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ABSTRACT
The School of Graduate Studies

The University of Alabama in Huntsville

Degree__Master of Science in Engineering Program___Mechanical Engineering

Name of Candidate Michael Sampson

Title  Aerodynamic and Heat Transfer Characteristics of a Transonic Turbine Blade Tip with

Pressure-Side Film Cooling

Currently, there is a deficit of experimental data for surface heat transfer characteristics and
thermal transport processes associated with tip gap flows, and a lack of understanding of
performance and behavior of film cooling as applied to blade tip surfaces. As a result, many
avenues of opportunity exist for development of creative tip configurations with innovative
external cooling arrangements. Described is the development of experimental facilities, including
a Supersonic/Transonic Wind Tunnel and a linear cascade for investigations of aerodynamics and
surface heat transfer characteristics of a transonic turbine blade tip with a unique squealer geometry
and an innovative film cooling arrangement. Of interest is development of a two-dimensional
linear cascade with appropriate cascade airfoil flow periodicity. Included are boundary layer flow
bleed devices, downstream tailboards, and augmented cascade inlet turbulence intensity. The
present linear cascade approach allows experimental configuration parameters to be readily varied.
Tip gap magnitudes are scaled so that ratios of tip gap to inlet boundary layer thickness, ratios of
tip gap to blade axial chord length, and ratios of tip gap magnitudes to blade true chord length
match engine hardware configurations. Ratios of inlet boundary layer thickness to tip gap range
from 3 to 5. An innovative, compound angle film cooling configuration is utilized for one blade
tip configuration. With these experimental components, results are presented for engine
representative transonic Mach numbers, Reynolds numbers, and film cooling parameters,
including density ratios, which are achieved using foreign gas injection with carbon dioxide.
Transient, infrared thermography approaches are employed to measure spatially-resolved

distributions of surface heat transfer coefficients, adiabatic surface temperature, and adiabatic film



cooling effectiveness. Presented are experimental measurements and spatially resolved surface
distributions of dimensional heat transfer coefficient, heat transfer coefficient ratio, and different
types of adiabatic film cooling effectiveness. These results show differing behaviour depending
on the film cooling flow condition, including film cooling blowing ratios which are varied from
0.49 to 3.85. These data also show significant variations spatially along the surface including along
the suction side squealer rim, along the pressure side squealer rim, and within the squealer recess
region. Film cooling effectiveness data at these locations increase to values as high as 0.08 for
blowing ratios of 2.01, 3.18, and 3.85. With a blowing ratio of 3.18, the heat transfer coefficient

data varied as much as 30 percent relative to the baseline data with no film cooling.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Flow within the gap between the turbine blade and the casing of a transonic gas turbine
engine is extremely complex because of significant local and overall flow unsteadiness, increased
local flow mixing, three-dimensionality, local flow skewing, excessive magnitudes of local flow
shear, local flow separation regions, local flow reversals, as well as oblique and normal shock
waves, including families of oblique shock waves. Such characteristics make understanding and
investigating associated thermal processes, thermal transport, and surface heat transfer variations
a challenge. In addition, for many configurations, design challenges result because of compromises
which must be made to simultaneously reduce both aerodynamic losses and surface thermal
loading. This is because attempts to satisfy these two goals may give opposite and contradictory
overall turbine component performance characteristics. For example, component and flow
condition alterations, which decrease aerodynamic losses downstream of a tip gap, may increase
surface thermal loading, and component and flow condition alterations, which decrease surface
thermal loading, may increase aerodynamic losses. This includes the use of film cooling, which
must employed with innovative designs and conditions, in order to optimize the aerodynamic and
thermal performance of a particular turbine blade tip and the associated tip gap. The present
investigation is motivated by such considerations. Employed is one unique film cooling
arrangement, whose goal is to improve the thermal protection of surfaces as they are exposed to a
complex and challenging flow environment.

Tip clearances within turbines are required because thermal-mechanical constraints require
engine manufacturers to use unshrouded blades, and because these unshrouded blades require a tip
clearance to avoid striking the casing. Such constraints include the effects of increasing the
rotational speed of shrouded blades. With such tip clearances or tip gaps present, the resulting
over-tip leakage flow has high velocity and high temperature, leading to high local heat transfer
rates and large material surface temperature gradients on the tip, as well as aerodynamic losses. At
engine-scale conditions typical of a single-stage high-pressure aero-engine turbine, a large

proportion of the tip flow is transonic. This means that shock waves form within the tip gap,



creating large local pressure gradients, which significantly affect local boundary layer
development along the tip. According to Zhang et al. (2011), important variations of surface heat
transfer are presented from a family of oblique shock waves, which are subject to repeated
reflections. Results from those investigations show virtual visualizations of density gradient
distributions associated with oblique and normal shock waves along the leakage flow streamlines
direction. Associated surface heat flux distribution on the blade tip surface show the locations of
oblique shock waves within the tip gap. As such, there are two main mechanisms that affect the
local heat transfer coefficient on the tip. These are first shear stress, which is largely set by the
boundary-layer thickness, and the second is turbulent mixing, which is affected by local
streamwise pressure gradient. Underneath each oblique shock reflection, the boundary-layer
experiences a large adverse pressure gradient, which leads to an increase in turbulence generation.
In the reattachment region, after this separation region, heat transfer levels are high because the
separation promotes turbulence production. Downstream of the reattachment region, flow is
supersonic and accelerates rapidly thus causing a reduction in turbulence, which reduces the heat
transfer. Thus, there is a rapid increase in surface heat transfer as the flow above moves across the
shock wave. The result is a pattern of high and low tip surface heat transfer stripes, normal to the
flow direction, which are due to rapid acceleration and deceleration, which occur prior to and

across the shock wave reflections.

1.2 Literature Survey

Additional turbine blade tip investigations, which illustrate surface heat transfer and
aerodynamic variations within turbine blade tip gap flows, are numerous. Blade tip arrangements
which are employed in these studies utilize squealer tip and smooth blade tip configurations.
Squealer tip configurations are investigated by Zhang et al. (2011), Dunn and Haldeman (2000),
Green et al. (2005), Key and Arts (2006), Hofer and Arts (2009), Virdi et al. (2013), Wheeler and
Saleh (2013), Li et al. (2014), Wang et al. (2015), Zhou (2015), Jung et al. (2016), Kim et al.
(2016), Arisi et al. (2016), Ma et al. (2017), Zhu et al. (2017), and Kim et al. (2019). Smooth blade
tips are investigated by Thorpe et al. (2005), Green et al. (2005), Key and Arts (2006), O’Dowd et
al. (2010, 2011), Wheeler et al. (2011), Zhang et al. (2011), Shyam et al. (2011) Atkins et al.
(2012), Wheeler and Saleh (2013), Anto et al. 2013, Virdi et al. (2013), Wheeler and Sandberg
(2013), Li et al. (2014), Zhang et al. (2014), Zhang and He (2014), Wang et al. (2015), Zhou



(2015), Jung et al. (2016), Gao et al. (2017), and Kim et al. (2019). Most of these investigations
(which involved experimental measurements) employ annular or linear cascades with stationary
blades.

