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The unsteady aeroelastic response of an elastic plate immersed in an axial flow 

addresses many real-world applications and problems from plate flutter, bio-locomotion, 

to deforming airfoils. However, the analysis is challenging due to the coupling between the 

structure and fluid. This study presents a closed-form analytical solution to the two-way 

coupled aeroelastic response of a two-dimensional elastic plate in axial potential flow. The 

coupled model utilizes linearized beam theory and linearized unsteady thin airfoil theory. 

The coupled equations of motion are solved via Galerkin’s method, where closed-form 

solutions for the plate deformation are obtained by introducing Chebyshev series to solve 

the unsteady aerodynamics. Furthermore, closed-form solutions are obtained for the lift, 

thrust and power. The model is validated against results found in the literature and show 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

1.1  Background and Motivation 

Aeroelasticity is the study of the mutual interaction between inertia, elastic and 

aerodynamic forces [1]. Although this topic covers a wide range of applications, in this work we 

focus on the unsteady aeroelastic response of a thin elastic plate immersed in an axial flow. Such 

a problem addresses many real-world applications and problems. Wings of birds, bats, and insects 

deform significantly during flight [2]. However, this fluid-structure interaction (FSI) mechanism 

is difficult to understand due to the involved physics. Earlier studies have shown that wing 

deformation can enhance thrust generation while reducing power consumption [3,4]. Because of 

this, researchers are interested in understanding the FSI mechanism of flapping wings to improve 

propulsion efficiency of future Micro Aerial Vehicles (MAVs). In-flight adaptive morphing wings 

are now feasible with the recent development of advanced composites as well as sensor and 

actuator technologies [5]. Morphing wings can improve aircraft operation efficiency by passively 

or actively changing the contour shape tailored for different flight conditions [5]. However, passive 
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camber deformation can be susceptible to aeroelastic instability [6]. Understanding this aeroelastic 

mechanism can help improve future morphing wing design. In turbomachinery, characterizing the 

aeroelastic damping on inducer blades has become of high interest as new designs seek to be more 

efficient, consequently resulting in more aggressive operating conditions, potentially operating 

near resonance [7]. Without a proper prediction of the hydrodynamic damping, calculated inducer 

blade responses would intolerably escalate. Furthermore, understanding the aeroelastic response 

of elastic plates can aid the research in energy harvesting as well as understanding the mechanism 

of snoring in humans [8].  

To determine the aeroelastic response of a plate under forced or self-excitation, the plate 

inertia, elastic restoring force and aerodynamic forces must be dynamically balanced. One of the 

interesting aspects of this problem is the two-way coupling between the structural response and 

the aerodynamic forces. The aerodynamics depend on the plate dynamics. However, to determine 

the plate motion the loading must be known, and hence, the two models are tightly coupled directly 

depending on one another. The main challenge of this problem is obtaining the unsteady 

aerodynamics for a deformable plate as a function of the main unknowns from the structural model, 

so that the combined coupled equations of motion can be solved using known analytical methods. 

Other challenges of such a problem arise due to three-dimensional effects, viscous flow effects, 

and nonlinear effects. Nearly all Newtonian fluids are viscous, governed by the Navier-Stokes 

equation. However, inviscid approximation can provide adequate solutions for high Reynold 

number flows or for flows that are attached outside the boundary layer [9]. Although all flows are 

three-dimensional in nature, two-dimensional models can give a good approximation for when the 

aerodynamics are dominantly changing in a single plane. For instance, this behavior is observed 

in the chordwise direction of high aspect ratio wings in forward flight and away from the wing tip. 
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Nonlinear effects can occur at large deformations, however, linear approximation can yield good 

results in the domain of small deformations. Although the above simplifications and assumptions 

are enforced, such a simplified model can aid in the fundamental understanding of FSI mechanisms 

by highlighting the first-order physical mechanisms. 

Solutions for the unsteady aerodynamics of chordwise deformable airfoils have been 

presented by Wu [10], Peters et al. [11], and Walker [11-13]. Walker [11,12], who presents closed-

form solutions by introducing a Chebyshev expansion, investigates the effect chordwise curvature 

has on the aerodynamic parameters of lift and thrust. However, this work is based on prescribed 

deformation. Walker [14] extends this work by investigating the propulsion efficiency due to 

chordwise curvature and applying this aerodynamic model to the dynamic response of a two-

dimensional membrane. Although this membrane model includes the effect of inertia and 

aerodynamic forces, it does not account for the elastic restoring force. Extending the work done 

by Walker [11-13], we obtain a closed-form expression for the transient response for the two-

dimensional elastic plate in axial flow, including the effects of inertia, elastic, and aerodynamic 

forces.  

This aeroelastic problem has been investigated using analytical, semi-analytical, numerical 

and experimental techniques. Sophisticated numerical simulations and experimental results can 

yield instantaneous information of the flow and plate dynamics; however, analytical models can 

yield results faster at less expense. Although final designs may revert to sophisticated numerical 

codes to accurately predict the aeroelastic response, analytical solutions can provide quick and 

efficient predictions for initial design studies within a large trade-space. Furthermore, analytical 

solutions have the key ability to provide relationships between various physical parameters 

involved in the FSI. Knowledge of these relationships can aid in the fundamental understanding 



4 

 

of the aeroelastic mechanisms and aid in optimization. Because of these benefits, this research has 

focused on improving the analytical tools to this problem. Although analytical models have been 

developed, to our knowledge, a closed-form analytical solution to this two-way coupled FSI 

problem has not been presented in the literature. 

1.2  Objective 

The objective of this research is to develop a closed-form analytical solution to the two-

way coupled, two-dimensional unsteady aeroelastic response of an elastic plate immersed in an 

axial flow within the linear framework. The coupled model utilizes the linearized beam theory for 

the structural model and thin airfoil theory, which assumes incompressible potential flow, for the 

aerodynamic model. Implementing Galerkin’s method, the plate deformation is expressed as the 

linear summation of the known beam normal functions and unknown temporal solutions. By 

deriving the unsteady aerodynamic pressure with respect to the beam normal functions, which is 

further expressed in a Chebyshev polynomial expansion, the generalized aerodynamic load is 

expressed in closed-form. Utilizing the orthogonality relationship of the normal functions, the 

equations of motion reduce to N number of coupled second-order ordinary differential equations 

with the temporal solution as the unknown variable. The coupled equations of motion can be solved 

using existing analytical methods. Furthermore, closed-form solutions are obtained for the lift 

force, generated thrust, required input power and propulsion efficiency. To prove the validity of 

the model we compare the results of the current model to results published in the literature. 

Furthermore, we investigate the effect of mode contribution on the solution. This work primarily 

focuses on the application of flutter and flapping wings, which utilize the cantilever beam 

configuration. The novel contribution of this work is presenting the analytical solution to the two-

way coupled, two-dimensional unsteady aeroelastic response of an elastic plate immersed in axial 
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potential flow in a closed-form. The anticipation of doing so, is to aid in the understanding of the 

aeroelastic mechanisms and encourage future implications of this solution in future applications, 

such as design studies, three-dimensional models or in-flight controls, due to its simplistic solution 

form.     

1.3  Literature Survey 

As early as the 1800’s, researchers have been intrigued by this fluid-structure interaction 

phenomenon. One of the earliest published works was by Lord Rayleigh [15] who theoretically 

proved that a flag of infinite dimension is always unstable when subjected to flow.  

Aeroelasticity became an important research topic during World War I, when airplanes 

unknowingly started to operate near their flutter speeds. By 1935, the mechanism of potential flow 

flutter was sufficiently understood for rigid airfoils undergoing rigid body motion, which was 

attributed by Glauert [16], Frazer and Duncan [17], Küssner [18], and Theodorsen [19]. As 

airplanes entered the realm of supersonic and hypersonic flight, panel flutter became an issue 

causing excessive noise and damage to the aircraft [20]. Unlike the theory developed for rigid 

airfoils undergoing rigid body motion, panel flutter involves thin plates undergoing higher order 

bending subjected to flow only on one side. Panel flutter mainly occurred during high speed flight, 

and therefore, the majority of the research considered the assumptions of supersonic compressible 

flow. During the 1950’s and 1960’s the theory for supersonic panel flutter was fairly well 

established through several published papers: Miles [21] introduced a traveling wave theory for an 

infinite panel, where he assumed stagnate air on the other side. Using a Rayleigh type analysis, 

Nelson & Cunningham [22] developed a model using acoustical theory to model the stagnate air 

on the other side. Eisley [23] solved the three-dimension model by using strip theory and 

Hedgepeth [24] improved it by replacing the strip theory with a Galerkin’s solution. Dowell [25] 
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solved the problem for a finite panel and Dugundi et al. [26] extended this work by replacing the 

still air with an elastic foundation.  

Aeroelasticity also became a problem in the energy industry during the 1940’s when 

reactor-fuel-plates collapsed when the coolant flow was increased to sufficiently high velocities. 

This initiated research in subsonic aeroelastic instability of parallel-plate assemblies. These 

parallel-plate assemblies are used as core elements in some nuclear reactors. Unlike the panel 

flutter problem, the plates experienced subsonic flow on both sides of the plate and may experience 

dynamic coupling due to neighboring plates. These assemblies consist of long thin plates stacked 

in parallel containing a gap between them, allowing cooling fluid to flow between them. In a 

situation when the flow speed becomes sufficiently high, the plates collapse due to either static or 

dynamic instability, resulting in failure of the reactor [27]. The first model to predict static 

instability was presented by Miller [27], who used Bernoulli’s theorem to equate the pressure 

difference between the channels to the elastic restoring force of the plates. Johansson [28] and 

others further improved Millers [27] static model. A dynamic model was developed by Rosenberg 

and Yougdahl [29] which obtained the same critical velocity as Miller [27]. Guo & Païdoussis  

[30] present a more accurate and general analysis to this problem, using Fourier series to obtain 

the perturbation pressure from the two-dimensional incompressible potential flow equations. 

Recent studies, such as Schouveiler [31] and Michelin [32] have investigated the coupling effect 

on mode shapes due to neighboring parallel plates.   

Unlike the panel and parallel plate assembly models, only a single plate is considered in 

this study subjected to flow on both sides and accounting for the unsteadiness of the flow by 

including a wake shed at the trailing-edge. This configuration has been used to model various 

scenarios. Although primarily focused on panel flutter, Kornecki et al. [33] investigates the flutter 
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boundary of this configuration, comparing results to experimental data. Huang [8] chose to use 

this configuration to study the human soft palate that causes snoring. In response to the occurrence 

of paper flutter in printing presses, which resulted in lower quality and a decrease in production, 

Watanabe et al. [34] investigated the aeroelastic stability of paper using analytical, numerical and 

experimental techniques. Guo & Païdoussis [35] also developed a model for a single plate flutter 

in channel flow, using the same model approach as in their parallel-plate model [30], just with 

different boundary conditions. Using a semi-analytical model, Breuker et al. [6], investigated the 

effects of a stiff leading-edge on the stability boundary of morphing wings. All these analytical 

and semi-analytical models are similar, utilizing linear beam theory to model the structure, 

however, they differ in the selection of the aerodynamic model. Kornecki et al. [33] and Breuker 

et al. [6] used Theodorsen’s [19] aerodynamic theory with Glauert’s Fourier expansion; Huang [8] 

used Theodorsen’s [19] aerodynamic theory solved numerically; Watanabe et al. [34] used the 

aerodynamic theory by Küssner [18]; and Guo & Païdoussis [35] use Fourier series to directly 

solve the potential flow equations. Although the aerodynamic theory differed between these 

models, the mathematics behind their solutions are alike, implementing Fourier series. 

Furthermore, none of them present closed-form solutions to the dynamic response of the plate and 

do not investigate the aerodynamic performance, such as lift, thrust and power. 

This two-dimensional problem has been studied using numerical models by Yadykin et al. 

[36], Tang & Païdoussis [37],  Alben et al. [38], Howell et al. [39], and Michelin et al. [40]. Three-

dimensional effects have been studied by several researchers. Eloy [41] extends the work done by 

Guo & Païdoussis [35] by adapting their solution to account for finite span. Extending the work 

done by Eloy [41], Doaré et al. [42] investigate spanwise tip edge clearances to the channel wall. 

However, in doing so, the wake is neglected resulting in a quasi-steady solution. Gibbs et al. [43] 
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studies the stability boundary for various different boundary conditions using a three-dimensional 

numerical model.  

A special case of this problem can be used to simulate the chordwise dynamics of flapping 

wings in forward flight. Here, the interest is on aerodynamic performance rather than aeroelastic 

stability. This problem has been studied primarily through experiments and numerical models. 

Only recently has this problem been studied analytically. Inspired by the early experimental results 

published by Heathcote and Gursul [37,38], Kang et al. [3] studied the effects of chordwise 

flexibility on the aerodynamic performance of flapping wings using a Navier-Stokes numerical 

solver. The same problem was studied analytically by Kodali [46], who coupled the solutions for 

the Euler-Bernoulli beam and Theodorsen’s [19] solution for rigid airfoils. The lift force is 

obtained by approximating the first bending mode by a rigid plate with passive pitch, realizing that 

the passive pitch is equal to the angle of attack. By assuming a harmonic motion, a closed-form 

analytical solution for the trailing-edge displacement is obtained. Although this model does not 

take into account any plate curvature in the aerodynamics, Kodali [46] shows good agreement 

when compared to experimental and numerical results for when the deformations are small. The 

flapping wing solution in Section 3.3.2 can be seen as an extension of this work, for it accounts 

for plate curvature in the aerodynamics. Similar to Kodali’s approach [46], Moore [47] presents 

an analytical model utilizing a rigid wing with a torsional spring at the leading-edge which is 

allowed to passively pitch. Moore [48] extends this work by presenting a semi-analytical model to 

study the optimal configuration for thrust production. Utilizing the Euler-Bernoulli beam and 

Küssner’s [18] aerodynamic theory, the coupled model is solved numerically using a Chebyshev 

collocation method. Although this model accounts for plate curvature in the aerodynamic loading, 
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it requires to be solved numerically. Other numerical models have been presented by Alben [49] 

and Michelin et al. [50].   

1.4  Outline 

In Chapter 1, the background and motivation for this research was presented, along with 

the literature review of the past and resent work performed on this subject matter. In Chapter 2, 

the methodology for the structural dynamics and aerodynamics will be derived in detail along with 

the two-way coupled equation of motion. In Chapter 3, we present the solution to the two-way 

coupled aeroelastic equation of motion in closed-form expressions along with closed-form 

expressions for the lift force, generated thrust and input power. In Chapter 4 we introduce the 

details of the cantilever beam, followed by a validation of the current model’s results to results 

found in the literature along with a discussion of similarities and differences. We continue results 

by studying the effect of mode contribution on the solution by investigating the chordwise 

flexibility on the aerodynamic performance of an average biological flyer in forward flight. We 

will close this study with conclusions, a list of novel contributions and future work in Chapter 5. 

