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CHAPTER 1

INTRODUCTION

1.1 Motivation

An autonomous vehicle is a vehicle that has the ability to drive without need-

ing to be controlled by a human operator. Unmanned or autonomous systems are

employed in vehicles , such as underwater vehicles, quad-copters, drones, and au-

tonomous cars. Recently, this new transportation technology has been introduced by

companies such as Waymo. Waymo’s mission is to bring self-driving technology into

the world, making it safe and easy for people and things to move around [1]. Prime

Air, one of Amazon’s future delivery systems, is designed to safely deliver packages to

customers using unmanned aerial vehicles, such as drones [2]. The FedEx SameDay

Robot is an autonomous delivery device designed to help retailers make same-day

deliveries [3]. The retailers will be able to accept orders from nearby customers and

directly deliver them to the customers’ homes or businesses within three miles of a

retailer location by robot.

In this dissertation, we focus on a landmark based system where an au-

tonomous system can determine its pose or follow a trajectory based on a landmark.

In landmark based systems, autonomous systems move, drive or fly with respect to a
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known landmark. Hence, the landmark should always be detected by these systems to

be able to function normally. For example, consider a case where an unmanned aerial

system (UAS) system need to gather information for a police stationed in a police

car. Such an UAS may use a landmark on the police car or even use the police car

itself as a landmark. It may fly on a desired trajectory with a given pose, collect the

information and fly back using the landmark. Images of the landmark taken on the

wireless camera on the UAS could be sent to a ground station for real-time processing

of the UAS’s pose. Then, the UAS’s trajectory tracking controller can estimate the

pose at which to accurately fly the UAS on the desired path. Another application of

this method would be in farming. Instead of using a multi-cue positioning system on

Unmanned Ground Vehicles (UGVs) [4], the vision-based method could be used to

solve the localization problem by utilizing the camera that is attached on the UGV.

By using natural landmarks such as trees and plants, the trajectory tracking con-

troller can command the UGV to move in a specific path on the field to plow, seed,

and fertilize.

Traditional autonomous systems likely to favor as many sensors as possible to

increase the accuracy of pose estimation. Nevertheless, relying on many sensors may

cause significant deterioration in accuracy if some of the sensors fail. For example,

if a multi-camera system fails in an unprecedented situation that causes one or more

cameras to malfunction, the single camera system would be more beneficial in this

situation, since it provides fault tolerance by only using a single camera that functions

without any interruption to the overall system.
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Devices Costs Accuracies
GPS Receiver $75 to $300 1.891 to 4.9 m. [5] (Translations)
AHRS-IMU $1,500 to $3,000 0.1 to 1.5 degrees [6] (Rotations)
Web Camera $10 to $50 -6 to 8 cm. (Translations),

(Proposed method) ±6 degrees (Rotations)

Table 1.1: The cost and accuracy of the three systems

Many sensors are utilized to calculate the location of a vehicle. Table 1.1

illustrates the cost and accuracy of three systems, Global Positioning System (GPS),

Attitude and Heading Reference System (AHRS), and Web camera (our proposed

method). When we compared the cost of the device from our proposed method to

the other two devices, we discovered that the web camera is cheaper than the GPS

receiver and AHRS-IMU. Regarding the noise and other factors that disrupt the

accuracy of the systems, the GPS receiver varies greatly depending on surroundings,

buildings, trees, weather, and other factors, while the temperature and magnetic field

distortion a↵ect the accuracy of the AHRS-IMU. However, the web camera has some

disadvantages, such as lighting conditions, fog, image noises, and camera calibration.

The accuracy of the translations of our proposed method is significantly greater than

the GPS as shown in Table 1.1. Although the accuracy of the rotations of our

proposed method is less than AHRS, it is still close to 4.5 degrees.

Vision is an important sensor that can be used to perceive the environment.

Cameras are cheap and provide information about the shape, size and texture of

an object. They are needed by the vision-based control unit of a mobile robot.

Recently, there have been many studies in visual robot control or visual servoing.

Visual servoing has been introduced to control the trajectory of a robot with respect
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to a target object using feedback obtained by a vision system [7]. The objective

of closed-loop visual servoing is to minimize the di↵erence between the actual pose

and the desired pose using feedback. Before one can guide the mobile robot to the

desired path, the self-localization problem must be solved. In this research, the robot

uses an external object as its reference point to determine its pose and location. For

practical purposes, the robot’s localization must not be restricted by the limited field

of view of the camera. The vision system must be able to perceive the robot’s location

anywhere around the object. We will introduce the fundamentals of the perspective

camera before further exploration of our approach.

