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Introduction 
The research is on the geometry of three dimensional hypersurfaces corresponding to  
perturbed Kerr geometries. These geometries approximate the intermediate states of the 
deformed black hole created by the collision of two astrophysical black holes, approaching a 
quiescent Kerr state. Thus, it attempts to show the difference in gravitational waves when two 
black holes collide and form one calm black hole. The gravitational waves that the final black 
hole emits, while in the process of calming down, are still detectable. Also, it can be 
determined from these waves whether or not the black hole was created from the collision of 
two black holes. 

Background 
Knowledge of black holes has come a long way over the years, from the first thought of black 
holes to black holes being accepted in the scientific community to the hopeful discovery of 
black holes in the near future. Since the idea of a black hole was generally accepted, many 
physicists have done mathematical computations to describe black holes and come up with 
various properties for black holes. 

History of Black Holes 
For many years black holes were simply constructs discussed by theoreticians [I]. It was not 
until the 1960s that physicist began to take black holes seriously [2]. Since then, the black hole 
has "become the object of intense astronomical study"[l]. 

Dark Stars 
In the late eighteenth century, a natural philosopher, or physicist, by the name of John Michell 
"dared to combine the corpuscular description of light with Newton's gravitation laws and 
thereby predict what very compact stars should look like"[2]. These predictions led Michell to 
find the escape velocity, the minimum initial speed for escape, of a particle ejected from the 
star's surface. Upon further investigation into the escape velocity, he came up with the critical 
circumference for a star. The critical circumference is where the escape velocity is equal to the 
speed of light. So, for any star with a circumference smaller than the critical circumference for 
the mass of the star, light is prevented from escaping the gravitational pull of the black hole. 
Michell called these stars dark stars [2]. Now they are referred to as Newtonian black holes. 
Trajectories of light particles for different types of stars can be seen in Figure 1. As it is 
depicted in the figure, stars emit the most light, and black holes emit no light since all of the 
light particles from a black hole are pulled back in by the strong gravitational pull of the black 
hole. 



Figure 1: Particle trajectories of a star compared to a black hole 

Source: MNSU. fi"- '/odin.~hvsastro.rnnsu.edu/~eskrid~astrlOl/kauf24 7.JPG. 11 April 2009 
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Schwarzschild Singularity 
Michell's dark stars were based on the assumptions that space and time are absolute and the 
speed of light is relative [2]. However, by the early twentieth century there were other theories 
about black holes based on Einstein's general relativity rather than Newtonian physics. In 1916, 
Karl Schwarzschild was the first to give a theoretical description of a black hole using general 
relativity [I]. He proposed that near a black hole, the flow of time is dilated. Based on this, "if 
emitted from the critical circumference, the light must get shifted in wavelength an infinite 
amount, while traveling upward an infinitesimal distance" [2]. To make his calculations simpler, 
Schwarzschild only worked with stars that were spherical with no spin [2]. He also proposed 
that the radius of the star did not affect the curvature of space. Yet, i f  the star were smaller 
than a certain size then the star's gravity would be felt, but the star would not be seen. 
Schwarzschild referred to the boundary between visibility and invisibility as a horizon (now 
commonly referred to  as the event horizon). Schwarzschild's horizon is the same as MichellJs 
critical circumference; they both refer to the minimum size of a star where anything, including 
light particles, can escape. Now any spherical body smaller than the radius that corresponds to 
the horizon is called a Schwarzschild black hole or Schwarzschild singularity. Anything within 
the horizon will be drawn to a central point called a singularity where gravity is so strong that 
anything "would be crushed out of existence" [I]. The curvature of space and time surrounding 
a Schwarzschild black hole can be seen in Figure 2. The figure also shows where the singularity 
and horizon are on the curved space-time. 
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Event Horlzon 