Appendices A through C contain supplemental information used in the main text. Appendix D 

contains the Mathematica script used to derive the solutions for the unsteady aerodynamics.   
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CHAPTER 2 

 

 

2. METHODOLOGY 

 

 

2.1  Case Set-Up 

 For this two-dimensional model, we consider a thin elastic plate with infinite span and 

finite chord, c=2b, in a uniform freestream flow, U∞, as shown in Figure 2.1. We consider a high 

Reynolds number (Re) flow, where the inertia forces in the surrounding fluid are important and 

the viscous effects are only important in the generation of circulation around the plate. To model 

the high Re flow, we treat the fluid as inviscid, but account for the viscous production of vorticity 

within boundary layers by allowing the plate to shed a vortex sheet from its trailing-edge [51]. We 

allow an impose forcing function in the form of a plunge base excitation, h(t), where t is the time 

variable. The inertia force causes the plate to deform to an arbitrary deformation, w(x,t), generating 

a pressure difference, Δp(x,t), on the plate. What makes this problem challenging is the two-way 

coupling between the structure and the fluid. To determine the unsteady pressure the plate 

dynamics must be known. However, to determine the plate dynamics the unsteady pressure must 

be known, and hence, the two are tightly coupled directly depending on one another.  
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Figure 2.1. Schematic describing the current study case setup of an elastic plate in axial flow. 

 

 

 

The instantaneous total displacement, v(x,t) of the plate can be described as the sum of the 

instantaneous plate deformation w(x,t) and the plunge motion h(t), such that 

 ( ) ( ) ( ), , .v x t w x t h t= +  (2.1) 

To linearize the problem, we enforce that the plate displacements are small relative to the chord, 

such that w c and .h c  

Up to this point we have not enforced any restrictions on the boundary conditions of the 

beam, which will be discussed in the next section. The structural dynamics of such a configuration 

can be represented by the governing equations of the transient linear Euler Bernoulli beam. The 

pressure difference generated on the plate can be determined by utilizing the unsteady thin airfoil 

theory for deformable airfoils as proposed by Walker [13], which is an extension to the 

aerodynamic theory developed by Theodorsen [19] for rigid airfoils.  
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2.2  Structural Methodology 

2.2.1  Euler-Bernoulli Beam  

The plate is modeled as a one-dimensional linear Euler-Bernoulli beam, for which the 

governing differential equation for the transverse dynamic response is given as,  

 
2 4

2 4s

v v
A EI p

t x


 
+ = 

 
, (2.2) 

where ρs is the plate density, A is the cross-sectional area, E is the Young’s modulus, I is the second 

moment of inertia, ℓ is the plate width, v is the transverse displacement and Δp is the pressure 

difference acting on the beam. As mentioned earlier, the total transverse displacement can be 

written as the sum of the plate deformation and the plunge base excitation. Let us prescribe a 

harmonic base excitation given as, 

 ( ) ( )i2 1 ,ft

ah t h e = −   (2.3) 

where i is the imaginary unit, f is the plunging frequency and ha is the plunge amplitude, where 

ah c  in order to satisfy the small perturbation assumption in both Euler-Bernoulli beam theory 

and thin airfoil theory. Substituting Eq. (2.1) and Eq. (2.3) into Eq. (2.2) yields the governing 

differential equation of motion as a function of the plate deformation, expressed as, 

 
2 4 2

2 4 2
.s s

w w d h
A EI p A

t x dt
 

 
+ =  −

 
 (2.4) 
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The second term on the right-hand side appears from the inertia force due to the imposed plunge 

base excitation which is a function of time only.  

2.2.2  Nondimensional Equation of Motion 

The governing equation of motion is normalized with ρfU∞c. Introducing the definitions 

for the cross-sectional area, A=ℓhs, and the moment of inertia, I=ℓhs
3/12, where hs is the plate 

thickness, Eq. (2.4) can be written as, 

 
32 4 2

2 2 2 4 2 2 212

s s s s s

f f f f

h E h hw w d h
p

U c t U c x U c U c dt

 

      

 
+ =  −

 
. (2.5) 

 

 

Table 2.1. Nondimensional parameters. 

 

 Parameter Definition  

 normalized spatial unit, x* x/b  

 normalized temporal unit, t* ft  

 normalized plate deformation, w*   w/b  

 normalized plunge motion, h*  h/b  

 thickness ratio, hs
*  hs/c  

 density ratio, ρ* ρs/ρf  

 reduced frequency, k πfc/U∞  

 

 

 

Introducing the non-dimensional parameters given in Table 2.1, Eq. (2.5) can be written as 

 

2 2*32 * 4 * 2 *
* * * * *

*2 2 *4 *2
16 2

12

s
s s

f

Ehk w w k d h
h p h

t U x dt
 

  

     
+ =  −          

, (2.6) 
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where Δp*=Δp/ρfU∞
2 is the normalized pressure difference. It is worth noting that the values 16 

and 2 appear in the stiffness term and pressure term, respectively, due to normalizing the spatial 

unit, x, by the semi-chord, b, instead of the chord, c. This is intentionally done to aid in the solution 

of the aerodynamics which is typically described in terms of b. We introduce the effective inertia 

[3], Π0=ρ
*hs

*(k/π)2
 and the effective stiffness [3], Π1=Ehs

*3/12ρfU∞
2, so that the complete non-

dimensional form of the governing differential equation of motion can be written as, 

 
2 * 4 * 2 *

*

0 1 0*2 *4 *2
16 2

w w d h
p

t x dt

 
 +  =  −

 
. (2.7) 

2.2.3  Solution via Galerkin’s Method 

Applying the Galerkin’s method, the plate deformation can be written as a summation of 

the products of the known beam normal function, ψi(x
*), and unknown temporal solutions, τi(t

*). 

Therefore, we can write w* as, 

 ( ) ( ) ( )* * * * *

1

, i i

i

w x t x t 


=

= , (2.8) 

where the subscript i indicates individual beam modes and the general beam normal functions are 

defined as [52],  

 

( ) ( ) ( )

( ) ( )

* * *

1, 2,

* *

3, 4,

sin 1 cos 1
2 2

sinh 1 cosh 1 ,
2 2

i i
i i i

i i
i i

x C x C x

C x C x

 


 

   
= + + +   

   

   
+ + + +   

   

  (2.9) 
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where the constants C1,i, C2,i, C3,i, C4,i and λi are determined by satisfying the four boundary 

conditions at x*=-1 and x*=1. Changing the beam domain from the traditional 0≤x*≤1 to -1≤x*≤1 

is solely done to aid in the solution of the aerodynamics. Substituting Eq. (2.8) into Eq. (2.4) yields, 

 * *

0 1 0

1 1

16 2i i i i

i i

p h   
 

= =

 +  =  −  , (2.10) 

where (˙) and ( )' denote derivatives with respect to t* and x*, respectively. We now take advantage 

of the orthogonality property of the beam normal functions. First, we multiply both sides by 

another set of beam normal functions, indicated by subscript j, and integrate over the chord 

yielding  

 ( ) ( )
1 1

* * * *

0 1 0
1 1

1

16 2 .i j i i j i j

i

dx p h dx     


− −
=

 +  =  −   (2.11) 

Due to the orthogonality, the fourth derivative of the beam normal function evaluates to, 

∂4ψi/∂x*4=(λi
4/16)ψi. Substituting this into Eq. (2.11) yields,  

 ( ) ( )
1 1

4 * * * *

0 1 0
1 1

1

2 .i j i i i j i j

i

dx p h dx     


− −
=

 + =  −   (2.12) 

From the orthogonality we obtain the relationship, 
1

1
0i jdx

−
=  for i≠j. Using this relationship the 

summation on i is eliminated from the left-hand side and we can re-write Eq. (2.12) as, 

 
1 1 1 1

2 * 4 2 * * * * *

0 1 0
1 1 1 1

2 .j j j j j j jdx dx p dx h dx      
− − − −

    + =  −
           (2.13) 
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Let us express the pressure difference by a weighted linear summation of the beam normal 

functions. This can be done because Δp is a continuous function over the domain of the chord and 

the beam normal functions are a complete set of orthogonal functions. Therefore, we can express 

Δp as, 

 ( ) ( ) ( )* * * * *

1

, ,i i

i

p x t Q t x


=

 =   (2.14) 

where the time dependent weighting coefficients Qi are given by  

 ( ) ( ) ( )
1

* * * * * *

1

1
, .

2
i iQ t p x t x dx

−
=    (2.15) 

Substituting Eq. (2.14) into the integral containing Δp in Eq. (2.13), we can write the integral as 

 
1 1 1

* * * 2 *

1 1 1
1

,j i i j j j

i

p dx Q dx Q dx  


− − −
=

 = =    (2.16) 

where we have again utilized the orthogonality relationship of the beam normal functions to 

eliminate the summation on i. Therefore, each Qj corresponds to the aerodynamic force with 

respect to the jth beam mode. Substituting Eq. (2.16) into Eq. (2.13) yields,  

 
1 1 1 1

2 * 4 2 * 2 * * *

0 1 0
1 1 1 1

2j j j j j j j jdx dx Q dx h dx      
− − − −

      + = −
              . (2.17) 
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Finally, we obtain the final form of the governing differential equation by dividing both sides by 

1 2 *
1 j dx
− , resulting in N number of second order ordinary differential equations with the temporal 

solutions, τj, as the independent unknown variables, given as 

 
4 * *

0 1 0 .j j j j jQ q h   + = −   (2.18) 

Here 
1 1* 2 *
1 1j j jq dx dx 
− −

=    can be referred to as the Fourier coefficient and is a known constant 

for each beam mode. Also, Qj
* is the generalized aerodynamic force with respect to each beam 

mode, defined as Qj
*=2Qj. As we will see in Chapter 3, the generalized aerodynamic force 

introduces nonlocal behavior across all the beam modes because Δp* is expressed by all the beam 

modes given in Eq. (2.14). 

2.3  Aerodynamic Methodology 

We assume the fluid to be inviscid, irrotational, and incompressible such that the potential 

flow equations govern the flow, for which a velocity potential, Φ, exists and satisfies the Laplace 

equation, 

 
2 0.  =   (2.19) 

We implement the slip boundary condition such that no flow penetrates the surface of the plate. 

This enforces that the normal velocity of the fluid at the surface of the plate goes to zero, i.e.   

 

 ( ) 0,rel−  =v n  (2.20) 
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where vrel is the relative motion of the plate, equal to the plate transverse velocity, given as  

 0, .rel

v

t

 
=  

 
v   (2.21) 

Since the solution to Laplace’s equation is linear, its solution can be divided into two parts, such 

that 

 ,  = +   (2.22) 

where ϕ is the perturbation velocity potential and ϕ∞ is the velocity potential due to the uniform 

free-stream flow given as, 

 .U x =   (2.23) 

The surface normal, n, is defined as,  

 ( )  1
, ,1 ,

v v
x t

v v x

 
= = −
  

n    (2.24) 

where ∂v/∂x is the local slope of the surface equal to the local slope of the deformed plate. 

Substituting Eq. (2.24), Eq. (2.22) and Eq. (2.21) along with the definitions for the velocity 

potential for the free stream flow into Eq. (2.20) yields,  

 
1

, ,1 0.
v v

U
x y t v x

 


     
+ −  − =   

      
 (2.25) 
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Evaluating the dot product and rearranging terms yields,  

 ,
v v v

U
y x t x x

 


    
= + +

    
  (2.26) 

and by neglecting the higher order term, the vertical perturbation velocity at the surface of the plate 

is expressed as, 

 .
v v

U
y x t




  
= +

  
 (2.27) 

In addition, the solution must satisfy Kelvin’s theorem, such that the change in circulation 

inside the control volume must remain zero, i.e. dΓ/dt=0. We enforce that far downstream the 

effects of any perturbation must vanish. Therefore, the gradient of the velocity potential evaluated 

far downstream must go to zero, i.e. lim 0
x


→
 = . And finally, we must satisfy the Kutta condition, 

which states that no infinite velocities may exist at the trailing-edge, x*=1, of the plate, i.e. 

∇ϕ(1,t)<∞. Following the approach of Theodorsen [19], the perturbation velocity potential is 

divided into two parts: the noncirculatory part, and the circulatory part. A source/sink sheet is used 

to model the noncirculatory flow and a vortex sheet is used to model the circulatory flow. Sources, 

sinks and vortices diminish far downstream, thus satisfying the vanishing condition. The 

Joukowski conformal mapping is used to map a flat plate in the xy-complex plane to a circle in the 

XY-complex plane. We satisfy the slip boundary condition by placing continuous source/sink pairs 

along the surface of the circle, where the sources are located on the upper half and the sinks are 

located on the bottom half. The Kutta condition including Kelvin’s theorem is satisfied by placing 

continuous vortex pairs along the positive X-axis, where vortex elements are placed outside the 
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circle to infinity and counter vortex elements are placed at their corresponding image positions. 

When transformed to the xy-plane, the distribution of source/sink pairs will lie along the plate on 

the x-axis and the vortex pairs will lie on the x-axis spanning from the trailing-edge to infinity. The 

curvature of the plate is realized by a spatial varying source/sink sheet strength and the vortex 

sheet represents the wake. It is appropriate to move both sheets to the x-axis since we have enforced 

small perturbations and assumed a flat wake, allowing us to move the deformed camber line and 

the wake to lie on the x-axis.     

 2.3.1  Joukowski’s Conformal Mapping 

A circle in the XY-plane with radius b/2 and its center located at the origin, is transformed 

into a line or “slit” in the xy-plane where -b≤x≤b and y=0, by the Joukowski transformation 

formula, defined as 

 ( )
( )

2

i i .
4 i

b
x y X Y

X Y
+ = + +

+
  (2.28) 

This transformation maps all the points outside and inside of the circle to a location outside the slit 

but on different Riemann surfaces [1]. Similarly, all the points on the surface of the circle map 

directly onto the slit, where again the top and bottom surfaces map to different Riemann surfaces 

[1]. A diagram showing the Joukowski conformal mapping transformation from the circle in the 

XY-plane to the slit in the xy-plane is shown in Figure 2.2. 
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Figure 2.2. Schematic discription of the Joukowski conformal mapping showing the circle in the 

XY-plane (left) and then mapped into a line or “slit” in in the xy-plane (right). 

 

 

 

There are several important relationships that are used in developing the aerodynamic 

model. First, we need to define the relation between points on the circle in the XY-plane to points 

in the xy-plane. On the surface of the circle, we know that 2 2/4Y b X= − and substituting into Eq. 

(2.28) with some manipulation yields,  

 

( )
( )

( )
( )

( )
( )

2
2 2

2 2

2 2
2

2 2

2 2 2 2

i i / 4
4 i / 4

i / 4
i / 4

4 i / 4 i / 4

2 ,

b
x y X b X

X b X

X b Xb
X b X

X b X X b X

X

+ = + − +
+ −

− −
= + − +

+ − − −

=

  (2.29) 

and by equating reals and imaginaries, we obtain  

 2 ,      0.x X y= =   (2.30) 



22 

 

We also need to define the relation between points on the X-axis in the XY-plane to points 

on the x-axis in the xy-plane. This is done by setting Y=0 in Eq. (2.28) and equating reals and 

imaginaries, resulting in 

 
2

,      0.
4

b
x X y

X
= + =    (2.31) 

From this we define the corresponding image position of X, which is located at b2/4X, such that at 

X=X0 the transformation results in 

 
2

0 0 0

0

,      0,
4

b
x X y

X
= + =   (2.32) 

for both the position X0 and for the image position b2/4X0. This is a useful relationship and will be 

used in the mathematical model for the circulatory flow. 