Discussed here are past studies which consider the aerodynamics for transonic turbine
blades with both flat and squealer tip arrangements. Zhang et al. (2011) utilize both smooth and
squealer-tipped blades with three different tip gaps in a transonic heat transfer experiment. From
their spatially resolved temperature profiles produced by infrared thermography, they show that
thermal signatures toward the leading and trailing edges are more pronounced as tip gap increases.
Dunn et al. (2000) use 9 heat flux gauges to determine the Nusselt number for a recessed squealer
tipped blade under transonic flow conditions in a full scale engine environment. They find that the
highest Nusselt number is on the suction side near the blades trailing edge. Green et al. (2005)
attempt to fill the gap of capabilities of current CFD software to account for complex geometry
(such as squealer rims) and validate it with experimental data. Their research involves flat and
squealer tipped blades at transonic Mach numbers. They find that shroud pressure and velocity
remains similar for both geometries except at the 60% span location. The CFD under-predicts the
accelerations at the 90% span location near the shock, but compares well for the remainder of the
surface. Hofer and Arts (2009) investigate the aerodynamics of a squealer tip in a transonic flow
regime. Contrary to established flat blade tip behavior, the squealer tip proves to reduce leakage
jet velocity and is not as sensitive to Reynolds number changes. Wheeler and Saleh (2013) present
experimental results which examine the effect of cooling injection on transonic tip flows for both
squealer and flat tipped blades. Their experiment proves that at cooling mass flows above 2% of
the main flow, a squealer-tipped blade experiences more aerodynamic loss than the flat-tip. Li et
al. (2014) present results from a numerical investigation of the effect of squealer cavity depth on
flow characteristics. They show that the cavity depth affects the subsonic leakage flow losses more
than the supersonic region. Simulated relative casing motion has much more impact on subsonic
flow than transonic flow. Jung et al. (2016) provide numerical analysis data which compares the
aerodynamics of transonic blades with flat, curved, and squealer-tipped geometry. Their
simulation shows that a squealer with a cutback applied to the trailing edge shows the least
aerodynamic losses.

Discussed here are past studies which consider heat transfer measurements for transonic

turbine blades with both flat and squealer tip arrangements. Virdi et al. (2013) investigate the



aerothermal performance of a flat and squealer tipped transonic turbine blade with different tip
gaps. They show that the front 50% of the blade is subsonic and the heat transfer coefficient
increases with tip gap, while the opposite trend applies to the aft 50% due to the flow being
supersonic. Shyam et al. (2011) analyze the unsteady heat transfer of a flat blade tip and the
endwall in a highly loaded transonic turbine stage. Their experiment shows that the flow chokes
at the aft 70% portion of the blade. They also identify hot spots on the pressure side leading edge
and on both sides of the trailing edge. In addition, the heat transfer seems more dependent on shear
ratio than pressure ratio. Wang et al. (2015) perform numerical investigation of the impact of
cooling injection on the transonic over-tip leakage flow and squealer aerothermal design
optimization. Their simulation ranks the performance of plane-tip and squealer-tipped blades with
added cooling. They find that a flat tip is shown to perform better than a squealer tip in terms of
thermal load without the added losses associated to tip leakage flow. Zhang et al. (2014) investigate
the effect of inlet turbulence on a transonic linear cascade with flat blade tips. The experiment
confirms Wheeler’s study of effect of inlet turbulence. They find that as the inlet turbulence
intensity increases, the tendency for the tip leakage vortex to reattach on the suction side surface
decreases. They also show that a lower turbulence intensity results in a higher heat transfer along
the suction side near the trailing edge. Anto et al. (2013) examine the effects of tip gap and exit
Mach number on turbine blade tip and near-tip heat transfer for a flat-tipped blade. They utilize
oil flow visualization, thin film gauges to measure heat flux, and infrared thermography. Exit Mach
numbers are 0.7, 0.85, and 1.05. The maximum heat transfer in call cases is on the suction side
caused by the tip leakage vortex at 94% span at s/C=0.66. They attribute the high heat transfer in
this area to leakage flow separation. Leakage flow vortices on the suction side dominate the heat
transfer.

Discussed here are past studies which consider heat transfer measurements with film
cooling for transonic turbine blades with both flat and squealer tip arrangements. Zhu et al. (2017)
discuss a CFD simulation which assesses the rotating effect on transonic squealer tip cooling
performance. Compared to the stationary casing, they find that the pressure side film cooling
injection with a moving casing reduces the heat transfer region on the cavity floor and substantially
increases the blade tip film cooling effectiveness. Investigations by O’Dowd et al. (2010) present
experimental results where heat transfer on a flat-tipped transonic turbine blade is measured with

three different tip gaps and utilize infrared thermography to produce a spatially resolved



temperature profile. Their results show that the thermal signatures along the leading and trailing
edges of airfoils increase with tip gap. Zhou (2015) and Ma et al (2017) present experimental
results for transonic, squealer tipped blades. They explain that in the presence of pressure-side film
cooling holes, stripes of high and low film cooling effectiveness show on a spatially-resolved plot
of the blade tip. Ma et al. (2017) also conclude that more film cooling holes are not always more
effective, as cooling injection in certain locations do not benefit the heat transfer distribution. Kim
et al. (2016) investigate the optimization of a high pressure, transonic turbine blade cavity with
conjugate heat transfer analysis. Their experiment uses depth, front blend radius, and aft blend
radius of the cavity as design variables. They perform experiments on 30 different configurations,
all having cooling holes down the span of the blade and dusting holes on the tip, and show that the
blade without a cavity is advantageous from a heat transfer perspective. However, the total pressure
loss coefficient increases over 5% for this configuration. O’Dowd et al. (2011) compare different
methods for analyzing infrared thermography data for heat transfer analysis experiments. They
conclude that the Impulse method has the lowest uncertainty and that transient data has the most

consistent results using heat flux reconstruction methods.

1.3 Present Investigation

Within the present test facility, investigated are spatially-resolved distributions of
surface adiabatic film cooling effectiveness and surface heat transfer coefficients for a transonic
turbine blade tip. The tip contains a squealer rim, and a single row of film cooling holes is located
on the pressure-side of the blade very near to the blade tip. Also measured are surface static
pressure distributions, and associated isentropic Mach numbers, around the blade surface at the 50
percent airfoil span location, around the blade surface at the 90 percent airfoil span location, the
blade tip, and the endwall. A two-dimensional linear cascade is employed with four flow passages
and five complete blades is employed, which includes radial and circumferential boundary layer
flow bleed devices, and an inlet grid to augment cascade inlet passage turbulence intensity. The
cascade is designed to provide geometric similarity with the engine application environment,
including inlet boundary layer thickness, blade configuration (including blade axial chord length,
and blade true chord length), cascade arrangement (including blade pitch, blade span, and inlet

flow angle), blade tip geometry, squealer depth, squealer wall thickness, and tip gap magnitudes.



1.4 Organization of the Thesis

The present thesis is composed of 4 chapters, 4 appendices, and a reference list. Chapter 2
presents the SuperSonic/TranSonic/WindTunnel (SS/TS/WT), test facility, measurement of
experimental parameters, film cooling supply, pressure measurement techniques, and heat transfer
measurement techniques. Portions of the material in Chapter 2 (as well as other parts of the thesis)
are taken verbatim from Collopy et al. (2020) and Sampson et al. (2019). Chapter 3 presents
experimental data for Mach number profiles and spatially-resolved distributions of surface
adiabatic film cooling effectiveness and surface heat transfer coefficient. Chapter 4 presents the
summary and conclusions of the thesis. Appendix A presents an uncertainty analysis. Appendix B

presents a data file directory. Appendix C presents the software directory.



CHAPTER 2
EXPERIMENTAL APPARATUS AND PROCEDURES

Presented in the present chapter are discussions of the SuperSonic/Transonic/WindTunnel
(SS/TS/WT), test facility, measurement of experimental parameters, pressure measurement

techniques, and heat transfer measurement techniques.

2.1 SuperSonic/TranSonic/WindTunnel (SS/TS/WT)

The wind tunnel is a blow-down facility. The working fluid is dried air. The facility is
comprised of a high-pressure piping system, a low-pressure piping system, two test section
assemblies, and exhaust piping. Compressors, air storage tanks, ball valves, knife gate valves,
spectacle blind valves, pressure relief valves, burst disks, analog pressure gauges, digital pressure
transducers, and an air diverter plenum control the air in the high and low-pressure piping systems.
The many components in this system allow it to produce a wide variety of conditions for different
testing environments.

