study, the three-zone

duct becomes a single-zone duct equivalent to zone 2, whereas no such thing happens

in Meissner’s case. Therefore, in the limit of S2/S1 → 0, we recover the frequency of

the central duct (zone 2) with open-open BCs.
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Figure 2.7: Comparison of modal predictions from the current theory with Meissner [1] for Case
2. Frequencies are normalized with the fundamental axial mode Ω0 for a uniform cross-sectional
duct of same length. (a) Ω1,0, (b) Ω5,0. —– Meissner’s theoretical results for axial modes; - - - -
Meissner’s computational results for non-axial modes; • Current theoretical results for axial modes;
N Current theoretical results for non-axial modes.
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2.4.1.4 Case 3

Cases 1 and 2 consider a uniform mean velocity profile. In this section, we

present the effects of non-uniform, laminar parabolic and turbulent power-law mean

velocity profiles on the acoustics of a single discontinuity two-zone duct. The acoustic

modes explored are the fundamental axial mode and its first harmonic. Three area

ratios S1/S2 = 1, 0.8, 0.5 are considered and the boundary conditions are open-open

on both ends of the duct. Frequency predictions obtained using the current modal

analysis are presented in Table 2.1.

As can be seen from Table 2.1, the effects of the non-uniform velocity profiles

on the duct acoustics are not very significant. At M1 = 0.1, there is less than

1% difference between the modal frequencies for the various velocity profiles. The

difference, however, increases marginally both as the Mach number increases and the

area ratio decreases, but the maximum difference between the uniform and turbulent

velocity profiles is still less than 5% even at M1 = 0.3 and S1/S2 = 0.5. Similar

trends are also seen for the first axial harmonic in Table 2.2, with the effects of the

laminar and turbulent velocity profiles being even smaller than those seen for the

fundamental axial mode. From these results, we can conclude that the effects of

the non-uniform mean velocity profiles on the acoustics of a duct are not significant

enough to warrant their inclusion, particularly because of the significantly increased

analytical complexity that their inclusion leads to.
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Table 2.1: Fundamental mode (Ω10, rad/s) as a function of inlet Mach number and

area ratio for uniform mean flow, and the laminar and turbulent mean velocity profiles.

Inlet Mach Number, M1

0.1 0.2 0.3

Uniform Mean Flow

Ω10
1.0 1079.85 1047.13 992.59

Area Ratio 0.8 1113.72 1070.64 998.03

S1

S2
0.5 1177.03 1080.35 1572.97

Parabolic Mean Flow

Ω10
1.0 1078.75 1042.58 981.84

Area Ratio 0.8 1112.03 1063.58 980.82

S1

S2
0.5 1172.65 1059.39 1495.21

Turbulent Mean Flow

Ω10
1.0 1081.44 1053.45 1006.80

Area Ratio 0.8 1116.13 1080.33 1020.03

S1

S2
0.5 1183.15 1106.55 1648.53
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Table 2.2: First harmonic (Ω20, rad/s) as a function of inlet Mach number and area

ratio for uniform mean flow, and the laminar and turbulent mean velocity profiles.

Inlet Mach Number, M1

0.1 0.2 0.3

Uniform Mean Flow

Ω20
1.0 2159.71 2094.26 1985.18

Area Ratio 0.8 2127.48 2036.09 1884.21

S1

S2
0.5 2042.48 1860.53 2168.09

Parabolic Mean Flow

Ω20
1.0 2157.50 2085.17 1963.68

Area Ratio 0.8 2124.54 2023.75 1854.29

S1

S2
0.5 2036.83 1834.93 2037.96

Turbulent Mean Flow

Ω20
1.0 2162.87 2106.91 2013.60

Area Ratio 0.8 2131.69 2052.90 1922.03

S1

S2
0.5 2050.34 1891.93 2310.92

2.4.2 Combustion Instabilities

2.4.2.1 Validation

The methodology developed in this study to incorporate the effects of fluctu-

ating heat release rate into the combustion instability analysis is first validated using

the study of Yu et al. [2], who investigated the combustion instabilities of a dump

combustor using both experiments and a 1-D linear modal analysis. The zonal match-

ing conditions employed by Yu et al. include the conventional mass, momentum, and
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energy balances across the zonal interface(s), whereas acoustically consistent match-

ing conditions are applied in the present study. Consequently, the current approach

obviates the need for a separate energy matching condition. The Yu et al. choice

of both the mean flame shape and its location involved significant assumptions as

well. In that study, combustion is assumed to occur in the form of a 1-D planar

flame at some location downstream of the area discontinuity. A consequence of these

assumptions is that the flame is essentially a discontinuity in zonal mean proper-

ties, analogous to the discontinuity due to change in cross-section. The combustion

chamber configuration in their study similar to that in Figure 4.10. The geometric

parameters and mean flow properties in the Yu et al. study are provided in Table 4.2,

and are used for validating the current approach as well.

zone 1

zone 2

zone 3
0

x

L1 L2 L3

S1 S2

Figure 2.8: Geometry of the dump combustor considered by Yu et al., with the
planar mean flame shape indicated using red dashed line.
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Table 2.3: Geometric parameters and mean flow properties in the three-zone dump

combustor (see Figure 3.1) considered in Yu et al. [2].

Geometry/Mean Property Zone 1 Zone 2 Zone 3

Length (m) 0.171 0.038 0.215

Height (m) 0.0225 0.0450 0.0450

Mach number, M 0.265 0.0548 0.0933

Temperature, T (K) 1020 1030 2660

Speed of sound, c (ms−1) 698 701 1110

Density, ρ (kg·m−3) 7.53 5.92 2.20

Pressure, p (MPa) 2.27 2.29 2.28

In Table 4.4, the unstable longitudinal mode frequencies obtained from the

current analysis are compared with those from the experiments and 1-D modal analy-

sis of Yu et al. [2]. It can be seen that the current predictions agree better with the Yu

et al. experiments than do the results of their modal analysis. We believe that these

improved predictions may be attributed to: (1) the acoustically consistent matching

conditions employed in the current study, and (2) the novel approach to incorporate

heat release effects directly into the longitudinal wavenumber. The difference between

the experimental and current unstable mode predictions is less than 5%.
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Table 2.4: Comparison of unstable longitudinal mode frequencies obtained from the

current theory with those from the experiments and 1-D modal analysis of Yu et

al. [2].

Frequency 1-D Analytical Experimental Modal Analysis

(Hz) (Yu et al.) (Yu et al.) (Current)

Fundamental (Ω10) 1997 1905 1853

First harmonic (Ω20) 3785 3890 3906

Second harmonic (Ω30) 5878 5610 5791

2.4.2.2 Instability Characteristics

Here, we present the results for the 2-D instability analysis of the dump com-

bustor with the mean flame shape indicated in Figure 3.1. The combustor is divided

into three zones with the mean properties given in Table 2.5.
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Table 2.5: Geometric parameters and mean flow properties in the three zones of the

dump combustor.

Geometry/Mean Flow Property Zone 1 Zone 2 Zone 3

Length, L (m) 0.3 Lf 0.7− Lf

Temperature, T (K) 900 2500 2500

Speed of sound, c (m/s) 880.4 1856.4 1856.4

Density, ρ ( kg
m3 ) 1.6 1.6 1.6

Pressure, p (MPa) 1.0 1.0 1.0

The frequency space explored consists of the fundamental axial mode and its

first two harmonics, as well as the first transverse mode. An extensive parametric

space has also been studied consisting of: (i) inlet Mach number M1 = 0.1, 0.2, 0.3;

(ii) area ratio S1/S2 = 0.8, 0.6, 0.4; (iii) open-open and open-choked boundary

conditions; (iv) flame length Lf = S1, 1.59S1, which were chosen from Lee and

Lieuwen [6]; and (v) time-lag between heat release and acoustic fluctuations τ =

0, π/3Ω. However, in the interest of brevity, we present representative results only. In

this study, the temporal dependence of the acoustic fluctuations is given by exp(iΩt).

This means that the stable frequencies have a positive imaginary part, whereas the

unstable frequencies have a negative imaginary part.

The criterion for a feedback loop to be completed between the acoustic and

heat release oscillations was given by Rayleigh [22], and is commonly referred to as

the Rayleigh’s criterion. Rayleigh’s criterion states that instability occurs when the
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heat release oscillations and pressure oscillations are positively correlated in time

(constructive interference). Mathematically, it can be written as [7, 14]:

1

T

T∫
0

q′(t)p′(t)dt > 0 (2.48)

where T is the time period. For the flame response function under consideration

(Eq. (2.41)), this criterion is satisfied when time-lag τ is given by [14]

0 < τ <
π

2Ω
;

3π

2Ω
< τ <

5π

2Ω
; . . . (2.49)

Figure 2.9 shows the real and imaginary parts of the first three axial harmonics

for Lf = S1 and τ = 0 with open-open boundary conditions at the duct inlet and

outlet. Figure 2.9(a) plots the real parts of the fundamental axial mode and its

first two harmonics as a function of area ratio S1/S2 for three inlet Mach numbers

M1 = 0.1, 0.2, 0.3. In Figure 2.9(a), the lowest (blue) curves are for M1 = 0.1,

while the middle (red) curves and the upper (black) curves are for M1 = 0.2 and

M1 = 0.3, respectively. It is seen that for the fundamental mode (blue) and the

second harmonic (black), Ωreal increases with area ratio, while the opposite is true for

the first harmonic (red). Similar trends were observed in the acoustics study as well

in the sense that the variation in modal frequency with duct area ratio differed from

mode to mode. For a given area ratio, Ωreal of all three modes decrease with Mach

number, as can be inferred from Eq. (2.47).
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Figure 2.9: Instability characteristics of the first three axial harmonics for the case Lf = S1, τ =
0 and with open-open boundary conditions. (a) Real part of Ω (in rad/s), and (b) imaginary part
of Ω versus the area ratio of the dump combustor (S1/S2). Blue lines represent the fundamental
axial mode (Ω10), red lines represent the first axial harmonic (Ω20) and the black lines represent the
second axial harmonic (Ω30). Symbols ∗, 4 and ◦ represent frequencies at various Mach numbers;
(∗ M1 = 0.1), (4 M1 = 0.2) and (◦ M1 = 0.3).

Figure 2.9(b) shows the imaginary parts of the fundamental axial mode and

its first two harmonics as a function of area ratio for the three inlet Mach numbers

considered. Since the value of τ = 0 is such that the Rayleigh’s criterion is satisfied,

we can see that Ωimag is negative for all three axial modes, suggesting that they are

unstable. The magnitude of Ωimag represents the temporal growth rate of the unstable

modes, at least for small times when linear stability analysis is still valid. It is seen

that for all three axial modes, the magnitudes of growth rates increase monotonically

with inlet Mach number. The growth rate of the fundamental axial mode increases

with the duct area ratio, while the opposite trend is seen for the first and second

harmonics.

Figure 2.10 shows the real and imaginary parts of the first three axial har-

monics for Lf = 1.59S1 and τ = π
3Ω

. Open-open boundary conditions are imposed
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Figure 2.10: Instability characteristics of the first three axial harmonics for the case Lf =
1.59S1, τ = π

3Ω and with open-open boundary conditions. (a) Real part of Ω (in rad/s), and (b)
imaginary part of Ω versus the area ratio of the dump combustor (S1/S2). Blue lines represent the
fundamental axial mode (Ω10), red lines represent the first axial harmonic (Ω20) and the black lines
represent the second axial harmonic (Ω30). Symbols ∗, 4 and ◦ represent frequencies at various
Mach numbers; (∗ M1 = 0.1), (4 M1 = 0.2) and (◦ M1 = 0.3).

at the duct inlet and outlet. It can be seen from Figure 2.9 and Figure 2.10 that a

simultaneous variation in flame length from Lf = S1 to Lf = 1.59S1, and time-lag

from τ = 0 to τ = π
3Ω

does not result in significant changes in the real and imaginary

parts of the unstable modes. In fact, it was found that changing Lf while τ is held

fixed, or changing τ while Lf is held fixed, resulted in negligible changes in the real

and imaginary parts of the three axial modes as long as τ satisfied the Rayleigh’s

criterion. This is because combustion instability is strongly driven by the mean flow

properties and rather weekly influenced by other parameters. An interesting artifact

of the growth rates (|Ωimag|) seen in Figure 2.10 is that for a given Mach number,

the Ωimag curves for all three modes nearly intersect at an area ratio of about 0.6; it

is, however, not clear why this is the case.
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Figure 2.11: Instability characteristics of the first three axial harmonics for the case Lf =
S1, τ = 0 and with open-choked boundary conditions. (a) Real part of Ω (in rad/s), and (b)
imaginary part of Ω versus the area ratio of the dump combustor (S1/S2). Blue lines represent the
fundamental axial mode (Ω10), red lines represent the first axial harmonic (Ω20) and the black lines
represent the second axial harmonic (Ω30). Symbols ∗, 4 and ◦ represent frequencies at various
Mach numbers; (∗ M1 = 0.1), (4 M1 = 0.2) and (◦ M1 = 0.3).

The results presented in Figure 2.9-Figure 2.10 were for open-open boundary

conditions. Next, we will discuss the effects of changing the boundary conditions on

the unstable frequencies. Figure 2.11 shows the real and imaginary parts of the first

three axial harmonics for Lf = S1 and τ = 0. The trends are essentially the same

as those in Figure 2.9. However, both the real frequencies (Ωreal) and growth rates

(|Ωimag|) are higher for the open-open case than for the open-choked case.

So far, we have discussed the axial mode instabilities. In Table 2.6, we present

the instability characteristics of the first transverse mode (Ω01) for open-open bound-

ary condition. The flame length and time-lag considered are Lf = S1 and τ = 0,

respectively. The first transverse mode (Ω01) appears to be unstable for all area ra-

tios and inlet Mach numbers. We do not present the instability characteristics of Ω01
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for the other boundary conditions owing to the insignificant effect axial boundary

conditions have on the transverse modes.

The results presented in Table 2.6 indicate that the transverse-mode growth

rates follow no particular trend with varying area ratio and Mach number, unlike

the axial modes considered in the preceding discussion. For instance, when the area

ratio is 0.8, the growth rate increases with inlet Mach number. For area ratios of 0.6

and 0.4, the growth rates increase at first and then decrease with increasing Mach

number. For the inlet Mach numbers of 0.1 and 0.2, growth rates decrease with an

increase in area ratio, but no specific trend can be ascertained for the Mach number

of 0.3. This may be because we are approaching the limits of applicability of the

linear stability analysis with an inlet Mach number of 0.3. As with the growth rates,

Table 2.6 indicates that the real frequencies also do not adhere to any discernible

trend for the fundamental transverse mode.

Table 2.6: First transverse mode (Ω01) frequency (rad/s) and growth rates (rad/s)

for different values of area ratio and inlet Mach number for Lf = S1 and τ = 0. The

boundary conditions are open-open.

Inlet Mach Number, M1

0.1 0.2 0.3

Frequency Growth Rate Frequency Growth Rate Frequency Growth Rate

Ωreal Ωimag Ωreal Ωimag Ωreal Ωimag

Ω01
0.8 15637.192 -4.02 15450.95 -8.367 15101.1 -28.295

Area Ratio 0.6 15656.558 -10.106 15483.142 -19.075 15684.67 -12.966

S1

S2
0.4 15672.476 -16.77 15850.588 -25.355 15456.64 -14.57
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2.5 Summary

A novel, acoustically consistent linear modal analysis to predict the combustion

instabilities of a dump combustor is presented. As a first step, an a priori acoustical

analysis of two ducts with one and two discontinuities in cross-section was performed.

Acoustically consistent matching conditions involving matching of acoustic velocity

and acoustic pressure at the cross-sectional interface(s) were developed. In conjunc-

tion with the duct boundary conditions, these constraints enable us to recover the

dispersion relation governing the axial modes. A detailed investigation of the effects

of non-uniform laminar and turbulent mean velocity profiles was undertaken. It is

seen that the nature of the velocity profile, uniform or non-uniform, has only a small

impact on duct acoustics. This is an important conclusion since the inclusion of non-

uniform mean velocity profile leads to significantly increased analytical complexity

for the instability analysis. The complexity arises because a non-uniform velocity

profile contributes both as a stand-alone source term in the wave equation, and as a

factor in the heat release source term Dq′/Dt. A distinguishing feature of the current

instability analysis is that the acoustic wave equation is solved along with the fluc-

tuating heat-release source term. Consequently, combustion effects are incorporated

directly into the axial wavenumber in the combustion zone. This is to be contrasted

with prior studies in which heat release effects are included a posteriori in the form

of energy balance across the flame, which inherently means that the flame is assumed

to be compact. The current approach makes no such assumption. Instabilities are

demonstrated for the fundamental longitudinal mode and its harmonics, as well as for
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the fundamental transverse mode. A detailed parametric study reveals that instabili-

ties are principally affected by the mean flow properties and the combustor geometry,

and parameters such as the flame length are seen to have little impact. The current

study may be extended to 3-D geometries without much difficulty, and can also be

enhanced to include additional physics such as entropy and vorticity waves, as well

as vortex shedding that occurs in many combustors.
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CHAPTER 3

A NOVEL LEVEL SET APPROACH FOR PREMIXED FLAME

RESPONSE AND ITS APPLICATION TO PREDICT COMBUSTION

INSTABILITIES IN A DUMP COMBUSTOR

3.1 Abstract

In combustion instability analysis, a flame transfer function is used to de-

scribe the response of a premixed flame to incident acoustic oscillations. A novel

flame transfer function (FTF) is developed that relates the fluctuations in flame

heat-release rate to those in density, heat of reaction, turbulent flame speed, and the

flame surface area. Each of these four contributions is eventually expressed in terms

of the fluctuations in acoustic pressure and velocity through the respective response

functions. The flame surface-area response to acoustic oscillations is incorporated into

the FTF through a novel G-equation level-set method. In this method, we directly

solve for the level set fluctuations G′ in terms of the velocity fluctuations, and then

relate the flame surface-area oscillations to G′. In the absence of turbulent flame-

speed fluctuations, the response functions from the present G-equation approach are

in good agreement with those from the conventional f -equation approach (where one

writes G(x, y, t) = x − f(y, t)). However, when turbulent flame-speed fluctuations
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are included, the two approaches differ, principally in the flame response to axial

velocity fluctuations. The current flame transfer function, generalized for any mean

flame shape, is applied to analyze the response of a V-shaped mean flame located at

the cross-sectional interface of a 2-D dump combustor. For this flame, the effects of

variation in acoustic frequency, mean Mach number, mean temperature, and mean

equivalence ratio on the FTF magnitude and phase are investigated. Both axial and

mixed mode acoustic perturbations are considered. For the purely axial modes, the

response-function amplitudes of density and heat of reaction are seen to be indepen-

dent of frequency, while those of flame speed and axial velocity exhibit harmonic-

like oscillations as a function of frequency. For the mixed-mode fluctuations, the

response-function amplitude of density decays monotonically with frequency, whereas

the response-function amplitudes of the heat of reaction, turbulent flame speed, and

velocity components show decaying oscillatory behavior in frequency. Further, it is

observed that the flame-speed response function contributes the most to the overall

flame transfer function. Phase analysis of the FTF shows that the transverse velocity

response is nearly in phase with the heat-release fluctuations. In addition, density

and transverse velocity fluctuations always show constructive interference with pres-

sure fluctuations. The current FTF is also incorporated into a linear modal analysis

framework to predict the combustion instabilities in a 2-D dump combustor, and

the model predictions validated against experiments. Three mean velocity profiles—

uniform, parabolic, and turbulent power law—are considered. For the three flames,

the first three longitudinal and fundamental transverse unstable modes are predicted.
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3.2 Introduction

Prediction of combustion instabilities using linear modal analysis requires as

an input a transfer function describing the flame response to acoustic perturbations,

commonly referred to as the flame transfer function (FTF). The two principal charac-

teristics of interest in an FTF are its: (1) magnitude, which is a measure of the ratio

of the amplitudes of heat-release and acoustic perturbations, and (2) phase, which

quantifies the phase difference between these two perturbations. In the present FTF,

the fluctuations in flame heat-release rate are expressed in terms of those in density,

heat of reaction, turbulent flame speed, and flame surface area. The response of flame

surface area to incident disturbances is described using a novel G-equation level set

method that is based on directly solving for the fluctuations G′ in terms of the acous-

tic velocity fluctuations. This method differs from the conventional approach that

involves writing G(x, y, t) = x − f(y, t) and then solving for f ′. The response func-

tions from the two methods are compared, and the advantages of the current method

are discussed. While the FTF developed is generalized for any mean flame shape, the

response of a V-shaped flame is analyzed in detail, focusing on the effects of acoustic

frequency, mean Mach number, mean temperature, and mean equivalence ratio on

the magnitude and phase of the flame transfer function. Subsequently, the FTF is

combined with an acoustically consistent modal analysis approach developed by the

current authors [23]. For three mean flames, corresponding to three mean velocity

profiles, the longitudinal and transverse unstable modes of a 2-D dump combustor

are computed.
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Combustion instabilities are manifested as self-excited acoustic oscillations

that are sustained by a feedback loop between the acoustic perturbations and the heat-

release fluctuations. The Rayleigh criterion [14, 22, 24–26] suggests that instabilities

occur when the net acoustic energy pumped into the system due to the pressure–heat-

release feedback exceeds the energy losses due to various mechanisms (e.g., acoustic

radiation and viscous losses). Reduced order analytical approaches, such as the linear

modal analysis [2,4,5,11–14,23,27] and Nyquist-plot-based network models [28–33],

are commonly used to predict the instability modes. An essential component of these

analytical methods is the flame transfer function (FTF) that relates flame heat-release

fluctuations to acoustic perturbations impinging on the flame.