Source: htt~://www.odec.ca/~roiects/2007/ioch7c2/Event Horizon.html. 11 April 2009 
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Kerr Black Holes 
As more time passed, many other physicists and mathematicians studied black holes. Then in 
1963, Roy Kerr discovered a mathematical description for black holes that represents the 
gravitational field around a rotating collapsed object. This was more general and applicable 
than the solution Schwarzschild had given nearly 50 years earlier. This new solution is called 
the Kerr solution [I]. However, when Kerr first came up with this solution, it seemed to 
describe the spacetime curvature outside a spinning star. It was later discovered by Dennis 
Sciama that the solution did not describe all spinning stars. After this discovery, Brandon 
Carter, one of Sciama's students at Cambridge University, showed mathematically that Kerfs 
solution actually described any spinning black hole [2].  The Kerr solution led to the Kerr black 
hole, or a spinning black hole. Like the Schwarzschild black hole, the Kerr black hole has a 
singularity at its center. However, the Kerr black hole differs from Michell's dark star and 
Schwarzschild's black hole because it has two horizons. The outer horizon is the event horizon, 
and the inner horizon is the Cauchy horizon [3]. Also, since the Kerr black hole is spinning, it 
has an "equatorial bulge" [I]. Also, due to  the spinning of the black hole, there is a region 
known as the ergosphere, bounded by the static limit, in which space spins so fast that light 
also spins around the black hole [I]. Figure 3 shows a Kerr black hole with the static limit, the 
ergosphere, the two horizons, the axis of rotation and the singularity. 

rlgure a: nerr ulacn note 

Source: Astronomy Cafe. htt~://www.astronomvcafe.nethadir/a1656.htrnl. 11 April 2009 

LIGO 
The predictions from Michell and the calculations from Schwarzschild and Kerr have enabled 
many other physicists and astronomers to study black holes. Without Michell's predictions the 
scientific community may not have discovered black holes. Also, without the calculations of 
Schwarzschild and Kerr, black holes would still be strictly theoretical and would not be taken 
seriously by physicists. Due to their predictions and calculations, black holes have been studied 
by many people and will continue to be studied in the future. Currently, physicists are 



attempting to detect black holes using technologies that previously were not available. In 2002, 
the Laser Interferometer Gravitational-Wave Observatory (LIGO) made black hole detection a 
reality. LlGO has two observatories one in Louisiana and another in Washington state. The 
observatories consist of an L-shaped vacuum system that measures four kilometers on each 
side. Inside these vacuums, there are up to  five interferometers with the primary 
interferometers located in the corners of the L-shaped vacuums. LlGO is extremely precise; it is 
able to detect gravitational waves that started tens of millions of light years away from Earth. 
Gravitational waves at this distance are estimated to distort the 4 kilometer mirror spacing by 
about 10-l8 m. This distortion is about a thousandth the length of a proton. These distortions 
from gravitational waves will help to detect black holes [4]. 

Properties of Black Holes 
The most basic concept surrounding black holes is that nothing can escape the gravitational pull 
of a black hole. Even light is unable to escape. As more and more physicists studied black 
holes, more properties were discovered. One such property is that black holes have the ability 
to spin, and as they spin the light near the horizon begins to spin in the curved spacetime 
surrounding the black hole. The area immediately outside the horizon has an abundant amount 
of energy. Due to this energy and the intense gravitational pull of the hole, black holes are 
always smooth. This means that they are always spheres or ellipsoids. If they are not smooth, 
then the imperfection is radiated away as gravitational radiation. Another property is that 
when stars, planets, or other smaller black holes are pulled into a black hole, the horizon of the 
black hole begins to pulsate. These pulsations create "ripples in the curvature of spacetime 
that propagate out through the Universe" [2]. 

Due to  general relativity and the research done by Schwarzschild and Kerr, it was discovered 
that all the physical properties of black holes could be predicted using only three variables. The 
variables are the mass of the black hole, the rate of spin of the black hole, and the electric 
charge of the black hole. The physical properties that can be calculated include "the shape of 
the hole's horizon, the strength of its gravitational pull, the details of the swirl of spacetime 
around it, and its frequencies of pulsatation" [2]. 

One of the most intriguing properties of black holes over the last few decades has been 
gravitational radiation, or energy attached to gravitational waves. Gravitational waves are 
created when two objects in space are orbiting one another or crash into each other. In 1974, 
Stephen Hawking realized that black holes actually radiate. "Hawking's discovery revealed 
deep conceptual links between gravity, quantum theory, and thermodynamics"[l]. This 
discovery is now known as Hawking radiation. The basic concept of Hawking radiation is that 
the particles on the edge of the event horizon are in pairs where one is pulled into the black 
hole and the other is radiated out. When this happens, the total energy of the action has to be 
preserved. To do this, the particle that is pulled into the black holes has negative energy. This 
negative energy causes the black hole to lose mass. The loss of mass can lead to black hole 
evaporation depending on the original size of the black hole. Larger black holes take 
significantly longer to radiate the particle away which causes them to  shrink much slower than 



the smaller black holes. Also, the larger black holes are much more likely t o  pull in other forms 
of energy from light near the black hole. 

