Detection of Power Outages and Recovery Following Disaster Events: The Chilean Earthquake of 1 April 2014

Tony Cole
University of Alabama in Huntsville, Earth System Science

The Event
- 8.2 magnitude earthquake located 98 km NW of Iquique, Chile resulted in 2 meter waves
- Media reported power and phone outages along coastal areas
- The cities of Arica and Iquique reported widespread outages of electricity and phone service
- Nearly one million residents evacuated near the coast
- Estimated $100 million USD in damages
- At least 7 confirmed direct/indirect fatalities

VIIRS Day-Night Band (DNB)
- Band onboard the Suomi NPP satellite
- Visible/Reflective band
- Spectral resolution: 0.5 – 0.9 µm
- Spatial resolution: 750 m
- Can detect light emitted from surface features (i.e. cities, boats, fires, etc.)
- Can also detect reflected moonlight from cloud tops and surface features
- When a disaster occurs, emitted light is often reduced due to loss of electrical power
- Differencing of pre- and post-event imagery can help identify changes in light emission within damaged regions
- As recovery occurs, light is restored, and pre-storm distribution of light returns

Case Studies: Arica & Iquique
- SPoRT has developed a ‘percentage of normal emissions’ anomaly product
- Post event emissions are divided by pre-event levels to estimate “percent of normal emissions” following an event
- Color-coding allows for a stoplight chart which identifies change and monitors recovery
- This product allows for immediate identification of outage areas in cloud-free conditions

Estimating Affected Population
- Oak Ridge National Laboratory produces a 30 arc-second (approx. 1 km²) global population grid known as the Landscan 2012 Global Population Data Set
- By overlaying this grid with the difference product, SPoRT can estimate population affected and monitor recovery

Conclusions/Future Work
- The NASA SPoRT Disasters Team has developed a technique to use the VIIRS DNB for identifying disaster impacts on human settlements
- A quantitative differencing product provides a regional view of light emission changes
- Subsequent additional satellite passes can monitor the rate of recovery as light emissions return to normal
- Estimates of affected inhabitants can be achieved via global population data sets
- Each city appeared to achieve near full recovery one week following the event
- Arica appeared to recover much quicker than Iquique; future work will strive to identify factors that influence rates of recovery
- Future work will also examine statistics of cloud-free DNB imagery to understand variability in emissions, useful in improving outage detection

Acknowledgements
The author would like to thank Dr. Robert Griffin, Dr. Andrew Molthan and Lori Schultz for providing technical guidance throughout the study. Dr. Gary Jedlovec of the Short-term Prediction Response and Transition (SPoRT) Center also provided the author financial and technical support. This work could not have been accomplished without their generous help.