The high-pressure piping system connects to the low-pressure piping system. A
spectacle blind valve is used to isolate the air in the high-pressure piping system from the air in
the low-pressure piping system. Figures 1 and 2 show schematic diagrams of high pressure and
low pressure piping supply systems for the SS/TS/WT — SuperSonic/TranSonic/WindTunnel.
With this newly developed and fully operational facility, extensive test capabilities are provided,
which allow either: (i) rapid change of test conditions, with extensive number of tests in a single
day, or (ii) very long testing times for measurements requiring extended testing times. The current
facility has an air supply capability of 50 cubic meters, which, ordinarily, is comprised of 32 cubic
meters of air supplied at 300 psia and 18 cubic meters of air supplied at 2500 psia.
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Figure 1. Schematic diagram of high pressure and low pressure piping supply systems for
the SS/TS/WT — SuperSonic/TranSonic/WindTunnel at the University of Alabama in Huntsville.
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Figure 2. Schematic diagram of high pressure and low pressure piping supply systems for
the SS/TS/WT — SuperSonic/TranSonic/WindTunnel at the University of Alabama in Huntsville.
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With this arrangement, the 2500 psia air supply is employed to replenish the 300 psia air
supply, so that (i) and (ii) are easily implemented. Within Figures 1, 2, and 3a-c, blue items denote
300 psia air supply items, and red items denote 2500 psia air supply items. Figure 3a is a schematic
diagram of the 2500 psia portion of the high-pressure piping system. Figure 3b shows a schematic
diagram of the 300 psia portion of the high-pressure piping system. Figure 3c shows a schematic
diagram of the low-pressure piping system. A legend is also included within Figs. 3a-c to define
the symbols used in the schematic diagrams.

The low pressure tanks are used as the primary source of supply pressure during a wind
tunnel blow down. To accommodate numerous tests in a single sitting, the high pressure tanks are
used to recharge the low pressure tanks between blow downs. This cuts down recharge time from
several hours to approximately 10 minutes. This is done by opening all of the valves between one
high pressure tank and the low pressure tank(s) that are being recharged. The recharging flow is
controlled by a pressure regulator located in front of each low pressure tank. The low pressure
tanks can also be recharged using the low pressure compressor by opening all valves in between
the low pressure tank(s) that are being charged. This process can take several hours depending on
how depleted the tanks are, but allows the recharge of the high pressure tanks using the high
pressure compressor simultaneously.

With this facility, cascade geometric scaling, engine representative Mach numbers, and
engine representative Reynolds numbers are readily achieved. The facility also includes provision
to employ foreign gas cooling (for example, carbon dioxide CO, gas) to achieve engine
representative film cooling density ratios.

The low-pressure compressor, used to pressurize the low-pressure piping system, is a
Quincy QR 350 model BM350HPDT Compressor. A Bauer Compressors BP26-E3 high-pressure
compressor pressurizes the high-pressure piping system. Each compressor includes an air dryer
and air filters. During testing, flow through the test section is regulated using several different
valves. The first is a Southern Controls 330AITFM-CH-SQ pneumatic valve system, which is
comprised of a Trueline ball valve, a pneumatic actuator, a switch, and a solenoid. The actuator,
switch, and solenoid are manufactured by CSS and have model numbers of VAD09, M, and 4,

respectively. Next is the 667-EWT-DVC6200 Fisher pressure regulating valve. The pressure
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regulating valve is controlled by a Fisher FIELDVUE DVC6200 Digital Valve Controller. Digital
valve controller settings are programmed using a Moore Industries 535 display.

Following these valve systems is an air diverter plenum, with a volume of 14 cubic
meters, which ensures that disturbances which occur within the piping system do not propagate
into the test section. The diverter plenum has three air output pipes, which lead to three independent
test section branches. Only one of the three test section branches is used in the present research
effort. The entrances to the other two sections are blocked by a closed spectacle blind valve and
by a circular sliding gate valve. Figure 4 shows a photograph of the laboratory test cell with wind
tunnel test sections. Shown within this photograph is a supersonic flow test section employed for
investigations of supersonic flows with different types of shockwaves. Note that this test section
is not employed within the present turbine blade tip investigation. The photograph within Figure
4 is included to illustrate the capabilities of the wind tunnel system.

Following the test section is an exhaust plenum with exhaust ducts and vents attached.
These different vents and cuts then direct the exhaust air either outside of the test cell building or
elsewhere within the test cell laboratory. Spectacle blind valves are used when needed to block air
from passing between exhaust plenums and between different test section branches. Each of the
three exhaust ducts, which leads outside of the test cell building, connects to a New York Blower

Company A1602302 noise baffling segment.
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Figure 4. Laboratory test cell with wind tunnel test sections. On the right is a supersonic flow test
section employed for investigation of supersonic flows with different types of shockwaves.
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2.2 Test Facility

Presented in this subsection are discussions of the inlet ducting and transonic turbine blade
cascade. Figure 5 presents the inlet ducting and flow management apparatus for the associated
turbine blade cascade wind tunnel branch. For all test cases, a bar grid is employed to augment the
mainstream turbulence intensity level, to approximately 6 to 7 percent, at the exit of the nozzle,
upstream of the test section. Three Kanthol-D wire mesh heaters are also employed within the inlet
duct system to generate a timewise step increase in air flow static temperature of the mainstream
air, after all facility flow conditions are established. These mesh heaters are connected in series to
an Ametek Sorensen SGA60/500D 30 kilowatt DC power supply.

SUBSONIC NOZZLE

TURBULENCE GRID

NEOPRENE PAD
ENTRANCE TO
PLENUM

THREE HEATER MESHES |NLET DUCTS

RADIAL BLEED SLOTS

TURBINE BLADE LINEAR CASCADE

Figure 5. Inlet ducting and flow management apparatus for turbine blade cascade wind tunnel
branch.

Figure 6 presents the dimensions for the cascade. Shown in Figures 7 and 8 are three-
dimensional schematic views of this linear cascade apparatus. A downstream-looking view of the
entrance of this cascade is given in Figure 8, with relative dimensions and locations of the blade
tip, the tip gap, and the casing wall. The present tip gap magnitude is 1.40 mm. Details regarding
the two circumferential bleed slots are provided in Figure 9. A photograph of the assembled linear
cascade is then shown in Figure 10. For the present cascade, 3 complete blades, and 2 half-blades,

with 4 complete blade passages are employed. Note that each blade within the linear cascade is
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two-dimensional, without additional angularity or twist. The cascade inlet flow angle is 29 degrees.
Also included are appropriate boundary layer flow radial and circumferential bleed systems, and
tailboard apparatus. Figure 11 shows a photo of the fully assembled cascade, instrumented to
measure pressure distributions around the circumference of the central blade. The plastic tubing
seen in this photo connect each pressure tap to its own Honeywell FP2000 pressure transducer.
Figures 12 and 13 are photos showing the fully assembled cascade, instrumented to measure blade
tip surface temperature. Figure 12 shows the FLIR camera in place directly above the zinc selenide
viewing window. The camera is attached via a custom-made steel mounting apparatus, complete
with mounting holes placed to match the dimensions of the camera’s stock mounting location.
Figure 13 is a photo showing the thermocouple routing box below the cascade. The type T
thermocouples used for in situ infrared thermography calibration are very fragile and need to be
shielded from the high-speed airflow in the wind tunnel plenum, so they are protected by a thick

plastic routing box that is securely attached to the bottom of the cascade.

Figure 6. Cascade dimensions. Dimensions are in mm.
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Figure 7. Three-dimensional view of the linear cascade.

Cascade viewed in downstream direction

Figure 8. Downstream-looking view of the entrance of the linear cascade.
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Figure 10. Assembled linear cascade.
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Figure 11. Fully assembled turbine blade cascade instrumented to measure pressure distributions.
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Figure 12. FLIR camera mounted on top of the turbine blade cascade for use in film cooling heat
transfer experiments.
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Figure 13. Thermocouple routing box used to protect fragile thermocouple wires during wind
tunnel tests.
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A cascade inlet boundary layer thickness is employed, which is produced using an inlet
duct of appropriate length located at the entrance to the cascade. Expected values of von Karman
shape factor for the inlet boundary layer are expected to be 1.31 to 1.34. With this arrangement,
and with the scale factor employed, ratios of inlet boundary layer thickness to tip gap are
approximately equal to 3 and 5. As such, tip clearance magnitudes within the experimental
apparatus are scaled so that ratios of tip gap to inlet boundary layer thickness, ratios of tip gap
magnitudes to blade axial chord length, and ratios of tip gap magnitudes to blade true chord length
match engine hardware configurations. Measurement of inlet boundary layer profiles is
accomplished using a miniature stagnation pressure probe along with a wall static pressure tapping.