Among the early works on premixed flame response to acoustic fluctuations are

those of Marble and Candel [34], Subbiah [35], Yang and Culick [36], and Poinsot and

Candel [37], which were all based on applying the integral technique. This technique

entails the integration, normal to the flame, of the relevant conservation equations,

in conjunction with the solution of level-set equations that track the flame surface.

Marble and Candel [34] investigated the unsteady flame response, and quantified the

variation in flame shape with the inflow Mach number, and in pressure transmission

and reflection coefficients with the Strouhal number. Using an approach similar to

that of Marble and Candel [34], Subbiah [35] performed both steady and unsteady

analysis of premixed flame response. It is to be noted, however, that the integral ap-

proach in [34] and [35] does not result in an explicit flame transfer function. Yang and

Culick [36] combined the integral technique with a modal representation of acoustic

fluctuations to perform flame response analysis, as well as determine the unstable
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modes. Poinsot and Candel [37] used the integral technique to numerically determine

nonlinear flame response in premixed combustors.

A large number of subsequent studies on flame response used the level-set

equation approach for deriving various forms of the flame transfer function, which

may be incorporated into a reduced-order model for predicting instabilities [28,38–45].

Boyer and Quinard [39] studied the dynamics of premixed, anchored V flames. The

effects of longitudinal acoustic waves and Von Karmen vortex shedding on the flame

shape and dynamics were analyzed. They showed that for low-amplitude disturbances

in the flow and the acoustic field, their linear model satisfactorily predicted the flame

shape. Fleifil et al. [45] derived an FTF for a conical flame on the rim of a tube

that relates the flame heat-release fluctuations to the flame surface-area fluctuations.

Their analysis considered a spatially uniform acoustic field, with 1-D flame surface

kinematics. Fleifil et al. [45] found that the flame dynamics is predominantly governed

by two parameters: (1) flame Strouhal number based on duct radius and laminar flame

speed, and (2) ratio of laminar flame speed to mean flow velocity. It was found that

the flame essentially acts as a high-pass filter, i.e., higher frequencies have only weak

effects on flame heat release, whereas lower frequencies interact strongly with the

flame.

Important contributions to the development and analysis of flame transfer

functions were made by Lieuwen and co-workers [7, 46–53]. For instance, a detailed

analysis of the response of laminar premixed flames to equivalence ratio fluctuations

was performed by Cho and Lieuwen [46]. Lieuwen [47] provided a comprehensive

overview of the existing literature on the modeling of premixed flame-acoustic inter-
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actions. Two FTFs based on linear flamelet analysis were discussed in particular—

the first relating heat release oscillations to velocity perturbations, and the second

to equivalence ratio fluctuations. Lieuwen [47] demonstrated that the former can be

expressed as a time-lag model at low frequencies, while the latter required kinematic

modeling of flame-equivalence-ratio interactions. You et al. [54] also employed the

G-equation-based flame kinematics to perform detailed flame response analysis that

included axial variations in the chamber geometry and mean flow field. Fluctua-

tions in laminar flame speed, flame surface area, and the heat of reaction were also

considered.

In the current study, a comprehensive flame transfer function is derived and

applied to analyze the response of a V-shaped mean flame anchored at the cross-

sectional interface in a 2-D dump combustor. The transfer function includes the effects

of acoustic fluctuations in density, heat of reaction, turbulent flame speed, and flame

surface area. The flame surface-area response is derived based on a novel G-equation

method that involves directly solving the G′-equation by using the harmonic nature of

the incident velocity fluctuations. A detailed comparison of the present approach with

an approach based on writing G(x, y, t) = x − f(y, t) is undertaken. The conditions

under which the two methods agree and differ are presented. Using the current FTF,

a detailed parametric study is undertaken that investigates the effects of acoustic

frequency, mean Mach number, mean temperature and mean equivalence ratio on the

FTF magnitude and phase. Following the flame response analysis, the combustion

instability modes of the dump combustor are computed for uniform, parabolic and

turbulent mean velocity profiles.
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3.3 Derivation of Flame Transfer Function

zone 1

zone 2

zone 3
O

x

y

mean flame

L1

Lf
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S1 S2

Figure 3.1: Geometry of the dump combustor with a V-shaped mean flame.

The combustor geometry and mean flame shape under consideration are shown

in Figure 3.1. The local, instantaneous heat-release rate on the flame, dQ̇, is given

by:

dQ̇ = hrρ sLdA (3.1)

where hr is the heat of reaction, ρ is density, sL is the local flame speed, and dA is

the local flame surface area.

Following the triple decomposition of variables used in [54–56], a flow variable

Θ may be expressed as

Θ = Θ + Θ′ + Θ′′

= 〈Θ〉+ Θ′′ (3.2)
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where Θ is the long-time mean, Θ′ and Θ′′ are the periodic and turbulent fluctuations,

respectively, and 〈Θ〉 = Θ + Θ′ is the ensemble average of Θ.

Ensemble averaging Eq. (3.1), followed by using the property 〈Θ′′〉 = 0, and

dropping the non-linear covariance terms as well as using the definition of turbulent

flame speed sT , we obtain [14,54]

〈dQ̇〉 = 〈hr〉〈ρ〉sT 〈dA〉 (3.3)

Decomposing the ensemble averaged quantities into the sum of long-time means and

periodic fluctuations, we get

〈dQ̇〉 = dQ̇+ dQ̇′ (3.4)

where dQ̇ = ρhrsTdA. Upon linearization dQ̇′ becomes

dQ̇′ = hrsTdAρ′ + ρ sTdAh′r + ρhrdAs
′
T + ρhrsTdA′ (3.5)

Dividing Eq. (3.5) by dQ̇,

dQ̇′

dQ̇
=
ρ′

ρ
+
h′r
hr

+
s′T
sT

+
dA′

dA
(3.6)

In the next step, each of the fluctuations on the RHS of Eq. (3.6) is related to the

acoustic pressure and velocity perturbations p′ and u′ through the corresponding

response functions. It is relevant to mention here that Eq. (3.6) also includes the

effects of density fluctuations that are often neglected using the argument that ρ′ =
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p′/c2. However, it is evident from Eq. (3.6) that we are interested in the ratio ρ′/ρ,

rather than ρ′ itself. The relative importance of the four terms on the RHS of (3.6)

is quantitatively established in Section 3.5. In the discussion that follows, we present

the derivation of the response functions for each of the fluctuations, as well as the

current G-equation approach.

3.3.1 Density Fluctuations

Using the ideal gas equation p = ρRT , performing a Taylor-series expansion of

ρ about the mean pressure and temperature (motivated by You [54]), and retaining

the first order terms, we have

ρ =
p

RT︸︷︷︸
ρ

+
∂ρ

∂p

∣∣∣∣
p,T

p′ +
∂ρ

∂T

∣∣∣∣
p,T

T ′︸ ︷︷ ︸
ρ′

=
p

RT
+

1

RT
p′ − p

RT
2T
′ (3.7)

Now, we need expressions for p′ and T ′. In a 2-D cartesian duct of uniform cross-

section, the acoustic pressure fluctuations p′, u′ and v′ may be written as [5, 10, 14,

23,54]

p′(x, y, t) = C eikx cos (kyy)eiΩt (3.8)

u′(x, y, t) = −C
1

ρ

k

Ω + uk
eikx cos (kyy)eiΩt (3.9)

v′(x, y, t) = C
1

ρ

ky
Ω + uk

eikx sin (kyy)eiΩt (3.10)

where C is the amplitude, Ω is the angular frequency, k = Ω/c is the axial wavenumber

(c is the mean speed of sound), and ky = 2nπ/S is the transverse wavenumber (n
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is the modal index, and S is the duct height). These fluctuating forms satisfy the

homogeneous convected wave equation (Eq. (3.61)), as well as the linearized axial

and transverse momentum equations.

To derive an expression for the temperature fluctuations T ′, we consider the

temperature form of the energy equation (ignoring heat conduction, and viscous

losses) [14, 57,58]:

ρcv

(
∂T

∂t
+ u •∇T

)
+ p

(
∂u

∂x
+
∂v

∂y

)
= 0 (3.11)

where cv is the specific heat at constant volume, and u and v are the axial and

transverse components of velocity. Assuming there are no axial gradients in mean

quantities and no transverse mean flow, and linearizing, we get

ρcv

(
∂T ′

∂t
+ u

∂T ′

∂x

)
+ p

(
∂u′

∂x
+
∂v′

∂y

)
= 0 (3.12)

One may consider the following form for temperature fluctuations T ′

T ′ = eiΩteikx[α1 cos (kyy) + α2 sin (kyy)] (3.13)

where amplitudes α1 and α2 are to be determined. Substituting u′, v′ and T ′ into

Eq. (3.12), we can solve for α1 and α2 in terms of the amplitude of pressure fluctua-
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tions, C . Finally, the form for temperature fluctuations is given by:

T ′ = −i p

cvρ
2

1

(Ω + uk)2
(ik2 − k2

y)[C e
ikx cos (kyy)eiΩt]

= −i p

cvρ
2

1

(Ω + uk)2
(ik2 − k2

y)p
′ (3.14)

It can be verified that Eq. (3.14), in conjunction with Eqs. (3.9) and (3.10), satisfies

the linearized energy equation (3.12).

Substituting p′ and T ′ into Eq. (3.7) gives the following expression for ρ′

ρ′

ρ
=

{
1 + i

p2

cvTρ
2

1

(Ω + uk)2
(ik2 − k2

y)

}
︸ ︷︷ ︸

Rρ

p′

p
(3.15)

where Rρ may be referred to as the response function that relates density fluctuations

to pressure fluctuations. It may be noted that in Eq. (3.15), the second term of

Rρ (with the coefficient i) arises from T ′. If one were to neglect T ′, we will have

ρ′/ρ = p′/p, suggesting that density fluctuations may not be neglected.

3.3.2 Heat of Reaction Fluctuations

For a methane-air mixture with equivalence ratio φ, Abu-Orf and Cant [59]

provided the following expression for the heat of reaction:

hr(φ) =


2.9125×106 φ
1+0.05825φ

, φ ≥ 1

2.9125×106

1+0.05825φ
, φ < 1

(J/kg) (3.16)
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Performing a Taylor-series expansion of hr about φ and retaining the first order terms,

h′r =
∂hr
∂φ

∣∣∣∣
φ

φ′ (3.17)

You et al. [54] provided the following expression for φ′

φ′ = φ

(
u′

u
− ρ′

ρ

)
e−iΩτ (3.18)

where τ is the convective time lag for the equivalence ratio fluctuations to travel from

the injector to the flame front. Considering a V-shaped mean flame, τ is given by

τ =
L1

u
+

1

Lf

Lf/u∫
0

y − S1/2

m
dy

︸ ︷︷ ︸
τf,avg

(3.19)

where L1 is the length of the smaller duct as shown in Figure 3.1, and τf,avg is the

average time taken by the fluctuations to travel to the flame from the cross-sectional

interface (S1 is the height of the smaller duct, Lf is the flame length, and m is the

slope of the mean flame).

Substituting Eq. (3.18) into Eq. (3.17), and plugging into the resulting equa-

tion u′ and Eq. (3.15) gives

h′r
hr

= −∂hr
∂φ

∣∣∣∣
φ

φ

hr

{
1 +

p

ρ u

k

Ω + uk
+ i

p2

cvTρ
2

1

(Ω + uk)2
(ik2 − k2

y)

}
︸ ︷︷ ︸

RHR

p′

p
(3.20)
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where RHR is the response function relating fluctuations in the heat of reaction to

those in pressure.

3.3.3 Turbulent Flame Speed Fluctuations

We consider the Abu-Orf and Cant [60] model for the flame speed as a function

of equivalence ratio, temperature, and pressure:

sT (φ, T, p) = C1φ
C2e−C3(φ−C4)2

(
T

T0

)C5
(
p

p0

)C6

(3.21)

where T0 = 300K and p0 = 1bar are the reference temperature and pressure, and

C1 through C6 are constants measured at these reference conditions. Their values

are [54]: C1 = 0.6079 m/s, C2 = −2.554, C3 = 7.31, C4 = 1.23, C5 = 2, C6 = −0.5.

Again, sT can be linearized in terms of (φ′, T ′, p′) as

sT (φ, T, p) = sT (φ, T , p)︸ ︷︷ ︸
sT

+

{(
∂sT
∂φ

)∣∣∣∣
(φ,T ,p)

φ′ +

(
∂sT
∂T

)∣∣∣∣
(φ,T ,p)

T ′ +

(
∂sT
∂p

)∣∣∣∣
(φ,T ,p)

p′

}
︸ ︷︷ ︸

s′T

(3.22)
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Substituting φ′ and T ′ from Eqs. (3.18) and (3.14) into Eq. (3.22) gives us

s′T
sT

=
p′

p

p

C1φ
C2
e−C3(φ−C4)2

(
T
T0

)C5
(
p
p0

)C6
×

{
− φe−iΩτ

[
C1C2φ

C2−1
e−C3(φ−C4)2 − 2C1C3φ

C2
(φ− C4)e−C3(φ−C4)2

]( T
T0

)C5 (
p

p0

)C6

×[
1 +

1

ρu

k

Ω + uk
+ +i

p

cvTρ
2

1

(Ω + uk)2
(ik2 − k2

y)

]
+ C1C6φ

C2
e−C3(φ−C4)2

(
T

T0

)C5

p−C6
0 pC6−1 − iC1C5φ

C2
e−C3(φ−C4)2

T−C5
0 T

C5−1×(
p

p0

)C6 p

cvρ
2

1

(Ω + uk)2
(ik2 − k2

y)

}

=
p′

p
RST (3.23)

where RST is the response function relating fluctuations in turbulent flame speed to

those in pressure.

3.3.4 Flame Surface Area Fluctuations

Flame surface kinematics may be described using the level-set G-equation

∂G

∂t
+ u •∇G = sL|∇G| (3.24)

where G(x, y, t) = 0 is nominally defined as the flame, u is the velocity field, and sL

is the local flame speed. Prior studies, such as [45–47, 54], substituted G(x, y, t) =

x − f(y, t) into Eq. (3.24) and then solved for the fluctuations f ′(y, t). The flame

surface area fluctuations were then related to f ′(y, t) (we will henceforth refer to

this method as the f -approach). In the present study, we directly solve for the
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field quantity, G′(x, y, t), by utilizing the harmonic form of the acoustic oscillations.

Subsequently, we relate the flame surface area oscillations to G′ (we will refer to this

as the G-approach). A detailed discussion of the G-approach follows.

We begin by writing G(x, y, t) = G(x, y)+G′(x, y, t), where G(x, y), G′(x, y, t)

and G(x, y, t) are all field quantities that are defined everywhere in the flow. This

gives rise to the question: how does one reconstruct the flame at any time t? At time

t, we consider the flame to be located at the positions (x, y) 3 G(x, y, t) = 0. For

t = 0, since G′(x, y, 0) = 0, the flame surface is given by the G(x, y) = 0 isosurface,

i.e., initially the flame surface coincides with the mean flame. For t > 0, however, the

flame surface is given by the isosurface of points satisfying G(x, y) + G′(x, y, t) = 0,

where the locations (x, y) are not the same as those satifying G(x, y) = 0. Flame

reconstruction using this approach is also elaborated subsequently.

Considering Eq. (3.24), and splitting the variables into mean and coherent

fluctuations yields

∂G′

∂t
+u•∇G+u•∇G′+u′•∇G+u′•∇G′ = (sT+s′T )

√(
∂G

∂x
+
∂G′

∂x

)2

+

(
∂G

∂y
+
∂G′

∂y

)2

(3.25)

Linearizing (3.25) yields the following equations for G and G′:

u
∂G

∂x
= sT

√(
∂G

∂x

)2

+

(
∂G

∂y

)2

(3.26)
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∂G′

∂t
+ u •∇G′ + u′ •∇G = s′T

√(
∂G

∂x

)2

+

(
∂G

∂y

)2

+ sT

√(
∂G

∂x

)2

+

(
∂G

∂y

)2


∂G
∂x

∂G′

∂x
+ ∂G

∂y
∂G′

∂y(
∂G
∂x

)2

+
(
∂G
∂y

)2


(3.27)

⇒∂G′

∂t
+ u

∂G′

∂x
− sT

∂G
∂x√(

∂G
∂x

)2

+
(
∂G
∂y

)2

∂G′

∂x
−

sT
∂G
∂y√(

∂G
∂x

)2

+
(
∂G
∂y

)2

∂G′

∂y

= s′T

√(
∂G

∂x

)2

+

(
∂G

∂y

)2

− ∂G

∂x
u′ − ∂G

∂y
v′

(3.28)

The above equation may be solved for G′ using the u′, v′, and s′T forms given in

Eqs. (3.9), (3.10) and (3.23), respectively, and the mean flame shape G. This is

illustrated below for a linear mean flame.

G′ Solution and Flame Reconstruction for a Linear Mean Flame

O
x

y

L1 L2

S1 S2

Figure 3.2: Dump combustor with the mean and instantaneous flame isocontours.
G(x, y) = c1 and c2 represent different isocontours of the mean level-setG. G(x, y) = 0
represents the flame at t = 0 (dashed line). The instantaneous flame shape is shown
as a dotted line.
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When analyzing linear mean flames, such as that in Figure 3.1, we consider a

G field of the following form:

G(x, y) = mx− y +
S1

2
(3.29)

where m is the slope of the mean flame, and S1 is the height of the smaller duct.

