Overview
This study investigated the feasibility of the use of piezoelectric materials as aerodynamic pressure sensors. Piezoelectric materials generate a low-magnitude AC signal when mechanically strained under a force or pressure, making them natural pressure sensors [1]. This study focused on the use of Polyvinylidene Fluoride (PVdF) film, one piezoelectric material, for its flexible nature. In order to ascertain whether this material could be used for application as pressure sensors for aerodynamic pressure, a testing stand was developed and constructed for wind tunnel testing (Fig. 1).

Conceptual Framework
By measuring the pressure around the surface of an airfoil, it’s lift and drag can be approximated and the state of the flow around it can be known. The current method of measuring pressure are by tapping, or placing pressure taps in, the surface of the airfoil and using pressure transducers to convert pressure to an electrical voltage. This method, while conceptually simple, creates discontinuities on the airfoil’s surface that negatively affects aerodynamic. PVdF film sensors could be a potential pressure sensing alternative that does not have the negative effects of surface discontinuities.

Key Findings
The aerodynamic pressure acting on the sensor was applied and removed cyclically at 0.25 Hz by pulsating the airflows that had dynamic pressure values from 0 to 308.4 Pa. The result of the pulsated flow was a signal that was like the waveform in Fig. 2. By measuring the peak-to-peak voltage of the signal, a correlation curve can be obtained and is shown in Fig. 3. This relation shows a linear behavior, which implies that these sensors have the potential to be considered for aerospace applications.

Impact
PVdF films show promise in their capabilities in measuring pressure in the ranges of aerodynamic pressures. However, due to the signal’s decaying nature and the sensitivity of the sensor to electrical and vibrational noise, further work is needed to better implement these sensors.

References

Acknowledgements
The authors would like to thank Dr. Robert Nawrocki and Jinsheng Fan of Purdue University for the 3D printed PVdF films and their assistance in understanding piezoelectric sensors. The authors would also like to thank Eli Merlock for his invaluable assistance with the testing stand. Finally, the authors would like to thank RCEU staff, UAH Office of the Provost, UAH Office of the Vice President for Research and Economic Development, the Faculty Senate Finance and Resource Committee, and the Alabama Space Grant Consortium for the opportunity to conduct this research under RCEU.