2.3.2  Noncirculatory Flow 

From classical potential aerodynamics, the velocity potential of a source of strength σ 

located at a location (X1,Y1), which lies on the surface of the circle in the XY-plane is given as,  

 ( ) ( )
2 2

source 1 1log .
4

X X Y Y





 = − + −
 

 (2.33) 

We place a source of strength +σ at (X1,Y1) and a sink of strength -σ at (X1,-Y1), as shown in Figure 

2.3. When transformed, both the source and sink will lie at the same x-location on the x-axis, but 

on different Riemann surfaces. It may appear that the source/sink pair would cancel each other 

out, however, this is not the case because they lie on different Riemann surfaces. The fluid forced 
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downward by the sources does not go directly into the sinks. It creates another separate streamline 

on the second Riemann surface, traveling a long path before coming around and supplying from 

above a portion of the fluid required by the sinks [1].  

 

 

 
 

Figure 2.3. Schematic discription showing the source/sink pair on the surface of the circle in the 

XY-plane (left) and then mapped onto the line or “slit” in the xy-plane (right).  

 

 

 

Therefore, the velocity potential for the source/sink pair can be expressed as,  

 
( ) ( )

( ) ( )

2 2

1 1

source/sink 2 2

1 1

log .
4

X X Y Y

X X Y Y






 − + −
=  

− + +  

  (2.34) 

On the surface of a circle, 2 2/4Y b X= − and similarly 2 2
1 1/4Y b X= − .  Substituting this into Eq. 

(2.34) yields the velocity potential due to the source/sink pair as a function of X and X1 only, given 

as  



24 

 

 
( ) ( )
( ) ( )

2
2 2 2 2 2

1 1

source/sink 2
2 2 2 2 2

1 1

/ 4 / 4
log .

4
/ 4 / 4

X X b X b X

X X b X b X






 
− + − − − 

=  
− + − + − 

 

  (2.35) 

Using Eq. (2.30) we transform Eq. (2.35) to the xy-plane, which can be expressed as, 

 
( ) ( )
( ) ( )

2
2 2 2 2 2

1 1

source/sink 2
2 2 2 2 2

1 1

log .
4

x x b x b x

x x b x b x






 
− + − − − 

=  
− + − + − 

 

  (2.36) 

The flow around the circle is created by placing continuous source/sink pairs along the 

upper and bottom halves of the circle. Integrating over the chord gives the total velocity potential 

induced by the source/sink pairs, given by  

 ( )
( ) ( )
( ) ( )

22
* * *2 *2

1
1 1

* * *

1 122
* * *2 *2

1
1 1

1 1
, log  ,

4
1 1

nc

x x x xb
x t dx

x x x x

 


−

 
− + − − − 

=  
− + − + − 

 

   (2.37) 

where we have introduced the non-dimensional coordinates x* and t*.  

 The continuous source/sink sheet strength is obtained by satisfying the slip boundary 

condition. To do so, we have followed the approach presented by Katz [53]. The velocity potential 

for a source or sink sheet located on the x-axis is defined as, 

 ( ) ( )
1

2
* * * * * * * *2 *

1 1 1

1

( , , ) , log  .
4

b
x y t x t x x y dx 


−

 = − +
     (2.38) 

Therefore, the generated vertical velocity is expressed as,  
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 ( )
( )

1 *
* * *

1 12* * * *2
1 1

,  .
4

b y
x t dx

y x x y





−


=

 − +
   (2.39) 

The vertical velocity along the x-axis is obtained by taking the limit of Eq. (2.39) as y goes to zero. 

However, when y→0 the integrand is zero except at x1
*=x* and thus the integrand only depends on 

the contribution from this point. Therefore, in the limit of y→0, σ(x1
*,t*) can be taken as σ(x*,t*), 

and can be removed from the integrand. Furthermore, the limits of integration no longer affect the 

value of the integral and for convenience will be replaced by ±∞, such that 

 ( ) ( )
( )

*

* * *
* * * * *

12* * * *20

1

( ,0 , )
v ,0 , lim ,  .

4y

x t b y
x t x t dx

y x x y









→
−

 
  = =

  − +
 

   (2.40) 

Katz [53] evaluates this limit by introducing a new integration variable, defined as δ=(x*-x1
*)/y and 

obtains the following result.  

 
( )* ** *

*

,( ,0 , )

2

x tx t

y

 
=


  (2.41) 

 

 

 

 

Figure 2.4. Schematic of a differential element of a source sheet and generated veritcal velocity. 

Adopted from [53]. 
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Therefore, from Eq. (2.41) and Eq. (2.27) we obtain the continuous source/sink sheet strength, 

given as 

 ( )
* *

* *

* * *
, 2 2 .

v v
x t U bf

y x t


 

   
= = + 

   
 (2.42) 

As mentioned earlier, the curvature of the plate is realized by this spatial varying source/sink sheet 

strength, which satisfies the slip boundary condition.  

The pressure acting on the airfoil is determined using Bernoulli’s equation for unsteady 

flow, defined as  

 ( )
1

constant,
2

f fp
t

 


+  + =


  (2.43) 

where p is the pressure and the constant of integration is moved to the right-hand side. The 

Bernoulli’s equation is linearized by assuming that the disturbance velocities in the x and y 

directions are small, such that 

 

( ) ( ) ( ) ( )

22

22

2

, ,

2 ,

nc nc nc nc

nc nc

nc nc nc

x y x y

U
x y

U U
x x y

       

 

  

   



 

 +  +  +  +   
  =    

      

   
= + +   

    

    
= + + +   

     

 (2.44) 

and by neglecting higher order terms, we have 
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2 2 .ncU U

x


 


  = +


  (2.45) 

Substituting Eq. (2.45) into Eq. (2.43), we obtain expressions for the pressure acting on the upper 

and lower surfaces, where potential on the lower surface is the negative of the potential on the 

upper surface, given as   

 

( )

( )

2

,

2

,

1
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  (2.46) 

and by taking the difference of the two, the pressure difference due to the noncirculatory flow at a 

location x* on the plate is defined as, 
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 (2.47) 

2.3.3  Circulatory Flow 

From classical potential aerodynamics, the velocity potential of a point vortex of strength 

ΔΓ located on the X-axis at a location (X0,0) in the XY-plane is given as,  
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X X
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 (2.48) 

We place a counter-vortex element at the corresponding image location (b2/4X0,0) which lies inside 

the circle. This counter vortex is required to satisfy Kelvin’s theorem and to ensure that the 
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resultant velocity at the surface of the circle is tangent and thus not disrupting the slip boundary 

condition. The velocity potential for a pair of vortices, one outside the circle at X0 and the other of 

opposite strength at the corresponding image position located inside the circle at b2/4X0, as shown 

in Figure 2.5, is given as  
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. (2.49) 

 

 

 
 

Figure 2.5. Schematic discription showing the vortex pair in the XY-plane (left) and then mapped 

to the xy-plane (right).  

 

 

 

We transform Eq. (2.49) to the xy-plane by introducing the transformation in Eq. (2.31) 

which can be written as 2 21 1
0 0 02 2

X x x b= + −  and by acknowledging that X=x/2 from Eq. (2.30) 

and 2 21
2

Y b x= −  on the surface of the circle, Eq.  (2.49) becomes 
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and introducing non-dimensional coordinates yields, 
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This expression gives the clockwise circulation around the airfoil due to the element ΔΓ at x0
* [19], 

which lies in the wake. Helmholtz theorem states that for ideal fluids, under the influence of 

conservative forces, vortices move with the fluid [54], therefore, we can assume that the vortices 

propagate downstream at the free stream velocity, such that   
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
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
  (2.52) 

Using Eq. (2.52) along with the chain rule, we can derive the following relation which will be used 

in calculating the pressure.  
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Considering the linearized unsteady Bernoulli’s equation, similar to Eq. (2.47), expressed as 
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and using the relation in Eq. (2.53) yields the definition for the pressure difference due to one pair 

of vortex elements, given as  
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The partial derivatives found in Eq. (2.55), evaluate to   
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and 
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where the element -ΔΓ is regarded as moving to the right relative to the plate. Therefore, we can 

write Eq. (2.55) as, 
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We can express the strength of the circulation shed into the wake along the x-axis as, 
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where γw(x0
*,t) is the circulation per unit length. Therefore, the pressure difference due to the 

effects of the entire wake, denoted as ∆pc, can be obtained by integrating over the entire wake, 

given as 
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Furthermore, the velocity potential for the circulatory flow due to the entire wake is given as,  
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Enforcing the Kutta condition we ensure that the flow velocity magnitude at the trailing-

edge x*=1 to be finite, such that 
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where ζ is a finite value. The velocity perturbation due to the circulatory flow at the trailing-edge, 

can be obtained by substituting Eq. (2.59) into Eq. (2.56), given as  
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Note that the evaluation of the diverging term *21/ 1 x−  will be delayed. Substituting Eq. (2.63) 

into Eq. (2.62) and multiplying by *21 x− yields,  
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where the finite value ζ goes to zero when evaluated at x*=1. However, the velocity perturbation 

due to the noncirculatory flow reaches a finite value and is non-zero, due to the existence of 

*21/ 1 x−  in the solution. From Eq. (2.64) we define the following function K, given as  
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which is a function of time only. Introducing the function K into the pressure difference in Eq. 

(2.60) yields, 
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We assume that the wake vortex sheet strength is harmonic and can be written in terms of 

the reduced frequency, k, given as 
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where w  is the magnitude. We now introduce Theodorsen’s function, defined as 
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which is a complex function of reduced frequency only and this ratio of integrals characterizes the 

wake. Theodorsen expressed this function in the form of Hankel functions of the second kind, 

given as, 
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where Hn
(2) can be written as a combination of Bessel functions of the first and second kinds 

expressed as, Hn
(2)=Jn-iYn. Using the function K and Theodorsen’s function we can write the 

pressure difference due to the circulatory flow as,  

 ( )
( )*

* *

*2

( ) 1 ( )
, 2 .

1
c f

C k x C k
p x t U K

x
 

+ −
 =

−
  (2.70) 

It is evident that the pressure due to the circulatory flow diverges at x*=-1 and x*=1. However, at 

the trailing-edge, x*=1, the total pressure must be bound due to satisfying the Kutta condition. This 

indicates that the pressure due to the noncirculatory flow must diverge in the opposite direction at 

x*=1. 
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2.3.4 Complete Pressure Difference 

The complete perturbation pressure difference, ∆p, on the plate is the sum of the pressure 

difference for the noncirculatory flow given in Eq. (2.47) and the circulatory flow given in Eq. 

(2.70). This expression is given as  
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where ϕnc is given in Eq. (2.37), K is given in Eq. (2.65), and C(k) is given in Eq. (2.69).  
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CHAPTER 3 

 

 

3. TWO-WAY COUPLED AEROELASTIC SOLUTION 

 

 

3.1  Chebyshev Polynomial Expansion 

Chebyshev series is a logical choice for this problem. Chebyshev series are a Fourier cosine 

expansion with a change in variable [55], however, they have a special property that Fourier series 

do not have. Chebyshev polynomials have a kind of inherent coordinate-stretching that makes 

them much better at resolving singularities near the endpoints [55]. This is important since we 

know that the perturbation pressure difference contains a singularity at the leading-edge, due to 

assuming an infinitely thin plate. Furthermore, Chebyshev polynomials are a natural choice for 

non-periodic functions [55], for which the perturbation pressure is not, due to the leading-edge 

singularity and satisfying the Kutta condition at the trailing-edge. 

We express the plate deformation, w*, in a Chebyshev polynomial expansion of the first 

kind to aid in the evaluation of the integral for the noncirculatory velocity potential in Eq. (2.37). 

Chebyshev polynomials are a series of orthogonal polynomials within the interval -1≤x*≤1 and 
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with a weight of *21/ 1 .x−  The Chebyshev polynomials are defined by the recurrence relation 

given as,  
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The first six consecutive Chebyshev polynomials are shown in Figure 3.1.  

 

 

 
 

Figure 3.1. Plot of the first six Chebyshev polynomials. 

 

 

 

Recall from Eq. (2.8) the plate deformation is written as the sum of the products of the 

beam normal functions, ψi (x
*), and temporal solutions, τi (t

*). By expressing each ψi (x
*) in a 

Chebyshev polynomial expansion, we can express the plate deformation as the following double 

summation, 
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where the Chebyshev coefficients, cn,i , refer to the ith beam mode determined by,  
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which can be tabulated before use, since they are constant.  

Since we use an infinite summation series, it is convenient to express any solutions in the 

form of infinite summations. The following summations of Chebyshev coefficients arise and are 

used in the solutions of the generalized aerodynamic force, lift, thrust, and power. Summations 1
iS  

through 4
iS  are vectors depending on only one set of beam normal functions. Summations 5

jiS  

through 8
jiS  are matrices depending on two independent sets of beam normal functions, where    

5
jiS , 6

jiS  and 7
jiS  are symmetric, whereas, 8

jiS  is skew symmetric. The indices i and j refer to 

individual beam modes. 
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Table 3.1. Summations of Chebyshev coefficients used in the solutions for the generalized 

aerodynamic force, lift, thrust, and power.  
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3.2  Generalized Aerodynamic Force  

By expressing the beam normal functions into a Chebyshev polynomial expansion, we are 

thus expressing the plate deformation in a Chebyshev polynomial expansion. This simplifies the 

integral for the velocity potential in Eq. (2.37) to an integral of a series of polynomials, of which 

can be exactly integrated. Recall that the velocity potential for the noncirculatory flow is defined 

as,  
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where the continuous source/sink sheet strength, σ, is given in Eq. (2.42). By recalling that 

v*=w*+h* and by inserting the definition for w*, given in Eq. (3.2), σ can be expressed as,  
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The velocity potential for the noncirculatory flow can be expressed as a polynomial 

containing Chebyshev coefficients, corresponding to the ith beam mode, i.e. ϕnc,i(x
*,t*,cn,i). Since σ 

is expressed in a series of polynomials, the integration can be evaluated term by term. All 

parameters except for x1
* are constant in the integration, including the Chebyshev coefficients. 

Therefore, to obtain the solution we only need to evaluate the integral at all the powers of x1
*. 

Table A.1 in Appendix A shows the solutions to the integral in Eq. (2.37) for the first 6 consecutive 

powers of x1
*. It should be noted that when evaluating the integral, the Cauchy principle value 

should be used [53].  