Surface heat transfer characteristics are measured using the transient impulse-response
measurement approach, employed with infrared thermography. To create this arrangement, a
thermal transient is induced within the flow to provide a step in mainstream temperature after flow
characteristics are established. With this approach, spatially-resolved distributions of surface
adiabatic film cooling effectiveness and surface heat transfer coefficients are provided for different
film cooling flow conditions. Mach numbers, Reynolds numbers, film cooling discharge
coefficients, film cooling blowing ratios, film cooling velocity ratios, film cooling momentum flux
ratios, and film cooling density ratios match engine environment values. Such representative
density ratios are provided by employing carbon dioxide as the film coolant. Both the configuration
and experimental conditions employed in the present study are unique, including the film cooling
configuration, and squealer blade tip arrangement, which makes the results provided by the present

investigation distinctive and different from all past investigations.

2.3 Measurement of Experimental Parameters
With the present experimental arrangement, the facility has the capability to vary a number
of different parameters including: tip gap magnitude, squealer depth, film cooling configuration,
and all film cooling characterization parameters, for one blade airfoil, with one squealer tip
configuration. Note that the same inlet Reynolds number, exit Reynolds number, inlet Mach
number, exit Mach number, and turbine blade geometry configuration (as modelled with the linear
cascade) are employed for all tests.
The following experimental parameters are measured for each experimental

configuration considered.
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(1) Spatially-resolved distributions of surface adiabatic effectiveness and surface heat
transfer coefficient on the blade tip, and all associated quantities, including flow temperatures and
surface temperatures. With infrared thermography, and transient testing techniques, simultaneous
measurements are made of spatially-resolved distributions of surface heat transfer coefficient and
adiabatic wall temperature within a single blow-down test. From these results, spatially-resolved
distributions of adiabatic film cooling effectiveness are determined. Note that the experimental
approach requires a means to provide a step in mainstream temperature after flow characteristics
are established.

(2) Surface static pressure variations using surface static pressure taps at discrete locations
on the blade tip, on the end wall, and at different blade span locations to document blade profile
static pressure variations.

(3) Cascade inlet static pressure, inlet stagnation pressure, recovery temperature, and
turbulence intensity.

(4) Film cooling mass flow rates, temperatures, static pressures, and all associated
quantities to determine all associated film cooling parameters, including local and spatially-
averaged magnitudes of discharge coefficients, density ratios, velocity ratios, blowing ratios, and

momentum flux ratios. Blowing ratios range from 0.5 to 3.0 to match engine operating conditions.

2.4 Film Cooling Supply, Conditions, and Parameters

In regard to film cooling flow conditions and parameters determination, the mass flow rate
for the film cooling is m and is measured upstream of the linear cascade coolant plenum (within
the instrumented turbine blade). Figure 14 shows a diagram of the carbon dioxide injection system.
The CO: flow is set using a pressure regulator attached to the supply tank. The gas flows from the
tank, through the regulator, and is metered using a custom-made 3-D printed sonic orifice device,
seen in Figure 15. This device chokes the CO: flow so the mass flow rate can be accurately
calculated. Upstream of the throat, it utilizes a static pressure tap and a hole where a thermocouple
is inserted to measure the stagnation temperature. Note that the static pressure upstream of the
sonic orifice is also the stagnation pressure at this location.

The stagnation temperature for the film cooling is measured within the coolant supply flow,
as Tt, within the plenum which is located within the blade being tested. The static density of the

film coolant pc is determined using the ideal gas equation of state. The film cooling static pressure
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is the same as the local and adjacent freestream value. Next, the film cooling flow velocity is
determined using an equation of the form
Ve =mc /(chcAc) (l)

where A is the area of each film cooling hole and N is the number of film cooling holes with this
hole area. An iterative analysis approach is then employed to determine temperatures which satisfy
Eqn. (1) and the associated equation of state relationships. Upon completion of this process, correct
values for film cooling flow static density, velocity, and static temperature are determined. Next,
the viscosity of the air is calculated using appropriate analytic models. The blowing ratio is then
the ratio of local film cooling mass flux to local mainstream mass flux.

Discharge coefficients, blowing ratios, Reynolds numbers, and Mach numbers (where each
quantity is spatially-averaged for all film cooling holes of a particular diameter and area), are given

by the following equations.

Co = (oeVe)avg /( peVe)ideal = (e NeAc) / /2 pcAPe )
BRavg = (Vo) avg /(onVim)avg = (Me/ NeAc) /( omVm)avg (3)
Rec avg = (ooVe)avgde / 1 = (Me/ NeAc)de/ 1c )
Me.avg = (Ve)avg/ [ JRTe = (Me/ peNeAc) [ /R Te (5)

Within equation (2), the local dynamic pressure AP, is the difference between the film supply
stagnation pressure, and the local film static pressure, which is the same as the local main flow

static pressure at the location of the film cooling hole exits.
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Figure 14. System employed to supply cooled carbon dioxide film cooling air to the
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Stagnation temperature measurement

\Stag;tlon pressure measurement

Flow Q .- |
Sonic Orifice l

Figure 15. Cross-section view of sonic orifice device.
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Details regarding the instrumented central turbine blade are given in Figures 16, 17, and
18. Evident in Figure 16 are the squealer rim and 3 mm deep squealer recess. Figures 17, 20, 21
show the film cooling blade, which utilizes five pressure side film cooling holes. The diameter of
each film cooling hole is 0.95 mm. Note that each of these holes are located within a
circumferential/axial plane, and is angled 45° relative to this plane. An inclination angle of 40° is
employed for each hole, relative to a plane which is tangent to the local blade surface at the hole
exit location (Figure 21). A cut-away view of the plenum within the instrumented airfoil, which is
used to supply film cooling flow, is shown in Figure 18. Included within this figure are the carbon
dioxide supply connection location, pressure tap locations, shelves for mounting thermocouples,
and the entrances of the pressure side film cooling holes. The locations of tip surface
thermocouples, used for in situ calibration of infrared camera images, are shown in Figure 19. A
total of 11 specially-calibrated, Omega 5TC-TT-T-40-72 fine-wire copper-constantan (Type T)
thermocouples are employed for this purpose, where each is installed at a location which is 0.41
mm below the blade tip surface. Figure 20 shows a transparent view of the film cooling airfoil,
depicting a more detailed view of the film cooling passages, thermocouple passages, plenum, and
plenum pressure taps. Figure 21 shows a transparent view of the film cooling turbine blade

equipped with film cooling passages, thermocouple passages, plenum, and plenum pressure taps.
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Figure 16. Mounting hole arrangement, Blade span, and squealer recess depth as shown on the
90% span pressure measurement turbine blade. These dimensions are the same for every blade

presented in this experiment. Dimensions are in mm.
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Figure 17. Instrumented central film cooled turbine blade.
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Figure 18.Cut-away view of the plenum within the instrumented airfoil, used to supply film
cooling flow.
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Figure 19. Locations of tip surface thermocouples, used for in situ calibration of infrared camera

images.

Figure 20. Transparent view of the film cooling turbine blade equipped with film cooling passages,

thermocouple passages, plenum, and plenum pressure taps.
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DETAIL A

Figure 21. Film cooling hole orientation and wall thickness. Dimensions are in mm.