Evidently, at t = 0 the flame is given by G(x, y) = 0. We are interested in G′ of the

following form

G′(x, y, t) = eiΩteikx[ψ1 cos (kyy) + ψ2 sin (kyy)] (3.30)

where the amplitudes ψ1 and ψ2 are to be determined. At t > 0, the flame location

(x, y) is obtained from

[
mx− y +

S1

2

]
+ eiΩteikx[ψ1 cos (kyy) + ψ2 sin (kyy)] = 0 (3.31)

Substituting Eq. (3.29) into Eq. (3.26), we have

sT =
mu√

1 +m2
(3.32)

Using Eqs. (3.22) and (3.32) we can uniquely determine the slope m as follows:

sT =
mu√

1 +m2
= C1φ

C2
e−C3(φ−C4)2

(
T

T0

)C5 (
p

p0

)C6

(3.33)
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⇒ m = ±
C1φ

C2
e−C3(φ−C4)2

(
T
T0

)C5
(
p
p0

)C6√
u2 −

{
C1φ

C2
e−C3(φ−C4)2

(
T
T0

)C5
(
p
p0

)C6
}2

(3.34)

To solve for G′, we substitute Eqs. (3.29)-(3.32) into Eq. (3.28) yielding

iΩ [ψ1 cos (kyy) + ψ2 sin (kyy)] + iuk [ψ1 cos (kyy) + ψ2 sin (kyy)]

− i m
2uk

1 +m2
[ψ1 cos (kyy) + ψ2 sin (kyy)] +

muky
1 +m2

[−ψ1 sin (kyy) + ψ2 cos (kyy)]

= s′T
√

1 +m2 +
m

ρ

k

Ω + uk
C cos (kyy) +

1

ρ

1

Ω + uk
kyC sin (kyy)

(3.35)

Equating the coefficients of cos (kyy) and sin (kyy), respectively, on both sides of

Eq. (3.35) yields two linear algebraic equations in ψ1 and ψ2. These can be solved to

give

ψ1 = −C E1 {E2 + E3 [E4 + E5(E6 + E7)]} (3.36)

ψ2 = −C F1 {F2 [F3 + F4F5] + F6} (3.37)

where the terms E1 through E6 and F1 through F6 are provided in the Appendix C.

Substituting ψ1 and ψ2 into Eq. (3.30) gives us an expression for G′. Next, we relate

G′ to the flame surface area fluctuations.
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The surface area of a differential element of the flame (dA) of unit depth is

given by

dA =
√

(dx)2 + (dy)2 · 1

= dy

√√√√1 +

(
∂G
∂y

∂G
∂x

)2 (3.38)

Splitting dA into mean and fluctuating components and linearizing it gives

dA = dy

√√√√1 +

(
∂G
∂y

∂G
∂x

)2

(3.39)

dA′ = dy

∂G
∂x

∂G
∂y

∂G′

∂y
−
(
∂G
∂y

)2
∂G′

∂x(
∂G
∂x

)3

√
1 +

(
∂G
∂y

∂G
∂x

)2
(3.40)

Substituting Eq. (3.29) into Eq. (3.40), we get

dA′

dA
=

−1

m(m2 + 1)

(
∂G′

∂x
+m

∂G′

∂y

)
(3.41)

which upon the substitution of G′ from Eq. (3.30) becomes

dA′

dA
=
uρ(Ω + ku)

k

(
i

ψ1k

m3 +m
+

ψ2ky
m2 + 1

)
︸ ︷︷ ︸

Ru

u′

u
+
uρ(Ω + ku)

ky

(
ψ1ky
m2 + 1

− i ψ2k

m3 +m

)
︸ ︷︷ ︸

Rv

v′

u

(3.42)

Equation (3.42) relates the flame surface area fluctuations to the axial and trans-

verse velocity perturbations, with Ru and Rv being the respective response functions.
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Notice that the transverse velocity perturbation v′ is normalized by the mean axial

velocity (u) since v = 0.

Finally, substituting Eqs. (3.15),(3.20), (3.23) and (3.42) into Eq. (3.6) gives

us the flame transfer function:

dQ̇′

dQ̇
= (Rρ +RHR +RST)

p′

p
+Ru

u′

u
+Rv

v′

u

= Rp
p′

p
+Ru

u′

u
+Rv

v′

u
(3.43)

where Rp = Rρ + RHR + RST. Figure 3.3 shows a tree diagram representation of the

overall flame transfer function (3.43). This figure presents a lucid illustration of how

the various sources of fluctuations may all be expressed in terms of the fundamental

acoustic fluctuations p′, u′, and v′.
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dQ̇′

ρ′

p′ T ′

p′

h′r

φ′

u′

p′

ρ′

p′ T ′

p′

s′T

φ′

u′

p′

ρ′

p′ T ′

p′

T ′

p′

p′

dA′

s′T

φ′

u′

p′

ρ′

p′ T ′

p′

T ′

p′

p′

u′ v′

Figure 3.3: A tree diagram representation of the flame transfer function. Funda-

mental acoustic fluctuations p′, u′, and v′ are enclosed in boxes at the end of all

branches.

3.4 Comparison Between Current G-Approach and Prior f-Approach

In this section, we undertake a detailed, quantitative comparison of the G-

approach with the f -approach. We demonstrate the conditions under which the two
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methods give nearly identical flame surface-area response functions, as well as the

situations where they are different. To begin with, we derive the response function

relating dA′/dA to f ′, where dA′ is the fluctuation in the local flame surface area.

While this derivation is motivated by the method outlined in prior studies [13, 39,

45–47, 54, 54], we believe that this is the first time that the additional assumptions

and steps needed for the f -approach to handle multi-dimensional fluctuations are

explicitly identified.

The level set field G is expressed as G(x, y, t) = x − f(y, t), which upon

substitution into Eq. (3.24) yields

∂f

∂t
− u+ v

∂f

∂y
= −sL

√
1 +

(
∂f

∂y

)2

(3.44)

Writing f = f + f ′, u = u+ u′, v = v′ (with v = 0), sL = sT + s′T and linearizing, we

obtain the following equations for f and f ′.

u = sT

√
1 +

(
df

dy

)2

(3.45)

∂f ′

∂t
+ Γ

∂f ′

∂y
= u′ − df

dy
v′ − s′T

√
1 +

(
∂f

∂y

)2

(3.46)

where

Γ =
sT

df̄
dy√

1 +
(

df
dy

)2
, (3.47)

u′ and v′ are given by Eqs. (3.9) and (3.10) respectively. In Eq. (3.46), u′ = u′(x, y, t)

and v′ = v′(x, y, t), whereas f ′ = f ′(y, t). Since previous studies did not include
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eikx dependence in u′ and v′ for the flame response analysis, this problem had not

arisen. For instance, in reference [45] u′ = u0e
iΩt (u0 is constant), i.e., u′ did not

have any spatial dependence. In studies [47, 54], u′ = û(r)eiΩt only had 1-D (radial)

dependence.

This problem may be overcome by considering the velocity fluctuations at the

flame x = f(y, t):

u′f (y, t) = −C
1

ρ

k

Ω + uk
eikf(y,t) cos (kyy)eiΩt (3.48)

v′f (y, t) = C
1

ρ

ky
Ω + uk

eikf(y,t) sin (kyy)eiΩt (3.49)

Upon substitution of the above fluctuations into Eq. (3.46), we see that the linearized

f ′ equation becomes non-linear again. Further, the time-dependence is no longer

limited to the eiΩt term only, but also appears as eikf(y,t), thereby deviating from the

time-periodic nature of acoustic fluctuations. These two issues can be obviated by

the approximation eikf(y,t) ≈ eikf(y). Using this approximation in Eqs. (3.48) and

(3.49), and considering harmonic temporal dependence for fluctuating quantities i.e.,

f ′(y, t) = f̂(y)eiΩt, u′f (y, t) = ûf (y)eiΩt, v′f (y, t) = v̂f (y)eiΩt and s′T (y, t) = ŝT (y)eiΩt,

we can write Eq. (3.46) as

df̂

dy
+
iΩ

Γ
f̂ =

1

Γ

ûf − df

dy
v̂f − ŝT

√
1 +

(
df

dy

)2
 (3.50)

From Eq. (3.23), we have

ŝT = sTRST
p̂

p
(3.51)
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where p̂ = p′/eiΩt. Expressing the pressure fluctuations in terms of the axial velocity

fluctuations, we have

ŝT = −ρ
p
sTRST

Ω + uk

k
û (3.52)

Substituting Eq. (3.52) into Eq. (3.50) and using the boundary condition f̂(S/2) = 0,

for a linear mean flame (f(y) = y−S/2
m

), f̂(y) is given as

f̂(y) =
1

Γ
e−i

Ω
Γ
y

y∫
S/2

ei
Ω
Γ
η


1 +

ρ

p
sTRST

Ω + uk

k

√
1 +

(
df

dη

)2
 ûf (η)− df

dη
v̂f (η)

 dη

(3.53)

Multiplying Eq. (3.53) by eiΩt, we get

f(y, t) =
1

Γ
e−i

Ω
Γ
y

y∫
S/2

ei
Ω
Γ
η


1 +

ρ

p
sTRST

Ω + uk

k

√
1 +

(
df

dη

)2
u′f (η)− df

dη
v′f (η)

 dη

(3.54)

Flame surface area fluctuations are then given by:

dA′

dA
=

df
dy

1 +
(

df
dy

)2

∂f ′

∂y
=

1

m2 + 1

∂f ′

∂y
(3.55)

where m is the slope of the mean flame.

Equation (3.55) can be written in terms of velocity response functions as fol-

lows:

dA′

dA
= Ru,f

u′

u
+Rv,f

v′

u
+ ψ(y, t) (3.56)
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where

Ru,f =
u

kα

{
Ω
[
ρRSTu

2
(
k2
(
m2 + 2

)
− k2

ym
2
)

+
(
m2 + 1

)
p
(
k2 − ik2

y

)]
+

ku(k + kym)(k − kym)
(
p+ ρRSTu

2
)

+ k
(
m2 + 1

)
ρRSTuΩ2

} (3.57)

Rv,f =
u

mα

{
−k2pu−ik

(
m2 + 1

)
Ω
[
m2ρRSTu

2 +
(
m2 − i

)
p
]
+m2u

[
k2
yp− i

(
m2 + 1

)
ρRSTΩ2

]}
(3.58)

ψ(y, t) = − (m2 + 1) Ω

mαρu(ku+ Ω)
e
i(m2+1)Ω(S−2y)

2mu eiΩt cos (nπ)

{
k2u

(
p+ ρRSTu

2
)

+

kΩ
[(
m2 + 1

)
p+

(
m2 + 2

)
ρRSTu

2
]

+ ik2
ypu+

(
m2 + 1

)
ρRSTuΩ2

} (3.59)

and

α = p
(
ku− kymu+m2Ω + Ω

) (
ku+ kymu+m2Ω + Ω

)
(3.60)

In Eq. (3.56), the first two terms on the RHS represent the contributions from

the flow perturbations, whereas the last term accounts for flame anchoring at y = S/2.

We will now compare the response functions Ru,f and Rv,f in Eqs. (3.57) and (3.58)

with Ru and Rv in Eq. (3.42).

Comparison of Response Functions

We compare the magnitudes and phases of the response functions Ru and

Ru,f , as well as Rv and Rv,f . We first compare the response functions for the mixed

(n = 1) modes, with and without the effects of the turbulent flame-speed fluctuations

s′T . Next, we show the comparison for the axial (n = 0) modes. The motivation for
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discussing the n = 1 modes before n = 0 will also be apparent from the discussion

that follows.

In Figure 3.4, the response functions Ru and Ru,f are compared for the modal

index n = 1, mean Mach number M = 0.1, and mean temperature T = 2000K.

Figure 3.4(a) shows the magnitudes of Ru and Ru,f as a function of frequency. We

can see that their magnitudes are in good agreement at low frequencies (Ω < 500

radians/s), but differ at higher frequencies. It will also become evident from Figure 3.6

that the differences in the magnitudes of Ru and Ru,f at higher Ω are, in fact, due to

the inclusion of turbulent flame speed fluctuations (s′T ). A more detailed discussion

of the response functions trends in Ω is presented elsewhere (see Section 3.5). At this

point, we limit ourselves to a quantitative comparison of the two approaches.

Figure 3.4(b) shows the phases of Ru and Ru,f as a function of frequency. We

see that the phases are both negative, and show oscillations in Ω. The differences in

the phases, which increase with frequency, may be attributed to the effects of s′T . Also

shown in Figure 3.4(b) are the phases of Ru and Ru,f for the s′T = 0 case (long-dashed

line). It is interesting to note that the locus of the intersections of the phases of Ru

and Ru,f when s′T 6= 0 corresponds to their phase plots when s′T = 0 (the two phases

coincide when s′T = 0). Thus, the phases of Ru and Ru,f with s′T 6= 0 oscillate about

the phases of Ru and Ru,f with s′T = 0.
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Figure 3.4: (a) Magnitude and (b) phase of the axial velocity response functions Ru

and Ru,f for s′T 6= 0 are plotted as a function of frequency (in radians/s). The modal

index n = 1. Ru: solid line ( ); and Ru,f : dotted line ( ). Also shown in (b)

are the phases Ru and Ru,f for s′T = 0 ( ).
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In Figure 3.5, we compare the transverse velocity components of the two flame

response functions, Rv and Rv,f . Figure 3.5(a) shows the magnitudes of Rv and Rv,f

as a function of frequency. Here we see that the two magnitudes differ at lower

frequencies (Ω < 500 radians/s), but are in excellent agreement at higher frequencies

(where combustion instabilities typically occur). Figure 3.5(b) compares the phases

of Rv and Rv,f . As with the magnitudes, the phases differ at lower frequencies, but

are essentially identical for Ω > 500 radians/s. Also, for Ω > 500, the phases of both

Rv and Rv,f are nearly zero, indicating that the transverse velocity fluctuations are

in phase with the heat-release rate fluctuations.

The differences in the phases of Ru and Ru,f , and the agreement in the phases

of Rv and Rv,f , can be explained through the contributions of the turbulent flame-

speed fluctuations s′T to the respective response functions. Referring to the G′ and

f ′ equations (3.28) and (3.46), respectively, the s′T source term on the RHS of these

two equations is resolved by expressing s′T in terms of u′. Now, it becomes evident

from Eq. (3.30) that the effects of this source term are reflected in both Ru and Rv

through the coefficients ψ1 and ψ2, respectively. However, from (3.54), we can see

that the s′T term principally influences Ru,f and not Rv,f . This hypothesis can be

further illustrated by comparing the two response functions in the absence of s′T .

Figure 3.6 and Figure 3.7 compare Ru and Ru,f , and Rv and Rv,f , respectively,

in the absence of s′T . The magnitudes and phases of the response functions are

essentially identical, thereby supporting the above argument on the effects of s′T .

This near perfect agreement between the response functions of G and f approaches,

in the absence of s′T , also suggests that the role of ψ(y, t) in Eq. (3.56) is limited to
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the boundary condition. It may therefore be suggested that the explicit imposition

of the flame anchoring boundary condition plays a marginal role in determining the

flame response to incident fluctuations. In any case, flame anchoring is implicitly

achieved through the mean flame that always remains anchored. Given that in linear

modal analysis, no such conditions (e.g., no-slip) are explicitly imposed on u′ and v′

themselves, a specific focus on f ′ seems not very important.

For the axial (n = 0) modes, Rv and Rv,f do not exist. As for the n = 1 modes,

when s′T = 0, the magnitudes and phases of Ru and Ru,f are essentially identical, and

hence not shown. In fact, for n = 0 and s′T = 0, the magnitudes of Ru and Ru,f are

independent of frequency, and their phases are zero.

Figure 3.8(a) shows the magnitudes of Ru and Ru,f as a function of frequency,

with s′T included. Both Ru and Ru,f show periodic oscillations in frequency, but the

period of oscillations for Ru,f is higher than for Ru. However, the magnitudes of Ru

and Ru,f have the same upper and lower bounds. Figure 3.8(b) shows the phases of

Ru and Ru,f as a function of frequency. Both response functions exhibit the familiar

saw-tooth like behavior. When compared to Ru, the phase of Ru,f changes slowly.

This difference in the behavior of the response functions can be attributed to s′T .

3.5 Results of Flame Response Analysis

In this section, the flame transfer function given by Eq. (3.43) is analyzed

for the combustor geometry shown in Figure 3.1. The magnitudes and phases of the

various response functions that make up the overall FTF are investigated over a broad

parametric space consisting of frequency, mean Mach number, mean temperature,
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Figure 3.5: (a) Magnitude and (b) phase of the axial velocity response functions
Rv and Rv,f , for s′T 6= 0, are plotted as a function of frequency (in radians/s). The
modal index n = 1. Rv: solid line ( ); and Rv,f : dotted line ( ).
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Figure 3.6: (a) Magnitude and (b) phase of the axial velocity response functions Ru

and Ru,f for s′T = 0 are plotted as a function of frequency (in radians/s). The modal
index n = 1. Ru: solid line ( ); and Ru,f : dotted line ( ).
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Figure 3.7: (a) Magnitude and (b) phase of the axial velocity response functions Rv

and Rv,f for s′T = 0 are plotted as a function of frequency (in radians/s). The modal
index n = 1. Rv: solid line ( ); and Rv,f : dotted line ( ).
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Figure 3.8: (a) Magnitude and (b) phase of the axial velocity response functions Ru

and Ru,f for s′T 6= 0 are plotted as a function of frequency (in radians/s). The modal
index n = 0. Ru: solid line ( ); and Ru,f : dotted line ( ).
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and mean equivalence ratio. For each of these parameters, the transfer functions are

presented for both purely axial and mixed modes. From this point forward, we only

present the results obtained using the current G-equation approach.

3.5.1 Effects of Frequency (Ω)

We begin by considering purely axial modes, i.e. modal index n = 0, with

duct height S = 1m, and the following mean properties: Mach number M = 0.1,

temperature T = 2000K, and equivalence ratio φ = 0.8. In Figure 3.9, the magnitude

and phase of the response functions of density, heat of reaction, turbulent flame speed,

and axial velocity—Rρ, RHR, RST, and Ru, respectively—are shown as a function of

frequency (Ω) for the n = 0 modes. Note that for purely axial modes, v′ = 0

and therefore Rv does not arise. Figure 3.9(a) shows the magnitudes of the above

four response functions as a function of frequency. It is seen that for the purely axial

modes, the magnitudes of RST, Rρ and RHR are essentially independent of Ω, whereas

the magnitude of Ru shows oscillatory behavior as a function of Ω. The latter behavior

suggests that Ru exhibits preferential response to certain frequencies than others. It

may be noted that the magnitude of Rρ is, in fact, larger than the magnitudes of

RHR and Ru, suggesting that the ρ′/ρ term in Eq. (3.6) may not necessarily be

neglected. Also, the magnitude of RST is the largest among the response functions,

due to the contribution of the pressure fluctuations arising from the term (∂sT/∂p) p
′

in Eq. (3.22).

Figure 3.9(b) shows the phases of the four response functions as a function

of frequency. The phase-angle range is limited to [−π, π] since we are principally
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interested in the fundamental values of the phase angle. For purely axial modes, we

can see that the phase of Rρ = 0, i.e. the density fluctuations are always in phase

with the heat release fluctuations. This is because there is no convective time-lag

term e−iΩτ in the density fluctuations (Eq. (3.15)). The phases of RHR, RST and

Ru show saw-tooth like behavior, characterized by jumps in phase from −π to π at

regular intervals in Ω. This behavior is due to the convective time-lag term e−iΩτ ,

with τ being a constant for given mean flow conditions. It can also be seen that the

phases of RST and Ru are nearly identical, which is to be anticipated for purely axial

modes.

In Figure 3.10, for n = 1, the magnitude and phase of Rρ, RHR, RST, Ru, as

well as of Rv are shown. Figure 3.10(a) shows the magnitudes of these five response

functions as a function of frequency. In an averaged sense, RST has the highest

magnitude, followed by Rρ, Ru, and RHR. These four response functions also broadly

decrease as Ω increases. However, the magnitude of Rv oscillates around a fixed value,

with the oscillation amplitude decreasing with Ω. The response function magnitudes,

except that of Rv, tend toward infinity as the frequency approaches zero, consistent

with Boyer and Quinard [39]. The magnitude of Rρ decreases monotonically with

frequency and does not show any oscillations, since Rρ does not contain the convective

lag term e−iΩτ . Again, the magnitude of Rρ is greater than the magnitudes of RHR,

Ru and Rv. This is because of the contribution of the temperature flucutuations T ′

(see Eq. (3.14)) to the second term in Rρ in Eq. (3.15).