Furthermore, the pressure difference can also be expressed as a polynomial containing 

Chebyshev coefficients with respect to each beam mode. We can write Eq. (2.71) as,  
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where Ki is the function defined in Eq. (2.65) with respect to each beam mode. We included 

summations on n in front of ϕnc,i  and Ki to indicate that these terms are expressed in an infinite 

series of Chebyshev coefficients. The complete pressure difference is the sum of all ith terms, given 

as, 
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Substituting Eq. (3.6) into Eq. (2.15), we can write the generalized aerodynamic force in the 

following index notation form,  

 ( )
1

* * m c k * *

11

,j j ji i ji i ji i j j

i
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where the indices i and j refer to individual beam modes and arise due to Δp being expressed in 

one set of normal functions, indicated by subscript i, and then multiplied by another set of normal 

functions, indicated by subscript j, which was done to utilize the orthogonality properties to derive 

the equation of motion. This introduces nonlocal behavior in the general aerodynamic force. The 

m ,ji  c
ji  and k

ji  terms are related to the aerodynamic loading due to the plate curvature, where 

the superscripts m, c, and k denote inertia, damping and stiffness, respectively. The terms μ and η 

are from the inertia load due to the imposed plunge acceleration and velocity, respectively. The 

normalized aerodynamic force terms m ,ji  c ,ji  k
ji , μ, and η can be expressed in closed-form as a 

function of Chebyshev coefficients, given as  
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where the Chebyshev summations, Sn’s, are defined in Table 3.1. As you can see, the aerodynamic 

terms only depend on the reduced frequency, k.  The terms m ,ji  c
ji  and k

ji  are fully populated 

matrices, where the inertia term, 
m

ji , is symmetric while the damping term, 
c

ji , and stiffness 

term, 
k

ji , are non-symmetric. 

3.3 Solution  

 The complete two-way coupled aeroelastic equation of motion can be written by 

substituting the solution to the generalized aerodynamic force given in Eq. (3.7) into Eq. (2.18). 

Grouping the temporal solution derivatives to the left-hand side and keeping the forcing terms on 

the right-hand side yields,   

 ( ) ( ) ( ) ( )m c 4 k * *

0 1 0

1

.ji ji i ji i j ji ji i j j j

i
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

=

 + + +  + = −  + −   (3.9) 

Eq. (3.9) represents the jth equation, which is made nonlocal by index i.  It is apparent that 
m

ji , 

c

ji  and 
k

ji  are the aeroelastic inertia, damping, and stiffness, respectively, with respect to the 

plate deformation. Additionally, the terms μj and ηj are the aeroelastic inertia and damping, 

respectively, with respect to the plunging excitation. This should be of no surprise, for it is well 

known that aeroelastic systems introduce added mass, aeroelastic damping, and stiffness to the 

equation of motion. Eq. (3.9) clearly distinguishes the aeroelastic contribution between the plate 

and excitation dynamics. The equation of motion in Eq. (3.9) can be written in matrix form given 

as, 
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m m m c c
2 221 0 22 2 21 22 2

m m m c c c

1 2 0 1 2

4 k k k

1 1 11 12 1

k

21

N N

c

N N

N NN N NN N N NN

N

      

      

      

   



    +    
      

 +       +   
   

   
   

    +         

 +


+

( )

( )

( )

* *

1 0 1 11

* *4 k k
2 2 0 2 21 2 22 2

k k 4 k * *
1 2 1 0

,N

NN N N NN N N N

q h h

q h h

q h h

 

    

     

 −  + −   
    
−  + −+     =   

 
   

 
    +    −  + −   

  (3.10) 

where N is the highest mode considered. Furthermore, we can write Eq. (3.10) in the following 

abbreviated matrix from,  

           ,+ + =M τ C τ K τ F   (3.11) 

where the matrices M, C, and K are the mass, damping, and stiffness matrices, respectively, and 

the vector F is the force vector.  

3.3.1  Homogeneous Solution 

Taking the homogenous state of Eq. (3.11), we obtain  

          .+ + =M τ C τ K τ 0  (3.12) 

Stability or often referred to as flutter analysis can be performed on this aeroelastic system. At the 

stability boundary, the motion is harmonic and takes the form,  

 ,ste=τ τ   (3.13) 
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where τ  is the modal amplitude and s  is equal to δ+ik, where δ and k are the reduced damping 

and reduced frequency, respectively. Substituting Eq. (3.13) into Eq. (3.12) yields the following,  

 2 ( ) ( ) ( ) 0s s s s s + + = M C K τ , (3.14) 

where matrices M, C and K depend on the variable s. In order for the system to have a non-trivial 

solution, the determinant of the bracketed terms must be zero. To determine the pole locations, the 

system in Eq. (3.12) is transformed into state-space form given as,  

 =x Ax ,  (3.15) 

where the state vector x is defined as, 

 ,
 

=  
 

τ
x

τ
  (3.16) 

and the system matrix A can be written as,  

 
1 1− −

 
=  

− − 

0 I
A

M K M C
. (3.17) 

Taking the Laplace Transform of Eq. (3.15) yields,  

 ( ) ( ) ( )s s s s=x A x , (3.18) 

and rearranging terms gives, 
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  ( ) ( )s s s− =I A x 0 . (3.19) 

Therefore, the pole locations are determined by solving the following equation.  

 ( )s s− =I A 0   (3.20) 

Because M, C and K depend on s, the system matrix A also depends on s, and therefore, an iterative 

method is required to solve Eq. (3.20). 

3.3.2  Forced Vibration Solution 

We assume that the plate response due to the imposed harmonic plunging motion given in 

Eq. (2.3) is also harmonic, such that the jth temporal solution can be expressed as,   

 ( )
*i* i2 ,j t

j jt Z e e
  =  (3.21) 

where Zj and φj are the magnitude and phase lag, respectively, with respect to the jth solution. 

Substituting Eq. (3.21) into Eq. (3.11) and evaluating the time derivatives of τj yields,  

    i
,j

ji j jA Z e F


  =    (3.22) 

where Aji is equal to -4π2Mji+i2πCji+Kji and Fj is equal to * *
0 -( ) -j j jq h h  + . Since Aji and Fj are 

known constants, Eq. (3.22) can be solved analytically and an iterative solver is not required. This 

system of linear equations can be solved using Cramer’s rule. Expanding Eq. (3.22) into matrix 

form yields,  
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1

2

i
11 12 1 11

i
21 22 2 22

i
1 2

,

N

N

N

N N NN NN

A A A FZ e

A A A FZ e

A A A FZ e







    
    
     =   

     
         

  (3.23) 

where N is the highest mode considered in the solution. We define a coefficient matrix for each jth 

unknown by substituting the force vector, F, in the jth column in the system matrix, A, as shown 

below,    

1 12 1

2 22 2

1

2

N

N

N N NN

F A A

F A A

F A A

 
 
 =
 
 
 

D ,     

11 1 1

21 2 2

2

1

N

N

N N NN

A F A

A F A

A F A

 
 
 =
 
 
 

D , 

where the Nth coefficient matrix is defined as,  

11 12 1

21 22 2

1 2

.N

N N N

A A F

A A F

A A F

 
 
 =
 
 
 

D  

The solution for each i j
jZ e   is determined by dividing the determinate of the coefficient matrix by 

the determinant of the system matrix, i.e.  

 
i j j

jZ e

=

D

A
. (3.24) 

From Eq. (2.8) the solution for the plate deformation is given as,  
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 ( ) ( ) ( ) ( )
*i* * * * * i2

1 1

, ,j

N N
t

j j j j

j j

w x t x t x Z e e
   

= =

 
= = 

 
   (3.25) 

where the real part of the complex value solution is taken. We note that the exact beam normal 

function is used in Eq. (3.25), preserving the exact solution to the structural model. If only n 

number of Chebyshev polynomials are considered, then there exists a truncation error only in the 

aerodynamic model to describe the aerodynamic loading. However, if n is sufficiently large 

enough, then this truncation error is negligible.      

3.3.3 Single-mode Solution 

For the case of flapping wings, the flapping frequency of insects and birds is typically much 

less than the first natural structural frequency in the spanwise and chordwise directions [2]. 

Therefore, it is possible that the first mode dominates the aeroelastic response. Considering only 

the first mode, the system nonlocal behavior is eliminated and the motion is described by a single 

equation. Substituting Eq. (3.7) into Eq. (2.18) yields the local aeroelastic model, given as  

 ( ) ( ) ( ) ( )m c 4 k * *

0 11 1 11 1 1 1 11 1 1 0 1 1 ,q h h         + + +  + = −  + −   (3.26) 

where h* is the normalized harmonic plunging excitation motion, originally defined in Eq. (2.3) in 

dimensional form. It is important to note that Eq. (3.26) still accounts for the coupling between the 

structure and fluid. The nondimensional form is given as, 

 ( ) ( )
** * * i2 1 ,t

ah t h e = −   (3.27) 
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where ha
*=ha/b. The response of the plate is also harmonic, such that

*
1* i i2

1 1( ) tt Z e e  = , where Z1 

is the magnitude and φ1 is the phase lag. Evaluating the time derivatives gives, 

 
( ) ( ) ( )

( )

* * *
1 1 1

* *

2 m i2 c i2 4 k i2

0 11 1 11 1 1 1 11 1

2 * i2 * i2

1 0 1 1

4 2

4 2 ,

i i it t t

t t

a a

Z e e i Z e e Z e e

h q e ih e

    

 

     

   

−  + + +  +

=  + −
  (3.28) 

and solving for 1i
1Z e   yields,  

 
( )

( )
1

2 * *

1 0 1 1i

1 2 m c 4 k

0 11 11 1 1 11

4 i2

4 i2

a ah q h
Z e     

    

 + −
=
−  + + + +

. (3.29) 

We introduce the Strouhal number, St=2haf/U∞, a nondimensional parameter that compares 

the oscillatory flow velocity scale 2haf to the freestream velocity scale U∞. Using the Strouhal 

number we obtain the relations ha
*Π0=ρ

*hs
*kSt/π and ha

*k=πSt. Knowing that the beam first natural 

frequency in vacuum is given as, 

 1
1 ,

2 s

EI
f

A



 
=   (3.30) 

we can define a frequency ratio, which gives the ratio between the driving frequency and the first 

natural frequency, which can be expressed as 

 
2

* 0
1 4

1 1 1

4
.

f
f

f






= =


 (3.31) 
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As we will see in Section 4.3, the frequency ratio can be useful to identify when the single-

mode solution can be used with minimal error. Rearranging terms in Eq. (3.29), substituting the 

definitions for μ and η, and utilizing the Strouhal number and frequency ratio, we can re-write Eq. 

(3.29) as, 

 

( ) ( )
1

2 * *

1 0 2 0 1

i

1

2 2 m c k

0 11 11 11*2

1

4 1
2 i ( ) 2

2
.

1
4 1 4 i2

sSt k h q c c C k c c

Z e

f



 


    

  
+ − − −  

  =
 

 − − + + 
 

 (3.32) 

From Eq. (2.8) the plate deformation is expressed as,  

 ( ) ( ) ( ) ( ) 
*

1i* * * * * i2

1 1 1 1, ,tw x t x t x Z e e   = =   (3.33) 

where we have taken the real part of the complex valued solution. In summary, Eq. (3.33) is a 

notable single equation that describes the two-way coupling aeroelastic response of chordwise 

flexibility of flapping wings in forward flight that includes the effect of curvature in the 

aerodynamic loading.  

3.4  Lift 

To determine the lift force, we consider a differential element on the plate, as shown in 

Figure 3.2. The differential lift force, dL, is equal to the force component perpendicular to the free-

stream flow, given as, 

 ( )cos .
v

dL pdx
x

 
=   

 
  (3.34) 
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Figure 3.2. Schematic discription for deriving the lift force.  

 

 

Recalling that ∂v/∂x<<1, from the small perturbation assumption, we have dL=Δpdx. 

Therefore, the total lift force per unit span, L', can be obtained by integrating the net pressure force 

along the chord, given as 

 ( ) ( ) ( )
1 1

* * * * *

1 1
, .nc c nc cL t b p x t dx b p p dx L L

− −

  =  =  + = +    (3.35) 

It is convenient to separate the total lift into noncirculatory and circulatory components, as we 

have shown in Eq. (3.35). Introducing the Chebyshev expansion for the plate deformation given 

in Eq. (3.2), and evaluating Eq. (3.35) yields the lift force due to each beam mode expressed in 

closed-form described in Chebyshev coefficients, given as 

 

( ) ( )

( )

* 2 *

0, 2, 1,

* 1

0, 1,

1
2

2

1
2 ( ) 2 ,

2

i f i i i i i

f i i i i i

L t b bh b c c U c

U bC k bh b c c US

  

  





  
 =  − + − +  

 

 
− + + +  

 

  (3.36) 

where ℜ is the real part of the complex valued solution. The first part is due to the noncirculatory 

flow and second from the circulatory flow. Here the subscript i refers to the 
thi  beam mode and 

the total lift is the summation of the lift force due to all the beam modes, given as 
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 ( ) ( )* *

1

i

i

L t L t


=

 = . (3.37) 

The classical solution for the lift force for a rigid airfoil undergoing rigid body motion, 

derived by Theodorsen [19] can be recovered from the lift expression in Eq. (3.36). To model a 

rigid airfoil, we only need to consider one structural mode, such that i=1, where only the 

Chebyshev coefficients c0 and c1 are nonzero. This reduces Eq. (3.36) to 

 

( ) 

( )

* 2 *

0 1

*

0 1 1

1
2 ( ) 2 .

2

rigid f

f

L t b bh bc U c

U bC k bh b c c Uc

  

  





  =  − + + 

 
− + + +  

 

  (3.38) 

Theodorsen [19] allows the rigid airfoil to plunge and pitch, where the location of the elastic axis 

is denoted by the letter a, which is measured from the y-axis positive in the x-direction. To model 

this with the current model, we set c1=1 and c0=-a. Substituting this into Eq. (3.38) yields 

 ( ) * 2 * * 1
2 ( ) .

2
rigid f fL t b bh ba U U bC k bh b a U      

  
  =  − − + − + − +    

  
  (3.39) 

By realizing that the temporal solution, τ, now represents the angle of attack, α, Eq. (3.39) is 

equivalent to the lift force derived by Theodorsen [19] for a rigid airfoil undergoing rigid body 

motion. 

3.5 Thrust 

The total forward thrust per unit span, T', generated by the plunging and deforming plate 

is a combination of the thrust due to the leading-edge suction, T'LES, and the thrust due to the 
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pressure difference, T'p, such that T'=T'LES+T'p. The leading-edge suction, S, is generated by the 

vorticity at the leading-edge. By evaluating Eq. (2.62) at x*=-1 we know that the velocity at the 

leading-edge goes to infinity. This is mathematically correct, however, not physically possible. 

This is a consequence of using an infinitely thin flat plate with a sharp leading-edge in the 

aerodynamic model. When the plate is at an angle of attack, the stagnation point moves from the 

leading-edge to some other location on the plate, as shown in Figure 3.3. This requires the flow to 

turn exactly 180º resulting in an infinite acceleration and hence an infinite velocity. 

 

 

 
 

Figure 3.3. Schematic description of the streamlines for a circle in the XY-plane (left) to a flat 

plate in the xy-plane (right). Adopted from [53].  

 

 

 

It was shown by Karman and Burgers [56] that the leading-edge suction approaches infinity in a 

functional form of *1/ 1 .x+  Using this, the leading-edge velocity may be written as,  

 ( ) ** 1 *1
c nc x

S

x x
 

=−


+ =

 +
. (3.40) 

Therefore, an expression for S can be derived in terms of the functions K and C(k), given as 
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 ( )
*

*

*

1

2 1
2 ( ) 1 .

2

nc

x

x
S K C k

b x



=−

 +
= − +  

  

  (3.41) 

The thrust due to the leading-edge suction is defined as TLES=πρfS
2 and substituting the value for S 

we obtain the following expression for the leading-edge suction, given as 

 ( )
*

2
*

*

1

2 1
2 ( ) 1 .