2.5 Pressure Measurement Techniques

The transonic turbine blade cascade utilizes a Kiel probe to measure the stagnation pressure
at the inlet of the cascade. Static pressure is measured using 0.80 mm diameter pressure taps
located on the bottom wall of the inlet, on the top wall downstream of the turbine blades, within
the squealer recess region, and around the circumference of the turbine blades at 50 percent and
90 percent span locations. The Kiel probe and every pressure tap is connected to its own Honeywell
FP2000 pressure transducer (part numbers: 023-0032-00 and 060-C54985172080). Each pressure
transducer is wired to a National Instruments terminal block (NI 9923), which transmits the
different analog signals into a National Instruments Voltage Input Module (NI 9209). The Voltage
Input Module is installed within a National Instruments CompactDAQ USB Chassis (NI cDAQ-
9174). The end result is a signal that is recorded using LabView 2019 Full Development version
19.0f2, saved to Microsoft Excel 2013 spreadsheet, and processed on a Dell desktop computer
running Windows 7 Professional 64-bit (6.1, Build 7601).
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All pressure transducers are calibrated using a dead weight tester provided by NASA
MSFC. A dead weight tester consists of precisely calibrated weights, a piston, and piping with a
working fluid (air, oil, or water) connected to the pressure measurement device being calibrated.
Note that if multiple transducers are being calibrated, a manifold can be used to calibrate all of
them at the same time. From the mass of the weights and the area of the cylinder, the correct
pressure reading can be calculated. This process of adding weights and recording the output
voltage is repeated incrementally for the entire advertised range of the transducer. Pressure is
plotted as a function of voltage and a linear curve fit equation can be attained. This equation can
then be applied to experimental data to accurately calculate stagnation and total pressure.

The blade employed to measure the pressure distribution is shown in Figures 22, 23, and
24. The blade in Figures 22 and 23 contain 17 surface static pressure taps which are positioned to
measure circumferential pressure distribution for a given blade span location. The blade in Figure
28 contains 8 static pressure taps positioned within the squealer recess. Each pressure tap has a
diameter of 0.80 mm and are oriented normal to the surface. The hole connected to each tap is
initially 0.80 mm in diameter, then enlarges to 2.50 mm within the blade material. This hole further
enlarges to 3.18 mm at the base of the blade to accommodate a 25.4 mm long piece of smooth-
bore seamless 304 stainless steel tubing (0.069” ID, 1/8” OD). This steel tubing is used as the
connection to the clear polyurethane tubing (1/8” ID, 1/4” OD) attached to the barbed hose fitting
(McMaster-Carr part#: 5346k62) on a pressure transducer. A SharkBite push-to-connect coupling
fitting is used to connect the polyurethane tubing on the base of the blade to the polyurethane
tubing on the pressure transducer. With this arrangement, the isentropic Mach number distribution
is determined for the circumference of the blade and for the tip of the central blade within the

cascade.
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Figure 24. Blade tip pressure tap locations. Dimensions are in mm.

The end wall in Figure 25 also uses 0.80 mm diameter static pressure taps normal to the
flow surface. The pressure taps are located in two rows downstream of the turbine blades in the
circumferential/radial plane. One row is 0.5 axial chord lengths downstream, and the other is 1.0
axial chord lengths downstream. The hole connected to each tap is initially 0.80 mm in diameter,
then enlarges to 6.35 mm to accommodate a 1/4” outer diameter barbed tube fitting (McMaster-
Carr part#: 1901k89). This fitting is used to connect the pressure tap to the clear polyurethane
tubing (1/4” 1D, 3/8” OD). The polyurethane tubing then connects to the barbed hose fitting on the

pressure transducer.
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Figure 25. End wall static pressure tap arrangement. Dimensions are in mm.
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2.6 Temperature Measurement Techniques

Omega 5TC-TT-T-40-72 fine-wire copper-constantan (Type T) thermocouples are used to
measure the temperatures on the blade tip for infrared calibration, within the sonic orifice, and
within the blade plenum. Omega 5TC-TT-T-20-36 20-gauge copper-constantan (Type T)
thermocouples are used to measure the temperature at the cascade inlet. Thermocouple signals are
acquired at a rate of 30 Hz using a National Instruments N1 9213 thermocouple input card installed
in a National Instruments NI cDAQ-9188 chassis connected to the data acquisition computer. The
signals are recorded using LabView 2019 Full Development version 19.0f2, saved onto a
Microsoft Excel 2013 spreadsheet, and processed on a Dell desktop computer running Windows
7 Professional 64-bit (6.1, Build 7601). The thermocouples are calibrated by submerging them in
a water bath kept at constant temperature using an Omega HCTB-3030 thermoregulator. The
output voltage of the thermocouples are recorded at several different water temperatures and
compared to a Fluke 1523 reference thermometer. From this data, a linear calibration equation is
acquired and is applied to all subsequent thermocouple voltages. The maximum frequency
response of each thermocouple junction is estimated to be approximately 1.2x10* to 1.6x10*
seconds, which is approximately equivalent to 6 to 8 kHz. These thermocouples are installed along

the surface on which measurements are made, which is adjacent to the associated tip gap flow.

2.7 Heat Transfer Measurement Techniques

A time-varying technique is employed to determine adiabatic surface temperature
variations, adiabatic film cooling effectiveness distributions, and surface heat transfer coefficients.
Figure 26 illustrates the arrangement used to measure spatially-resolved variations along the tip of
a two-dimensional turbine blade airfoil. The key measurement component is a FLIR Systems Inc.
ThermoVision® T650sc Infrared Camera (S/N 22700776), which is mounted external to the
cascade top wall. This device senses temperature variations, as it views a blade tip surface through
a zinc-selenide window, from a location which is external to cascade components. Figure 12 shows
the FLIR camera mounted on top of the cascade.

Associated cascade blade components are comprised of Somos Watershed XC 11122
plastic, and are manufactured by Protolabs Inc. of Maple Plain, Minnesota, USA. This material is

selected for cascade testing for several reasons. First, thermal conductivity is relatively low with a
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value of 0.18 W/mK. Second, associated components are manufactured without shrinkage or
distortion, and with high dimensional accuracy and low manufacturing tolerances, which means
that scaled geometric similarity relative to actual engine hardware is maintained. Third, the
strength of the material allows it to employed for testing of airfoil components subject to large
pressure differences, including intricate film cooling supply passages and complex film cooling
hole array arrangements.

The present FLIR Infrared Camera functions at infrared wavelengths from 7.5 um to
13.0 um, as it detects infrared radiation emitted by the instrumented blade tip surface which is the
subject of the measurements. Note that each instantaneous digital infrared image is calibrated as it
is captured by the camera. A calibration relationship is developed for this purpose to provide a
relationship between local surface temperature values (as measured by individual thermocouples)
and different grayscale values which are associated with different magnitudes of surface infrared
radiation. By employing FLIR ResearchIR software, a digital image acquisition rate of 30 Hz is
employed as data are obtained using the infrared camera. Each individual infrared image then

shows the instantaneous, spatial variation of surface temperature at one time.
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FLIRIR

' camera

Blade tip gap
ZnSe Window Casing wall
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Figure 26. Schematic diagram of laboratory arrangement employed for transient, spatially-

resolved surface heat transfer measurements for the present turbine blade tip configuration.
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Figure 27. Example of variation of local heat flux with surface temperature for one test surface
location during a typical transient test seen in Zhang et al. (2011)

The present study considers surface heat transfer characteristic for a range of film cooling
flow conditions, film cooling geometry configurations, and blade tip arrangements. These data are
produced using the impulse response method described by Oldfield (2008), which is “a
computationally efficient method to reconstruct heat flux from discrete temperature samples taken
at some sampling frequency.” This analysis approach relates surface heat flux changes to changes
of surface temperature with time. Conditions imposed on this approach include semi-infinite solid
material, and conduction heat transfer in only one direction. Note that heat transfer coefficient and
film cooling effectiveness uncertainty estimates include variations which are not one-dimensional.
This approach is needed since local, three-dimensional heat transfer variations are sometimes
present near and adjacent to individual hole passages which are utilized for film cooling. Within
the present investigation, overall temperature differences between blade surfaces and the

mainstream air will range from 8 to 30 degrees Celcius. Overall temperature differences between
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the film cooling air and the mainstream air, as needed to achieve appropriate flow conditions, range

from 8 to 20 degrees Celcius.

For each surface location, heat flux changes with surface temperature are determined
during the time interval after the time when the main flow temperature increases in a transient
fashion, using procedures described earlier. Figure 27 provides an example of the variation of local
heat flux with surface temperature, for one test surface location, during a typical transient test.
From the resulting data, the magnitude of the slope is equal to the heat transfer coefficient and
adiabatic wall temperature is extrapolated for the condition associated with zero surface heat flux.
Measured spatially-resolved distributions of adiabatic surface temperature are then used to
determine local values of the spatially-resolved surface effectiveness, using equations (6) and (7).