1.2 Perspective Camera

A simple pinhole camera is able to create a perfect inverted image on the

wall of a darkened room. A digital camera is similar in principle because a glass or

plastic lens form an image on the surface of a semiconductor chip with an array of

light-sensitive devices, which converts the light to a digital image. [8] The process

of image formation in a camera involves the projection of a 3-dimensional world

onto a 2-dimensional image. This transformation is known as perspective projection.

Figure 1.1 shows the central perspective image model. The rays converge on the

origin of the camera frame{C} and a non-inverted image is projected onto the image

plane located at z = f . The z-axis intersects the image plane at the principal point

which is the origin of the 2D image coordinate frame [8]. Using similar triangles, we

are able to show that a point at the world coordinate P = (X, Y, Z) is projected onto

4



Figure 1.1: Pinhole camera model

the image point p = (u, v) with the following equation:

u = f
X

Z
, v = f

Y

Z
(1.1)

A generic camera model is a mapping between the 3D world and a 2D homogeneous

image. Homogeneous image(p) = Camera matrix(M) * Homogeneous world point(P )

as Equation 1.2

2

6666664

u

v

1

3

7777775
=

2

6666664

f 0 0 0

0 f 0 0

0 0 1 0

3

7777775

2

66666666664

X

Y

Z

1

3

77777777775

(1.2)
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The camera origin and image origin might be di↵erent, such as the principal point

(c
x

, c
y

) 6= (0, 0). We can rewrite this as Equation 1.3

2

6666664

u

v

1

3

7777775
=

2

6666664

f 0 c
x

0

0 f c
y

0

0 0 1 0

3

7777775

2

66666666664

X

Y

Z

1

3

77777777775

(1.3)

In general, there are three di↵erent coordinate systems: 1)Image, 2)Camera, and

3)World coordinate system. We need to know the transformations between them.

Suppose that the camera and world share the same coordinate system. We can

decompose camera matrix(M) into two matrices, as seen in Equation 1.4.

M =

2

6666664

f 0 c
x

0 f c
y

0 0 1

3

7777775

2

6666664

1 0 0 0

0 1 0 0

0 0 1 0

3

7777775
(1.4)

Nevertheless, in practice they are di↵erent coordinate systems. The camera also

has its own coordinate system. As the result, the camera matrix(M) is rewritten

as Equation 1.5.

M =

2

6666664

f 0 c
x

0 f c
y

0 0 1

3

7777775

2

6666664

r1 r2 r3 t1

r4 r5 r6 t2

r7 r8 r9 t3

3

7777775
(1.5)
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or

M = K[R|t] (1.6)

where K = intrinsic camera matrix and [R|t] = extrinsic camera matrix (R = 3D

rotation, and t = 3D translation). The camera calibration process provides the intrin-

sic camera parameters. The estimation extrinsic camera parameters or camera pose

estimation is our goal. Next we will present our method to accomplish this research.

1.3 Our Approach

In this research, we determine the location of a mobile robot at any point in a

360 degree area around the reference 3D target object. The 360-degree localization of

the mobile robot will be obtained by a single camera. The mobile robot is expected

to automatically move on a desired path around the reference 3D target object. Fig-

ure 1.2 illustrates a scenario of the problem to be solved. The mobile robot’s actual

pose is shown in red and the desired path where the mobile robot should move is

shown in green. The live images from the wireless camera on the mobile robot are

transferred to a ground system. The live images are processed in the ground system

in real time, and recognize the reference 3D target object. Using a single camera,

the system should determine the 6DOF pose of mobile robot with respect to the

reference 3D target object. A closed-loop system uses the mobile robot’s pose, com-

pares it to the desired path, and corrects the motion of the mobile robot. The pose

estimation should be precise, robust to noise, and be computed in real time. To find

the complete location, ”Mirage” pose estimation was developed at the University of
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Figure 1.2: Overview of system

Alabama in Huntsville. By utilizing a desired pose and the current image of a 3D

object, Mirage provides the estimated 6 degrees of freedom (6DOF) pose of the robot

with minimum errors in real time processing. Mirage with the multi-camera system

called ”Mirage-M” analytically solves linear equations for six pose parameters in O(n)

time. However, the simulated tests and real experiments showed that in the case of

a single camera, the analytical system of linear equations is not solvable due to the

reduced rank of the linear system that is obtained by the formulation. Therefore,

in this dissertation we revised Mirage to correctly support a single camera system,

called ”Mirage-S”. The simulations and the experiments show that Mirage-S, com-
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pared to the other pose estimation approaches, is less sensitive to pixel extraction

noise, generates lower pose estimation errors, and needs a smaller number of feature

points.