2

nc
LES f

x

x
T b K C k

b x




=−

  +
  = − +  
    

 (3.42) 

Introducing the Chebyshev expansion for the plate deformation, given in Eq. (3.2), and evaluating 

Eq. (3.42), the thrust due to the leading-edge suction can be expressed in closed-form described in 

Chebyshev coefficients given as, 

 

( ) ( ) ( )( )
( )( ) ( )

( )( )( ) 

2
* 2 1 4 2 2 *

, 0, 1, 1,

2
2 2 1 4 *

1, 0, 1,

1 4 2 2 *2

0, 1, 1,

2 ( ) 2 2 ( ) ( ) 2

1
( ) 2 4 ( ) ( ) 2

2

2 ( ) 2 ( ) 2 2 ( ) ,

LES i f i i i i i i i

i i i i i i i

i i i i i i i

T t b U C k S S b C k C k c c c h

b c C k c c U bC k C k S S h

U b C k c c c C k S S b C k h

  

 

 







 =  − + + −


+ − + + −

+ + − − + 

 (3.43) 

where the subscript i refers to the ith beam mode and the real part of the complex valued solution 

is taken. 

To determine the thrust due to the pressure, we consider a differential element on the plate, 

as shown in Figure 3.4. The differential thrust force due to the pressure is equal to the force 

component tangent to the beam, given as, 

 ( ) tan .p

v
dT pdx

x

 
=   

 
  (3.44) 
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Figure 3.4. Schematic discription for deriving the thrust force due to the pressure difference.   

 

 

 

Recalling that ∂v/∂x<<1, we have dTp=Δpdx(∂v/∂x). Therefore, the thrust force due to the 

pressure can be obtained by integrating the pressure force multiplied by the local slope over the 

chord, given as 

 ( ) ( )
( )* *

1
* * * *

*1

,
,p

v x t
T t b p x t dx

x−


 = 

 . (3.45) 

Introducing the Chebyshev expansion for the plate deformation given in Eq. (3.2), and evaluating 

Eq. (3.45) the thrust due to pressure can be expressed in closed-form described in Chebyshev 

coefficients, given as 

 

( ) ( )( )
( )( )( )( )

( ) 

* 2 4 4 3 2 1 2

,

5 3 2

0, 1, 1,

3 2 * 2 * 2

1, 0, 1,

2 4 ( )

2 ( ) 2

2 ( ) ,

p i f i i i i i i

ii i i i i i i i

i i i i i i i i i

T t b U S S C k S S S

U b S C k c c c S S

U bC k S S h b c h b c c

 

 

   







 =  − + −


+ + + − −

+ − + + 

  (3.46) 

where the subscript i refers to the ith beam mode and again we take the real part of the complex 

valued solution. 
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The total thrust is the sum of the thrust due to the leading-edge suction and the thrust due 

to pressure summed over all the beam modes, given as 

 ( ) ( ) ( )* * *

, ,

1

.p i LES i

i

T t T t T t


=

  = +   (3.47)  

3.6  Power 

In order to maintain the prescribed plunging motion, an external force equal and opposite 

to the pressure force must be applied. On a differential element dx the external force is Δpdx, acting 

in the positive y-direction. Therefore, the power per unit span, P', required to drive the oscillation 

is defined as the time rate of work done by this external force, i.e. the external force multiplied by 

the total plate velocity, given as    

 ( ) ( )
( )* *

1
* 2 * * *

*1

,
, .

v x t
P t b p x t dx

t−


 = 

  (3.48) 

Since v is the total plate displacement, this definition of the power not only includes the imposed 

plunging excitation but the plate deformations as well. Introducing the Chebyshev expansion for 

the plate deformation given in Eq. (3.2), and evaluating Eq. (3.48) the power can be expressed in 

closed-form described in Chebyshev coefficients, given as 
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1
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2
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i i i i i i
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i i

P t b U b c S S C k c c S

U bC k S h U b C k c c h

U b c c C k c c c

b c c c c S S

b c c

  

 



 



 



 =  − − + −


+ + +

+ + − +

 
+ + − + − 

 

+ − ( )* * 2 2 3 * *2 ( ) ,i ih h U b C k h b h h  


+ + + 



 (3.49) 

where the subscript i refers to the ith beam mode and the real part of the complex valued solution 

is taken. The total power required is the summation of the power due to all the beam modes, given 

as 

 ( ) ( )* *

1

.i

i

P t P t


=

 =  (3.50) 

  



56 

 

 
CHAPTER 4 

 

 

4. RESULTS AND DISCUSSION 

 

 

Although this model does not enforce any restrictions on the boundary conditions, we turn 

our attention to the cantilever beam configuration. Significant amount or research has been done 

using this configuration. It has been used to model paper flutter [34], fuel plates in nuclear reactors 

[28, 40], chordwise bending of flapping wings in forward flight [37, 38], passive morphing wings 

[6], to the soft palate that causes snoring in humans [8]. This ample amount of data provides the 

groundwork for validating the current model. We will define the details of the cantilever beam 

configuration in Section 4.1. This will be followed by validation of the current models 

homogeneous and nonhomogeneous solutions to results reported in the literature in Section 4.2. 

We will then present a study comparing the single-mode and multi-mode solutions in Section 4.3. 

In this study, we use parameters that represent a typical biological flyer and investigate how 

flexibility and wing density effect the aerodynamic performance of flapping wings in forward 

flight.   
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4.1  Cantilever Beam  

The boundary conditions for the cantilever beam are as follows: no displacement or rotation 

at the leading-edge, x*=-1, and no bending or shear at the trailing-edge, x*=1. The boundary 

conditions for the beam normal functions for a cantilever beam for -1≤x*≤1 become 
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Evaluating the constants C1,i, C2,i, C3,i and C4,i  in Eq. (2.9) for the above boundary conditions 

yields the beam normal function for a cantilever beam, given as [52] 
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 (4.1) 

where the eigenvalues, λi, are determined by evaluating the transcendental equation, 

 ( ) ( )cos cosh 1 0.i i  + =  (4.2) 

The first six consecutive roots of Eq. (4.2) are given in Table 4.1. 

 

 

Table 4.1. First six consecutive eigenvalues for a cantilever beam. 

 

λ1 λ2 λ3 λ4 λ5 λ6 

1.875 4.694 7.855 10.996 

 

14.137 17.279 
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The Chebyshev coefficients that describe the cantilever beam modes are obtained by 

evaluating Eq. (3.3) and are shown in Table B.1 in Appendix B for the first six consecutive beam 

mode shapes. Notice that the higher beam modes have more nonzero coefficients, meaning that a 

higher number of Chebyshev polynomials are required to describe the shape. This is expected since 

higher mode shapes contain more curvature. However, the increasing coefficients approach zero 

asymptotically, and therefore, any truncation error introduced in the aerodynamics model is 

negligible when sufficiently enough coefficients are considered in the solution. 

Figure 4.1 shows the first six concecutive mode shapes for a cantilever beam comparing 

the Chebyshev polynomial expansion approxiamation using n=5 and n=20, where n is the highest 

number of Chebyshev coefficients considered in the expanssion. The first three consecutive mode 

shapes are sufficiently recreated using n=5, but not sufficient to recrate the fourth or higher modes. 

The sixth mode shape can be nearly recreated using n=10, and with n=20 the mode shape is 

sufficiently recreated. Therefore, in this study, n=20 is used to ensure that any truncation error is 

negligible.  

Using the Chebyshev coefficients defined in Appendix B the Chebyshev summations 

found in Table 3.1 can be evaluated for the cantilever beam configuration. These values are shown 

in Table C.1 in Appendix C. As mentioned earlier, summations S1 through S4 are vectors and S5 

through S8 are matrices, where S5, S6, and S7 are symmetric and S8 is skew symmetric.   

 



59 

 

 
 

Figure 4.1. First six consecutive mode shapes of the cantilever beam: exact shape (black), 

Chebyshev recreation using n=20 (blue), Chebyshev recreation using n=5 (red).  

 

 

 

4.2  Model Validation 

We first validate the current model by evaluating the homogenous solution and then the 

inhomogeneous or forced vibration solution. The homogeneous solution provides information 

about the natural state of the system. In aeroelastic systems, there exists a minimum flow speed 

and corresponding frequency at which a given structure submerged in a fluid with a given density 

will exhibit sustained, simple harmonic oscillations [1]. This minimum flow speed is called the 

flutter speed and it can be obtained for a range of structure configurations defining a neutral 

stability boundary. This flutter boundary will be used to validate the homogenous solution to the 
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results found in the literature. The forced vibration model has been used to simulate the chordwise 

dynamics of that of a flapping wing in forward flight. Such research is done to aid in the 

understanding of flight performance such as lift, generated thrust, required input power, and 

propulsion efficiency. Moore [48] has done so using a semi-analytical model, allowing us to 

validate the current model to these results.  

4.2.1  Homogenous Solution Validation 

We validate the homogenous solution by comparing the stability boundary to results 

published by Kornecki et al. [33], Guo & Païdoussis [35], Watanabe et al. [34], and Breuker et al. 

[6]. Similar to the current model, these four models all utilize the one-dimensional beam equation 

and two-dimensional incompressible potential flow. Kornecki [33], Guo & Païdoussis [35], and 

Watanabe et al. [34] use Galerkin’s method to solve the structural model, whereas, Breuker et al. 

[6] uses the Rayleigh Ritz assumed modes method. They also differ in the aerodynamics model, 

where Kornecki [33] and Breuker et al. [6] used Theodorsen’s theory [19] with Glauert’s Fourier 

expansion [16], Watanabe et al. [34] used Küssner’s theory [18], and Guo & Païdoussis [35] 

directly solved the potential equations using Fourier series. It is worth noting that all four models 

solve the aerodynamics using Fourier series, which makes the current model unique, solving the 

exact Cartesian integrals for the noncirculatory velocity potential.  

Solving Eq. (3.20), the eigenvalues of the homogeneous aeroelastic system can be 

obtained. The critical or flutter speed of the system occurs when the real part of any eigenvalue 

becomes positive, indicating negative damping or instability. As previously mentioned, due to the 

dependence on the frequency, the critical speed must be solved iteratively. To determine the critical 

flow speed for this study the following procedure was executed. First, the initial flow speed U0 

and frequency guess f0 are defined. The initial flow speed is chosen such that it is below the critical 
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flow speed in order to implement a forward marching scheme. The initial frequency guess can be 

critical for convergence and setting the initial frequency equal to the first bending natural 

frequency in vacuum often results in the converged solution. With the flow speed and frequency 

defined, the eigenvalues denoted as s are obtained by performing eigenvalue analysis on the system 

matrix A, given in Eq. (3.17). If there are no positive real parts in the eigenvalues, indicating 

negative damping, then the system is stable. The flow speed is increased by a prescribed amount, 

denoted as ΔU, and eigenvalue analysis is performed on the updated system matrix A. This is 

repeated until one of the real parts of the eigenvalues becomes positive, indicating positive 

damping or instability of the system. A frequency error is defined by the difference between the 

frequency guess and the calculated critical frequency. If the error is greater than the desired 

frequency tolerance, denoted as ε, then the solution has not converged. A new frequency is defined 

using a modified bisection method and the flow speed is set equal to the initial flow speed and 

eigenvalue analysis is performed on the updated system matrix A. This entire routine is repeated 

until the frequency error is less than the desired tolerance, indicating that the solution has 

converged and yielding the critical flow speed, Uf, and corresponding frequency, ff, where the 

subscript f indicates flutter. A schematic of the process is summarized in Figure 4.2.  
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Figure 4.2. Process schematic discribing the iterative scheme used to determine the critical flow 

speed and frequency. 

 

 

 

Let us introduce two independent nondimensional parameters to investigate the trade-space 

for the stability boundary: mass ratio, M*, and nondimensional flutter speed, U*, defined as 
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where 1  is calculated using the flutter speed Uf .  

Figure 4.3 shows the relationship of the nondimensional flutter speed and mass ratio 

comparing the current model to the results published by several researchers. As we move to the 
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right on the x-axis, increasing the mass ratio, the density of the plate is increased and moving up 

on the y-axis indicates a higher flutter speed. We included two sets of results: one using 4 modes 

(left) and the other using 6 modes (right) in the solution. We have done this for two reasons: first 

because the results by Watanabe et al. [34] only considered 4 modes in their solution, and second 

to show how additional modes effect the solution. The stability boundary contains several peaks 

which correspond to mode switching. When 4 modes are considered in the solution, these peaks 

are located at M*=0.152 and 0.690. For M*<0.152 the 3rd flutter mode is observed, for 

0.152<M*<0.690 the 2nd flutter mode is observed, and for M*>0.690 the 1st flutter mode is 

observed. There is good agreement between all of the models at predicting the existence, location 

and magnitude of these mode switching peaks. When 6 modes are considered in the solution, the 

peaks move slightly to M*=0.187 and 0.681 and an additional mode switch is predicted at 

M*=0.042, where the 4th flutter mode is observed at mass ratios less than this value. This mode 

switch is not captured by Watanabe et al. [34], for as you can see in Figure 4.3, 4 modes are not 

sufficient to predict this aeroelastic response. All models seem to be in good agreement with each 

other for M*<1. For M*>1 discrepancies are apparent in the log-scale. One of the main difference 

between the current model and the other models is the mathematical model used to solve the 

unsteady aerodynamics. The current model evaluates the Cartesian integrals exactly in Eq. (2.37) 

using Chebyshev series, whereas, the other models use Fourier series. As mentioned earlier, 

Kornecki [33] and Breuker et al. [6] used Theodorsen’s [19] theory with Glauert’s Fourier 

expansion [16], Watanabe et al. [34] used Küssner’s [18] theory, and Guo & Païdoussis [35] 

directly solved the potential equations using Fourier series. The aerodynamic theories by Glauert 

[16] and Küssner [18] are fundamentally similar using a transformation variable and a Fourier 

expansion. This may be the reason why the results of Kornecki [33], Breuker et al. [6] and 
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Watanabe et al. [34] show good agreement among each other for M*>1. The solution proposed by 

Guo & Païdoussis [35] is referred to as a “double wake” solution because it introduces an incoming 

wake as a result of eliminating both singularities in the pressure difference at the leading and 

trailing-edges. In order to satisfy the Kutta condition, the trailing-edge singularity must be 

eliminated, however, the leading-edge singularity should exist, although not physical, this is 

mathematically correct due to assuming an infinitely thin plate. This additional artificial wake has 

no significant meaning and has been mentioned that it does not significantly alter the results for 

the flutter instability [31,33]. However, when Michelin [32] compared his numerical results against 

a “double wake” model by Eloy [41], there was only good agreement for M*<1, similar to the 

current situation. After observing this phenomenon, Michelin [32] concluded that for smaller mass 

ratios, the dominant modes have shorter wave lengths and the dynamics are less influenced by the 

wake and more by the local displacement of the plate. However, for larger mass ratios, the spatial 

scale is of order of the length of the plate and is strongly influenced by the description of the wake 

[32].  

Chebyshev series may be more a logical choice for this problem over Fourier series. 

Although a Chebyshev series is a Fourier cosine expansion with a change variable [55], as 

mentioned earlier, it is superior at resolving singularities near the endpoints [55]. This is an 

important characteristic since we know that the perturbation pressure contains a singularity at the 

leading-edge. Fourier series typically experience Gibbs phenomena at endpoint discontinuities and 

singularities, which may introduce error in the solution.  