NaD-corrected = (TAW—NFC - TAW—FC)/(TO—inlet - TO—C) (6)

Nap—corrected-new = (Taw-nrc — Taw-rc)/ (Taw-nrc — To-c) (7)

Equation (6) gives local film cooling performance, normalized by two global parameters To-inet
and To-c. Equation (7) gives local film cooling performance, normalized by one global parameter

To-c. The iso-energetic heat transfer coefficient and and coefficient ratio are given by

qg) = h(TAW—FC - TW) (8)

HTC Ratio = h’/hNFC (9)

With this approach, spatially resolved distributions of surface adiabatic film cooling effectiveness

and surface iso-energetic heat transfer coefficients are provided.

2.8 Experimental Uncertainty Magnitudes

Uncertainty estimates are based on 95 percent confidence level, and determined using
procedures described by Kline and McClintock (1953) and by Moffat (1988). Uncertainty of adiabatic

film cooling effectiveness is £ 0.007 for values less than or equal to 0.12. Uncertainty of adiabatic film
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cooling effectiveness is £ 6.0 percent for values greater than 0.12. Uncertainty of iso-energetic heat

transfer coefficient is * 8.5 percent.

CHAPTER 3

EXPERIMENTAL RESULTS
Presented in this chapter are experimental test conditions, blade, end wall, and squealer
recess Mach number and pressure ratio distributions, heat transfer coefficient distributions, heat

transfer coefficient ratio distributions, and different types film cooling effectiveness data.

3.1 Experimental Test Conditions

Figure 28 shows pressure variations with time at typical different locations in the cascade
and along the blade, during a typical blow down experiment. From these pressure variations,
different quantities are determined such as pressure ratios and Mach numbers as they vary with
time at different locations through the cascade test section during a typical experiment. All of these
data are obtained for a tip gap of 1.40 mm. Data are given for the upstream static pressure on the
end wall of the cascade, the downstream static pressure on the end wall of the cascade, the exhaust
stagnation pressure, the inlet stagnation pressure, and static pressures at different locations along
the airfoil. Pressures denoted 2 through 17 are different locations along the airfoil, including near
the leading edge and trailing edge. These pressure tap locations on the blade surface are given in
Figures 22 and 23. The locations denoted B though G on Figure 22 correspond to pressures 2
through 7 on Figure 28. The locations denoted A through J on Figure 23 correspond to pressure 8
through 17 on Figure 28.

Evident in the figure is a dramatic increase of all pressure levels starting at a time of 15
seconds, with a very important rise in pressures from 15 seconds to 18 seconds. From 18 seconds
to 22 seconds, there is a decrease and an increase in the local pressure values as they vary with
time. Pressures are then relatively steady for a 7 second period, from 22 to 29 seconds. After this
period of steady test conditions, all pressures decrease with time as the test blow down is ending.
Difterent pressure levels are evident for these different pressure transducers as a result of different
flow conditions around the airfoil, at the inlet, and exit of the cascade facility. In general, all

pressures are roughly invariant over the steady testing time extending from 22 to 29 seconds. This
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illustrates that steady test conditions are readily achieved with the present test arrangement and

34

facility settings.
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Figure 28. Pressure variations with time during a typical blow down experiment.

3.2 Mach Number and Pressure Ratio Distributions
Discussed in this section are the Mach number and static pressure ratio distributions around
the blade profile, Mach number and static pressure ratio distributions within the squealer recess,
and the static pressure ratio distributions for the end wall at 0.5 and 1.0 axial chord lengths

downstream of trailing edges of the blades.
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Figure 29 shows central blade isentropic Mach number distributions at 50 percent span for
the blade suction surface, and for the blade pressure surface. Figure 30 shows central blade
isentropic Mach number distributions at 90 percent span for the blade suction surface, and for the
blade pressure surface. Note that the line denotes predicted Mach number distributions for the
same airfoil. For both the 50 percent and 90 percent span locations, the pressure side of the blade
is always subsonic, reaching a maximum value around Mach 0.8 at the trailing edge where it meets
the flow from the suction side. Mach numbers for the flow on the suction side for the 50 percent
location increase with streamwise development, reaching a maximum value of 1.1 at 0.8 x/Cx.
Mach numbers for the flow on the suction side at the 90 percent span location increase with
streamwise development, reaching a maximum value of 1.24 at 0.8 x/Cx. The experimental values
generally match the numerically predicted values, especially at the upstream part of the airfoil. In
all cases for the suction side, acceleration to sonic conditions occurs, followed by supersonic flow.

Figure 31 presents the blade tip static pressure tap locations within the squealer recess.
Figure 32 shows the associated blade tip total to static pressure ratio and isentropic Mach number
distributions. The Mach number is approximately 0.5 from 0.11 x/Cx to 0.44 x/Cy, followed by a
local increase to approximately Mach 1.25 from 0.55 x/Cx to 0.86 x/Cx. Note that isentropic Mach
numbers are only approximately representative of flow physics within the tip gap flow because of
important variations of total pressure through this flow. Within the squealer recess, acceleration to
sonic conditions appears to occur, followed by supersonic flow, which is present immediately
downstream.

Figure 33 presents the end wall static pressure tap measurement locations. Figure 34
presents pressure ratio measurements for the row of pressure taps located 0.5 axial chord lengths
downstream of the trailing edges of the blades. Figure 35 shows pressure ratio measurements for
the row of pressure taps located 1.0 axial chord lengths downstream of the trailing edges of the
blades. Data in Figures 34 and 35 are a composite of pressure variation data downstream of the
flow passage periods downstream of the cascade. These are then assembled and made periodic
relative to the spacing over one passage. As a result with this arrangement, the data in Figures 34

and 35 show approximate periodicity and repeatability, relative to different blade passages.
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Figure 29. Central blade isentropic Mach number distributions at 50 percent span. (a) Suction
surface. (b) Pressure surface.
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Pressure Tap

Figure 31. Blade tip pressure tap locations. Dimensions are in mm.
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Figure 33. End wall static pressure tap arrangement. Dimensions are in mm.
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Figure 34. Total to static pressure ratio for 0.5 axial chord lengths downstream of the trailing edges
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3.3 Blade Film Cooling Geometry

The instrumented turbine blade utilizes five pressure-side film cooling holes, which are
designated as the B1 film cooling configuration. Figures 36 through 39 show the details of this
arrangement. The diameter of each film cooling hole is 0.95 mm. The length to diameter ratio of
each hole is approximately 4.60. Note that each of these holes are located within a
circumferential/axial plane, and are angled 45° relative to this plane. An inclination angle of 40° is
employed for each hole, relative to a plane which is tangent to the local blade surface at the hole
exit location. The hole spacing is 6.18 mm (6.5d), measured as surface arc length. Surface arc
length is defined as the distance along the surface between two adjacent holes.

Figure 36. Isometric view of the pressure side film cooled turbine blade model with the B1 film

cooling configuration.
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Figure 37. Transparent top view of the pressure side film cooled turbine blade model with the B1

film cooling configuration.

—

Figure 38. Detailed, transparent top view of the film cooling geometry of the B1 film cooling
configuration.
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Figure 39. Detailed, transparent pressure side view of the film cooling hole geometry of the B1

film cooling configuration.
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3.4 Baseline Data with Comparisons

Figure 40 presents heat transfer coefficient data 2020-01-07-1835 c0 baseline data, no film
cooling, with BR=0 and a tip gap of 1.4 mm. Figure 41 presents heat transfer coefficient data 2020-
01-12-1520 c0 baseline, no film cooling, with BR=0 and also a tip gap of 1.4 mm. Both of these
baseline data sets are obtained with no film cooling (BR=0). Each data set is obtained with the B1
configuration airfoil. As these data are obtained, the film cooling holes are left open, but the film

cooling supply passage is blocked internally.