1.4 Summary of Contributions

The contributions of this dissertation may be summarized as the following:

1. We introduce a single camera pose estimation algorithm(Mirage-S) that

(a) estimates the 6DOF(degrees of freedom) pose of the robot in the 3D Eu-

clidean space,

(b) utilizes the reference camera pose for estimation of the pose of the camera

with respect to a reference 3D frame, and

(c) needs fewer feature points for accurate pose estimations than other meth-

ods that work with one camera.

2. We introduce a 360 degrees vision-based localization method that

(a) finds a computer vision solution to recognize a reference 3D object from

all possible 360 degree locations around the object,

(b) estimates pose of a mobile robot at any points in a 360 degree area around

the object, and

(c) increases the accuracy and reliability for tracking a desired path, which

covers the full 360 degree area around the reference 3D object.

9



1.5 Organization

The remaining chapters of this dissertation are organized as follows: Chapter 2

provides related work for vision based camera localization, Perspective-n-Point(PnP)

and deep learning pose estimation problems, and visual servoing and vision based

control systems. Chapter 3 describes a single camera Mirage pose estimation in de-

tail and shows Mirage is revised to support a single camera system. Then it presents

the results of pose estimation in simulations and real experiments. Chapter 4 presents

the 360-degree Mirage pose estimation in detail and provides the results of the ex-

periments. Chapter 5 shows an application of 360-degree Mirage pose estimation on

a mobile robot. It presents how to install Mirage pose estimation on a mobile robot

and experimental results from real environments. Finally, Chapter 6 concludes the

dissertation and gives further information for future work.

10



CHAPTER 2

RELATED WORK AND BACKGROUND

This chapter studies the background of the problem and gives a literature

survey on the existing self localization techniques. The first part of the chapter focuses

on the background and literature survey of the vision based camera localization, while

the second part focuses on the deep learning aspect of solving the pose estimation

problem where the background and current deep learning technique methods are

presented. Finally, the last part of the chapter provides a background and literature

survey of the vision based control system, in which the technologies in visual servoing

and vision based control systems are investigated.

2.1 Vision based Camera Localization

Vision based camera localization has two categories related to environments:

one with unknown environments and the other with known environments, also re-

ferred to as Perspective-n-Point(PnP) problem. The unknown environments consist

of methods with online and real time environment mapping, which are called Simul-

taneous Localization and Mapping (SLAM) [9], and methods without online and real

time environment mapping, known as Structure from Motion (SFM) [10].

11



2.1.1 Simultaneous Localization and Mapping (SLAM)

The current SLAM focuses on visual sensors called Visual-SLAM. Visual-

SLAM uses images as external information to estimate the location of the robot and

constructs the environment map [11]. It has gradually become the preferred choice

for lunar rover positioning [11]. Visual-SLAM, which uses a single camera to local-

ize a mobile robot, is a challenging problem because the image from the monocular

camera lacks depth information. Therefore, the multi-sensor approaches were intro-

duced, which improved robustness and gave a higher accuracy, such as the Inertial

Measurement Unit(IMU) and Global Positioning System(GPS). Piao and Kim [12]

proposed the method of combining a monocular camera and IMU sensor in mobile

devices to implement a more accurate and stable SLAM system. Shi et al. [13] pre-

sented a framework for the GPS to support a visual-SLAM with Bundle Adjustment

by using a rigorous sensor model in a panoramic camera. New camera technologies,

such as infrared and deep cameras, were introduced to contribute to the pose esti-

mation approaches. Su et al. [14] and Xie et al. [15] proposed a system for UAV

(Unmanned Aerial Vehicle) 6D pose estimation. Su et al. [14] utilized an infrared

active marker and a colored passive marker to mark the relative pose of the target.