In Figure 3.10(b), the phases of the five response functions are shown as a

function of frequency. The phase lines for −π/2 and π/2 are also shown by thin solid
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Figure 3.9: (a) Magnitude and (b) phase of the response functions are plotted as a
function of frequency (in radians/s) for modal index n = 0. Rρ: dotted line ( );
RHR: dashed line ( ); RST: solid line ( ); and Ru: dash-dot line ( ).
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lines. The phase of Rρ asymptotes to −π/2 at zero frequency, and to 0 at infinity

frequency, and increases monotonically for frequencies in between. Since the phase

of Rρ is in the range [−π/2, π/2], Q̇′ is always positively correlated to ρ′. The phases

of RHR and RST follow the well-known saw-tooth behavior, with the phase jumping

from −π to π at regular intervals. At lower frequencies, the phase of Ru shows low-

amplitude oscillations about an angle of +π/2, and approaches the high-amplitude

saw-tooth behaviour only for Ω > 3000 radians/s. The phase of Rv is very close

to zero, indicating that the transverse velocity fluctuations are nearly in phase with

heat-release fluctuations. The asymptoting of the phase of Rρ to 0 as the frequency

tends to infinity, and the transition of the phase of Ru from low-amplitude oscillations

to the saw-tooth behavior at higher frequiencies are both more clearly illustrated in

Figure 3.11.

3.5.2 Effects of Mean Mach Number (M)

Since ρ′/ρ = Rρ(p
′/p), h′r/hr = RHR(p′/p), and s′T/sT = RST(p′/p), hence-

forth, we only present the consolidated pressure response function Rp = Rρ +RHR +

RST, as seen in Eq. (3.43). It may be recalled from Figure 3.3 that Rρ, RHR, and

RST are all eventually expressed in terms of Rp. As a result, it will be seen in the

following discussion that Rp dominates Ru and Rv, where Ru and Rv arise solely from

the flame surface-area response. A similar observation may also be seen in [46, 47],

where RHR +RST is seen to dominate Ru, with Ru arising only from the surface-area

response. We also discuss the response functions Ru and Rv, the latter for n = 1.
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Figure 3.10: (a) Magnitude and (b) phase of the response functions are plotted as a
function of frequency (in radians/s) for modal index n = 1. Rρ: dotted line ( );
RHR: dashed line ( ); RST: solid line ( ); Ru: dash-dot line ( ); and Rv:
dash-dot-dot line ( ).
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Figure 3.11: Phases of the response functions Rρ and Ru are plotted as a function
of frequency (in radians/s) for modal index n = 1. Rρ: dotted line ( ); and Ru:
dash-dot line ( ).

In Figure 3.12, the magnitudes and phases of the response functions Rp and Ru

are shown at a purely axial frequency of 2000 radians/s. Figure 3.12(a) presents the

magnitudes of the response functions as a function of the mean inflow Mach number

(M). It can be observed that for lower M , the magnitude of Rp dominates that of

Ru, but for higher M , their magnitudes approach each other. Further, as M goes

to zero, the magnitude of Ru approaches zero, while that of Rp tends to infinity. In

Figure 3.12(b), it can be seen that the phases of Rp and Ru show very similar variation

as a function of M . Both phases oscillate as a function of M , with the oscillation

frequency decreasing as M increases.
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Figure 3.12: (a) Magnitude and (b) phase of the response functions are plotted as
a function of mean Mach number for modal index n = 0. Rp: solid line ( ); and
Ru: dotted line ( ).
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In Figure 3.13, the effects of mean Mach number M on the response functions

Rp, Ru and Rv at a mixed-mode (n = 1) frequency of 2000 radians/s are shown.

Figure 3.13(a) presents their magnitudes as a function of M . As M approaches zero,

the magnitude of the pressure response function tends to infinity, whereas those of the

axial- and transverse-velocity response functions go to zero. At low Mach numbers

(M . 0.25), Rp dominates, while at high Mach numbers (M > 0.25), Rv is dominant

among the three response functions. The magnitude of Rv increases monotonically

with M , while that of Ru first increases with M , and then dips around M ∼ 0.1

before increasing again.

In Figure 3.13(b), the phases of the above three response functions are shown

as a function of M . At low M (. 0.2), all three response functions show oscillatory

behavior. The phase of Ru is always positive, while that of Rv stays very close to zero.

Since a phase angle in the range −π/2 < θ < π/2 suggests a constructive correlation

among flame response and acoustic fluctuations, the transverse velocity fluctuations

are positively correlated to heat-release fluctuations at all M . But, fluctuations in ρ

and u show this behavior only for certain values of M .

3.5.3 Effects of Mean Temperature (T )

In Figure 3.14, the magnitudes and phases of the response functions Rp and Ru

are shown at an axial frequency of 2000 radians/s. In Figure 3.14(a), the magnitudes

of the response functions are shown as a function of mean temperature (T ). We see

that the magnitudes of both Rp and Ru show oscillations in T , with the magnitude

of Rp being much higher than that of Ru. The frequency of oscillations decreases
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Figure 3.13: (a) Magnitude and (b) phase of the response functions are plotted as
a function of mean Mach number for modal index n = 1. Rp: solid line ( ); Ru:
dotted line ( ); and Rv: dashed line ( ).
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with increase in T . This is because the convective time-lag τ increases with T . In

Figure 3.14(b), the phases of the response functions are shown as a function of T . It

is seen that the phases of both Rp and Ru exhibit saw-tooth behavior and are nearly

identical to each other.

Next, we present the magnitudes and phases of the response functions Rp, Ru

and Rv at a mixed-mode (n = 1) frequency of 2000 radians/s. In Figure 3.15(a),

the magnitude of the response functions is shown as a function of mean temperature

(T ). The magnitude of Rp is the most dominant among the three response functions.

The magnitudes of both Rp and Ru oscillate as a function of T , whose amplitude

increases and frequency decreases with T . The magnitude of Ru increases and that of

Rv decreases with mean temperature. In Figure 3.15(b), the phases of the response

functions are shown as a function of T . The phase of Rp shows saw-tooth-like oscilla-

tions with T , while that of Ru has comparatively smaller amplitude oscillations. For

both phases, the oscillation frequency decreases with T . As before, we observe that

the phase of Rv stays very close to zero.

3.5.4 Effects of Mean Equivalence Ratio (φ)

We now present the effects of mean equivalence ratio (φ) on the magnitudes

of the response functions, first for the mixed modes (n = 1), and subsequently for

the axial modes (n = 0) at a frequency of 2000 radians/s. We only present their

magnitudes and not the phases, as the trends in the latter are qualitatively similar

to those seen previously. In Figure 3.16(a), the magnitudes of the response functions

are shown as a function of φ for n = 1. For φ < 1, i.e. under fuel-lean conditions,

101



1400 1600 1800 2000 2200 2400 2600

M
ag
n
it
u
d
e

(a)

1400 1600 1800 2000 2200 2400 2600

P
h
a
se

(b)

Figure 3.14: (a) Magnitude and (b) phase of the response functions are plotted as
a function of mean temperature for modal index n = 0. Rp: solid line ( ); and
Ru: dotted line ( ).
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Figure 3.15: (a) Magnitude and (b) phase of the response functions are plotted as
a function of mean temperature for modal index n = 1. Rp: solid line ( ); Ru:
dotted line ( ); and Rv: dashed line ( ).
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the magnitudes of Rp and Rv are higher than those for φ ∼ 1, i.e. at stoichiometric

conditions. This is consistent with the observation in prior studies that fuel-lean

combustion is prone to instabilities [11, 47, 54]. The magnitude of Rp first decreases

for 1 < φ < 1.2 and then grows sharply for φ > 1.2. The sudden increase in the

magnitude of Rp at φ = 1 is due to the discontinuity of hr(φ) at φ = 1 (Eq. (3.16)).

The magnitude of Ru is the lowest among the three, and exhibits significantly smaller

variation with φ including a rather slow increase for φ > 1. Both Rp and Ru show

high-frequency oscillations with φ, except around φ ∼ 1. The magnitude of Rv does

not oscillate with φ, and shows a sharp increase only for φ > 1.6. In Figure 3.16(b),

the magnitudes of Rp and Ru are shown as a function of φ for n = 0. It is seen that

the dependence of Rp and Ru on φ is qualitatively similar to that for mixed modes.

However, the oscillations in the magnitudes for n = 0 have smaller amplitude than

the those for n = 1. This observation is consistent with that in [54].

3.6 Combustion Instability Analysis using the FTF

In a prior study [23], the current authors developed an acoustically consis-

tent modal analysis approach for predicting combustion instabilities. In that study,

novel jump or matching conditions at the cross-sectional interfaces were presented

such that the analytically known dispersion relations for the axial acoustic modes

of ducts with multiple discontinuities are consistently recovered. Furthermore, the

effects of the fluctuating heat-release source term in the acoustic wave equation were

incorporated directly into the axial wavenumber, obviating the need for a separate

energy matching condition across the flame. The derived FTF was incorporated into
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Figure 3.16: Magnitudes of the response functions for (a) mixed modes (n = 1) and
(b) purely axial modes (n = 0) are plotted as a function of mean equivalence ratio.
Rp: solid line ( ); Ru: dashed line ( ); and Rv: dotted line ( ).
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this modal analysis framework to predict instabilities in a 2-D dump combustor. For

completeness, the salient features of the modal analysis are presented in the following

discussion.

The inhomogeneous wave equation with the fluctuating heat-release source

term included is given by [4, 23]:

1

c2

D
2
p′

Dt2
−∇2p′ =

γ − 1

c2

Dq̇′

Dt
(3.61)

where

D

Dt
=

∂

∂t
+ u •∇

fluctuating heat-release rate per unit volume q̇′ = 2 Q
LfS

dQ̇′

dQ̇
, u is the mean velocity

vector, and γ is the ratio of specific heats. Here Q = ρ̄sThr A is the mean heat-release

rate (A is the total mean flame surface area), and dQ̇′

dQ̇
is obtained from the RHS of

Eq. (3.43).

The combustor under consideration is divided into three zones as shown in Fig-

ure 3.1. The acoustic fluctuations in each of these zones are given by [5,10,14,23,54]:

p′β(x, y, t) = eiΩt
∞∑
n=0

(
A+
n,βe

ik+
n,βx + A−n,βe

ik−n,βx
)

cos (ky,β y)

ρ′β(x, y, t) =
1

c2
β

eiΩt
∞∑
n=0

(
A+
n,βe

ik+
n,βx + A−n,βe

ik−n,βx
)

cos (ky,β y)

u′β(x, y, t) = − 1

ρβ
eiΩt

∞∑
n=0

(
k+
n,β

Ω + uβk
+
n,β

A+
n,βe

ik+
n,βx +

k−n,β
Ω + uβk

−
n,β

A−n,βe
ik−n,βx

)
cos (ky,β y)

v′β(x, y, t) =
1

ρβ
eiΩt

∞∑
n=0

(
ky,β

Ω + uβk
+
n,β

A+
n,βe

ik+
n,βx +

ky,β
Ω + uβk

−
n,β

A−n,βe
ik−n,βx

)
sin (ky,β y)

(3.62)
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where β = 1, 2, 3 is the zonal index, ky,β = 2nπ/Sβ (Sβ is the duct height of zone β),

and A±n and k±n are the amplitudes and axial wavenumbers, respectively, of the waves

propagating in the positive and negative x-directions. The forms of k±n depend upon

the mean velocity profile, as well as the flame response function.

3.6.1 Matching Conditions at Zonal Interfaces

The acoustically consistent matching conditions presented in [23] are applied at

the zonal interfaces. This approach involves only the velocity and pressure matching

conditions with distinct forms for the axial and nonaxial modes, and no separate

energy matching condition.

For the axial modes, the velocity matching condition imposes the continuity

of acoustic mass velocity (
∫
S
ρu dy). At the interface between zones 1 and 2, this is

given by

∫
S1

ρ1u1 dy =

∫
S2

ρ2u2 dy (3.63)

which after linearization yields

∫
S1

[ρ′1u1 + ρ1u
′
1] dy =

∫
S2

[ρ′2u2 + ρ2u
′
2] dy (3.64)

Since the fluctuating quantities are being integrated across their respective zonal

cross-sections, only the zeroth-mode (purely axial) contribution remains. Accordingly,
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the velocity matching condition for the purely axial modes is given by:

[ρ
(0)
1 u1 + ρ1 u

(0)
1 ] S1 = [ρ

(0)
2 u2 + ρ2 u

(0)
2 ] S2 (3.65)

where the superscript (0) represents the zeroth mode (n = 0) of a fluctuating quantity.

For the axial modes, the pressure matching condition is

∫
S1

{
p′1 + ρ1 u1 u

′
1 +

1

2
ρ′1 u1 u1

}
dy =

∫
S1

{
p′2 + ρ2 u2 u

′
2 +

1

2
ρ′2 u2 u2

}
dy (3.66)

In the above equation, the integrations on the LHS and RHS are over the cross-

sectional interface or the aperture between the two zones, resluting in different be-

haviors on the two sides of the equation. While only the axial mode (n = 0) terms

remain on the LHS, both axial and non-axial modes (n 6= 0) contribute to the RHS.

For calculating the axial modes, the pressure matching condition involves only the

n = 0 terms on the RHS.

For the non-axial modes (n > 0), the velocity matching condition is given by:

u′1 = u′2 (3.67)

and, the pressure matching condition is :

p′1 + ρ1 u1 u
′
1 +

1

2
ρ′1 u1 u1 = p′2 + ρ2 u2 u

′
2 +

1

2
ρ′2 u2 u2 (3.68)
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For the non-axial modes, Eqs. (3.67) and (3.68) contains an infinite series

summation on both the LHS and RHS. We reduce this complexity by utilizing the

orthogonality property of the cosine function, where Eqs. (3.67) and (3.68) are mul-

tiplied with cos
(

2Nπ
S1
y
)

(N > 0 is an integer), and integrated over y ∈ [−S1/2, S1/2]

(The final forms of the matching conditions are not reproduced here. See [23]). The

preceding matching conditions for the axial and non-axial modes are also applied at

the interface between zones 2 and 3.

3.6.2 Mean Velocity Profiles and Heat-Release Term

As discussed previously, the form of the axial wavenumbers k±n depends on the

mean velocity profile (and the heat-release source term). For a uniform mean velocity

with no heat release, the axial wavenumbers have the following well-known form:

k±n =

ΩM
c
∓
√

Ω2

c2
− (1−M2

)(2nπ
S

)2

1−M2 (3.69)

For nonuniform axial mean flow, k±n are obtained using the following wave

equation [23]:

1

c2

∂2p′

∂t2
+

2M(y)

c

∂2p′

∂t∂x
+
[
M

2
(y)− 1

] ∂2p′

∂x2
− ∂2p′

∂y2
= 2ρ

du

dy

∂v′

∂x
+
γ − 1

c2

(
∂q̇′

∂t
+ u

∂q̇′

∂x

)
(3.70)
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where u = u(y) and M = M(y). The three mean velocity profiles considered in this

study are:

Uniform Velocity Profile : u = Mbulk c (3.71)

Parabolic Velocity Profile : u(y) =
6Mbulk c

S2

(
S2

4
− y2

)
(3.72)

Turbulent Velocity Profile : u(y) = Mbulk c

(
1− 4y2

S2

) 1
7

(3.73)

where Mbulk is the bulk Mach number of the flow.

Substituting the pressure, velocity, and heat-release rate fluctuation forms, as

well as u(y) into Eq. (3.70), we get an equation in kn. Solving this equation yields

the appropriate forms of k±n (see [23] for details).

3.7 Results of Combustion Instability Analysis

3.7.1 Validation

The model analysis approach combined with the FTF is validated using the

experimental and theoretical combustion instability predictions of Yu et al. [2]. Yu

et al. [2] considered a 1-D planar flame located downstream of the area discontinuity,

as shown in Figure 4.10. The geometric parameters and mean flow properties in the

Yu et al. study are provided in Table 4.2, and are used for validating the current

approach as well.

In Table 4.4, the unstable longitudinal mode frequencies predicted by our

approach are compared with those from Yu et al. [2]. It can be seen that the current
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Figure 3.17: Geometry of the dump combustor considered by Yu et al., with the
planar mean flame shape indicated using dashed line separating zones 2 and 3.

Table 3.1: Geometric parameters and mean flow properties in the three-zone dump
combustor (see Figure 4.10) considered in Yu et al. [2].

Geometry/Mean Property Zone 1 Zone 2 Zone 3

Length (m) 0.171 0.038 0.215
Height (m) 0.0225 0.0450 0.0450
Mach number, M 0.265 0.0548 0.0933
Temperature, T (K) 1020 1030 2660
Speed of sound, c (ms−1) 698 701 1110
Density, ρ (kg·m−3) 7.53 5.92 2.20
Pressure, p (MPa) 2.27 2.29 2.28

instability predictions agree better with the experimental data than do the modal

analysis results of Yu et al. The difference between the current and experimental

frequencies is less than 3%. These improved predictions may be attributed to the

comprehensive FTF developed in this study, as well as the acoustically consistent

modal analysis.
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Table 3.2: Comparison of unstable longitudinal mode frequencies obtained by using
the current FTF with those from the experiments and 1-D modal analysis of Yu et
al. [2].

Frequency Experimental 1-D Analytical Modal Analysis
(Hz) (Yu et al.) (Yu et al.) (Using Current FTF)

Fundamental (Ω10) 1905 1997 1859
First harmonic
(Ω20)

3890 3785 3895

Second harmonic
(Ω30)

5610 5878 5760

3.7.2 Application to 2-D Dump Combustor

In studying the effects of mean velocity on instability modes, we considered

three profiles: uniform (Eq. (3.71)), laminar parabolic (Eq. (3.72)), and turbulent

1/7th power law profiles (Eq. (3.73)). For each of these profiles, the mean flame

shape was determined by writing G(x, y) = x− f(y), and then substituting this into

Eq. (3.26). This gives us

f(y) = ∓
y∫

S/2

√
u(y)2

sT
2 − 1 dy (3.74)

Figure 3.18 shows the upper half of the calculated mean flame shape, x −

f(y) = 0, for the three mean velocities. For the uniform and parabolic profiles, sT in

Eq. (3.74) is simply replaced by a laminar flame speed that is again obtained from

Eq. (3.21). The mean properties considered are: T = 2000K, Mbulk = 0.1, p = 5.7 bar

and, φ = 0.8. The inlet duct height S1 = 1m. As expected, the mean flame shape is

linear for the uniform mean flow case. For the turbulent mean velocity case, the flame
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shape far away from the flame anchoring point is essentially linear and parallel to the

flame for the uniform flow case. This behavior is to be anticipated since the turbulent

power-law profile varies slowly with y in the core of the duct (i.e., essentially behaves

like a uniform flow). Close to the anchoring point, the shape becomes non-linear.

The mean flame shape for the parabolic velocity profile is much more non-linear than

for the turbulent velocity profile. Defining the flame length Lf as the x for which

G(x, 0) = 0, it can be seen that the uniform and parabolic velocity profile cases have

the same flame length, while the turbulent velocity profile case has the lowest flame

length.

Prediction of Combustion Instabilities

The geometric parameters and mean conditions for the dump combustor (Fig-

ure 3.1) are given in Table 3.3. It should be noted that for the uniform and parabolic

mean velocity profiles, Lf = 8.6m, and for the turbulent velocity profile Lf = 7.9m.

