1-1-2017

What Type of Pressure is Worse for Math Anxiety and Math Performance - Accuracy or Time Pressure

Jodi Price

University of Alabama in Huntsville

Follow this and additional works at: https://louis.uah.edu/rceu-proposals

Recommended Citation
Price, Jodi, "What Type of Pressure is Worse for Math Anxiety and Math Performance - Accuracy or Time Pressure" (2017). RCEU Project Proposals. 254.
https://louis.uah.edu/rceu-proposals/254

This Proposal is brought to you for free and open access by the Faculty Scholarship at LOUIS. It has been accepted for inclusion in RCEU Project Proposals by an authorized administrator of LOUIS.
Which type of pressure is worse for math anxiety and math performance – accuracy or time pressure?

Faculty Mentor: Dr. Jodi Price, Associate Professor of Psychology
Office: MOR 329 **Phone:** 824-3321
Mailing Address: Department of Psychology, MOR 335
I have previously participated in the RCEU program.

Project summary: Students taking tests are often faced with pressure to answer questions correctly and to do so under time constraints. Standardized tests (e.g., SAT, GRE) often test basic math, but under speed conditions, with test takers knowing that each answer will critically affect their score (and future educational career)! Thus, the goal of this project will be to examine how instructions that stress the need to answer questions quickly (i.e., speed conditions), instructions that stress the need to answer questions correctly (i.e., accuracy conditions), or instructions that stress both (i.e., speed + accuracy) affect participants’ math anxiety ratings and math performance. Math anxiety is detrimental to math performance because it ties up cognitive processes that individuals would otherwise be able to allocate to the task at hand. Identifying which type(s) of pressure have the greatest impact on anxiety and performance will set the stage for interventions to address math anxiety, and in turn, improve math performance.

Student Prerequisites: Students should be either a Junior or Senior with at least a 3.00 GPA. Ideally students will have already taken PY 102 and PY 300. Students who have also taken PY 302 will be given priority.

Student Duties: The student will be asked to read background articles about mathematics, instructional design, and memory processes so as to become familiar with the literature and the format style used in all psychology publications. The student and I will meet to discuss these articles to ensure an understanding of the research methods other researchers have used. The student will be asked to contribute to discussions about design decisions so that the student may become familiar with the many steps that go into planning a new experiment. The student will also be asked to help select math materials to be used in this project. Finally, I will personally train the student how to collect data with younger adult participants before the student runs experimental sessions on their own. I will provide the student with additional training in statistics. The goal will be to cement topics addressed in the statistics class by allowing the student to run analyses on data with which they are familiar, having helped plan the experiment and collect the data. In addition, I would train the student in more advanced statistical techniques (e.g., repeated measures analyses of variance) that are necessary for analyzing the types of data produced in my research, but to which undergraduates are rarely exposed. Thus, students will get additional experience using SPSS. Reading published articles will help familiarize the student with how psychological research is written. Finally, the student will gain experience presenting this work in public forums in order to fulfill the obligation to The University of Alabama in Huntsville. All of these things would strengthen the student’s skill set while increasing the likelihood of being admitted to a graduate program in Psychology.
Mentor Supervision and Interaction: My goals in working with the selected student include exposing the student to all aspects of research: designing an experiment, data collection, analyzing data, interpretation of results, and how psychological research is written up for publication. I am committed to working with and meeting with the student two to three times each week throughout the summer to facilitate these goals. I recognize that the proposed amount of interaction and instruction I will provide represents a large time commitment on my part. I feel strongly that one of my major roles as a professor is to facilitate students’ pursuit of their academic and career goals, and believe that granting a student this RCEU opportunity is an important step toward ensuring the student can pursue their future educational and career goals.

Benefits to Student: Graduate programs take into account GPA, GRE scores, letters of recommendation, and how much research experience the applicant has when evaluating students’ applications. With the number of applicants to graduate programs increasing, students who do not have extensive research training may be at a disadvantage when applying to graduate programs. Participation in the RCEU program across the summer months will provide the student time to get enough exposure to the literature and research to yield a conference presentation. In addition, because I will have extensive interactions with the selected student, this will enable me to speak to their research skills when writing letters of recommendation for the student. These benefits combine with the enhanced research and statistics skill set the student will achieve to help cement the student’s chances of gaining admission to competitive graduate programs.

Proposed Time Line

<table>
<thead>
<tr>
<th>Task/Skill</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
<th>Week 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading articles</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Data coding/analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Presenting results</td>
<td></td>
</tr>
</tbody>
</table>