It is impossible to see a black hole using a telescope or any other device. This fact has caused 
many artists to come up with their interpretations of black holes. However, despite the fact 
that all the pictures of black holes are simply artist interpretations, some are better than 
others. Figure 4 shows a simulated view of a 10-solar-mass black hole 600 miles (900 km) away 
from the observer -- and against the plane of the Milky Way Galaxy. 

Source: Wikipedia. htto://en.wikioedia.ordwiki/File:~lack Hole Milkwav.iPa#filehistom. 11 April 2009. 

Methodology 
The study of black holes is part theory and part math. Due to the complexity of the math used 
to calculate the properties of black holes from the mass, rate of spin, and electric charge, the 
math is typically computed by computers. 

Computer Programs 
Much of the mathematical computations needed during the research and study of black holes is 
complex, tedious, and time consuming. This leads to  the use of mathematical computer 
programs to aid in the calculations. In addition to  the computer helping to  save time and 
energy on behalf of the person doing the calculations, the computer also guarantees that no 
computational errors are made. Using a computer program, the only errors are input errors. 
Maple is one such computer program used in black hole calculations. In addition to Maple, a 
useful computer program is GRTensor. GRTensor was designed to do calculations concerning 
general relativity. It is a computer program that works with Maple and expands the functions 
of Maple to include differential geometry in order to calculate tensor components on curved 



spacetime. It does this by adding to the library of standard definitions contained in Maple. By 
using Maple in combination with GRTensor, complex black hole calculations can be done much 
quicker. Calculations that would take an entire day to do by hand can be done in just minutes 
using these tools [5]. 

Black Hole Mathematics 
The subject of black holes is explored mostly through mathematics. There are certain 
mathematical subjects which show up often in the study of black holes that are not necessarily 
common to  use in everyday mathematics. These include tensors, metrics, and Taylor 
expansions. 

Taylor Series Expansions 
A useful tool in mathematics is a Taylor series expansion. The Taylor expansion is more 
common in general mathematics than tensors and metrics. The Taylor series gets its name 
from Brook Taylor, an English mathematician from the late seventeenth and early eighteenth 
centuries. He published his work on series in his book Methodus incrementorum directa et 
inversa in 1715 [6]. The basic idea for a Taylor series is that any function can be written as a 
power series with the coefficients equal to the nh derivative of the original function divided by 
n factorial. A power series expansion at a value, a, is a series from zero to infinity of a 
coefficient, c,, times the independent variable minus the value, a, raised to the power n. This 
can be written mathematically as 

where the original function is written as f (x) [6]. For a Taylor series.expansion, the value c, 
can be written mathematically as 

where f(")(x) is  the nth derivative of the function f ( x )  [6]. Combining the Taylor series 
coefficient with the formula for the power series gives 

The application of a Taylor series expansion for black hole mathematics does not require the 
entire Taylor series to be used. Instead, only a few terms need to be determined. The number 
of terms needed is determined by examining the original function and looking for the highest 
powered term that you are expanding. The power on this term is usually the highest order the 
Taylor expansion needs be taken to. Taking this into account, it can be useful to write the 



Taylor series expansion out by terms instead of writing it as a summation. Written out by 
terms, the expansion looks like 

f ' ( X I  f "(xl f lY'(x1 f(x) = f (a) +- (x -  a) +-(x- (x - a)3 + a m =  

I! 2 !  3! 

By expanding a function into a Taylor series, the function can be easier to work with for future 
computations [6]. 

Tensors 
The term tensor has different meanings depending on the context in which the tensor is found. 
Tensors are generally used in differential geometry and multilinear algebra. In general, a tensor 
is a convenient way of collecting sets of numbers together. A rank one tensor is common in 
many mathematical subject; it is known as a vector. An example of a rank one tensor follows. 

Rank two tensors are matrices. An example of a rank two tensor follows. 

