Synthesis of UiO-66 Metal Organic Frameworks
Nicholas Johnston, Larissa Lagria, Dr. Yu Lei
Department of Chemical and Materials Engineering

Introduction
- Metal organic frameworks are composed of a regular array of positively charged metal ions surrounded by organic molecules called linkers. The metal ions act as nodes which bind the linkers together. The structure of a MOF is hollow, which results in a large internal surface area.
- MOFs are currently being studied for CO\textsubscript{2} capture based on its structure, stability, selectivity, and excellent adsorption capacity. In an industrial environment with several other gases, these characteristics make MOFs a viable option.
- Two MOF candidates were synthesized and analyzed: one established for over a decade, UiO-66, and UiO-66-SO\textsubscript{3}H, a newer MOF with minimal research for CO\textsubscript{2} capture.

Experimental
- UiO-66 was synthesized by dissolving equimolar amounts of ZrCl\textsubscript{4} and terephthalic acid in dimethylformamide or DMF. This mixture was then heated for 24 hours at 120°C. The resulting solid was dissolved within DMF, centrifuged several times, and dried overnight in a vacuum oven at 90°C.
- UiO-66-SO\textsubscript{3}H was synthesized by mixing ZrCl\textsubscript{4} and 2-sulfoterephthalic acid where both of which were previously dissolved in DMF. 1 mL of acetic acid was added, and the mixture was placed into an autoclave and heated at 120°C for 40 hours. The precipitate was then centrifuged within DMF twice and methanol once, and placed in a vacuum oven overnight at 100°C.
- The final product: UiO-66 is on the left and UiO-66-SO\textsubscript{3}H is on the right.

Results
- X-Ray Diffraction (XRD):
 - The XRD data for UiO-66 and UiO-66-SO\textsubscript{3}H was measured between 5° and 70° at a rate of .5° min.
 - The peaks measured are consistent with the literature values, and the similarity of the first two peaks demonstrate that UiO-66-SO\textsubscript{3}H is crystalline and maintained the UiO-66 structure.

Density Functional Theory (DFT)
- The tabular data is derived from DFT, an analysis method based on molecular modeling, and provides accurate values for microporous materials, the material type of the MOFs.

Conclusions
- UiO-66 and UiO-66-SO\textsubscript{3}H were successfully synthesized.
- The significant reduction in surface area and pore volume is plausibly due to the sulfination of UiO-66.

Future Research
- Varying the molar ratio of acetic acid to ZrCl\textsubscript{4} in the UiO-66-SO\textsubscript{3}H synthesis has yet to have been done, and its impact undetermined.
- This new UiO-66-SO\textsubscript{3}H could be superior in CO\textsubscript{2} capture applications, potentially due to improved adsorption capabilities from this change in the molar ratio.

Acknowledgements
I would like to thank the National Science Foundation, the RCEU staff, the UAH Office of the Provost, the UAH Office of the Vice President for Research and Economic Development, and the Alabama Space Grant Consortium. I would also like to thank Dr. Bernhard Vogler and Mr. David Cook for making the RCEU program a reality.

References