With two di↵erent types of sensors, a PSO (Particle Swarm Optimization) algorithm

was employed to solve the optimal pose of the UAV. Xie et al. [15] also used a PSO

for the correspondence search between landmarks and image detections, then applied

the Kalman Filter to track and predict pose of the UAV in space.

12



2.1.2 Structure from Motion (SFM)

For SFM approaches, Irschara et al. [10] presented a fast location recognition

technique based on structure from motion point clouds. Burschka and Mair [16]

proposed a SFM method to calculate 6DOF pose estimation directly from one camera

with two images. Camposeco et al. [17] proposed the pose estimation of calibrated

pinhole and generalized cameras with respect to a SFM model by leveraging both

2D-3D correspondences as well as 2D-2D correspondences. In the recent stages of the

SFM development, there were more works on global pose solving. Additionally, Li et

al. [18] estimated a full 6DOF camera pose with respect to a large geo-registered 3D

point cloud. It combined research on image localization, landmark recognition, and

3D pose estimation. Park et al. [19] estimated the camera direction of a geotagged

image by using Google Street View and Google Earth satellite images. Cui and

Tan [20] presented a global method for camera pose registration.

2.1.3 Perspective-n-Point(PnP) Pose Estimation

The goal of solving the PnP problem is finding 6DOF pose parameters. There

are no solutions for the PnP problem when n=1,2, because, in that case, the number

of constraints is less than the number of parameters. Many solutions have been

proposed to solve the PnP pose estimation problem when n�3. In addition, fast

solutions are very critical in many applications. Therefore, many studies focus on

reducing the complexity of the solution to improve calculation time. Some surveys

of the pose estimation literature have been published [21, 22]. The minimal case of
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the PnP problem is the P3P [23] problem, which only relies on 3 matching points to

solve for unknown pose parameters. This problem could be solved using an 8-degree

polynomial equation system and may yield from two to four mathematical solutions.

However, not all the solutions are physically viable at the same time, which causes

an ambiguity [24]. This ambiguity can be resolved by using additional feature points.

For example, Guo et al. [25] used 4 feature points whereas Tang et al. [26] used 5

feature points to find the pose parameters. Theoretically, the pose estimation method

is su�cient when using a small number of feature points. However, recent studies

propose that using an abundance of feature points helps avoid planarity and reduces

the side e↵ects of noise issues [22]. In past years, many methods have been proposed

to improve the performances and processing times of PnP solutions. These methods

can be categorized as either numerical or analytical methods. The numerical methods

first estimate the parameters, then try to minimize a cost function and converge to the

solution [27]. Using more n points (n � 3) accelerates the convergence. Depending on

the cost function, it is possible for the optimization iterations of numerical methods

to get trapped in a local minimum instead of converging to the global minimum.

The analytical methods define the closed form solution that directly solves for pose

parameters as the unknowns of equations are derived from matching feature points.

However, the disadvantage is the high time complexity (O(nk), k � 2). The work in

[28] presents closed-form solutions to the pose estimation problem for both n points

and n lines. Although new analytical methods [28,29] are proposed, the accuracy and

running time for real-time applications are still a challenge for pose estimation.
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Table 2.1 shows the comparison of well-known pose estimation methods. The

Direct Linear Transform (DLT) solves a 3 ⇥ 4 camera matrix without the inclusion

of any constraints [30]. DLT is a fast algorithm, but it is sensitive to noise. The

Pose from Orthography and Scaling with Iteration (POSIT) [31] is a well-known and

popular method. This method approximates the perspective projection with a scaled

orthographic projection and finds the rotation matrix and the translation vector of

the object by repeatedly solving a linear system. Another method is the Lu-Hager-

Mjolsness (LHM) [32], which uses object space collinearity error and derives an iter-

ative method to compute the orthogonal rotation matrix with a global convergence.

The direct least-squares method (DLS) [33] estimates pose without iterations by using

initiation parameters. DLS employs the camera measurement equation and formu-

lates a non-linear least squares cost function. Another analytical method, known as

