An Analysis of Polarimetric Radar Signatures Associated with Cyclic Mesocyclogenesis

Holley Kenward, Sarah M. Stough, and Dr. Lawrence Carey
Department of Atmospheric Science, University of Alabama in Huntsville

Introduction
On March 31, 2016, a supercell thunderstorm that underwent the process of cyclic mesocyclogenesis moved through Priceville, Alabama. Cyclic mesocyclogenesis is the process where a supercell thunderstorm produces a series of mesocyclones throughout its lifetime. The purpose of this project was to characterize the radar signatures associated with this process.

Methods
- Data from ARMOR, a UAH dual-polarization C-band radar at the Huntsville International Airport
- The polarimetric variables: Horizontal Reflectivity (Z_{H}; upper left), Doppler Velocity (V_r; upper right), Differential Reflectivity (Z_{DR}; lower left), and Specific Differential Phase (K_{DP}; lower right)
- GR2Analyst was used to analyze polarimetric variables
- Py-ART used to grid vertical and planar cross sections

Thunderstorm Features of Interest
- Mesocyclone: a vertically-rotating updraft, downdraft couplet within a supercell
- Z_{DR} Arc: represents large oblate rain drops; found along the maximum gradient of Z_{H}, near forward flank downdraft
- Z_{DR} Column: large oblate hydrometeors in the main updraft
- K_{DP} Column: high concentration of mixed phased hydrometeors; associated with the midlevel updraft

Conclusions
- Hook echo signature, Z_{DR} arc, Z_{DR} column and K_{DP} column associated with each mature mesocyclone
- During occlusion, all signatures dissipate except for K_{DP} column, which persist throughout the storm’s lifetime
- Z_{DR} arc-like feature is actually hail core during occlusion
- The main updraft also weakens during occlusion
- If these radar signatures occur in other cyclic supercells, they could lead to better forecasting of severe weather

Acknowledgements
I would like to express my gratitude to the RCEU staff: David Cook and Dr. Vogler, the Dean of the College of Science: Sundar Christopher, UAH Office of the Provost, UAH Office of the Vice President for Research and Economic Development, and the Alabama Space Grant Consortium.

References