Acoustically closed boundary conditions ( ∂p
′

∂x

∣∣∣
x=−L1, L2

= 0) are imposed at the inlet

and exit of the combustor. In Table 3.4, we present the unstable longitudinal and

transverse modes for the three mean flame shapes. Also presented in Table 3.4 are

the nominal growth rates, i.e. the imaginary part of the complex frequency, which is

negative for unstable modes. It is evident that the mean velocity profile does not sig-

nificantly impact the unstable frequencies, at least for the mean conditions considered

here.
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Figure 3.18: Mean flame shape for three mean velocity profiles: uniform ( ),
parabolic ( ), and turbulent ( ), are shown. The flame anchoring point is
(0, 0.5).

Table 3.3: Geometric parameters and mean flow properties in the three-zone dump
combustor (see Figure 3.1) considered in this study.

Geometry/Mean Prop-
erty

Zone 1 Zone 2 Zone 3

Length (m) 1 Lf 10− Lf
Height (m) 1 2 2
Bulk Mach number, Mbulk 0.1 0.035 0.032
Temperature, T (K) 1000 2000 2500

Equivalence ratio, φ 0.8 0.4 0.05
Density, ρ (kg·m−3) 7.53 5.92 2.20
Pressure, p (MPa) 2.27 2.29 2.28
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Table 3.4: Unstable longitudinal and transverse mode frequencies for the dump
combustor (Figure 3.1) with three mean flame shapes due to uniform, parabolic, and
turbulent mean velocity profiles.

Acoustic Modes Uniform Parabolic Turbulent

(radians/s) Frequency Growth rate Frequency Growth rate Frequency Growth rate
Ωreal Ωimag Ωreal Ωimag Ωreal Ωimag

Fundamental (Ω10) 261.79 -7.84 261.72 -7.86 264.71 -7.70
First harmonic (Ω20) 517.86 -10.46 517.71 -10.48 520.80 -9.79
Second harmonic (Ω30) 762.30 -14.30 763.07 -14.3 763.30 -13.41
Fundamental transverse
(Ω01)

2758.00 -15.18 2757.24 -15.22 2768.82 -15.19

3.8 Summary

A comprehensive flame transfer function for turbulent premixed flames is pre-

sented. The FTF includes the effects of fluctuations in density, heat of reaction, tur-

bulent flame speed, and flame surface area. Flame surface-area response to acoustic

fluctuations is formulated using a novel G-equation method. This approach facili-

tates the consistent inclusion of the effects of 2-D/3-D acoustic-perturbations and

2-D/3-D flame-kinematics on the FTF. A detailed comparison between the current

G-approach and the well-established f -approach is presented. In the absence of tur-

bulent flame-speed fluctuations, the two approaches give nearly identical response

functions. However, they differ when turbulent flame-speed fluctuations are included,

principally in the phase of the axial velocity response functions. A detailed analysis

of the current FTF was undertaken for a V-shaped mean flame, wherein the effects

of varying the frequency, modal index, mean Mach number, mean temperature, and

mean equivalence ratio were studied. For the purely axial modes, it was found that
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the magnitude of the response functions corresponding to fluctuations in density,

heat of reaction, flame speed, and flame surface area are largely unaffected by the

frequency, except for low-amplitude harmonic-like oscillations. For mixed modes, the

magnitudes of these response functions scale inversely with frequency, along with the

harmonic-like oscillations. This suggests that for mixed modes the flame acts like

a high-pass filter. From the phase analysis, it was observed that Rρ and Rv are al-

ways positively correlated with heat-release-rate fluctuations. At any given frequency,

the magnitudes of the response functions are lowest around the stoichiometric mean

equivalence ratio (φ ∼ 1). By combining the FTF with an acoustically consistent

modal analysis framework, combustion instability analysis of a 2-D dump combus-

tor was performed for three mean velocity profiles. For a given bulk Mach number,

the mean velocity profiles do not seem to have much effect on the unstable mode

frequencies.
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CHAPTER 4

PREDICTION OF COMBUSTION INSTABILITIES USING A

WKB-TYPE SOLUTION FOR THE WAVE EQUATION IN

INHOMOGENEOUS MEDIA

4.1 Abstract

Linear modal analysis is a widely used reduced-order method to predict com-

bustion instabilities. However, this method is only applicable under the assumption

that a combustion system is comprised of chambers with homogeneous mean-flow

properties. A well-known analytical solution approach to the one-dimensional (1-

D) wave equation in inhomogeneous media is the Wentzel-Kramers-Brillouin (WKB)

method, which is based on the assumptions of high frequency and slowly varying flow

properties. In this study, a novel WKB-type methodology is developed by relaxing

the latter assumption. Solutions are derived for the quasi 1-D wave equation in ducts

with varying cross-sectional area and inhomogeneous mean-flow properties. Numer-

ical simulations of the wave equation were also performed. Both the current and

classical WKB solutions are compared with the numerical results, as well as known

exact solutions. The WKB solution is then applied to predict the longitudinal in-

stabilities in a dump combustor with an area discontinuity. The predicted unstable
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frequencies are found to be in good agreement with prior experimental and analytical

results.

4.2 Introduction

A fundamental consideration in the design and operation of propulsion and

power generation systems is the occurrence of combustion instabilities. Combustion

instabilities manifest as self-excited acoustic oscillations arising from the constructive

interference between the heat-release rate fluctuations and the acoustic perturbations

inside the combustor [22, 23]. Reduced-order analytical models for the prediction

of instabilities entail two broad steps—the solution of the acoustic wave equation,

and the incorporation of the thermo-acoustic interactions through a flame response

function [4, 5, 7, 11, 14, 23]. Linear modal analysis is one of the widely used reduced-

order methods for computing the resonant frequencies of a combustion chamber.

In modal analysis, the geometry of interest is first divided into zones with uniform

mean-flow properties. Matching conditions are then imposed on the wave solutions

(in adjacent zones) at the zonal interfaces [2, 23, 54]. However, when accounting

for inhomogeneities in media, the domain has to be divided into a large number of

homogeneous zones. This approach poses the problem of increased computational cost

in determining the eigenfrequencies, since convergence to the higher order unstable

modes becomes particularly difficult as the number of zones increases [1, 23]. In this

study, an approximate analytical solution based on the Wentzel-Kramers-Brillouin

(WKB) method is developed for the acoustic wave equation in a quasi one-dimensional

(1-D) domain with non-uniform cross-sectional area and flow properties. Numerical
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solutions to the wave equation were also obtained. Both the current and classical

WKB solutions are compared with the corresponding numerical solutions, as well as

the exact solutions where available. The WKB method is then applied to determine

the instabilities in a dump combustor with a sudden change in cross-section.

During the past six decades or so, numerous approximate solution methods,

based on ray or geometrical acoustics considerations, have been developed for the

linear wave equation in inhomogeneous media [61–68]. In ray acoustics, the acoustic

perturbation is described using an amplitude and a harmonic-like functionality called

the eikonal, which are both functions of space. Substitution of this perturbation

form into the wave equation yields coupled, non-linear ordinary differential equations

(ODEs) for the amplitude and phase (in the eikonal). In general, it is not possible to

get exact, closed form solutions to these ODEs, so that they will have to be solved

numerically. However, under certain conditions, approximate analytical solutions can

be obtained for 1-D geometries. One such approach is called the Wentzel-Kramers-

Brillouin (WKB) method [69–73]. The WKB method utilizes the high frequency

approximation, i.e. the acoustic wavelength is small compared to the characteristic

scale of the inhomogeneity. This approximation allows us to neglect certain terms in

the ODEs and thereby develop closed form solutions for the amplitude and phase.

Cummings [74] developed a variant of the high-frequency WKB solution for

rigid-walled ducts with axial mean temperature gradients. The modified method

differs from the conventional WKB method in the approximations made to obtain

analytical solutions to the governing equations. The solutions obtained using this
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method showed margninally improved agreement with experimental data and numer-

ical solutions than did the classical WKB solutions.

Approximate solutions that are not based on the ray acoustics approximation

have also been developed [75–78]. Peat [77] presented an approximate analytical

solution for the acoustic perturbations inside a capillary duct with uniform flow and

axial temperature gradients. This method utilizes a perturbation series expansion

of the acoustic fluctuations with a dimensionless mean temperature gradient as the

small parameter, along with an assumed quadratic spatial dependence for the acoustic

pressure and velocity fluctuations. It was found that both the amplitude and phase-

speed varied significantly with the mean temperature gradient. However, they were

found not to change appreciably along the duct length, due to the low-order spatial

approximation used. Peat also noted that the isentropic assumption used in deriving

the approximate solution broke down as the mean Mach number or temperature

gradient increased, necessitating numerical solution.

Munjal and Prasad [78] also developed a non-WKB approximate solution to

the 1-D wave equation in a uniform cross-sectional area duct with gradients in both

mean flow and temperature. They used perturbation theory in conjunction with the

Green’s function method to derive the solution. Peat [75] developed an alternative

approximate solution to the problem considered by Munjal and Prasad [78], wherein

the phase was assumed to be spatially invariant, but not the amplitude.

Exact solutions were also developed for the wave equation in inhomogeneous

media [3, 79–81]. Sujith et al. [3] derived an exact solution, involving Bessel func-

tions, to the 1-D cartesian wave equation with mean temperature gradients and no
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mean flow. They suggested that this solution was also applicable at low mean Mach

numbers M such that M
2 � 1. Subsequently, Karthik, Kumar and Sujith [79] ex-

tended this technique to include mean temperature and velocity gradients. Under the

assumptions of low Mach number and linear mean temperature profile, they trans-

formed the spatial Helmholtz equation to the temperature space, and obtained exact

solutions in the form of a hypergeometric series. Bala Subrahmanyam, Sujith and

Lieuwen [80] derived exact solutions to the wave equation in a quasi 1-D cartesian duct

with mean temperature gradients and a varying cross-sectional area. They presented

the cross-sectional area and mean velocity profiles for which closed form solutions are

possible. In a subsequent study, they also derived [81] solutions to the wave equation

in cylindrical and spherical geometries with mean temperature gradients. These so-

lutions had a T
−1/4

dependence on the mean temperature, as is also the case with

the WKB solutions to these problems.

Modal analysis-based solutions to the wave equation are commonly applied to

predict combustion instabilities. However, modal analysis suffers from certain limi-

tations, which have already been discussed. To our knowledge, approximate solution

methods, such as the WKB method, have not yet been applied to predict combustion

instabilities in ducts with inhomogeneities. This study aims to fill this gap by de-

veloping a WKB-type solution for a duct with varying cross-sectional area and mean

flow properties, and applying it to predict the longitudinal instabilities in a dump

combustor. The current WKB solution is compared with the classical WKB solution,

as well as numerical results. The resonant frequencies predicted by the current WKB

solution for a duct with a linearly varying mean temperature are shown to be in
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good agreement with those obtained from the exact solution of Sujith [3]. The WKB

solution is then employed to predict the unstable frequencies of a dump combustor

with a single discontinuity in area. The instability predictions are validated against

the experimental and analytical results of Yu et al. [2].

The organization of this paper is as follows. In Section 4.3, we derive the

current and classical WKB solutions to three problems involving variations in mean

temperature and cross-sectional area, both with and without mean flow. We then

compare in Section 4.4 the two WKB solutions with the numerical and exact solutions

to the corresponding wave equations. The resonant frequences of a duct with linearly

varying temperature were also obtained and compared with those obtained from the

exact solution to the wave equation. In Section 4.5, the predictions of combustion

instability frequencies using the WKB solution are presented. Finally, in Appendix

D, we compare the eigenfrequences obtained using the modal analysis and WKB

methods for a duct with mean temperature gradient.

4.3 WKB-Type Solution

We begin by deriving the linear wave equation in a quasi 1-D cartesian duct

with varying cross-sectional area, shown in Figure 4.1. For this geometry, the conti-

nuity equation is [80]

S
∂ρ

∂t
+

∂

∂x
(ρuS) = 0 (4.1)

where S is the cross-sectional area, ρ is the fluid density and u is the axial flow

velocity. We decompose the flow variables into mean and fluctuating quantities (e.g.,
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x•

L

S(x)

Figure 4.1: Geometry of quasi 1-D duct with changing cross-sectional area. S(x) is
the axially varying area.

ρ = ρ + ρ′), and linearize Eq. (4.1) yielding the mean and fluctuating forms of the

continuity equation.

S

(
u

dρ

dx
+ ρ

du

dx

)
+ ρ u

dS

dx
= 0 (4.2)

S
∂ρ′

∂t
+ Su

∂ρ′

∂x
+ S

∂ρ

∂x
u′ + Sρ

∂u′

∂x
+ S

∂u

∂x
ρ′ + ρ

∂S

∂x
u′ + u

∂S

∂x
ρ′ = 0 (4.3)

The inviscid momentum balance equation is

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
(4.4)

where p is the fluid pressure. The mean and the (linearized) fluctuating forms of the

momentum equation are

ρu
du

dx
= −dp

dx
(4.5)

u
∂u

∂x
ρ′ + ρ

∂u′

∂t
+ ρ u

∂u′

∂x
+ ρ

∂u

∂x
u′ = −∂p

′

∂x
(4.6)
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The energy balance equation with the viscous dissipation terms dropped is [77,78,80]

S
∂p

∂t
+ Su

∂p

∂x
+ γp

∂(Su)

∂x
= 0 (4.7)

where γ is the ratio of specific heats. The mean and the fluctuating forms of the

energy equation are

Su
dp

dx
+ Sγp

du

dx
+ γp u

dS

dx
= 0 (4.8)

S
∂p′

∂t
+ Su

∂p′

∂x
+ S

∂p

∂x
u′ + Sγp

∂u′

∂x
+ Sγ

∂u

∂x
p′ + γp

∂S

∂x
u′ + γu

∂S

∂x
p′ = 0 (4.9)

Combining Eqs. (4.9) and (4.6), and using ρ′ = p′/c2, we arrive at the wave equation:

1

c2

∂2p′

∂t2
− ∂2p′

∂x2
=

(
∂u

∂x

)2
p′

c2 +
u

c2

∂2u

∂x2
p′ +

u

c2

∂u

∂x

∂p′

∂x
− 2

u

c3

∂u

∂x

∂c

∂x
p′

− 1

ρ

∂ρ

∂x

∂p′

∂x
− u

ρc2

∂ρ

∂x

∂u

∂x
p′ − u

c2

∂2p′

∂x∂t
− γ

c2

∂u

∂x

∂p′

∂t
− γ

S

u

c2

∂S

∂x

∂p′

∂t

− ρ

S

∂S

∂x

∂u′

∂t
− 1

c2

∂p

∂x

∂u′

∂t
+ 2ρ

∂u

∂x

∂u′

∂x
+ ρ

∂2u

∂x2
u′ + ρu

∂2u′

∂x2

(4.10)

Substituting p′ = p̂(x)eiΩt and u′ = û(x)eiΩt into Eq. (4.10), we have

− Ω2

c2 p̂−
∂2p̂

∂x2
=

(
∂u

∂x

)2
p̂

c2 +
u

c2

∂2u

∂x2
p̂+

u

c2

∂u

∂x

∂p̂

∂x
− 2

u

c3

∂u

∂x

∂c

∂x
p̂

− 1

ρ

∂ρ

∂x

∂p̂

∂x
− u

ρc2

∂ρ

∂x

∂u

∂x
p̂− iΩu

c2

∂2p̂

∂x
− iΩγ

c2

∂u

∂x
p̂− iΩγ

S

u

c2

∂S

∂x
p̂

− iΩ ρ

S

∂S

∂x
û− iΩ 1

c2

∂p

∂x
û+ ρu

∂2û

∂x2
+ 2ρ

∂u

∂x

∂û

∂x
+ ρ

∂2u

∂x2
û

(4.11)

In the following discussion, we present WKB-type solutions to the wave equation for

cases involving linearly varying cross-sectional area and temperature. Both zero and

uniform mean velocities are considered.
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4.3.1 Case 1: u = 0, dS
dx

= 0 and T = mx+ T1

In this case, we consider a duct with uniform cross-section, no mean flow, and

a linear mean temperature. For this case, Eq. (4.5), in conjunction with the ideal gas

law, becomes

1

ρ

dρ

dx
+

1

T

dT

dx
= 0 (4.12)

Using Eq. (4.12) in Eq. (4.11) we get [3]

d2p̂

dx2
+

1

T

dT

dx

dp̂

dx
+

Ω2

γRT
p̂ = 0 (4.13)

where c2 = γRT (R is the the specific gas constant). Sujith et al. [3] derived an exact

solution to Eq. (4.13) involving Bessel functions. Our interest, however, is to obtain

a WKB-type solution to Eq. (4.13). Therefore, we consider a solution of the form:

p̂(x) = A(x)eiθ(x) (4.14)

where A(x) and θ(x) are the amplitude and phase of the pressure wave, respectively.

Substituting Eq.(4.14) in Eq.(4.13), and equating the real and imaginary parts, we

get two coupled non-linear ODEs given by

d2A

dx2
− A

(
dθ

dx

)2

+
1

T

dT

dx

dA

dx
+

Ω2

γRT
A = 0 (4.15)

2
dA

dx

dθ

dx
+ A

d2θ

dx2
+

1

T

dT

dx
A

dθ

dx
= 0 (4.16)
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There is no closed form solution to these non-linear ODEs. However, by making

certain approximations, we can obtain an analytical solution.

The standard WKB method is based on two principal approximations. The

first is the high-frequency approximation, which enables us to neglect d2A
dx2 as compared

to Ω2

γRT
A. Second, it is assumed that the mean temperature is large and that it changes

slowly in x, allowing us to drop the 1
T

dT
dx

dA
dx

term as well. In this study, we also derive

a modified WKB-type solution by dropping the second assumption. We now present

for Case 1 both the standard WKB solution and the current WKB-type solution.

4.3.1.1 Standard WKB Solution

Dropping both d2A
dx2 and 1

T
dT
dx

dA
dx

terms in Eq. (4.15), and solving for the phase

for a linear mean temperature (T = mx+ T1), we get

θ(x) = ± 2Ω

γRm
c(x) + Cθ (4.17)

where Cθ is a constant of integration and depends on the boundary condition for the

phase, and the negative and positive phases correspond to the forward and backward

traveling waves, respectively.

From Eq. (4.16), we now have

dA

dx
+ A

(
1
T

dT
dx

dθ
dx

+ d2θ
dx2

2 dθ
dx

)
︸ ︷︷ ︸

ψ1(x)

= 0 (4.18)
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Equation (4.18) gives us two amplitudes for the forward and backward traveling waves.

Their general form is given by

A(x) = CAe
−

∫
ψ1(x) dx (4.19)

where CA is the constant of integration obtained from the boundary condition on the

amplitude of the wave.

4.3.1.2 Modified WKB Solution

In the current approach, we only neglect the d2A
dx2 term in Eq. (4.15), giving us

1

A

dA

dx
=

(
dθ
dx

)2 − Ω2

γRT

1
T

dT
dx

(4.20)

Equation (4.16) can now be written as

dθ

dx

(
2

A

dA

dx
+

1

T

dT

dx

)
+

d2θ

dx2
= 0 (4.21)

Substituting Eq. (4.20) in Eq. (4.21), we get

d2θ

dx2
+

2
1
T

dT
dx

(
dθ

dx

)3

−
(

2Ω2

γRdT
dx

− 1

T

dT

dx

)
dθ

dx
= 0 (4.22)

Upon substituting y = dθ
dx

into Eq. (4.22),

dy

dx
+

2
1
T

dT
dx

y3 −
(

2Ω2

γRdT
dx

− 1

T

dT

dx

)
y = 0 (4.23)
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which is non-linear in y, but can still be solved analytically (giving rise to a rather

involved expression for y). However, this solution for y cannot be further integrated

analytically to yield θ. Hence, we performed the integration numerically. Having

obtained θ, we can solve Eq. (4.20), which is a first order linear ODE in the amplitude

A.