EPnP [29], develops a linear analytical model from the coordinates of these control

points as weighted sums of the eigen vectors of a 12 ⇥ 12 matrix and solves a small

number of quadratic equations to pick the right weights. EPnP works in the general

case of PnP for both planar and non-planar control points. The revision of EPnP is re-

formulated in terms of an E�cient Procrustes PnP(EPPnP) [34] yield to speed up and

improve the accuracy of EPnP. It is still in O(n) by replacing the linearization with

polynomial solvers. Covariant E�cient Procrustes PnP (CEPPnP) [35] reviewed the

EPPnP linear formulation, integrated feature uncertainties, and estimated the cam-

era pose based on an approximate Maximum Likelihood procedure. An Accurate and

Scalable Solution to the Perspective-n-Point(ASPnP) [36] and Optimal Perspective-

n-Point(OPnP) [37] estimate the orientation parameters directly by minimizing an
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algebraic error. They use a quaternion representation of the rotation and Grobner

basis technique to solve the final polynomial system of equations. OPnP improves

speed and numerical stability of Grobner basis solver, and conquers the problem of

local optimal solution. A robust O(n) solution to the perspective-n-point problem

(RPnP) [38] proposes a non-iterative solution which can robustly retrieve the opti-

mum by solving a seventh order polynomial. Unified PnP (UPnP) [39] presented the

PnP solution that unified all the desirable properties such as computational complex-

ity, geometric optimality, global optimality, structural degeneracies, and the number

of solutions. UPnP used first-order optimality conditions to solve the problem by

using a closed-form computation of all stationary points of the sum of squared object

space errors. MLPnP [40] formulated a Maximum Likelihood(ML) solution to the

PnP problem. Mirage [41] presents an analytical method with multiple camera sys-

tems by utilizing the reference camera pose and solving linear equations for estimation

of the pose of the cameras in O(n) time complexity.

Recently, some of the researches were proposed to improve P3P pose estima-

tion performance. Ke and Roumeliotis [42] presented an algebraic solution to the

classical P3P problem. First, the camera’s attitude is determined by employing the

corresponding geometric constraints to formulate a system of trigonometric equa-

tions. Then an algebraic approach is taken to find the unknown rotation matrix and

camera’s position. Persson and Nordberg [43] proposed Lambda Twist, which is an

accurate, fast, robust perspective three point (P3P) solver. This P3P solver exploits

the underlying elliptic equations, which can be solved by a numerically accurate di-

agonalization. Only a single real root of the diagonalizing cubic is required. Finally,
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Table 2.1: Comparison of well-known pose estimation methods, Mirage-M, and
Mirage-S

Method Name Complexity Type # Camera
POSIT O(mn) + Iterative Analytical & Numerical 1
LHM Iterative Numerical 1
EPnP O(n) Analytical 1
EPPnP O(n) Analytical 1
CEPPnP O(n) Analytical 1
DLT O(n) Analytical 1
DLS Iterative Numerical 1
RPnP O(n) Analytical 1
ASPnP O(n) Analytical 1
OPnP O(n) Analytical 1
UPnP O(n) Analytical 1
MLPnP O(n) Analytical 1
Mirage-M O(n) Analytical Multiple
Mirage-S O(n) + Iterative Analytical & Numerical 1

find this root by using Newton’s method, an initializing heuristic. Furthermore, the

other pose estimation techniques, such as deep learning, are introduced in the next

section.

2.2 Deep Learning for Pose Estimation

Earlier versions of neural networks were shallow, composed of one input, one

output layer, and one hidden layer in between. Deep learning networks are defined

as having more than one hidden layer. Each layer of nodes trains on a distinct set

of features based on the previous layer’s output. They aggregate and recombine fea-

tures from the previous layer. This is known as feature hierarchy. It is a hierarchy

of increasing complexity and abstraction [43]. It makes deep learning networks ca-

pable of handling very large, high-dimensional datasets with billions of parameters
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that pass through nonlinear functions [43]. These neural networks are capable of dis-

covering latent structures within unlabeled and unstructured data, such as pictures,

texts, videos, and audio recordings. Furthermore, the image processing is one of prob-

lems that deep learning is able to solve. Recent deep learning researches propose for

solving the camera pose estimation problem. Kendall et al. [44] proposed PoseNet,

a convolution neural network monocular camera relocalization system. The convo-

lutional neural network (CNN) regresses the 6DOF camera pose from a single RGB

image in an end-to-end manner without additional engineering or graph optimisation.

Meleknov et al. [45] presented a relative camera pose estimation using convolutional

neural network. A CNN-based method that takes RGB images from two cameras as

the input and directly produces the relative rotation and translation as the output.