[" I 
g h i  

Higher order tensors exist, but are more difficult to work with mathematically. A tensor can 
have two different types of indices: covariant and contravariant. Covariant indices are 
represented as subscripts on the variable used for the tensor, and contravariant indices are 
represented as superscripts. An example of this notation follows where the tensor is 
represented by the letter T, the contravariant indices are represented by the letter i, and the 
covariant indices are represented by the letter j [7]. 

Two tensors can be added together if both the covariant and contravariant indices are the same 
for the two tensors. The resulting tensor will also have the same indices. The following 
equation shows how this would look [7]. 

If two tensors are multiplied together, then the resulting tensor will have the covariant and 
contravariant indices of both of the original tensors. The following equation shows how this 
would look [7]. 



A special type of tensor commonly used in general relativity is a metric tensor, also known as a 
metric. Metrics are rank two tensors that are symmetrical [7]. Since rank two tensors are 
matrices, a metric is a symmetric matrix, a matrix that is equal to  itself transposed [7]. These 
are used in general relativity to show how the spatial and time components of calculations are 
distorted around black holes. 

Research Procedure 
Before beginning any of the actual research and calculations, time was spent studying the 
history of black holes and the mathematical basis of the research. This included reading various 
books, papers, and notes on the subject of black holes. To begin the actual research, a 
mathematical program had to be chosen to  help with the calculations. The program chosen 
was GRTensor in conjunction with Maple. This allowed the computations to be done in 
minutes that otherwise could possibly take a day or more if done by hand. The current version 
of GRTensor was written to operate with Maple 6. This created a problem before the research 
could begin because the latest version of Maple is Maple 12. Because of this, the directions for 
how to  properly install GRTensor and have it run through Maple did not work properly. It took 
a week to finally figure out how to get GRTensor installed with Maple 12 and functioning 
properly. After getting GRTensor running, the first step was to  run some old calculations to  
verify that the program was in fact working correctly. 

The research began with a specific type of Kerr black hole where E is equal to zero, which is 
exact Kerr. If E is equal to zero, then the amplitude of the gravitational waves is zero. Also, the 
research does not deal with the time elements of the Kerr black hole. So, the resulting metric is 
called the quasi-Kerr metric. The first step was to derive a way to calculate the electric and 
magnetic components of the black hole relating to the mass, the radius, and other variables 
with known values. These components came from the following metrics where E is the electric 
metric and B is the magnetic metric. 

Some of the electric and magnetic components calculated were zero, but the components that 
were not zero were all complicated. In order to make the future calculations simpler, the 
electric and magnetic components were simplified down as far as possible using Maple and 
then simplified further by hand. In these simplifications, p = r2 + a2 cos2 8, 
J = (r2 + a2)Cr2 -t- a2 cos2 19) + 2a2mr sin2 8, and A = r2 - 2rnr + a2. The simplified 
components follow. 



-3u2m sin 8 cos 8 (a2 cos 8 - 3r2)(u2 + r2) 
Ere = Eer = 

p2< 

am cos 9 e(3rZ - aZ cos2 9) [ a Z ~  sinz 8 + 2(a2 + rZ)') 

-am cos 8 (a2 cos2 €3 - 3r5)(-2a2~sin2 8 - (a2 + r2)') 
Bee = 

p 2 G  

am< cos 6 sin2 8 (a2 cos 6 - 3r2) 
B,, = p4J--1 

After the components were fully simplified, the equations were Taylor expanded about a to 
make them easier to work with for future computations. Although some of the Taylor 
expansions do not look any simpler than the simplifications above, they are much easier to 
work with. The simplifications above all include p, A, and <, and all three of these contain the 
variable a. To do the Taylor expansions, these three equations were substituted back into the 
simplified equations above. The Taylor expanded components follow. 