Even though the two baseline data sets are obtained at different times, they are in excellent
qualitative and quantitative agreement, including all surface heat transfer coefficient variations.
Like other transonic blade tip data in the literature, these baseline data also show the higher heat
transfer coefficients are present in the leading third of the airfoil surface. Dimensional heat transfer
coefficient values further downstream of this region are generally lower. The initial high heat
transfer coefficients on the leading edge and the upstream pressure side are high because of the
initial development of a laminar boundary layer. Along the pressure side around mid-blade
position, the values are lower because of separation along the squealer rim adjacent to the pressure
side. Values just downstream of this location are in the vicinity of 1700 W/m? K, where
reattachment occurs. The separation occurs on top of the squealer rim, then reattachment occurs
just downstream within the squealer recess. Local increases occur along trailing edge locations as
well. Some of the changes occurring on the blade tip, both within the squealer recess and on the
squealer rim, are due to the change from subsonic to supersonic flow. This is occurring around 0.5
x/Cx, according to the data in Figure 32. This location corresponds to Y pixel locations between
300 and 400, and X pixel locations between 300 and 400.

The data in Figures 40 and 41 are also quantitatively and qualitatively similar to data from
Virdi et al. (2015), especially the local heat transfer coefficient increases within the leading parts
of the blade tip. The numerically predicted data from these researchers is shown in Figure 42, and
the experimentally measured data from these researchers is shown in Figure 43. Note that the
increases on the leading edge of the blade from the present investigation are less pronounced
around the squealer rim, compared to the data from Virdi et al. (2015). Virdi et al. (2015) data are
also obtained with a smooth-tipped blade, a squealer recess, a squealer rim, without film cooling,

and a similar tip gap of 1.5 percent g/S, compared to our tip gap of 1.6 percent g/S.
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Figure 40. Heat transfer coefficient data 2020-01-07-1835 c0 baseline data, no film cooling, with
BR=0 and a tip gap of 1.4 mm for the B1 film cooling configuration.
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Figure 41. Heat transfer coefficient data 2020-01-12-1520 c0 baseline, no film cooling, with BR=0
and a tip gap of 1.4 mm for the B1 film cooling configuration.
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Figure 43. Experimentally-measured result. Virdi et al. (2015)
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3.5 Data Defects

Defects exist in the heat transfer coefficient and film cooling effectiveness data because
of tabs that are installed for thermocouples used to measure surface temperatures. These create
local disturbances on the surface of the airfoil that locally increase the surface heat transfer
coefficient slightly, as seen in Figure 46. These disturbances are present because the tabs are not
perfectly aligned with the surface contour due to manufacturing tolerances.

As mentioned, these surface temperature measurements are used for calibration of
infrared camera images. The locations of these thermocouple tabs for the B1 configuration airfoil
are shown in Figure 44. The locations of thermocouples along these tabs, as well as additional
information on tab locations and orientations are given in Figure 45. The exact thermocouple

locations are tabulated in a table part (b) of Figure 45.

Also present are defects and data errors due to scratches on the zinc selenide window.
These are most apparent in film cooling effectiveness data. An example of such a defect from a

scratch on the zinc selenide window is shown in Figure 47.
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Figure 44. Blade tip thermocouple insert locations for the B1 film cooling configuration.
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(a)

(b) Thermocouple Inserts

No. x (mm) x/Cx
1 2.41 0.033149
2 4.29 [0.059009
3 5.07 [0.069738
4 5.42 0.074552
5 6.78 |0.093259
6 51.47 |0.707968
7 54.96 |0.755973
8 59.02 |0.811818
9 55.89 | 0.768765
10 52.67 |0.724474
11 49.28 [0.677845

Figure 45. (a) Top view showing thermocouple locations and (b) exact thermocouple locations,

measured in the axial direction.
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Figure 46. Local errors due to thermocouple installation.
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Figure 47. Local error due to scratch on zinc selenide viewing window.
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3.6 Data for BR=3.18

Figures 48, 49, 50, and 51 show data for 2020-01-12-1445 c23. These data are obtained
with a blowing ratio (BR) of 3.18 and a tip gap of 1.40 mm for the B1 film cooling configuration.
Figure 48 shows heat transfer coefficient data. Figure 49 shows heat transfer coefficient ratio data.
Figure 50 shows nap-corrected adiabatic film cooling effectiveness data. Figure 51 shows nap-corrected-
new adiabatic film cooling effectiveness data. Note that nap-corrected and MAD-corrected-new are given by

equations (6) and (7).

The heat transfer coefficient data in Figure 48 are very similar to baseline data shown in
Figures 40 and 41. Some small variations are evident along the pressure side of the squealer rim
and on the suction side of the squealer rim. Otherwise, important quantitative differences with the
baseline data are difficult to discern. Additional evidence of these variations are shown in the heat
transfer coefficient ratio data in Figure 49. This heat transfer coefficient ratio is determined as the
data with film cooling divided by the data without film cooling. The largest variations occur on
the downstream part of the suction side squealer rim. These ratio values are as low as 0.70 to 0.75,
locally. This is evidence of the presence of coolant, which affects the squealer rim on the suction
side. To accomplish this, the coolant emerges from the pressure side film cooling holes, advects
up the pressure surface, encounters the corner between the pressure surface and suction side
squealer rim, then, separates along that rim and reattach within the recess. Some of the coolant

also advects through the tip gap (1.4 mm) passage and collects near the suction side squealer rim.

Additional effects of the B1 film cooling arrangement on the blade tip with the squealer
rim are evident from the adiabatic film cooling effectiveness data found in Figures 50 and 51. The
increase in local film cooling effectiveness values, shown in Figures 50 and 51, illustrates the
trajectory and distribution of the coolant along the pressure side rim, suction side rim, and the
recess for the B1 film cooling configuration. Value variations are more apparent in Figure 51 where
the NAaD-corrected-new are generally higher than the nap-corrected data in Figure 50, when compared at the
same surface location. The B1 film cooling arrangement has effects locally on the pressure side
rim, within the recess, and on the suction side rim. Note that the values are very low in the corner
between the pressure side and the pressure side squealer rim because of local separation of the
coolant from the surface. Values of film cooling effectiveness as high as 0.07 are found on the

squealer rim in Figure 50 and as high as 0.08 in Figure 51. Within the recess, local values are
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between 0.025 and 0.035 in Figure 50 and between 0.035 and 0.045 in Figure 51. On the pressure
side rim, the values are between 0.03 and 0.04 in Figure 50 and between 0.045 and 0.055 in Figure
51. These values are augmented along the trajectory of the coolant which emerges from the B1
film cooling holes. Note that for other locations on the pressure side rim, suction side rim, and

squealer recess, film cooling effectiveness values are generally very near zero.
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Figure 48. Heat transfer coefficient data 2020-01-12-1445 ¢23 with BR=3.18 and a tip gap of 1.4

mm for the B1 film cooling configuration.
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Figure 49. Heat transfer coefficient ratio data 2020-01-12-1445 c23 with BR=3.18 and a tip gap

of 1.4 mm for the B1 film cooling configuration.
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Figure 50. Adiabatic film cooling effectiveness data 2020-01-12-1445 ¢23 with BR=3.18 and a
tip gap of 1.4 mm for the B1 film cooling configuration.
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Figure 51. Adiabatic film cooling effectiveness data 2020-01-12-1445 c23 with BR=3.18 and a
tip tap of 1.4 mm for the B1 film cooling configuration.
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3.7 Comparison of First Type of Film Cooling Effectiveness