4.3.2 Case 2: u = 0, S = S1x+ S2 and T = mx+ T1

Here we consider a duct with no mean flow, and with linearly varying cross-

sectional area and mean temperature. For this case, Eq. (4.11) reduces to

d2p̂

dx2
+

(
1

T

dT

dx
+

1

S

dS

dx

)
dp̂

dx
+

Ω2

γRT
p̂ = 0 (4.24)

Substituting p̂(x) = A(x)eiθ(x) in Eq. (4.24), we get the following coupled non-linear

ODEs.

d2A

dx2
− A

(
dθ

dx

)2

+

(
1

T

dT

dx
+

1

S

dS

dx

)
dA

dx
+

Ω2

γRT
A = 0 (4.25)

2
dA

dx

dθ

dx
+ A

d2θ

dx2
+

(
1

T

dT

dx
+

1

S

dS

dx

)
A

dθ

dx
= 0 (4.26)

4.3.2.1 Standard WKB Solution

Neglecting both d2A
dx2 and

(
1
T

dT
dx

+ 1
S

dS
dx

)
dA
dx

terms in Eq. (4.25), the phase of

the wave is given by

θ(x) = ± 2Ω

γRm
c(x) + Cθ (4.27)
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Note that the phase is the same as that in Eq. (4.17) for Case 1, meaning that the

duct cross-section does not the affect the phase.

The amplitude can now be obtained from Eq. (4.26)

dA

dx
+ A


(

1
T

dT
dx

+ 1
S

dS
dx

)
dθ
dx

+ d2θ
dx2

2 dθ
dx

︸ ︷︷ ︸
ψ2(x)

= 0 (4.28)

which yields

A(x) = CAe
−

∫
ψ2(x) dx (4.29)

In contrast to the phase, the wave amplitude is a function of duct geometry.

4.3.2.2 Modified WKB Solution

Neglecting the d2A
dx2 term, Eq. (4.25) can be written as

1

A

dA

dx
=

(
dθ
dx

)2 − Ω2

γRT

1
T

dT
dx

+ 1
S

dS
dx

(4.30)

The phase equation then becomes

d2θ

dx2
+

2
1
T

dT
dx

+ 1
S

dS
dx

(
dθ

dx

)3

−

 2Ω2

γRT
(

1
T

dT
dx

+ 1
S

dS
dx

) − 1

T

dT

dx
− 1

S

dS

dx

 dθ

dx
= 0 (4.31)

Equation (4.31) is solved numerically for the phase, following which the amplitude is

obtained from Eq. (4.30).
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4.3.3 Case 3: du
dx

= 0, dS
dx

= 0 and T = mx+ T1

Here we consider a duct with uniform cross-sectional area and mean flow, and

a linearly varying mean temperature. We begin with the p̂(x) equation obtained from

the classical convected wave equation [23,75,78]

d2p̂

dx2
+

2iΩM

c(M
2 − 1)

dp̂

dx
− Ω2

c2(M
2 − 1)

p̂ = 0 (4.32)

where M = u/c(x). Substituting p̂(x) = A(x)eiθ(x) into Eq. (4.32), we get

d2A

dx2
− A

(
dθ

dx

)2

+
2ΩM

c(M
2 − 1)

A
dθ

dx
− Ω2

c2(M
2 − 1)

A = 0 (4.33)

2
dA

dx

dθ

dx
+ A

d2θ

dx2
+

2ΩM

c(M
2 − 1)

dA

dx
= 0 (4.34)

It is to be noted here that for Case 3, unlike Cases 1 and 2, the standard and the cur-

rent WKB solutions coincide because of the absence of the 1
T

dT
dx

dA
dx

term in Eq. (4.33).

Neglecting d2A
dx2 , we solve Eq. (4.33) for the phase

θ(x) = ±2
cΩ + uΩ log [Ω(c− u)]

γmR
+ Cθ (4.35)

Equation (4.34) may now be solved for the the amplitude.

A(x) = CAexp

−
∫  d2θ

dx2

2 dθ
dx

+ 2ΩM

c(M
2−1)

 dx

 (4.36)
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The amplitudes for the forward and backward travelling waves are obtained using the

negative and positive values of θ in Eq. (4.35), respectively.

4.4 WKB Results

In this section, we compare the waveforms predicted by the standard and

modified WKB solutions with the numerical solution to the governing equation for p̂.

At any location x in the domain, the spatial pressure wave p̂(x), comprising both the

forward and backward traveling waves, is given by

p̂(x) = C +A+eiθ
+

+ C −A−eiθ
−

(4.37)

where the superscripts (·)+ and (·)− refer to the forward and backward traveling

waves, respectively, and C + and C − are the unknown coefficients which may be

determined by applying boundary conditions on p̂(x). Notice that the constants of

integration Cθ and CA (e.g., in Eqs. (4.17) and (4.19)) are subsumed into C + and C −;

this step enables us to avoid the specification of boundary conditions for the amplitude

A(x) and phase θ(x). The coefficients C + and C − for both WKB solutions are then

obtained using the boundary conditions (adopted from Sujith et al. [3]): p̂(x = 0) = 1

at the inlet and dp̂
dx

∣∣
x=L

= 0 at the outlet of the duct. These boundary conditions were

also used when numerically solving the p̂ equation for each of the cases (Eqs. (4.13),

(4.24), (4.32)). All numerical solutions were obtained via the technical computing

platform MathematicaR©.
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4.4.1 Case 1: u = 0, dS
dx

= 0 and T = mx+ T1

In this case, we present the (standard and modified) WKB waveforms, as well

as the numerical solution to Eq. (4.13). The geometry under consideration is that

of a uniform cross-section duct with no mean flow, but with a linearly varying mean

temperature given by T (x) = 500 + 125x. The temperatures at the two ends of the

duct are 500 K and 1000 K, with the length and height of the duct being 4m and

0.2m, respectively.

In Figure 4.2, we compare p̂(x) from the standard and modified WKB ap-

proaches with the numerical solution at the frequencies of 100, 500 and 1000 radi-

ans/s. We also considered the exact solution of Sujith et al. [3], and found that their

solution was essentially identical to the current numerical solution. Hence, it is not

shown explicitly in Figure 4.2. At all three frequencies, the modified WKB solution is

significantly closer to the numerical solution than the standard WKB solution. The

differences between the two WKB solutions may be attributed to the neglect in the

standard method of the term 1
T

dT
dx

dA
dx

in Eq. (4.15). Since the temperature gradient

considered is relatively large (dT
dx

= 125), the neglect of this term introduces errors

into the standard WKB method. To illustrate this further, in Figure 4.3, we will

consider the case of a smaller temperature gradient (dT
dx

= 25).

In Figure 4.3, p̂(x) is shown for a temperature profile given by T (x) = 500+25x

(i.e., dT
dx

= 25). It is evident in Figure 4.3 that, at all frequencies, the standard and the

modified WKB solutions are both in excellent agreement with the numerical solution.

Therefore, it may be said that the standard WKB method is most accurate for slowly
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varying mean temperature. As in Figure 4.2, the exact and numerical solutions are

indistinguishable.

<

Figure 4.2: Spatial pressure wave p̂(x) is plotted along the length of the duct for an-
gular frequencies of 100 (red), 500 (blue) and 1000 (black) radians/s. Modified WKB
solution: solid line ( ); Standard WKB solution: dotted line ( ); Numerical
solution: dashed line ( ).

4.4.2 Case 2A: u = 0, S = S1x+ S2, and dT
dx

= 0

We now consider the effects of variation in cross-sectional area at various

(constant) mean temperatures and no mean flow.
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Figure 4.3: Spatial pressure wave p̂(x) is plotted along the length of the duct for an-
gular frequencies of 100 (red), 500 (blue) and 1000 (black) radians/s. Modified WKB
solution: solid line ( ); Standard WKB solution: dotted line ( ); Numerical
solution: dashed line ( ).

4.4.2.1 S(x) = 0.2 + x/20 and T = 500 K

The duct considered has an inlet cross-sectional area S1 = 0.2 m2 and an outlet

area S1 = 0.4 m2, with a constant mean temperature T = 500 K. The cross-sectional

area gradient dS
dx

= 1
20

. In Figure 4.4, we compare p̂(x) obtained from the modified and

standard WKB approaches with the numerical solution at the frequencies 100, 500

and 1000 radians/s. At Ω = 100, both the standard and modified WKB solutions are
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in good agreement with the numerical solution. However, for Ω = 500, the agreement

of the WKB solutions with the numerical solution deteriorates, although the standard

solution is marginally closer to the numerical solution. For Ω = 1000, we again see

excellent agreement among the three solutions. The seemingly anamolous behavior

at Ω = 500 may be because this frequency is close to the resonant frequency of the

duct. The proximity of Ω to the resonant frequency may be deduced from the higher

amplitudes at this frequency. It may be noted that at the resonant frequencies, the

wave equation has singular solutions.

4.4.2.2 S(x) = 0.2 + 3x/20 and T = 500 K

In Figure 4.5, p̂(x) from the three solutions is plotted as a function of x for

a duct with cross-sectional area profile of S(x) = 0.2 + 3x/20. Here, the cross-

sectional area gradient dS
dx

is three times that of the previous case. The length of

the duct is 4 m and T = 500 K. For Ω = 100 radians/s, the modified WKB method

does perform better than the standard WKB method. For Ω = 500, we see that

the two WKB solutions differ substantially from the numerical solution. This may

be because the Ω = 500 frequency is close to the resonant frequency of the duct.

However at Ω = 1000, both WKB solutions are in excellent agreement with the

numerical solution.

4.4.2.3 S(x) = 0.2 + x/20 and T = 1000 K

We consider the same duct as in Section 4.4.2.1, but with a higher mean

temperature of 1000 K. We can see from Figure 4.6 that, as the frequency increases
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Figure 4.4: Spatial pressure wave p̂(x) is plotted along the length of the duct for
angular frequencies of 100 (red), 500 (blue) and 1000 (black) radians/s. S1 = 0.2m,
S2 = 0.4m and T = 500 K. Modified WKB solution: solid line ( ); Standard
WKB solution: dotted line ( ); Numerical solution: dashed line ( ).

both the classical and modified WKB solutions approach the numerical solution.

Interestingly, the high amplitude observed in the previous two cases at Ω = 500 is

not seen here, suggesting that the resonant frequency of the duct has changed due to

the higher mean temperature.
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Figure 4.5: Spatial pressure wave p̂(x) is plotted along the length of the duct for
angular frequencies of 100 (red), 500 (blue) and 1000 (black) radians/s. S1 = 0.2m,
S2 = 0.8m and T = 500 K. Modified WKB solution: solid line ( ); Standard
WKB solution: dotted line ( ); Numerical solution: dashed line ( ).

4.4.3 Case 2B: u = 0, S = S1x+ S2 and T = mx+ T1

We consider a duct with no mean flow, and with linearly varying cross-sectional

area and mean temperature. The duct area profile is given by S(x) = 0.2+x/20 (same

as that in Case 2A), the mean temperature T (x) = 500 + 125x, and the duct length

is 4m. For this case, we only present the standard WKB solution. This is because

we could not compute a converged numerical solution to Eq. (4.31) for the modified
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Figure 4.6: Spatial pressure wave p̂(x) is plotted along the length of the duct for
angular frequencies of 100 (red), 500 (blue) and 1000 (black) radians/s. S1 = 0.2m,
S2 = 0.4m and T = 1000 K. Modified WKB solution: solid line ( ); Standard
WKB solution: dotted line ( ); Numerical solution: dashed line ( ).

WKB method. The absence of a numerical solution for the modified WKB case may

be explained based on the observations of Subrahmanyam and Sujith [80]. They

showed that a wave-like solution may not be obtained when both dT
dx

and dS
dx

have the

same sign. Since both these gradients are positive in the current case, the numerical

solution for the modified WKB method fails to converge.
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In Figure 4.7, the standard WKB solution and the numerical solution for p̂(x)

are plotted. We can see from Figure 4.7 that, the standard WKB solution shows

improved agreement with the numerical solution at higher frequencies.

<

Figure 4.7: Spatial pressure wave p̂(x) is plotted along the length of the duct for
angular frequencies of 100 (red), 500 (blue) and 1000 (black) radians/s. Standard
WKB solution: dotted line ( ); Numerical solution: dashed line ( ).

4.4.4 Case 3: du
dx

= 0, dS
dx

= 0 and T = mx+ T1

We now compare the waveforms of a duct with uniform cross-sectional area

and mean flow, and a linearly varying temperature profile. The temperature profile
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for this case is T (x) = 500 + 125x, and the duct length is 4m. We consider two inlet

Mach numbers M inlet = 0.1, 0.3 (note that the mean velocity remains constant along

the duct, but the mean Mach number and sound speed, M and c, vary continually).

Recall from Section 4.3.3 that, for this case, both the standard and modified WKB

approaches are the same. Hence, we will just refer to the approximate analytical

solution as the WKB solution.

Figure 4.8 shows p̂(x) obtained from the WKB approach as well as the nu-

merical solution (to Eq. (4.32)) as a function of axial location x for M inlet = 0.1. We

see that the WKB solution agrees quite well with the numerical solution at all fre-

quencies. Even at the lowest frequency (Ω = 100 radians/s), the maximum deviation

between the WKB and the numerical solutions is less than 2%.

In Figure 4.9, p̂(x) from the WKB approach as well as the numerical solution is

shown for M inlet = 0.3. The WKB solution again agrees quite well with the numerical

solution at all three frequencies. It may be noted that for Ω = 1000 radians/s, the

waveform is seemingly damped close to the inlet, as compared to the waveform in the

M inlet = 0.1 case.

4.4.5 Prediction of Resonant Frequencies

We now compare the resonant frequencies predicted by the (standard and

modified) WKB approaches with those obtained from the exact solutions of Sujith et

al. [3] for a uniform duct with a linear mean temperature profile and no mean flow

(cf. Case 1 in Section 4.3.1). This exercise was undertaken so as to impart confidence

into our subsequent effort to predict combustion instabilities.
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Figure 4.8: Spatial pressure wave p̂(x) is plotted along the length of the duct for an-
gular frequencies of 100 (red), 500 (blue) and 1000 (black) radians/s. WKB solution:
solid line ( ); Numerical solution: dashed line ( ).

Sujith et al. [3] considered four mean temperature profiles with gradients dT
dx

=

m = −50,−100,−150 and −200, and a constant outlet temperature T out = 300 K.

The length of the duct is 4 m. We employ the same boundary conditions as those in

Sujith et al., which are: the duct is acoustically closed at the left end ( dp′

dx

∣∣∣
x=0

= 0),

and open at the right end (p′|x=L = 0). Using the boundary conditions, a system of
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Figure 4.9: Spatial pressure wave p̂(x) is plotted along the length of the duct for an-
gular frequencies of 100 (red), 500 (blue) and 1000 (black) radians/s. WKB solution:
solid line ( ); Numerical solution: dashed line ( ).

homogeneous linear equations in the unknown coefficients C + and C − is formed:


d

dx
(A(x)+eθ(x)+

)
∣∣∣
x=0

d
dx

(A(x)−eθ(x)−)
∣∣∣
x=0

A(L)+eθ(L)+
A(L)−eθ(L)−




C +

C −

 =


0

0

 (4.38)

The resonant frequencies of the duct are found by solving the dispersion relation

det(M ) = 0, where M is the coefficient matrix.
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Table 4.1 shows the fundamental mode Ω0, as well as the first four harmonics

Ω1 through Ω4. In general, we see that both WKB predictions agree quite well with

those of Sujith et al. [3]. For the fundamental mode, the resonant frequencies obtained

from the standard WKB method are slightly closer to the Sujith et al. results. For all

the other harmonics, both WKB methods are in excellent agreement with the Sujith

et al. results. We see that as the temperature gradients become steeper, the WKB

frequencies show increasing deviation from the exact frequencies. However, across all

the cases, the maximum error in the standard WKB solution is less than 3% and that

in the modified WKB solution is less than 10% (occurring at Ω0 with m = −200).

Table 4.1: Comparison of the standard and modified WKB solutions with the exact
solutions obtained from Sujith et al. [3]. The first four harmonics of the duct (in
radians/s) with different gradients in mean temperature profiles are shown.

T (x) = T1 +mx
T1 (K) 500 700 900 1100
m (K/m) -50 -100 -150 -200

Standard WKB Solution

Ω0 148.7 159.32 168.77 177.36
Ω1 466.14 512.86 553.37 589.64
Ω2 779.46 859.09 928.02 989.67
Ω3 1092.23 1204.39 1301.43 1388.19
Ω4 1404.81 1549.38 1674.43 1786.22

Modified WKB Solution

Ω0 150.58 164.72 178.09 190.66
Ω1 466.83 514.95 557.21 595.41
Ω2 779.87 860.36 930.35 993.17
Ω3 1092.52 1205.3 1303.1 1390.7
Ω4 1405.04 1550.09 1675.72 1788.17

Exact Solution

Ω0 148.35 158.02 166.38 173.86
Ω1 466.4 512.77 552.92 588.73
Ω2 780.06 859.54 928.28 989.66
Ω3 1093.09 1205.18 1302.13 1388.77
Ω4 1405.99 1550.56 1675.54 1787.31
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In the following section, we present the results obtained when applying the

WKB solution to predict the longitudinal combustion instabilities of a 2-D dump

combustor (note that the standard and current WKB solutions coincide for this case).

4.5 Application of WKB method to Predict Combustion Instabilities

We apply the WKB method to predict the longitudinal instabilities of a dump

combustor with an area discontinuity, shown in Figure 4.10. The current predictions

will be compared with the experimental and modal analysis results of Yu et al. [2].

In their study, Yu et al. [2] considered a 1-D planar flame located at the interface

between zones 2 and 3. Thus, all the heat release due to combustion is assumed to

take place in an infinitesimally thin plane, and the resulting increase in temperature

occurs downstream in zone 3.

The relevant governing equation for this problem is Eq. (4.32). In each of the

three zones shown in Figure 4.10, the solution to this equation is considered with

the appropriate mean properties. In the current study, zones 1 and 2 have uniform

mean velocities and temperatures, whereas zone 3 is considered to have a uniform

mean flow, but a linear temperature profile. As a result, in zones 1 and 2, the WKB

solution reduces to the conventional modal form of the perturbations, whereas in zone

3, the WKB solution is given by Eqs. (4.35) and (4.36).
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zone 1

zone 2

zone 3
0

x

L1 L2 L3

S1 S2

Figure 4.10: Geometry of the dump combustor considered by Yu et al., with the
planar mean flame shape indicated using dashed line separating zones 2 and 3.

4.5.1 Acoustic Perturbation Forms

In zones 1 and 2, the acoustic perturbation forms are the standard modal

expansions given by [4, 23]

p′β = eiΩt
(
C +
β e

ik+
β x + C −β e

ik−β x
)

ρ′β =
1

c2
β

eiΩt
(
C +
β e

ik+
β x + C −β e

ik−β x
)

u′β = − 1

ρβ
eiΩt

(
k+
β

Ω + uβk
+
β

C +
β e

ik+
β x +

k−β
Ω + uβk

−
β

C −β e
ik−β x

) (4.39)

where β = 1, 2 is the zonal index and the axial wavenumbers are

k± =

ΩM
c
∓
√

Ω2

c2
− (1−M2

)

1−M2 (4.40)

Note that in zones 1 and 2, the amplitudes, C +
β and C −β , and the wavenumbers, k+

β

and k−β , are not functions of x, as the mean flow properties are uniform in these zones.
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In zone 3, we use the WKB solution for the case with uniform mean flow and

a prescribed linear temperature profile (Eqs. (4.35) and (4.36)). Thus, the pressure,

density and velocity fluctuations forms, respectively, are

p′3 =
{

C +
3 A

+
3 e

iθ+
3 + C −3 A

−
3 e

iθ−3

}
eiΩt (4.41)

ρ′3 =
1

c2
3

{
C +

3 A
+
3 e

iθ+
3 + C −3 A

−
3 e

iθ−3

}
eiΩt (4.42)

u′3 = − 1

ρ3

{
C +

3

θ+
3

dθ+
3

dx

Ω + u3θ
+
3

dθ+
3

dx

A+
3 e

iθ+
3 + C −3

θ−3
dθ−3
dx

Ω + u3θ
−
3

dθ−3
dx

A−3 e
iθ−3

}
eiΩt (4.43)

where C +
3 and C −3 are the unknown coefficients. The axial velocity fluctuation u′ is

obtained by substituting Eq. (5.3) into Eq. (4.6) (with du
dx

= 0).

