"My Lab Participates in the Natural Products Research Group at UAH Searching for Potential New Drugs from Plants"

Debra M. Moriarity

University of Alabama in Huntsville

Follow this and additional works at: https://louis.uah.edu/rceu-proposals

Recommended Citation
https://louis.uah.edu/rceu-proposals/247

This Proposal is brought to you for free and open access by the Faculty Scholarship at LOUIS. It has been accepted for inclusion in RCEU Project Proposals by an authorized administrator of LOUIS.
Faculty Member:
Debra M. Moriarity, Dept. of Biological Sciences
College of Science
moriard@uah.edu
256-824-6045
SST 369A

Project Summary
My lab participates in the Natural Products Research Group at UAH searching for potential new
drugs from plants. For the past 25 years we have been screening plant extracts and fractions
from purification procedures for anti-cancer activity. Many undergraduate students have
participated in this research throughout that time. Human tumor cell lines are screened using a
cytotoxicity assay in the presence and absence of the test extracts. Killing of >90% is
considered positive. Activity-guided fractionation is then used to isolate and identify the active
compound(s). RCEU students would learn to culture mammalian tumor cell lines and how to
perform the cytotoxicity screening on various plant extracts.

Student prerequisites
Students should have taken at least BYS 119 & 120, and CH 121 & 123. BYS 300 and 321 are
beneficial but not required.

Student Duties
The student will first learn to culture the human cell lines, specifically breast cancer cell lines.
This will involve learning how to make the growth media, use sterile technique, use an inverted
microscope to view the cells and how to work in a biosafety hood. The student will work closely
with Dr. Moriarity to learn all these techniques and will be able to change culture media and
passage the cells on their own by the end of the project. The student will also learn how to
design a cytotoxicity assay, perform the assay and obtain data using a 96 well plate reader.
They will then learn how to calculate the % of cells killed by each test extract and interpret the
results. They will be responsible for washing the glassware they use and preparing it to be
autoclaved. The ability to do mammalian cell culture is a very marketable skill. I often get
requests from local companies for students that specifically are able to do mammalian cell
culture. In addition, learning to make the solutions needed for cell growth and for the assays will
provide valuable experience for further lab classes and for employment. Using the cell culture
microscope and plate reader will also be experiences that most students would not get as
undergraduates. Many students who have worked in my lab on this project in the past have
gone on to graduate school, medical school or to employment with biotech companies.

Mentor Supervision and Interaction
The student will be taught the techniques for cell culture directly by Dr. Moriarity. She will work
with the student each day as they learn the procedures. The student will also be assigned
chapters to read in a cell culture techniques book and will go over what they have read each
week with Dr. Moriarity. The student will also read research articles concerning previous work
form the lab and by others. Either Dr. Moriarity or a graduate student will teach the student how
to properly wash glassware and prepare it to be autoclaved. The student will meet with Dr.
Moriarity every day, with some days taking longer than others depending on what is being done
in the lab that day. Most of those meetings will be in her lab, SST 367; however, to discuss some of the readings the Biology Conference room or her office will be used. The student will also attend lab meetings which are generally held bi-weekly. The student will produce a report of the results of their experiments at the end of the summer that will be evaluated by Dr. Moriarity. Typically it takes students one week of observing the culture techniques, and two weeks doing them with close supervision before they are able to maintain cultures on their own. Similarly, they will be shown how to set up the 96 well cytotoxicity assay once or twice and then can perform it on their own.