6 i m  cos 6 i m  cos 8 (cos2 O(23r - 18m) (r - 2m)  - (3;r2 - 3 6 m r  + 36m2) )  
4, = a t  a3 + 0 (a5) r3 ( 2 m  - r )  r2 ( 2 m  - r ) 2  

i m  cost3 ( - 1 3 ~ c o s ~ B  + 127- - 12msin2 8 )  
BBo = 3imr' cos 8 a + a3 + 0(a5)  

r 

9im cos 8 sin 0 (sin 0 cos2 8 (39, + 2,) - sin 0 (T + 2m) - 2r3 cos2 0) 
B++ = -91m cos 6 sin 8 a + a3 + 0(a5)  

r 3  

While the simplifications and Taylor expansions were being done on the electric and magnetic 
components of the Kerr black hole, the next step in the research was started. This step was to  
repeat the same process done for the quasi-Kerr metric, but using a Schwarzschild metric that 
had the same components as the reduced Kerr metric that was used. In order to  accomplish 
this, a new metric was written to accommodate the needs of the research. The new metric was 
simply the Schwarzschild metric without the time components. After writing the new metric, 
the electric and magnetic components were calculated. The magnetic components all reduced 
to zero, and unlike the components for the Kerr metric, the electric components were fairly 
simple. The electric metric for Schwarzschild follows. 

After finding the electric and magnetic components for the Schwarzschild metric, the next step 
in the research was to calculate f, the gravitational radiation scalar, for the Schwarzschild 
metric. The scalar follows. 

This as far as the research has progressed thus far. Currently, the value for #?, a value used to 
determine the electric and magnetic components, is being checked. This value will also affect 
the gravitational radiation scalar for the Schwarzschild metric. If P ends up being incorrect as it 
is now, then the value of the gravitational radiation scalar will change. After verifying the value 
for the gravitational radiation scalar for the Schwarzchild metric, the next step will be to 
calculate the gravitational radiation scalar for the quasi-Kerr metric. Once this is found, the two 
scalars will be compared. They should be similar, but there will be definite differences between 
the two. These differences are the gravitational waves resulting from the black hole collision. 



Applications 
The research can be applied in the area of black hole detection. Currently LlGO is capable of 
detecting black holes, and soon there will be another experiment, LISA, capable of detecting 
black holes. 

The Laser lnterferometer Gravitational-Wave Observatory (LIGO) is one way physicists are 
attempting to discover black holes. LlGO uses interferometers to detect gravitational waves 
from as far as tens of millions of light years away. These gravitational waves would be able to 
tell physicists if there has been a distant collision of two stellar-mass black holes. So far LlGO 
has not detected a black hole, but it is hoped that one will be detected within the next few 
years [4]. 

The Laser lnterferometer Space Antenna (LISA) is another experiment that will be detecting 
gravitational waves. This will be a joint venture between the European Space Agency and 
NASA. LlSA will be in space for approximately two years with an expected launch date 
somewhere between 2018 and 2020. It will go into an orbit around the sun similar to  that of 
the earth, but trailing behind by approximately 20 degrees. The antenna will have three pieces 
spaced several kilometers apart and aligned so that the antenna forms an equilateral triangle. 
The hope is that when a gravitational wave disturbs the space-time field between two of the 
pieces the small difference in length of one side of the triangle should be measurable. The 
antenna is expected to be able to measure a difference of 20 picometers (10-l2 m) over a 
distance of 5 million kilometers. Thus, LlSA will be more accurate than LIGO. LlSA will not have 
to deal with the waves created by the earth and by objects on the earth. Also, because LlSA will 
be in space as opposed to  on the earth, it will be able to  detect supermassive black hole 
collisions [8]. 

Conclusion 
There is still a lot to be learned about black holes. The study of black holes is still relatively new 
compared to other subjects in science. Black holes were only first theorized about in the 
eighteenth century when Michell attempted to predict what compact stars would look like 
using Newtonian physics [2]. Then it was not until the early twentieth century that further 
significant advances were made concerning black holes. All of the newer theories were based 
on Einstien's general relativity instead of Newtonian physics [I]. Using general relativity as a 
basis for the computational research on black holes, Schwarzschild was able to theoretically 
describe black holes, and Kerr was able to  come up with a generalized mathematical 
description of black holes [2]. Due to the work of Michell, Schwarzschild, and Kerr, the scientific 
community accepted the idea of black holes, and now physicists are attempting to  discover 
black holes using experiments such as LlGO and LlSA [4, 81. These experiments work by 
detecting gravitational waves emitted by the collision of two black holes. The research on the 
geometry of three dimensional hypersurfaces approximates the intermediate states of the 
deformed black hole created by the collision of two astrophysical black holes. This is similar to  
what LlGO is currently doing and what LlSA will be doing. 
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