4.5.2 Matching Conditions

In a prior study [23], we had developed acoustically consistent matching con-

ditions to be applied at zonal interfaces. For the longitudinal modes under consid-

eration, these matching conditions consist of the continuity of acoustic mass velocity

(ρuS) and of the total pressure (p+ 1
2
ρu2), where S is the zonal cross-sectional area.

At a zonal interface located at x (say, between zones 1 and 2), the continuity

of acoustic mass velocity is given by

[ρ1u1S1]x = [ρ2u2S2]x (4.44)
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which upon linearization yields

[ρ′1u1 + ρ1u
′
1]x = [ρ′2u2 + ρ2u

′
2]x (4.45)

Similarly, the linearized form of the continuity of total pressure is

[p′1 + ρ1 u1 u
′
1 +

1

2
ρ′1 u

2
1]x = [p′2 + ρ2 u2 u

′
2 +

1

2
ρ′2 u

2
2]x (4.46)

Similar matching conditions are applied between zones 2 and 3.

4.5.3 Equation Assembly and Solution

The zonal matching conditions along with the boundary conditions (for zones

1 and 3) are assembled into an equation of the following form:

MC = 0 (4.47)

where C is the vector of unknown coefficients and M is the coefficient matrix. The

resonant frequencies are obtained from det(M ) = 0. Since the resonant frequencies

can be complex, the system is regarded as being unstable when the imaginary part

of Ω is negative (due to the eiΩt functionality).

4.5.4 Combustion Instability Prediction

The combustion instabilities predicted using the current WKB solution are

compared with the experimental and modal analysis results of of Yu et al. [2]. The
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geometric parameters and the mean flow properties, same as those in the Yu et

al. study, are provided in Table 4.2. Yu et al. assumed a uniform mean temperature

Table 4.2: Geometric parameters and mean flow properties in the three-zone dump
combustor considered in Yu et al. [2] (see Figure 4.10).

Zone 1 Zone 2 Zone 3

Length (m) 0.171 0.038 0.215
Height (m) 0.0225 0.0450 0.0450
Mach number, M 0.265 0.0548 0.0933
Temperature, T (K) 1020 1030 2660
Speed of sound, c (ms−1) 698 701 1110
Density, ρ (kg·m−3) 7.53 5.92 2.20
Pressure, p (MPa) 2.27 2.29 2.28

in zone 3, whereas we considered a linear temperature profile. The effects of two

temperature gradients on the instability predictions are investigated, as shown in

Table 4.3. In the first case, the left and right ends of zone 3 are held at 2700 K and

2620 K (resulting in a relatively gentle temperature gradient). In the second case, the

left and right ends are held at 2800 K and 2520 K (resulting in a steeper temperature

gradient). For both cases, the temperature at the center of zone 3 is maintained at

2660 K, which is the mean temperature considered by Yu et al. [2]. The mean Mach

number and the speed of sound for the two cases are also indicated in Table 4.3.

In Table 4.4, the unstable longitudinal frequencies predicted by our approach

are compared with the experimental and analytical results of Yu et al. [2]. For both

temperature gradient (TG) cases, it can be seen that the current instability predic-

tions are in excellent agreement with the experimental predictions of Yu et al. In

fact, the WKB results show better agreement with the experimental data than the
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Table 4.3: Geometric parameters and mean flow properties in zone 3 of the dump
combustor (see Figure 4.10).

Zone 3 Zone 3
Case 1 Case 2

Mach number, M 5.167√
2700−372.09(x−0.038)

5.167√
2800−1302.33(x−0.038)

Temperature, T (K) 2700− 372.09(x− 0.038) 2800− 1302.33(x− 0.038)

Speed of sound, c (ms−1) 20.045
√

2700− 372.09(x− 0.038) 20.045
√

2800− 1302.33(x− 0.038)

analytical predictions of Yu et al. Further, the frequencies for the smaller TG case

are closer to the experimental results than those for the higher TG case. This may

be because the WKB method is based on the approximation of slowly varying mean

properties.

Table 4.4: Comparison of unstable longitudinal frequencies obtained from the WKB
method (Cases 1 and 2) with those from the experiments and 1-D modal analysis of
Yu et al. [2].

Frequency Experimental 1-D Analytical Current Study Current Study
(Hz) (Yu et al.) (Yu et al.) (Case 1) (Case 2)

Fundamental (Ω10) 1905 1997 1909 1938
First harmonic
(Ω20)

3890 3785 3903 3921

Second harmonic
(Ω30)

5610 5878 5608 5642

4.6 Summary

A number of WKB-type solutions were developed for ducts with uniform and

linearly varying mean temperatures and cross-sectional areas (with and without mean
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flow). Comparison of pressure waveforms from the standard and modified WKB

methods shows that the two approaches result in broadly similar solutions. The WKB

approaches were also used to predict the resonant frequencies of a uniform duct with

no mean flow and linearly varying mean temperature. The frequencies predicted by

both approaches are in good agreement with those from the exact solutions of Sujith et

al. [3]. The WKB approach is then applied to predict the longitudinal instabilities of

a dump combustor. The instability frequencies are found to be in excellent agreement

with the experimental results of Yu et al. [2].
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CHAPTER 5

THE EFFECTS OF ACOUSTIC AND COMBUSTION SOURCE

TERM NONLINEARITIES ON THE LIMIT-CYCLE BEHAVIOR OF

THERMOACOUSTIC INSTABILITIES

5.1 Abstract

A Linear analysis of combustion instabilities fails to capture the finite-amplitude

limit cycle behavior of the pressure oscillations. Hence, a nonlinear framework is nec-

essary to be able to predict this behavior. It is known that, for moderate amplitudes

and low-Mach-number mean flow, the unsteady combustor flow can be described by

a single nonlinear wave equation. This equation is solved numerically for the first two

coupled longitudinal modes. Computed results predict the existence of both stable

modes and unstable modes with finite-amplitude limit cycles. The unstable frequen-

cies are obtained from a linear analysis of the system. The effects of acoustic and

combustion source term nonlinearities on the stability of the system are investigated.

It is found that, in the low Mach number regime, the nonlinearities arinsing from

combustion source term have a greater impact on the pressure oscillations than the

purely acoustic nonlinearites.
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5.2 Introduction

Combustion instabilities represent one of the most significant problems en-

countered in the design of propulsion systems [82, 83]. Combustion instabilities are

manifested as self-excited acoustic oscillations that are sustained by a feedback loop

between the acoustic perturbations and the heat-release fluctuations. The Rayleigh

criterion [14, 22, 24–26] suggests that instabilities occur when the net acoustic en-

ergy pumped into the system due to the pressure–heat-release feedback exceeds

the energy losses due to various mechanisms (e.g., acoustic radiation and viscous

losses). Reduced order analytical approaches, such as the linear modal analysis

[2, 4, 5, 11–14, 23, 27] and Nyquist-plot-based network models [28–33], are commonly

used to predict the instability modes. These linear reduced-order methods, however,

cannot predict the limit-cycle behavior that most physical systems exhibit.

It is essential to model the nonlinearities in a system to capture the limit-cycle

behavior. For small unsteady fluctuations, the dissipative mechanisms are relatively

weak, hence many combustion systems are linearly unstable. The exponential growth

of initial disturbances occurs until larger dissipative mechanisms are generated within

the system, and determine the stabilization of the fluctuations to a limiting ampli-

tude. Two main conclusions can be drawn from these observations. The formation

of limiting unsteady motions is the result of very complex nonlinear mechanical and

chemical processes. For this reason, analytical investigation of the problem can be

based only on simplified, empirical models of the combustion system, obtained from

experimental and numerical investigations.
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The earliest analytical models were based on the derivation of simplified non-

linear equations for the amplitudes of the acoustic modes. Zinn and Powell [84, 85]

obtained such equations for the case of liquid propellant rockets, by spatial averaging

of the conservation equations. Their results were limited to numerical integration of

the derived equations, and no closed form solutions were produced for the amplitudes

in the limit cycle. A similar approach was independently followed by Culick [86],

for the case of solid rocket engines. The analysis was based on derivation of a semi-

empirical nonlinear equation for the amplitude of the fundamental mode. Further

experimental evidence showed the deficiency of the approach, by suggesting that the

observed limit cycles are the result of nonlinear coupling between multiple acoustic

modes.

Based on those preliminary results, Culick [87] introduced a more general ap-

proximate method, based on general expansion of the conservation equations in terms

of the amplitudes of the acoustic modes. Although the initial solution scheme did

not appear well-founded theoretically, the derived equations were identical with the

ones obtained using a Galerkin type of approach. Experimental and numerical data

indicate that for most practical applications, the characteristics of the unsteady field

in the spatial and frequency domains are approximately given by the linear acoustic

analysis. For this reason, the approximate method is physically and theoretically

motivated, and can be used in the analysis of any combustion related instabilities.

In this study, we first derive the nonlinear wave equation with combustion

source term for a 1-D Rijke tube. Two longitudinal modes are considered: funda-

mental and the first harmonic. Two coupled nonlinear wave equations are derived in

153



terms of these modal amplitudes. We analyze the stability criteria for the system in

the linear limit. We solve the coupled nonlinear ODEs numericaly for the amplitudes

of the system. We the effects of acoustic and combustion source term nonlinearities

on the the limit-cycle behavior of the system.

5.3 Theory

x•

Lf

L

S

Figure 5.1: Geometry of the 1-D duct with the planar flame shown in red.

For a 1-D Rijke tube shown in Figure 5.1, wtih no gradients in mean properties,

the wave equation (1.10) reduces to:

1
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∂2p′
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− ∂2p′

∂x2
=ρ

∂2u′

∂x∂t
− u

c2
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+ u

∂2u′

∂x2
+

1

c2
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∂x
u′
∂u′

∂x
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p′

c2

(
∂u′
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)2

+
p′

c2u
′∂

2u′

∂x2

− u′
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∂2p′
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c2

∂p′

∂t

∂u′
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+ ρ

(
∂u′

∂x

)2

+ ρu′
∂2u′

∂x2
+
γ − 1

c2

∂q′

∂t

(5.1)

where u and u′ are the mean and fluctuating components of axial velocity. Since we

neglected the dissipation terms to obtain Eq. (5.1), we may add a damping term of

the form D ∂p′

∂t
(where D is the damping coefficient) to Eq. (5.1). Thus we get the
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damped nonliear wave equation with source terms:

1
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c2u
′∂

2u′

∂x2

− u′
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∂u′
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+ ρu′
∂2u′
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+
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∂q′
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(5.2)

5.3.1 Solving the Nonlinear Wave Equation

Equation (5.2) is a nonlinear PDE with three unknowns p′, u′ and q′. We first

have to reduce the number of unknowns to one to be able to solve the wave equation.

That is accomplished by relating u′ to p′ using the linearized momentum equation.

We then use a flame transfer function (FTF) to relate heat-release rate fluctuations

q′ to either p′ or u′.

In the limit-cycle analysis of the nonlinear wave equation, temporal growth

of the acoustic fluctuations (p′ and u′) is the quantity of interest. For a duct with

prescribed boundary conditions, we assume a harmonic spatial dependence of p′ in x

and substitute that into Eq. (5.2) to get an ODE in time. We assume the following

forms for p′ and u′, corresponding to closed-closed ( dp′

dx

∣∣∣
x=0

= dp′

dx

∣∣∣
x=L

= 0) boundary

conditions:

p′ =
∞∑
n=1

An(t) cos knx (5.3)

u′ = − 1

γρc2

∞∑
n=1

1

kn

dAn(t)

dt
sin knx (5.4)
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where An and kn are the amplitude and wavenumbers of the nth mode of the fluc-

tuation. Wavenumbers are related to the frequency as kn = nΩ1

c
(where Ω1 is the

fundamental mode). In this study, we cut off the summation at n = 2. So, we have

to solve for two modal amplitudes A1(t) and A2(t).

5.3.1.1 Flame Transfer Function

In this study, we relate heat-release rate flcutuations q′ to pressure fluctuations

p′ using a nonlinear FTF given by (citation needed):

q′ = q

[
0.2

(
p′

p

)
+

(
p′

p

)3

−
(
p′

p

)5
]
e−iΩτ (5.5)

where q is the mean heat-release rate per unit volume and τ is the convective time-lag.

5.3.1.2 Solution Procedure

Substituting Eqs. (5.3), (5.4) and (5.5) in Eq. (5.2) after truncating the sum-

mation at n = 2, we get an ODE in A1(t) and A2(t). Further, we multiply this

ODE by cos (kNx) (where N = 1, 2) and using orthogonality of the cosine and sine

functions and integrating in x from 0 to L, we get two coupled nonlinear ODEs in

A1(t) and A2(t).
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We now have two second order nonlinear ODEs in A1 and A2. We solve these

ODEs numerically using the following initial conditions:

A1(t = 0) = 0.05 (5.6)

dA1

dt

∣∣∣∣
t=0

= 0.005 (5.7)

A2(t = 0) = 0.035 (5.8)

dA2

dt

∣∣∣∣
t=0

= −0.1 (5.9)

(5.10)

5.3.2 Linear Stability

In order to study the effects of nonlinear source terms on the wave equation,

we first analyze the linear wave equation. From Eq. (5.2), retaining only the linear

terms, we get

1

c2

∂2p′

∂t2
+ D

∂p′

∂t
+ 2

M

c

∂2p′

∂t∂x
+
(
M

2 − 1
) ∂2p′

∂x2
=
γ − 1

c2

∂q′

∂t
(5.11)

where M = u
c

is the mean Mach number. Considering only a single mode (for

simplicity), we assume the following forms for p′ and q′:

p′ = A(t) cos kx (5.12)

q′ = q
p′

p
e−iΩτ (5.13)
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where k = Ω/c. Substituting the above forms of p′ and q′ in Eq. (5.11), we get

1

c2

d2A

dt2
cos kx+D

dA

dt
cos kx−2k

M

c

dA

dt
sin kx−

(
M

2 − 1
)
k2A cos kx =

γ − 1

c2

q

p

dA

dt
e−iΩτ cos kx

(5.14)

Multiplying Eq. (5.14) by cos kx and integrating from 0 to L in x,

1

c2

d2A

dt2
+

(
D − γ − 1

c2

q

p
e−iΩτ

)
dA

dt
+
(

1−M2
)
k2A = 0 (5.15)

Substituting A = eσt (where σ is the growth rate) in Eq. (5.15), we have

σ =
c2

2

−
(

D − γ − 1

c2

q

p
e−iΩτ

)
±
√(

D − γ − 1

c2

q

p
e−iΩτ

)2

− 4
(

1−M2
) Ω2

c4


(5.16)

In the case when there is no damping, linear growth rate is given by

σ =
γ − 1

2

q

p
e−iΩτ ±

√(
(γ − 1)

q

p
e−iΩτ

)2

− 4
(

1−M2
)

Ω2 (5.17)

Taking the real part of e−iΩτ , we have

σ =
γ − 1

2

q

p
cos Ωτ ± 1

2

√(
(γ − 1)

q

p
cos Ωτ

)2

− 4
(

1−M2
)

Ω2 (5.18)

For a stable solution,

γ−1
2

q
p

cos Ωτ < 0 (5.19)

⇒ π
2Ω
< τ < 3π

2Ω
; 5π

2Ω
< τ < 7π

2Ω
... (5.20)
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And the solution will be linearly unstable when

0 < τ <
π

2Ω
;

3π

2Ω
< τ <

5π

2Ω
... (5.21)

In this study, we will analyze the limit-cycle behavior in the linearly unstable regime

and investigate the effects of acoustic as well as combustion nonlinear source terms.

We also study the effects of damping or the lack thereof on the nature of instability.

5.4 Results

Here we present the numerical results of solution to Eq. (5.2). Table 5.1 shows

the mean properties used in the numerical solutions. In this work, since we are

interested in studying the limit-cycle behavior of the thermoacoustic system, we only

choose those frequencies that are linearly unstable.

Table 5.1: Mean properties

Mean properties Values

Length, L (m) 10
Mach number, M 0.1

Speed of sound, c (m/s) 500
Damping coefficient, D (s−1) 0

Pressure, p (N/m3) 10000
Fundamental mode, Ω1 (radians/s) 400

First harmonic, Ω2 (radians/s) 800
Convective time-lag, τ (s) π

3Ω1
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Figure 5.2: Amplitude of the fundamental mode A in the linear regime is plotted

as a function of time. Mean heat-release rate per unit volume q is 10000 W/m3.

Figure 5.2 shows the amplitude of the fundamental mode (Ω = 400 radians/s)

A in the linear regime plotted as a function of time. The mean heat-release rate q

is 10000 W/m3. Convective time-lag τ = π/1200s, which makes the system linearly

unstable (see Eq. (5.21)). Here damping coefficient is set to 0. We can clearly see from

Figure 5.2 that the amplitude is growing in time, and threfore temporally unstable.
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Figure 5.3: Amplitude of the (a) fundamental A1 and (b) the first harmonic A2

are plotted as a function of time. Only acoustic nonlinearities are considered. Mean

heat-release rate per unit volume q is 10000 W/m3.
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Figure 5.3 shows the amplitudes of the fundamental (Ω1 = 400 radians/s)

A1 and the first harmonic (Ω2 = 800 radians/s) A2 as a function of time. Mean

heat-release rate per unit volume q is 10000 W/m3 and τ = π/1200s. Here only the

acoustic nonlinearities are considered i.e., only the linear component of the FTF (5.5)

is considered. From Figure 5.3, we can see that both amplitudes A1 and A2 have

reached limit-cycle and the system is no longer unstable. In contrast to the linear

analysis (shown in Figure 5.2) which predicts the system to be unstable, the addition

of acoustic nonlinearities have stabilized the system. It is also interesting to see from

Figure 5.3(a) that there are at least three distinct frequencies in A1. We are not sure

if these distinct frequencies are also present in A2 and, in the linear case A.
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Figure 5.4: Amplitude of the (a) fundamental A1 and (b) the first harmonic A2

are plotted as a function of time. Only combustion source term nonlinearities are

considered. Mean heat-release rate per unit volume q is 10000 W/m3.
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Figure 5.4 show A1 and A2 as a function of time. In this case only the com-

bustion source term nonlinearities are considered and the acoustic nonlinearities are

neglected. The amplitudes show very similar behavior as in the previous case with

just the acoustic nonlinearities turned on. Similarly in Figure 5.5, where the ampli-

tudes are computed with both the acoustic and combustion source term nonlinearities

included, show very similar behavior to Figure 5.3 and Figure 5.4.
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Figure 5.5: Amplitude of the (a) fundamental A1 and (b) the first harmonic A2 are

plotted as a function of time. Both acoustic and combustion source term nonlinearities

are considered. Mean heat-release rate per unit volume q is 10000 W/m3.
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Figure 5.6 shows the amplitude of the fundamental mode in the linear regime

with q = 100000 W/m3. The rest of the mean properties are the same as in the

previous case. As expected, the fundamental mode is linearly unstable. Compared

to Figure 5.2, in this case, we can clearly see a much steeper increase in the A, which

is to be expected as the growth rate is proportional to heat-release rate σ ∝ q (see

Eq. (5.17)).
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Figure 5.6: Amplitude of the fundamental mode A in the linear regime is plotted

as a function of time. Mean heat-release rate per unit volume q is 100000 W/m3.