Figure 4.4 shows the relationship of the flutter frequency and mass ratio comparing the 

current model to the results published by Watanabe et al. [34]. In the plot, the frequency is 

normalized by the 1st natural frequency. Also shown are the values of the 2nd, 3rd, and 4th natural 
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frequencies, indicated by the dashed lines. As before, we included two sets of results: one using 4 

modes (left) and the other using 6 modes (right). The steps in the frequency are observed at the 

same M* locations as the peaks in the flutter speed, further indicating mode switching. There is 

good agreement between the current model considering 4 modes in the solution and the results 

published by Watanabe et al. [34].  When 6 modes are considered in the solution the additional 

jump at M*=0.045 is observed, which further indicates an additional mode switch. Additionally, 

the frequency corresponding to the 3rd flutter mode was affected, which resulted in a lower 

predicted frequency and the location of the 2nd to 3rd flutter mode transition was slightly shifted, 

as seen in the flutter speed. Lastly, it was observed that there was little difference between the two 

models for M*>1, where we observed the greatest discrepancy in the nondimensional flutter speed.  

 

 

   
 

Figure 4.3. Nondimensional flutter speed versus mass ratio. Results include Guo & Païdoussis 

[35] (grey), Kornecki et al. [33] (black), Breuker et al. [6] (green), Watanabe et al. [34] (orange) 

and the current model (blue) using 4 modes (left) and using 6 modes (right).  
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Figure 4.4. Flutter frequency versus mass ratio. Results include Watanabe et al. [34] (orange) and 

the current model (blue) using 4 modes (left) and using 6 modes (right).  

 

 

 

4.2.2  Forced Vibration Solution Validation 

We validate the forced vibration response solution by comparing to the results published 

by Moore [48] for chordwise flexible flapping wings in forward flight. In his study, Moore [48] 

considers three flexibility arrangements for optimal flexibility for thrust production, one of which 

is the cantilever beam with uniform stiffness. Identical to the current model, Moore [48] describes 

the dynamics using the one-dimensional beam equation coupled with two-dimensional potential 

flow including the trialing-edge vortex shedding. Unlike the current model, Moore [48] solves the 

two-way nonlocal aeroelastic equation of motion using a semi-analytical method. The equation is 

discretized using Chebyshev collocation and the linear system is solved iteratively using fast 

Chebyshev differentiation and a preconditioned Generalized Minimal Residual (GMRES) method. 

This solution converges on the order NLogN, where N is the number of colocation points, and has 

been verified to be third-order accurate in space [48].  The aerodynamics in this model are based 
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on the theory presented by Wu [10], which utilizes Küssner’s theory [18]. Moore [48] introduces 

a normalized thrust and power coefficient defined as,  
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where T' and P' are the instantaneous thrust and input power per unit span, respectively, and the 

brackets   indicate a time average over one flapping cycle. The convenience of defining the thrust 

and power coefficients in this form is that they become independent of the driving amplitude, and 

thus eliminating one parameter from the trade-space [48]. Using the mass ratio M*, which is 

equivalent to the density parameter R as used by Moore [48], and effective inertia 1 , which is 

equal to 1/12 times the flexibility wing parameter S as used by Moore [48], all possible material 

distributions are explored within a chosen range of reduced frequencies. 

Figure 4.5 shows the thrust and power coefficient as well as the propulsion efficiency 

versus reduced frequency comparing the current model to the results published by Moore [48]. 

The results are obtained by varying the reduced frequency, while fixing M*=1 and considering 

various values of Π1. For these results, we used 6 modes in the solution. There is good agreement 

between the two models, with the only discrepancy being the amplitude of the peaks. The current 

model consistently predicts a slightly larger peak value for the thrust and input power coefficients 

for all the considered values of Π1. The thrust coefficient peaks are observed at k=1.80, 1.55 and 

1.24 for Π1=5/3, 5/4 and 5/6, respectively. The power coefficient peaks are observed at k=1.81, 

1.57 and 1.27 for Π1=5/3, 5/4 and 5/6, respectively. The largest difference of 16 percent is observed 

for CT at Π1=5/6. It is worth noting that Moore’s [48] model is semi-analytical, and therefore, still 
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requires to be solved numerically, whereas the current model gives the exact solution in closed-

form.  

The propulsion efficiency is defined as the ratio of the thrust and the input power given as 

/T pc c . The results indicate that there is a reduced frequency value, of which, when below this value 

a slight increase in propulsion efficiency is gained for the flexible wing as compared to the rigid 

wing. These values are observed at k=1.04, 0.93 and 0.80 for Π1=5/3, 5/4 and 5/6, respectively. 

However, once past this value the propulsion efficiency for the flexible wing remains lower than 

that of the rigid wing. This trend is observed for all considered values of Π1. It was observed that 

Moore’s [48] published results for the propulsion efficiency do not agree with the published results 

for the thrust and power coefficient. This is why large discrepancies are observed between the 

current model and Moore’s [48] results for the propulsion efficiency, but not for the thrust and 

power coefficients.  

 

 

 
 

Figure 4.5. Mean thrust coefficient (left), mean power coefficient (middle) versus reduced 

frequency, and propulsion efficiency (right), for Π1=∞ (black), Π1=5/3 (blue), Π1=5/4 (green) 

and Π1=5/6 (orange). Results include Moore [48] (dashed) and the current model (solid). 
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4.3 Comparison of the Single-mode and Multi-mode Solutions  

 In this section we compare and discuss the local single-mode solution, presented in Section 

3.3.3, to the nonlocal multi-mode solution, presented in Section 3.3.2. The single-mode solution 

neglects any higher mode contribution, and therefore, is only valid when the first mode dominates 

the aeroelastic response. In Section 3.3.3 we introduced the frequency ratio, f1
*, defined as 
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which can be used as a crude indication for when the single-mode solution yields equivalent or 

sufficiently accurate results in comparison to the exact multi-mode solution.  

We introduce the normalized trailing-edge amplitude, wTE
*=w*(1,t*), and the lift 

coefficient, cL, thrust coefficient, cT, and power coefficient, cP, defined as 
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respectively, where the brackets   indicate a time average over one flapping cycle. We consider 

the maximum lift to calculate the lift coefficient. We calculate an error between the single-mode 

and multi-mode solutions defined as the absolute value of the difference between the multi-mode 

and single-mode solutions divided by the multi-mode solution, given as   
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 For this study we use parameters that represent a typical biological flyer. We set the 

reduced frequency to k=0.3 and the Strouhal number to St=0.3 [2]. Since the analysis is no longer 

sensitive to the chord or flapping frequency, these parameters were set equal to unity. Furthermore, 

the fluid density is set equal to 1.2 kg/m3 representing air. We change the value of Young’s 

modulus, which changes the value of the effective stiffness, Π1, to obtain the various values of f1
*. 

To study the effect that the wing mass has on the solution, we consider three different values of 

effective mass, Π0=0.01, 0.02 and 0.03. 

 The maximum normalized trailing-edge amplitude as a function of frequency ratio is 

shown in Figure 4.6. The corresponding error between the single-mode and multi-mode solutions 

for the maximum trailing-edge amplitude are shown in Figure 4.7. At f1
*=0 the trailing-edge 

amplitude is zero, which represents the rigid wing case. Visually the single-mode solution yields 

similar results to that of the multi-mode solution up to f1
*=0.6 for all values of Π0 considered. 

Beyond f1
*=0.6 the single-mode overpredicts the trailing-edge amplitude, however, the general 

trend is still captured up to f1
*=1. The single-mode solution produces an error of 5% starting at 

f1
*=0.76 and an error of 10% is observed starting at f1

*=0.91 for the values of Π0 considered. In 

general, the trailing-edge amplitude increases with increasing f1
*, however, a maximum is reached. 

There is a threshold value of f1
*, for when below this value smaller values of Π0 yield larger 

trailing-edge amplitudes, however, above this value larger values of Π0 produce larger trailing-

edge amplitudes. This threshold is located near f1
*=0.4 for the values of Π0 considered. For Π0=0.01 

the trailing-edge amplitude reaches a maximum of wTE
*=1.25 at f1

*=0.92 for the multi-mode 

solution. For Π0=0.02 and Π0=0.03 the trailing-edge amplitudes reach maximums at f1
*>1. 

Additionally, when wTE
*>2, as seen for Π0=0.03, the wing deformations are large, implying that 

the employed linear beam model may introduce errors into the solution.  
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Figure 4.6. Maximum normalized trailing-edge amplitude versus frequency ratio for Π0=0.01 

(blue), Π0=0.02 (green) and Π0=0.03 (orange): mulit-mode solution using 6 modes (solid) and 

single-mode solution (dashed).  

 

 

 

 

 

Figure 4.7. Error of the maximum normalized trailing-edge amplitude between the single-mode 

and multi-mode solution versus frequency ratio for Π0=0.01 (blue), Π0=0.02 (green) and Π0=0.03 

(orange).  
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Figure 4.8 shows the lift coefficient as a function of the frequency ratio. The corresponding 

errors between the single-mode and multi-mode solutions for the lift coefficient are shown in 

Figure 4.9. Visually the single-mode solution yields similar results to that of the multi-mode 

solution up to f1
*=0.6 for Π0=0.01, f1

*=0.7 for Π0=0.02 and f1
*=0.8 for Π0=0.03. Beyond these 

values the single-mode overpredicts the maximum lift, however, the general trend is still captured 

up to f1
*=1. The single-mode solution produces an error of 5% starting at f1

*=0.6 and a 10% error 

is observed starting at f1
*=0.75 for the values of Π0 considered. At f1

*=0 the maximum lift is 

cL=3.15, which represents the rigid wing case. As f1
* increases, the maximum lift decreases 

reaching minimums of cL=2.74 at f1
*=0.59 for Π0=0.02 and cL=3.12 at f1

*=0.21 for Π0=0.03 for the 

multi-mode solution. A minimum is not observed for Π0=0.01 within the range of f1
* considered. 

For Π0=0.02, the maximum lift increases slightly reaching a peak at cL=2.78 at f1
*=0.91 and slightly 

decreasing thereafter as f1
* increases for the multi-mode solution. For Π0=0.03, the maximum lift 

increases as f1
* increases, passing through a point at which the wing produces more maximum lift 

than its rigid wing counterpart. This location is observed at f1
*=0.31 for the multi-mode solution. 

This indicates that for the chosen parameters, a denser wing will produce more maximum lift then 

its lesser dense wing counterpart. In summary, there is threshold value of Π0 for which below this 

value a flexible wing will never produce more maximum lift than its rigid wing counterpart. 

However, when above this value, a flexible wing can produce more maximum lift than its rigid 

wing counterpart.  
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Figure 4.8. Maximum lift coefficient versus frequency ratio for Π0=0.01 (blue), Π0=0.02 (green) 

and Π0=0.03 (orange): mulit-mode solution using 6 modes (solid) and single-mode solution 

(dashed).  

 

 

 

 

 

Figure 4.9. Error of the maximum lift coefficient versus frequency ratio for Π0=0.01 (blue), 

Π0=0.02 (green) and Π0=0.03 (orange). 
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 The mean thrust coefficient as a function of frequency ratio is shown in Figure 4.10. The 

corresponding errors between the single-mode and multi-mode solutions for the mean thrust are 

shown in Figure 4.11. Visually the single-mode solution yields similar results to that of the multi-

mode solution up to f1
*=0.7 for all values of Π0 considered. Beyond this point, the single-mode 

underpredicts the mean thrust, however, the general trend is still captured up to f1
*=1. The single-

mode solution produces an error of 5% starting at f1
*=0.69 and an error of 10% starting at f1

*=0.71 

for the values of Π0 considered. At f1
*=0 the thrust coefficient is cT=1.14, which represents the 

rigid wing case. As f1
* increases, the mean thrust slightly increases to cT=1.15 at f1

*=0.12 for 

Π0=0.01, cT=1.18 at f1
*=0.22 for Π0=0.02 and cT=1.20 at f1

*=0.27 for Π0=0.03 for the multi-mode 

solution. From this, it appears that denser wings have the potential to yield a larger maximum mean 

thrust at certain f1
*. As f1

* further increases, the mean thrust decreases passing through a point for 

which the wing produces less mean thrust than its rigid wing counterpart. These locations are 

observed at f1
*=0.17 for Π0=0.01, f1

*=0.32 for Π0=0.02 and f1
*=0.39 for Π0=0.03 for the multi-

mode solution. For Π0=0.01, a minimum is observed at f1
*=1 for the multi-mode solution and for 

Π0=0.02 and Π0=0.03 minimums are reached at f1
*>1. It appears that denser wings can yield lower 

minimum mean thrust at certain f1
*. Additionally, for Π0=0.03, negative thrust is observed at 

f1
*=0.80 for the multi-mode solution. In summary, there is a threshold value of f1

*, for when below 

this value a denser wing can produce more mean thrust than its rigid wing counterpart, and 

increasing density increases the generated mean thrust. Beyond this threshold value of f1
*, flexible 

wings will produce less mean thrust than its rigid wing counterpart. However, there is a threshold 

value of Π0 for which a flexible wing will never produce more mean thrust than its rigid wing 

counterpart. Additionally, there is another threshold value of f1
* beyond the first threshold value, 

for which a lesser dense wing will produce more mean thrust than its denser wing counterpart.  
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Figure 4.10. Mean thrust coefficient versus frequency ratio for Π0=0.01 (blue), Π0=0.02 (green) 

and Π0=0.03 (orange): mulit-mode solution using 6 modes (solid) and single-mode solution 

(dashed).  

 

 

 

 

 

Figure 4.11. Error of the mean thrust coefficient versus frequency ratio for Π0=0.01 (blue), 

Π0=0.02 (green) and Π0=0.03 (orange). 
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The mean power coefficient as a function of frequency ratio is shown in Figure 4.12. The 

corresponding errors between the single-mode and multi-mode solutions for the mean power are 

shown in Figure 4.13. Visually the single-mode solution yields similar results to that of the multi-

mode solution up to f1
*=0.5 for Π0=0.01, f1

*=0.6 for Π0=0.02 and f1
*=0.7 for Π0=0.03. Beyond 

these locations the single-mode slightly overpredicts the mean power, however, the general trend 

is still captured up to f1
*=1. The single-mode solution produces an error of 5% starting at f1

*=0.66 

and an error 10% was never reached for the values of Π0 considered. A maximum error of 6.8% is 

observed at f1
*=0.93 for Π0=0.03. From Figure 4.12, it appears that denser wings require more 

power to flap. This makes physical sense, for it takes more energy to move a heavier object. At 

f1
*=0 the power coefficient is cP=1.85, which represents the rigid wing case. For Π0=0.01 the mean 

power continuously decreases as f1
* increases. However, for Π0=0.02 and Π0=0.03 the mean power 

slightly increases reaching maximums of cP=1.86 at f1
*=0.15 for Π0=0.02 and cP=1.93 at f1

*=0.32 

for Π0=0.03 for the multi-mode solution. Thereafter, the mean power decreases as f1
* increases 

passing through a point for which the plate requires less power than the rigid wing counterpart. 