The system is trained in an end-to-end manner utilizing transfer learning from a large

scale classification dataset. Laskar et al. [46] computed pairwise relative camera poses

using convolutional neural network. This approach uses CNN to first retrieve similar

database images, then predicts the relative pose between the query and the database

images, whose pose are known. The camera location for the query image is obtained

via triangulation from two relative translation estimates using a RANSAC based ap-

proach. The neural network is trained for relative pose estimation in an end-to-end

manner using training image pairs. En et al. [47] proposed RPNet, an end-to-end

network for relative camera pose estimation. The network takes pairs of images as

input and directly infers the relative poses without intrinsic and extrinsic camera pa-

rameters. RPNet is the first attempt to recover full translation vectors in relative pose

estimation. Meleknov et al., Laskar et al., and En et al. all used Siamese CNN net-
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work [48] as a base neural network system. Siamese neural network is a class of neural

network architectures that contain two or more identical subnetworks. They have the

same configuration with the same parameters and weights. The parameter updating

is mirrored across both subnetworks. Siamese networks are popular among tasks that

involve finding similarity or a relationship between two comparable things. Hence,

camera pose estimation utilizes Siamese CNN to determine comparisons between two

images. After determining the estimated camera poses, a vision base control system

is then utilized.

2.3 Visual Servoing and Vision based Control System

Visual servo control refers to the use of computer vision data to control the

path or motion of the robot [49]. The visual servoing requires an embedded vision

base control system.

The first decision to be made when constructing a vision-based control system

is where to place the camera. There are typical two options: 1) eye-to-hand: the

camera is mounted in a fixed location, and 2) eye-in-hand: the camera is attached to

the vehicle or manipulator. In the eye-to-hand camera configuration, the camera can

observe any objects to manipulate. However, the field of view does not change as the

object moves, and the geometric relationship between the camera and the scene is

fixed. In the eye-in-hand camera configuration, the camera can observe any objects

without occlusion as the vehicle moves. The field of view can change drastically for

even a small motion of the vehicle, and the geometric relationship between the camera

and the scene is changed [50]. There is also another option called ”hybrid camera
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configuration(eye-to-hand and eye-in-hand)”. This option is used in special cases,

such as the object self-occlusion problem [51].

The next decision is choosing the approach for vision-based control using

the image data. Fundamentally, there are two approaches to visual servo control:

Position-Based Visual Servo (PBVS) and Image-Based Visual Servo (IBVS). There is

also another approach that combines the benefits of both of these approaches, called

the Hybrid Visual Servo control.

PBVS is based on a calibrated camera used for determining the pose of the

object or camera in the world space. A geometric model of the object or camera is

created. The robot then moves according to the path developed by the algorithm

using the geometric model [49]. In the PBVS, pose estimation is the key task. It

is estimated with respect to the camera. The knowledge of the intrinsic parameters

of the calibrated camera and the features of the observed image plane is required.

Errors are computed based on the di↵erence between the actual output position and

the desired position [8]. Figure 2.1 presents an overview of the PBVS. The desired

pose and actual pose from the camera determine the pose of the robot. The PBVS

controller generates the velocity vector and desired pose for moving the robot. The

camera takes and transfers images to feature extraction unit. The features are ex-

tracted by the feature extraction unit and then sent to the pose estimation unit. The

pose estimation method is applied to estimate the actual pose. However, the poten-

tial problem of visual servoing occurs when the object is out of a view point. Thuilot

et al. [52] proposed an approach to guarantee that the object remains in the field of

view of the camera. A position based modeling adapted to a moving target object is
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established, which controls the trajectory [52]. The incomplete object image is also an

obstacle to PBVS. Cherubini el at. [53] presented a visual servoing scheme enabling

non-holonomic mobile robots. The controller utilizes only a small set of features ex-

tracted from the image plane without using the complete geometric representation of

the path [53]. The popular approach proposed to solve PBVS problem is a non-linear

model. The main advantage of this approach is that the translation and rotation of a

camera are separately controlled due to the use of a particular choice of frames [54].

To improve the robustness of PBVS, uncertainties, such as camera calibration and

object measurement, should be avoided. Shademan and Janbi-Sharifi [55] proposed

to use the iterated Kalman Filter for a real time pose estimation.

Figure 2.1: Overview of position based visual servo control loop (PBVS)

IBVS directly uses the image features, such as corners and edges, to control

the robot or vehicle motion. The elements of the task are specified in image space,

not in world space. Image feature data is directly used for the calculation of control

commands by algorithms. The relative pose is implicit in the values of the image
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