Figure 5.7 shows the amplitudes of the fundamental A1 and the first harmonic

A2 as a function of time for q = 100000 W/m3. Here only the acoustic nonlinearities
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are included. We can see from Figure 5.7, that both A1 and A2 are increasing in time.

Even though the growth rate has reduced considerably when compared to the purely

linear regime (Figure 5.2), the acoustic nonlinearities are not able to attain a stable

limit-cycle in this case.
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Figure 5.7: Amplitude of the (a) fundamental A1 and (b) the first harmonic A2

are plotted as a function of time. Only acoustic nonlinearities are considered. Mean

heat-release rate per unit volume q is 100000 W/m3.
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In Figure 5.7, A1 and the first harmonic A2 are shown as a function of time

for q = 100000 W/m3. Here only the acoustic nonlinearities are considered. In

stark contrast to the previous case (Figure 5.7), here the combustion source term

nonlinearities are able to contain the temporal growth of the amplitudes. This tells

us that, in this case, nonlinearities arising from the combustion source term are more

dominant than their purely acoustic counterparts. Figure 5.9 shows the amplitudes

considering both acoustic and combustion source term nonlinearities. The amplitudes

in this case are quite similar to Figure 5.7, indicating that the addition of acoustic

nonlinearities does not much affect the solution i.e., heat-release rate nonlinearites

are more dominant than acoustic nonlinearities.
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Figure 5.8: Amplitude of the (a) fundamental A1 and (b) the first harmonic A2

are plotted as a function of time. Only combustion source term nonlinearities are

considered. Mean heat-release rate per unit volume q is 100000 W/m3.
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Figure 5.9: Amplitude of the (a) fundamental A1 and (b) the first harmonic A2 are

plotted as a function of time. Both acoustic and combustion source term nonlinearities

are considered. Mean heat-release rate per unit volume q is 100000 W/m3.
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Figure 5.10 shows the amplitude of the fundamental mode in the linear regime

with q = 1000000 W/m3. Here q is so large that we see an exponential increse in the

amplitude.
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Figure 5.10: Amplitude of the fundamental mode A in the linear regime is plotted

as a function of time. Mean heat-release rate per unit volume q is 1000000 W/m3.

Figure 5.11 shows A1 and A2 as a function of time for q = 100000 W/m3. Both

acoustic and combustion nonlinearities are considered. We can see from Figure 5.11

that while the nonlinearities are able to rein in the growth of A2, the amplitude of

the fundamental mode A1 appears to be increasing in time. That is, the fundamental
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mode is not just linearly unstable but also nonlinearly unstable even after inlcuding

both the acoustic and combustion nonlinearities.

In such cases where even the system is even nonlinearly unstable, damping

can help contain the growth. So far, the damping coefficient D in Eq. (5.2) is set

to zero. Figure 5.12 shows A1 and A2 as a function of time with q = 100000 W/m3

and damping coefficient D = 0.000001/s. Both acoustic and combustion source term

nonlinearities are included. We can see that both A1 and A2 are being damped as op-

posed to Figure 5.12(a) where A1 was growing in time. And similar to Figure 5.12(b)

where A2 was decreasing in time, the addition of damping coefficient has steepened

the decay of A2 in this case.
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Figure 5.11: Amplitude of the (a) fundamental A1 and (b) the first harmonic A2 are

plotted as a function of time. Both acoustic and combustion source term nonlinearities

are considered. Mean heat-release rate per unit volume q is 100000 W/m3.

174



0 2 4 6 8 10

-0.05

0.00

0.05

t

A
1
(t
)

(a)

0 2 4 6 8 10

-0.04

-0.02

0.00

0.02

0.04

t

A
2
(t
)

(b)

Figure 5.12: Amplitude of the (a) fundamental A1 and (b) the first harmonic A2 are

plotted as a function of time. Both acoustic and combustion source term nonlinearities

are considered. Mean heat-release rate per unit volume q is 100000 W/m3. Damping

coefficient D = 0.000001/s.
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5.5 Summary

A nonlinear acoustic wave equation with combustion source term is derived

for a 1-D Rijke tube. Two second order nonlinear coupled ODEs in fundamental

and first harmonic of the duct are derived. These nonlinear coupled ODEs are solved

numerically to obtain the amplitudes of the duct. The system is analyzed for stability

in the linear limit and the parameters governing the linear stability, namely, convective

time-lag and mean heat-release rate fluctuations per unit volume are identified. In

the linearly unstable regime, the limity-cycle behavior of the system is studied. It was

found that, at low q, acoustic nonlinearities alone are able to rein in the unbounded

growth of the linear system, where as at higher q values, combustion source term

nonlinearities are essential to tame the growth in the amplitudes. It was also observed

that at sufficiently high q, the presence of nonlinearities alone cannot contain the

increase in amplitudes, i.e., the system becocmes nonlinearly unstable and only the

inlcusion of damping can contain the unbounded growth in amplitudes.
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CHAPTER 6

CONCLUSIONS

6.1 Conclusions

In this work, a thorough investigation of analytical methods to predict ther-

moacoustic instabilities in premixed combustion systems is undertaken. Novel analyt-

ical methods to predict combustion instabilities have been developed and validated

against experimental and numerical results in the literature. This work begins by

addressing some fundamental problems in acoustics and applies them to the study of

thermoacoustic instabilities. We tackle fundamental problems and progressively build

up on those ideas and apply those novel techniques to problems in thermoacoustic

systems.

In Chapter 2, acoustically consistent matching conditions were developed that

allows us to recover the dispersion relation for a duct with multiple changes in cross-

sectional area. A detailed investigation of the effects of non-uniform laminar and

turbulent mean velocity profiles was undertaken. A novel analytical solution to the

inhomogeneous acoustic wave equation was developed. This novel technique incorpo-

rates the effects of the liniearized source terms directly into the axial wavenumbers.

Consequently, combustion effects are incorporated directly into the axial wavenumber
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in the combustion zone. In contrast to the prior studies in which heat release effects

are included a posteriori in the form of energy balance across the flame, which inher-

ently means that the flame is assumed to be compact, the current approach makes

no such assumption. A detailed investigation of the parametric space including the

effects of cross-sectional area ratio, flow Mach number and boundary conditions af-

fecting combustion instabilities was undertaken.

In Chapter 3, a comprehensive flame transfer function for turbulent premixed

flames is developed. The FTF includes the effects of fluctuations in density, heat of

reaction, turbulent flame speed, and flame surface area. A novel G-equation method

relating flame surface-area response to acoustic fluctuations is developed. A detailed

analysis of the current FTF was undertaken for a V-shaped mean flame, wherein the

effects of varying the frequency, modal index, mean Mach number, mean temperature,

and mean equivalence ratio were studied. Combustion instability analysis of a 2-

D dump combustor was performed by s combining this FTF with the acoustically

consistent modal analysis framework developed in Chapter 2.

In Chapter 4, novel WKB-type solutions were developed for ducts with uniform

and linearly varying mean temperatures and cross-sectional areas (with and without

mean flow). These WKB approaches were also used to predict the resonant frequencies

of a uniform duct with no mean flow and linearly varying mean temperature. The

WKB approach is then applied to predict the longitudinal instabilities of a dump

combustor using the acoustically conistent modal analysis framework.

And finally in Chapter 5, a generic nonlinear acoustic wave equation with

combustion source term is derived for a 1-D Rijke tube. First, the system is analyzed
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for stability in the linear limit and the parameters governing the linear stability,

namely, convective time-lag and mean heat-release rate fluctuations per unit volume

are identified. Further, in the linearly unstable regime, the limity-cycle behavior of

the system is studied.

6.2 Future Work

The scope of the current work was limited to 2-D cartesian geomtery. Ex-

tending the acoustically consistent modal analysis framework and the FTF into 3-D

cartesian and polar coordinates will be a exciting endeavour. In this dissertation, only

acoustic fluctuations were considered. Inclusion of entropy and vorticity fluctuations

will make for a much more comprehensive study. It will also be useful to study differ-

ent mean flame shapes other than planar and V-flames. It will also be worthwhile to

study swirl-stabilized and bluff-body-stabilized flames and their response to incident

acoustic fluctuations. A comprehensive numerical investigation of eikonal methods

to compute the acoustic waveforms in inhomogeneous media would be an exciting

research topic. A computational (RANS/LES) study on the intermodal energy trans-

fer, bifurcation and limit-cycle behavior of thermoacoustic systems would also be a

challenging undertaking.
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APPENDIX A

EDGE CONDITIONS

Considering a duct with single discontinuity (see Figure 2.1), the axial velocity

fluctuations in zones 1 and 2 should satisfy the following interface condition:

u′1(0, y) = u′2(0, y), y ∈
[
−S2

2
, S2

2

]
(A.1)

To determine the velocity fluctuations satisfying Eq. (A.1), we begin by writing them

as

u′1(x, y, t) = eiΩt û1(x, y) (A.2)

u′2(x, y, t) = eiΩt û2(x, y) (A.3)

where

û1(x, y) = − 1

ρ1

kn,1
Ω + u1kn,1

An,1 e
ikn,1x cos

(
2nπ

S1

y

)
(A.4)

û2(x, y) = − 1

ρ2

kn,2
Ω + u2kn,2

An,2 e
ikn,2x cos

(
2nπ

S2

y

)
(A.5)
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Letting u′1(0, y) = u′2(0, y) = eiΩtf(y), where y ∈ [−S2/2, S2/2], we get from Eq. (A.2)

and Eq. (A.3)

− 1

ρ1

kn,1
Ω + u1kn,1

An,1 cos

(
2nπ

S1

y

)
= f(y) (A.6)

− 1

ρ2

kn,2
Ω + u2kn,2

An,2 cos

(
2nπ

S2

y

)
= f(y) (A.7)

Multiplying Eq. (A.6) and Eq. (A.7) with cos(2nπ/S1) and integrating across the

interface, we have

An,1 = −ρ1

2/S1

1 + δn0

Ω + u1kn,1
kn,1

S2
2∫

−S2
2

f(y) cos

(
2nπ

S1

y

)
dy (A.8)

An,2 = −ρ2

2/S2

1 + δn0

Ω + u2kn,2
kn,2

S2
2∫

−S2
2

f(y) cos

(
2nπ

S2

y

)
dy (A.9)

where δ is the Kronecker delta function. The function f(y) is determined from the

following interface constraint:

u′1(0, y) = 0, y ∈
[
S2

2
, S1

2

]
and y ∈

[
−S1

2
,−S2

2

]
(A.10)
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Using Eq. (A.4), Eq. (A.8), Eq. (A.9) and Eq. (2.5) in Eq. (A.10), we get the following

integral equation:

∞∑
n=0

 k+
n,1

Ω + uk+
n,1


2/S1

1 + δn0

Ω + u1k
+
n,1

k+
n,1

S2
2∫

−S2
2

f(y) cos

(
2nπ

S1

y

)
dy

+

k−n,1
Ω + u1k

−
n,1


2/S1

1 + δn0

Ω + u1k
−
n,1

k−n,1

S2
2∫

−S2
2

f(y) cos

(
2nπ

S1

y

)
dy


 cos

(
2nπ

S
y

)
= 0,

y ∈
[
S2

2
,
S1

2

]
and y ∈

[
−S1

2
,−S2

2

]
(A.11)

To transform this integral equation into matrix form, we further write f(y) in terms

of basis functions Bi(y) as

f(y) =
M∑
i=1

ciBi(y) (A.12)

where ci are the unknown coefficients, and the choice of Bi(y) is discussed below.

Thus, the problem of determining f(y) is transformed into that of determining the

coefficients ci.

Equation Eq. (A.11) consists of a double summation (over the indices n and i),

the evaluation of which is highly complicated. However, Mittra and Lee [16] demon-

strated that if the basis functions Bi are chosen so that the convergence criterion

u′(σ) = O(σ−
1
3 ) is satisfied, then the neglect of higher order terms in the summation

of Eq. (A.12) does not result in a significant error. In fact, Amari et al. [88] prove rig-

orously that M = 1 will suffice. As a result, Eq. (A.11) now becomes a linear system
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of equations that can be solved for the coefficients ci, provided the basis functions Bi

are chosen to satisfy Mittra and Lee’s criterion.

Accordingly, we choose Bi(y) to be of the following form

Bi(y) =

[
1−

(
y

S1

)2
]− 1

3

cos

[
(i− 1)

2π

S1

y

]
(A.13)

Substituting Eq. (A.13) in Eq. (A.12) and the resulting f(y) into Eq. (A.11), we have

a linear system of equations that can be solved for ci. Once ci are known, the new

set of amplitudes A±n,1 and A±n,2 such that the interface condition Eq. (A.1) is satisfied

can be obtained from Eq. (A.6) and Eq. (A.7). The fluctuating velocities u′1 and u′2

defined in terms of the modified amplitudes satisfy not only the interface matching

conditions, but also the edge conditions. It is, therefore, clear that by appropriately

modifying the amplitudes A±n,1 and A±n,2, one can obtain velocity fluctuations that

satisfy the required interface matching and edge conditions. The implication of this

is that the linear stability analysis described in this study may be used as is, since

the focus of the linear analysis is on the coefficient matrix of the assembled system

of boundary and matching conditions.
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APPENDIX B

MATCHING CONDITIONS BASED ON CONSERVATION

EQUATIONS

❞��
✦

�
✰③✁♥❡ ✶ ③✁♥❡ ✷

Figure B.1: Control volume of thickness dx across a zonal interface. Also indicated
are the x+ and x− faces of the control volume.

We demonstrate this alternative approach of matching conditions for the axial

momentum equation. One begins by considering a differential volume of thickness

dx normal to the interface of interest as shown in Figure B.1. Equation (2.4) is

multiplied with cos(2Nπ
S1
y) and integrated over the differential control volume with
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dx→ 0, yielding

u1

∫
S1

u′1 cos

(
2Nπ

S1

y

)
dy +

1

ρ1

∫
S1

p′1 cos

(
2Nπ

S1

y

)
dy =

u2

∫
S2

u′2 cos

(
2Nπ

S1

y

)
dy +

1

ρ2

∫
S2

p′2 cos

(
2Nπ

S1

y

)
dy (B.1)

This approach has a few important implications. Firstly, the fluctuating velocities u′1

and u′2 are evaluated on the x− and x+ surfaces, respectively, of the control volume.

This means that they are not required to rigorously satisfy the additional interface

and edge condition constraints discussed in Section 2.3.1.5. Secondly, the fact that

the thickness of the control volume dx → 0 has a subtle implication in that the

evanescent higher order modes that are generated near the discontinuity in zone 2

may not be captured. Finally, when one applies this approach to the continuity and

axial momentum equations, it can be shown that one does not recover the well-known

dispersion relation for the purely axial modes.
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APPENDIX C

SOLUTION TO THE G-EQUATION

Solving Eq. (3.35) for ψ1 and ψ2 gives

ψ1 = −C E1 {E2 + E3 [E4 + E5(E6 + E7)]} (C.1)

ψ2 = −C F1 {F2 [F3 + F4F5] + F6} (C.2)

where

E1 =
(m2 + 1)

2

(ku− kymu+m2Ω + Ω) (ku+ kymu+m2Ω + Ω)

E2 = − k2
ymu

(m2 + 1) ρ(ku+ Ω)

E3 =
i(ku+m2Ω + Ω)√

m2 + 1

E4 =
km

kρu+ ρΩ

E5 =
C1φ

C2
T−C5

0 p−C6
0 e−C3(C4−φ)2−iτΩ

χcvpρ
2Tu(ku+ Ω)2

E6 = cvρTT
C5
0

(
T

T0

)C5

(ku+ Ω)

{
−pC6

0

(
p

p0

)C6

(C2 + 2C3φ(C4 − φ))
(
χkp+ kρu2 + ρuΩ

)
+ χC6ρup

C6eiτΩ(ku+ Ω)

}
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E7 = −iχC5p
2uT

C5
pC6

0 eiτΩ

(
p

p0

)C6 (
ik2 − k2

y

)
F1 =

ky (m2 + 1)T−C5
0 p−C6

0 e−C3(C4−φ)2−iτΩ

χcvpρ
2T (ku+ Ω)2 (ku− kymu+m2Ω + Ω) (ku+ kymu+m2Ω + Ω)

F2 = cvρTT
C5
0 (ku+ Ω)

F3 = −C1m
√
m2 + 1φ

C2
pC6

0

(
T

T0

)C5 (
p

p0

)C6

(C2+2C3φ(C4−φ))
(
χkp+ kρu2 + ρuΩ

)

F4 = χC1C6m
√
m2 + 1ρuφ

C2
pC6eiτΩ

(
T

T0

)C5

(ku+ Ω)

F5 = χppC6
0

(
k
(√

m2 + 1m2 + i
)
u+ i

(
m2 + 1

)
Ω
)
eC3(C4−φ)2+iτΩ

F6 = −iχC1C5m
√
m2 + 1p2uφ

C2
T
C5
pC6

0 eiτΩ

(
p

p0

)C6 (
ik2 − k2

y

)
χ = 1/Rρ

Having obtained ψ1 and ψ2, G′ = eiΩteikx[ψ1 cos (kyy) +ψ2 sin (kyy)] is the fluctuating

component of level-set G governed by Eq. (3.24).
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APPENDIX D

COMPARISON OF WKB AND MODAL ANALYSIS APPROACHES

As discussed in Section 4.2 Introduction, one of the principal limitations of

the modal analysis approach is that it is only applicable to domains with uniform

mean properties. Consequently, domains with varying mean properties would have

be divided into multiple uniform-property zones. The WKB method, however, does

not require multiple zones. In this appendix, we apply the the modal and WKB

approaches to predict the resonant frequencies of a duct with a specified temperature

gradient and no mean flow.

For the modal analysis approach, we consider four cases where the number of

zones is increased from 1 to 4. For the WKB method, the entire duct is treated as a

single zone. The frequency predictions from the two approaches are compared with

those from the exact solutions of Sujith et al. [3].

The duct considered has a linear mean temperature profile T (x) = 500− 50x

with a length of 4 m. The duct is acoustically closed at the left end ( dp′

dx

∣∣∣
x=0

= 0), and

open at the right end (p′|x=L = 0). In the modal analysis approach, for the 1-zone

case, the mean temperature is 400 K, which is the temperature at the center of the

duct with the above linear temperature profile. For the 2-zone case, the temperatures
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in the two zones are T 1 = 500 − 50 × 1 = 450 K and T 2 = 500 − 50 × 3 = 350 K

respectively. Mean temperatures are similarly obtained for the 3-zone and 4-zone

cases. In Table D.1, the frequency predictions for the fundamental mode Ω0, as well

as the first four harmonics Ω1 through Ω4 are compared. It is evident that except for

the fundamental mode, the modal analysis predictions deviate significantly from the

frequencies of Sujith et al. [3], whereas the WKB results are consisently in excellent

agreement with the exact results.

Table D.1: Comparison of resonant longitudinal frequencies obtained from the modal
analysis, standard and modified WKB approaches, and the exact solutions of Sujith
et al. [3].

Frequency Modal Analysis Standard WKB Modified WKB Exact
radians/s 1-zone 2-zone 3-zone 4-zone

Ω0 133.1 137.5 138.3 138.6 148.7 150.6 148.4
Ω1 399.2 391.8 396.1 397.3 466.1 466.8 466.4
Ω2 665.3 666 655.2 658.8 779.5 779.9 780
Ω3 931.4 921.8 930.1 919.4 1092.2 1092.5 1093
Ω4 1197.5 1193.8 1188.5 1193.7 1404 1405 1406
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