These locations are observed at f1
*=0.21 for Π0=0.02 and f1

*=0.48 for Π0=0.03 for the multi-mode 

solution. The mean power approaches minimums at f1
*>1. In summary, there is a threshold value 

of f1
*, for when below this value, denser wings may require more power to flap than its rigid wing 

counterpart, however, above this value less power is required than its rigid wing counterpart.  

Furthermore, there is a threshold value of Π0 for which lesser dense wings will never require more 

power than its rigid wing counterpart. 
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Figure 4.12. Mean power coefficient versus frequency ratio for Π0=0.01 (blue), Π0=0.02 (green) 

and Π0=0.03 (orange): mulit-mode solution using 6 modes (solid) and single-mode solution 

(dashed).  

 

 

 

 
 

Figure 4.13. Error of the mean power coefficient versus frequency ratio for Π0=0.01 (blue), 

Π0=0.02 (green) and Π0=0.03 (orange). 
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The propulsion efficiency as a function of reduced frequency is shown in Figure 4.14. The 

corresponding errors between the single-mode and multi-mode solutions for the propulsion 

efficiency are shown in Figure 4.15. Visually the single-mode solution yields similar results to that 

of the multi-mode solution up to f1
*=0.6 for all values of Π0 considered. When f1

*>0.6 the single-

mode solution underpredicts the propulsion efficiency and unlike the other results, the single-mode 

does not appear to capture the general trend of the multi-mode solution as f1
* approaches 1. The 

single-mode solution produces an error of 5% starting at f1
*=0.68 and a 10% error is observed as 

early as f1
*=0.71 for the values of Π0 considered. The propulsion efficiency initially starts at 

cT/cP=0.62, which is equivalent to the rigid wing case. For Π0=0.01 the efficiency continuously 

increases with increasing f1
* where it appears to plateau between 0.4<f1

*<0.6 and more rapidly 

increases as f1
* increases for the multi-mode solution. For Π0=0.02 and Π0=0.03 the efficiency 

slightly increases reaching maximums of cT/cP=0.64 at f1
*=0.28 for Π0=0.02 and cT/cP=0.63 at 

f1
*=0.22 for Π0=0.03 for the multi-mode solution. As f1

* further increases the propulsion efficiency 

decreases passing through a point for which the propulsion efficiency becomes less than that of 

the rigid wing counterpart. These locations are observed at f1
*=0.43 for Π0=0.02 and f1

*=0.32 for 

Π0=0.03 for the multi-mode solution. A minimum is observed for Π0=0.02 slightly beyond f1
*=1. 

Negative values are obtained for Π0=0.03 at f1
*=0.80 due to the production of negative thrust. In 

summary, up to a certain threshold value of f1
*, flexible wings experience an increase in propulsion 

efficiency over its rigid wing counterpart. Beyond this threshold value of  f1
*, for denser wings, 

the propulsion efficiency continuously decreases as f1
* approaches 1. However, there is threshold 

value of Π0 for which a flexible wing will always be more efficient than its rigid wing counterpart.   
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Figure 4.14. Propulsion efficiency versus frequency ratio for Π0=0.01 (blue), Π0=0.02 (green) 

and Π0=0.03 (orange): mulit-mode solution using 6 modes (solid) and single-mode solution 

(dashed).  

 

 

 

 
 

Figure 4.15. Error of the propulsion efficiency versus frequency ratio for Π0=0.01 (blue), 

Π0=0.02 (green) and Π0=0.03 (orange). 
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CHAPTER 5 

 

 

5. CONCLUSION 

 

 

5.1 Conclusion 

A closed-form analytical solution has been presented for the two-way coupled, two-

dimensional unsteady aeroelastic dynamic response of an elastic plate immersed in an axial 

potential flow. We have chosen to focus our attention on an analytical solution, because of the 

benefits an analytical solution can provide for understanding the mechanism of FSI. Although 

analytical models have been developed and previously presented, to our knowledge, a closed-form 

analytical solution to this two-way coupled aeroelastic problem has not been presented in the 

literature. Furthermore, all integrations and solutions are exact. 

The presented analytical model can predict the two-way coupled aeroelastic dynamic 

response of a two-dimensional elastic plate immersed in an axial flow. The solution accounts for 

an imposed plunging motion and the effects of plate curvature along the flow direction. The model 

couples linearized beam theory and thin airfoil theory for deformable airfoils to develop an 

equation of motion that dynamically balances the inertia, elastic and aerodynamic forces. 
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Implementing Galerkin’s method, the plate deformation is expressed as the linear summation of 

the products of the beam normal functions and unknown temporal solutions. Utilizing the 

orthogonality relationship of the normal functions, the equations of motion reduce to N number of 

nonlocal second order ordinary differential equations with the temporal solution as the unknown 

variable. By expressing the beam normal functions in a Chebyshev polynomial expansion, the 

unsteady aerodynamic pressure is derived with respect to the beam normal functions as a function 

of the unknown temporal solution. From this, the generalized aerodynamic load can be expressed 

in closed-form with the temporal solution as the unknown variable. The nonlocal equations of 

motion can be solved using existing analytical methods. Furthermore, closed-form solutions are 

obtained for the lift force, generated thrust, required input power and propulsion efficiency.  

The current model’s homogeneous and inhomogeneous solutions were validated against 

results found in the literature. Stability analysis was performed for a range of mass ratios obtaining 

the flutter speeds and corresponding frequencies. There is good agreement between all of the 

analytical models, where similar trends are observed identifying and locating mode switches. It 

was observed that the largest discrepancies for the flutter speed appeared for M*>1. Kornecki [33], 

Watanabe et al. [34], and Breuker et al. [6] show good agreement against one another in this region, 

however, this could be due to the similarities in the solution of the aerodynamic model, where 

Fourier series is utilized. Guo & Païdoussis [35] solution showed discrepancies for mass ratio less 

than 0.01 and greater than 1. This could be due to the effect of the “double wake” that is inherited 

in the aerodynamic solution by eliminating both singularities in the perturbation pressure at the 

leading and trailing-edges. Chebyshev series are used in the current model, which may be more 

appropriate for this problem, due to its capability of resolving endpoint singularities.  
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The inhomogeneous or forced solution is compared to the results published by Moore [48] 

comparing thrust and power input for a range of reduced frequencies. The two models produce 

similar results, with the current model consistently predicting a slightly larger maximum value. 

The model presented by Moore [48] is a semi-analytical model and requires to be solved 

numerically, whereas the current model is a closed-form analytical solution.  

A comparison of the single-mode solution to the multi-mode solution was presented by 

studying the chordwise flexibility of an average biological flyer wing investigating the 

aerodynamic performance as a function of frequency ratio. We considered three different values 

of effective mass. Results for the normalized trailing-edge amplitude, maximum lift coefficient, 

mean thrust coefficient, mean power coefficient, and propulsion efficiency were plotted against 

frequency ratio for both the single-mode and multi-mode solutions. For the selected parameters, 

the single-mode solution produced similar results to that of the multi-mode solution up to certain 

values of f1
*. Additionally, the errors between the single-mode and multi-mode solutions were 

plotted against frequency ratio for each result. Errors of 5% were observed starting at f1
*=0.6 and 

errors of 10% were observed starting at f1
*=0.71 for the values of Π0 considered. However, this 

may not be the case for all configurations, and will depend on the amount of aerodynamic influence 

on the solution. Furthermore, in this study we observed the following:  

1) There is a threshold value of Π0, for when below this value lesser dense wings yield 

larger trailing-edge amplitudes and when above this value denser wings yield larger 

trailing edge displacements.  

2) There is threshold value of Π0 for which below this value, a flexible wing will never 

produce more maximum lift than its rigid wing counterpart. However, when above this 

value, a flexible wing can produce more maximum lift than its rigid wing counterpart. 
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3) There is a threshold value of f1
*, for when below this value a denser wing can produce 

more mean thrust than its rigid wing counterpart, and increasing density increases the 

generated mean thrust. Beyond this threshold value of f1
*, flexible wings will produce 

less mean thrust than its rigid wing counterpart. However, there is a threshold value of 

Π0 for which a flexible wing will never produce more mean thrust than its rigid wing 

counterpart. Additionally, there is another threshold value of f1
* beyond the first 

threshold value, for which a lesser dense wing will produce more mean thrust than a 

denser wing. 

4) Beyond a certain flexible and density threshold negative thrust can be observed, 

resulting in aerodynamic drag. This is consistent with the findings of Heathcote et al. 

[44] and Michelin et al. [50], who observed similar trends in their experiments. They 

concluded that a little flexibly can lead to an increase in thrust, however, too much 

flexibility leads to drag. 

5) There is a threshold value of f1
*, for when below this value denser wings may require 

more power to flap than its rigid wing counterpart, however, above this value less 

power is required than its rigid wing counterpart. Furthermore, there is a threshold 

value of Π0 for which lesser dense wings will never require more power than its rigid 

wing counterpart. 

6) Up to a certain threshold value of f1
*, flexible wings experience an increase in 

propulsion efficiency over its rigid wing counterpart. Beyond this threshold value of 

f1
*, for denser wings, the propulsion efficiency continuously decreases as f1

* approaches 

1. However, there is a threshold value of Π0 for which a flexible wing will always be 

more efficient than its rigid wing counterpart.   
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5.2 Novel Contributions 

This work has focused on advancing the analytical tools for aeroelastic problems. The 

research has provided the following novel contributions:  

1) Expressing the generalized aerodynamic force, lift, thrust, and power in closed-form as 

a function of the unknown temporal solution.  

2) Presenting a closed-form solution to the two-way coupled, two-dimensional unsteady 

aeroelastic dynamic response of an elastic plate immersed in an axial potential flow.  

3) Unlike other analytical models which used Fourier series, the current solution was 

obtained using Chebyshev series, which are superior at resolving endpoint singularities. 

5.3 Future Work 

Future work of this two-dimensional model and methodology include the following:   

1) Study flight performance of flapping wings in forward flight for either insects or birds. 

By using this closed-form analytical solution, we hope to help close the gap of our 

understanding of this FSI problem.  

2) Aid in the understanding of hydrodynamic damping in dense fluids. We hope to utilize 

the closed-form analytical solution to derive correlations between parameters to predict 

the hydrodynamic damping in turbomachinery inducer blades.  

3) Expand the capability of this two-dimensional model to account for three-dimensional 

effects by coupling the spanwise and chordwise flexibility mechanisms.  

4) Further investigate using Chebyshev versus Fourier series in the solution of the 

aerodynamics.  
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6. APPENDIX A 

 

Integral Solutions 

 

Table A.1. Solutions to the integral found in the noncirculatory velocity potential.  

 

n 
( )
( )

2
* * 2 *2 *2

1
1 1

* *

1 12
* * 2 *2 *2

1
1 1

( ) 1 1
log  

( ) 1 1

n
x x x x

x dx

x x x x−

 
− + − − − 

 
− + − + − 

 

  

0 *22 1 x− −  

1 * *21x x− −  

2 

* * *2

*2

( 1)( 1)(2 1)

3 1

x x x

x

 − + +

−
 

3 

* * * *2

*2

( 1)( 1)(2 1)

4 1

x x x x

x

 − + +

−
 

4 

* * *4 *2

*2

( 1)( 1)(8 4 3)

20 1

x x x x

x

 − + + +

−
 

5 

* * * *4 *2

*2

( 1)( 1)(8 4 3)

24 1

x x x x x

x

 − + + +

−
 

6 

* * *6 *4 *2

*2

( 1)( 1)(16 8 6 5)

56 1

x x x x x

x

 − + + + +

−
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7. APPENDIX B 

 

Chebyshev Coefficients 

 

Table B.1. Chebyshev coefficients for cantilever beam first six consecutive mode shapes. 

 

cn Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

c0 0.836668 0.043313 0.418008 0.010756 0.305914 0.005516 

c1 1.039859 -0.845595 0.107454 -0.630920 0.044792 -0.518382 

c2 0.160456 -1.205177 0.469596 -0.329938 0.451475 -0.166987 

c3 -0.040308 -0.145145 1.206252 -0.290000 0.517302 -0.318671 

c4 0.002855 0.170134 0.101022 -1.122306 0.187280 -0.647345 

c5 0.000451 -0.008977 -0.349976 -0.068698 0.965360 -0.124188 

c6 0.000021 -0.008485 0.010690 0.527571 0.046821 -0.754097 

c7 -0.000002 -0.000278 0.038470 -0.009486 -0.681050 -0.032130 

c8 0.000000 0.000218 0.000657 -0.094960 0.007581 0.793803 

c9 0.000000 -0.000005 -0.002284 -0.000841 0.176987 -0.005782 

c10 0.000000 -0.000003 0.000026 0.009458 0.000847 -0.278994 

c11 0.000000 0.000000 0.000086 -0.000051 -0.025672 -0.000757 

c12 0.000000 0.000000 0.000001 -0.000607 0.000068 0.054496 

c13 0.000000 0.000000 -0.000002 -0.000002 0.002428 -0.000074 

c14 0.000000 0.000000 0.000000 0.000027 0.000004 -0.006980 

c15 0.000000 0.000000 0.000000 0.000000 -0.000163 -0.000006 

c16 0.000000 0.000000 0.000000 -0.000001 0.000000 0.000639 

c17 0.000000 0.000000 0.000000 0.000000 0.000008 0.000000 

c18 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000044 

c19 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

c20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000002 
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8. APPENDIX C 

 

Chebyshev Summations 

 

Table C.1. Chebyshev summation values for a cantilever beam. 

 

n Sn 

1  1.2536 -3.1069 3.6389 -4.5747 4.9989 -5.7034  

2  0.3325 -1.7790 1.4129 -2.6557 2.0030 -3.3217  

3  0.9212 -1.3279 2.2260 -1.9190 2.9959 -2.3817  

4  0.1662 -0.8895 0.7065 -1.3278 1.0015 -1.6609  

5 

1.1377 -1.2466  0.1169 -0.7398  0.1332 -0.5619

 3.7998 -1.6642  0.6674 -1.2683  0.5845

5.4821 -1.7296  0.5032 -1.4628

 7.6736 -1.7621  0.6485

 9.5620 -1.7748

11.6577
sym

 
 
 
 
 
 
 
 
 
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6 

sym

0.0089 -0.0633  0.0160 -0.0159  0.0204 -0.0068

 0.4920 -0.2189  0.1147 -0.1921  0.0617

0.3606 -0.1294  0.1531 -0.1032

 0.2449 -0.1102  0.0945

 0.2557 -0.0858

 0.1787

 
 
 
 
 
 
 
 
 

 

7 

sym

-0.0104 -0.0126  0.1586 -0.0494  0.0672 -0.0473

-0.0035 -0.1304  0.1559 -0.0764  0.1007

-0.0135 -0.1425  0.0984 -0.1152

 0.0472 -0.1057  0.1248

 0.0207 -0.0908

 0.0577

 
 
 
 
 
 
 
 
 

 

8 

skew

0 -1.1960  0.6750 -0.2551  0.5571 -0.1217

0 -1.9351  0.0056 -0.8212  0.0031

0 -1.4098  0.0276 -0.3836

0 -1.8090  0.0001

0 -1.4807

0

 
 
 
 
 
 
 
 
 
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9. APPENDIX D 

 

Mathematica Script 

  



�� Unsteady Aerodynamics for Deformable Plates ��
�� Plate deformation ��
n � 4;
Do�T�i� � ChebyshevT�i, x�, �i, 0, n��;Ψi � 0; Do�Ψi � Ψi 	 ci�i� � T�i�, �i, 0, n�� ;
w � Ψi � Τi�t�;
v � w 	 h�t�;
Framed�Row��"v � ", v��, Background µ Yellow�
v � h�t� 	 ci�0� 	 x ci�1� 	 
1 	 2 x2 ci�2� 	 
3 x 	 4 x3 ci�3� 	 1 
 8 x2 	 8 x4 ci�4� Τi�t�
�� Noncirculatory flow ��Σ � �Uì Ùx v 	 b Ùt v� �� Simplify;
Framed�Row��"Σ � ", Expand�Σ���, Background µ Yellow�
Σ � ci�1� Uì Τi�t� 	 4 x ci�2� Uì Τi�t� 
 3 ci�3� Uì Τi�t� 	 12 x2 ci�3� Uì Τi�t� 


16 x ci�4� Uì Τi�t� 	 32 x3 ci�4� Uì Τi�t� 	 b h��t� 	 b ci�0� Τi��t� 	
b x ci�1� Τi��t� 
 b ci�2� Τi��t� 	 2 b x2 ci�2� Τi��t� 
 3 b x ci�3� Τi��t� 	
4 b x3 ci�3� Τi��t� 	 b ci�4� Τi��t� 
 8 b x2 ci�4� Τi��t� 	 8 b x4 ci�4� Τi��t�

Φnc � int b

2 Π �Σ �. x µ x1 � Log�x 
 x1�2 	 1 
 x2 
 1 
 x12 2

�x 
 x1�2 	 1 
 x2 	 1 
 x12 2
 �� Expand

��. int�a� 	 b�� ̄ int�a� 	 int�b���. int�i�� ̄ Integrate�i, �x1, 
1, 1�,
Assumptions µ �
1 
� x 
� 1�, PrincipalValue µ True� �� Simplify;

Framed�Row��"Φnc� ", Collect��Φnc�, �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify���,
Background µ Yellow�
Φnc� 
b 1 
 x2 ci�1� 
 ci�3� 	 4 x2 ci�3� 	 2 x �ci�2� 
 2 ci�4�� 	 8 x3 ci�4� Uì Τi�t� 


b2 1 
 x2 h��t� 
 1

30
b2 1 
 x2 30 ci�0� 
 20 ci�2� 	 15 x �ci�1� 
 2 ci�3�� 	

30 x3 ci�3� 	 4 x2 �5 ci�2� 
 14 ci�4�� 	 8 ci�4� 	 48 x4 ci�4� Τi��t�
Mpnc � Collect2 Ρf Uì

b
ÙxΦnc 	 ÙtΦnc , �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify;
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Framed�Row��"Mpnc � ", Mpnc �� Simplify��, Background µ Yellow�
Mpnc � 1

15 1 
 x2Ρf 30 
2 ci�2� 	 x �ci�1� 
 9 ci�3�� 	 12 x3 ci�3� 	 4 x2 �ci�2� 
 8 ci�4�� 	 4 ci�4� 	
32 x4 ci�4� Uì2 Τi�t� 	 30 b x Uì h��t� 	

15 b 
3 ci�1� 	 4 x2 �ci�1� 
 5 ci�3�� 	 4 ci�3� 	 16 x4 ci�3� 	 8 x3 �ci�2� 
 6 ci�4�� 	
32 x5 ci�4� 	 2 x �ci�0� 
 4 ci�2� 	 8 ci�4�� Uì Τi��t� 	

30 b2 
1 	 x2 h���t� 	 b2 
1 	 x2 30 ci�0� 
 20 ci�2� 	 15 x �ci�1� 
 2 ci�3�� 	
30 x3 ci�3� 	 4 x2 �5 ci�2� 
 14 ci�4�� 	 8 ci�4� 	 48 x4 ci�4� Τi���t�

�� Circulatory flow ��
K � CollectLimit
ÙxΦnc 1

b
1 
 x2 , x µ 1,

�Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify;
Framed�Row��"K � ", K��, Background µ Yellow�
K � 
�ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� Uì Τi�t� 
 b h��t� 
 1

2
b �2 ci�0� 	 ci�1�� Τi��t�

Mpc � Collect2 Ρf Uì 1

1 
 x2 K � Ck 	 x �1 
 Ck��,
�Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify;

Framed�Row��"Mpc � ", Mpc��, Background µ Yellow�
Mpc � 1

1 
 x2 2 �Ck �
1 	 x� 
 x� �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� Uì2 Ρf Τi�t� 

2 b �Ck 	 x 
 Ck x� Uì Ρf h��t�

1 
 x2 	 b �Ck �
1 	 x� 
 x� �2 ci�0� 	 ci�1�� Uì Ρf Τi��t�
1 
 x2

�� Total pressure difference ��Mp � Collect��Mpnc 	 Mpc�, �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify�;
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Framed�Row��"Mp � ", Collect��Mp�, �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��� �� Simplify��,
Background µ Yellow�
Mp � 1

15 1 
 x2Ρf 30 �
1 	 x� Ck �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� 	 2 ci�2� 	 2 x ci�2� 	 6 x ci�3� 	
6 x2 ci�3� 
 2 ci�4� 	 16 x2 ci�4� 	 16 x3 ci�4� Uì2 Τi�t� 	

30 b Ck �
1 	 x� Uì h��t� 	 15 b �
1 	 x� �3 	 4 x� ci�1� 	 Ck �2 ci�0� 	 ci�1�� 	
4 �1 	 x� 2 x ci�2� 
 ci�3� 	 4 x2 ci�3� 
 4 x ci�4� 	 8 x3 ci�4� Uì Τi��t� 	

30 b2 
1 	 x2 h���t� 	 b2 
1 	 x2 30 ci�0� 
 20 ci�2� 	 15 x �ci�1� 
 2 ci�3�� 	
30 x3 ci�3� 	 4 x2 �5 ci�2� 
 14 ci�4�� 	 8 ci�4� 	 48 x4 ci�4� Τi���t�

�� Verify Kutta condition: Mp�x�1� � finite ��
Limit�Mp, x µ 1� �� Simplify

0

�� Generalized aerodynamic force ��Ψj � 0; Do�Ψj � Ψj 	 cj�i� � T�i�, �i, 0, n�� ;

Q � 1Ρf Uì2 �int��Mp � Ψj �� Expand��
��. int�a� 	 b�� ̄ int�a� 	 int�b���. int�i�� ̄ Integrate�i, �x, 
1, 1�, GenerateConditions µ False��;

Framed�Row��"Q � ", Collect�Q, �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify���,
Background µ Yellow�
Q �Π �
Ck �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� �2 cj�0� 
 cj�1�� 
 3 ci�3� cj�1� 
 4 ci�4� cj�1� 


2 ci�2� �cj�1� 
 cj�2�� 	 3 ci�3� cj�3� 	 4 ci�4� cj�4��
Τi�t� 	 b Ck Π �
2 cj�0� 	 cj�1�� h��t�

Uì 
 1

2 Uì
b Π �Ck �2 ci�0� 	 ci�1�� �2 cj�0� 
 cj�1�� 	 ci�1� �2 cj�0� 	 cj�1� 
 2 cj�2�� 	

2 �ci�2� �cj�1� 
 cj�3�� 	 ci�4� cj�3� 	 ci�3� �cj�2� 
 cj�4���� Τi��t� 	
b2 Π �
2 cj�0� 	 cj�2�� h���t�

2 Uì2 	 1

240 Uì2 b
2 Π �
30 ci�1� cj�1� 	 30 ci�3� cj�1� 


120 ci�0� �2 cj�0� 
 cj�2�� 	 20 ci�4� cj�2� 	 30 ci�1� cj�3� 

45 ci�3� cj�3� 
 32 ci�4� cj�4� 	 20 ci�2� �6 cj�0� 
 4 cj�2� 	 cj�4��� Τi���t�
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�� Lift ��
Lnc � �int�b � Mpnc �� Expand���. int�a� 	 b�� ̄ int�a� 	 int�b���. int�i�� ̄ Integrate�i, �x, 
1, 1�, GenerateConditions µ False��;
Lc � �int�b � Mpc �� Expand���. int�a� 	 b�� ̄ int�a� 	 int�b���. int�i�� ̄ Integrate�i, �x, 
1, 1�, GenerateConditions µ False��;
L � Lnc 	 Lc;
Framed�Row��"Lnc' � ", Lnc��, Background µ Yellow�
Framed�Row��"Lc' � ", Lc��, Background µ Yellow�
Lnc' � 
b2 Π ci�1� Uì Ρf Τi��t� 
 b3 Π Ρf h���t� 
 b3 Π ci�0� Ρf Τi���t� 	 1

2
b3 Π ci�2� Ρf Τi���t�

Lc' � 
2 b Ck Π ci�1� Uì2 Ρf Τi�t� 
 4 b Ck Π ci�2� Uì2 Ρf Τi�t� 

6 b Ck Π ci�3� Uì2 Ρf Τi�t� 
 8 b Ck Π ci�4� Uì2 Ρf Τi�t� 

2 b2 Ck Π Uì Ρf h��t� 
 2 b2 Ck Π ci�0� Uì Ρf Τi��t� 
 b2 Ck Π ci�1� Uì Ρf Τi��t�

Framed�Row��"L' � ", Collect�L, �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify���,
Background µ Yellow�
L' � 
2 b Ck Π �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� Uì2 Ρf Τi�t� 


2 b2 Ck Π Uì Ρf h��t� 
 b2 Π �ci�1� 	 Ck �2 ci�0� 	 ci�1��� Uì Ρf Τi��t� 

b3 Π Ρf h���t� 	 1

2
b3 Π �
2 ci�0� 	 ci�2�� Ρf Τi���t�

�� Thrust ��
dvdx � D�v, x�;
Tp � �int�b � Mp � dvdx �� Expand���. int�a� 	 b�� ̄ int�a� 	 int�b���. int�i�� ̄ Integrate�i, �x, 
1, 1�, GenerateConditions µ False��;
S � 2

2
K �2 Ck 
 1� 	 LimitÙxΦnc 1

b
1 	 x , x µ 
1;

TLES � Π Ρf b S2;
Ttotal � TLES 	 Tp;
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Framed�Row��"TLES' � ", Collect�TLES, �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify���,
Background µ Yellow�

FramedRow"Tp' � ", Collect�Tp, �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify�,
Background µ Yellow
TLES' � 2 b Π �
2 �ci�2� 	 2 ci�4�� 	 Ck �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4���2 Uì2 Ρf Τi�t�2 	

2 b3 Ck2 Π Ρf h��t�2 	 2 b3 Ck Π �
ci�1� 	 Ck �2 ci�0� 	 ci�1��� Ρf h��t� Τi��t� 	
1

2
b3 Π �ci�1� 
 Ck �2 ci�0� 	 ci�1���2 Ρf Τi��t�2 	

Τi�t� 4 b2 Ck Π �
2 �ci�2� 	 2 ci�4�� 	 Ck �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4��� Uì Ρf h��t� 	
2 b2 Π �
ci�1� 	 Ck �2 ci�0� 	 ci�1����
2 �ci�2� 	 2 ci�4�� 	 Ck �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4��� Uì Ρf Τi��t�

Tp' � 
2 b Π 4 �ci�2� 	 2 ci�4��2 	
Ck ci�1�2 
 4 ci�2�2 	 6 ci�1� ci�3� 	 9 ci�3�2 
 16 ci�2� ci�4� 
 16 ci�4�2 Uì2 Ρf Τi�t�2 	Τi�t� 
2 b2 Ck Π �ci�1� 
 2 ci�2� 	 3 ci�3� 
 4 ci�4�� Uì Ρf h��t� 
 b2 Πci�1�2 	 4 ci�2�2 	 6 ci�3�2 	 Ck �2 ci�0� 	 ci�1�� �ci�1� 
 2 ci�2� 	 3 ci�3� 
 4 ci�4�� 	

8 ci�4�2 	 ci�1� �2 ci�2� 
 3 ci�3� 	 4 ci�4�� Uì Ρf Τi��t� 

b3 Π ci�1� Ρf h���t� 
 b3 Π ci�0� ci�1� Ρf Τi���t�

Framed�Row��"T' � ", Collect�Ttotal, �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify���,
Background µ Yellow�
T' � 2 b �
1 	 Ck� Ck Π �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4��2 Uì2 Ρf Τi�t�2 	

2 b3 Ck2 Π Ρf h��t�2 	 2 b3 Ck Π �
ci�1� 	 Ck �2 ci�0� 	 ci�1��� Ρf h��t� Τi��t� 	
1

2
b3 Π �ci�1� 
 Ck �2 ci�0� 	 ci�1���2 Ρf Τi��t�2 	

Τi�t� 2 b2 Ck �
1 	 2 Ck� Π �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� Uì Ρf h��t� 	
b2 Π 
ci�1�2 	 ci�1� �2 ci�2� 	 3 ci�3� 	 4 ci�4�� 	

2 Ck2 �2 ci�0� 	 ci�1�� �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� 
 Ck �2 ci�0� 	 3 ci�1���ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� 
 2 2 ci�2�2 	 3 ci�3�2 	 4 ci�4�2
Uì Ρf Τi��t� 
 b3 Π ci�1� Ρf h���t� 
 b3 Π ci�0� ci�1� Ρf Τi���t�

�� Power ��
dvdt � D�v, t�;
P � intb2 Mp � dvdt �� Expand��. int�a� 	 b�� ̄ int�a� 	 int�b���. int�i�� ̄ Integrate�i, �x, 
1, 1�, GenerateConditions µ False�;
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Framed�Row��"P' � ", Collect�P, �Τi�t�, Τi��t�, Τi���t�, h��t�, h���t��, Simplify���,
Background µ Yellow�
P' �

2 b3 Ck Π Uì Ρf h��t�2 
 1

2
b3 Π �2 ci�0� 	 ci�1�� �2 Ck ci�0� 	 ci�1� 
 Ck ci�1�� Uì Ρf Τi��t�2 	

Τi�t� 
2 b2 Ck Π �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� Uì2 Ρf h��t� 	
b2 Π 2 ci�2�2 	 3 ci�3�2 	 4 ci�4�2 
 ci�1� �2 ci�2� 	 3 ci�3� 	 4 ci�4�� 


Ck �2 ci�0� 
 ci�1�� �ci�1� 	 2 ci�2� 	 3 ci�3� 	 4 ci�4�� Uì2 Ρf Τi��t� 

b4 Π Ρf h��t� h���t� 	 1

2
b4 Π �
2 ci�0� 	 ci�2�� Ρf h��t� Τi���t� 	

Τi��t� 
b3 Π �4 Ck ci�0� 	 ci�1�� Uì Ρf h��t� 	 1

2
b4 Π �
2 ci�0� 	 ci�2�� Ρf h���t� 


1

240
b4 Π 240 ci�0�2 	 30 ci�1�2 
 240 ci�0� ci�2� 	 80 ci�2�2 

60 ci�1� ci�3� 	 45 ci�3�2 
 40 ci�2� ci�4� 	 32 ci�4�2 Ρf Τi���t�
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