Figure 52 shows nab-corrected adiabatic film cooling effectiveness data 2020-01-12-1320 c16
with BR=0.49 and a tip gap of 1.4 mm for the B1 film cooling configuration. Figure 53 shows nap-
corrected adiabatic film cooling effectiveness data 2020-01-07-1930 c15 with BR=1.12 and a tip gap
of 1.4 mm for the B1 film cooling configuration. Figure 54 shows nap-corrected @diabatic film cooling
effectiveness data 2020-01-12-1350 c18 with BR=2.01 and a tip gap of 1.4 mm for the B1 film
cooling configuration. Figure 55 shows nap-corrected adiabatic film cooling effectiveness data 2020-
01-12-1505 c26 with BR=3.85 and a tip gap of 1.4 mm for the B1 film cooling configuration. Note
that these data are also compared to the data in Figure 50. The data are given for the sequence of
blowing ratios equal to 0.49, 1.12, 2.01, 3.18, and 3.85. The same qualitative trends are apparent
in all of these figures due to the trajectory of the coolant from the B1 film cooling holes. Locally
higher film cooling effectiveness values are evident locally on portions of the pressure side rim,
portions of the recess, and on portions of the suction side rim. These values of film cooling
effectiveness at these locations increase to maximum values for blowing ratios of 2.01, 3.85, and
3.18. Values seem to increase as blowing ratio increases over this range. In some cases, such as in
Figure 55 with a blowing ratio of 3.85, distinct signatures of the coolant are apparent along the rim
near the pressure side. The film cooling effectiveness data in Figures 52 and 53, with respective
blowing ratios of 0.49 and 1.12, are generally lower when compared to data at higher blowing
ratios at the same blade tip locations.
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Figure 52. Adiabatic film cooling effectiveness data 2020-01-12-1320 c16 with BR=0.49 and a
tip gap of 1.4 mm for the B1 film cooling configuration.
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Figure 53. Adiabatic film cooling effectiveness data 2020-01-07-1930 c15 with BR=1.12 and a
tip gap of 1.4 mm for the B1 film cooling configuration.
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Figure 54. Adiabatic film cooling effectiveness data 2020-01-12-1350 ¢18 with BR=2.01 and a
tip gap of 1.4 mm for the B1 film cooling configuration.
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Figure 55. Adiabatic film cooling effectiveness data 2020-01-12-1505 ¢26 with BR=3.85 and a
tip gap of 1.4 mm for the B1 film cooling configuration.
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3.8 Comparisons of Second Type of Film Cooling Effectiveness

Figure 56 presents mab-corrected-new adiabatic film cooling effectiveness data 2020-01-12-
1320 c16 with BR=0.49 and a tip gap of 1.4 mm for the B1 film cooling configuration. Figure 57
presents mMAD-corrected-new adiabatic film cooling effectiveness data 2020-01-07-1930 c15 with
BR=1.12 and a tip gap of 1.4 mm for the B1 film cooling configuration. Figure 58 presents nap-
corrected-new adiabatic film cooling effectiveness data 2020-01-12-1350 ¢18 with BR=2.01 and a tip
gap of 1.4 mm for the B1 film cooling configuration. Figure 59 presents nap-corrected-new adiabatic
film cooling effectiveness data 2020-01-12-1505 ¢26 with BR=3.85 and a tip gap of 1.4 mm for
the B1 film cooling configuration. Figures 52, 53, 54, 55, and 50 are compared to data in Figures
56, 57, 58, 59, and 51. Note that the data in these different collections of figures are not directly
proportional because of the varying values of Taw-nrc Which is present along the squealer tip and
present from one data set to another. The trends in the two collections of figures are similar, but
the values of naD-corrected-new  are higher relative to nap-corrected Values, when compared at the same

squealer blade tip location.

64



n -correc -new
Film Cooling Effectiveness i

600 0.08
;f 0.07
“ S00
& 0.06
-

S 400 10.05

= .05

3

= 300 0.04

2 0.03

& 200

> 0.02
100 wan

0

100 200 300 400 500 600 700
X Pixel Location (pixels)

NAD-corrected-new = [TAW-NFC i TAW-FC]/ [TAW-NFC - To-c]

Figure 56. Adiabatic film cooling effectiveness data 2020-01-12-1320 c16 with BR=0.49 and a tip
gap of 1.4 mm for the B1 film cooling configuration.
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Figure 57. Adiabatic film cooling effectiveness data 2020-01-07-1930 c¢15 with BR=1.12 and a tip
gap of 1.4 mm for the B1 film cooling configuration.
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Figure 58. Adiabatic film cooling effectiveness data 2020-01-12-1350 c¢18 with BR=2.01 and a tip
gap of 1.4 mm for the B1 film cooling configuration.
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Figure 59. Adiabatic film cooling effectiveness data 2020-01-12-1505 c26 with BR=3.85 and a
tip gap of 1.4 mm for the B1 film cooling configuration.
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CHAPTER 4
SUMMARY AND CONCLUSIONS

Within the present test facility, investigated are spatially-resolved distributions of
surface adiabatic film cooling effectiveness and surface heat transfer coefficients for a transonic
turbine blade tip. The tip contains a squealer rim, and a single row of film cooling holes is located
on the pressure-side of the blade very near to the blade tip. Also measured are surface static
pressure distributions, and associated isentropic Mach numbers, around the blade surface at the 50
percent airfoil span location, around the blade surface at the 90 percent airfoil span location, the
blade tip, and the end wall. A two-dimensional linear cascade is employed with four flow passages
and five complete blades is employed, which includes radial and circumferential boundary layer
flow bleed devices, and an inlet grid to augment cascade inlet passage turbulence intensity. With
the bar grid employed to augment the mainstream turbulence intensity level, the value is six to
seven percent at the exit of the nozzle, which is upstream of the test section. The cascade is
designed to provide geometric similarity with the engine application environment, including inlet
boundary layer thickness, blade configuration (including blade axial chord length, and blade true
chord length), cascade arrangement (including blade pitch, blade span, and inlet flow angle), blade
tip geometry, squealer depth, squealer wall thickness, and tip gap magnitudes.

The wind tunnel is a blow-down facility. The working fluid is dried air. The facility is
comprised of a high-pressure piping system, a low-pressure piping system, two test section
assemblies, and exhaust piping. The facility has the capability to vary a number of different
parameters, including tip gap magnitude, squealer depth, film cooling configuration, and all film
cooling characterization parameters, with one squealer tip configuration for one blade airfoil. The
facility also has the capability to vary the squealer tip configuration. In the present study, only one
squealer configuration is employed. A transient thermal measurement technique is employed to
determine spatially resolved distributions of adiabatic surface temperature, adiabatic film cooling
effectiveness, and surface heat transfer coefficients along the blade tip with the squealer rim.

For both the 50 percent and 90 percent span locations, the pressure side of the blade is
always subsonic, reaching a maximum Mach number of approximately 0.8 at the trailing edge
where it meets the flow from the suction side of the blade. For the 50 percent span location, Mach
numbers along the suction side increase with streamwise development, reaching a maximum value

of 1.1 at 0.8 x/Cx. Mach numbers along the suction side for the 90 percent span location increase
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with streamwise development, reaching a maximum value of 1.24 at 0.8 x/Cx. For the blade tip,
the isentropic Mach number is approximately 0.5 from 0.11 x/Cx to 0.44 x/Cy, followed by a local
increase to approximately Mach 1.25 from 0.55 x/Cx to 0.86 x/Cx. The end wall pressure taps,
located at 0.5 and 1.0 axial chord lengths downstream of the turbine blades, show approximate
periodicity and repeatability, relative to different blade passages.

The two baseline heat transfer data sets are obtained at different times, but are in excellent
qualitative and quantitative agreement, including all surface heat transfer coefficient variations.
Like other transonic blade tip data in the literature, these baseline data also show the higher heat
transfer coefficients are present in the leading third of the airfoil surface. The data for a blowing
ratio (BR) of 3.18 show small variations along the pressure side of the squealer rim and on the
suction side of the squealer rim. Otherwise, important quantitative differences with the baseline
data are difficult to discern. Additional evidence of these variations are shown in the heat transfer
coefficient ratio data. This heat transfer coefficient ratio is determined as the data with film cooling
divided by the data without film cooling. The largest variations occur on the downstream part of
the suction side squealer rim. These ratio values are as low as 0.70 to 0.75, locally. Two different
types of film cooling effectiveness data are given for blowing ratios equal to 0.49, 1.12, 2.01, 3.18,
and 3.85. The same qualitative trends are apparent in both types of film cooling effectiveness.
Variations of film cooling effectiveness are generally due to the trajectory, concentrations, and
distributions of the coolant from the B1 film cooling holes. Highest film cooling effectiveness
values are evident on the pressure side rim, within the recess, and on the suction side rim. These
values of film cooling effectiveness are locally maximum for blowing ratios of 2.01, 3.18, and
3.85. Over this range of blowing ratios, values generally increase with blowing ratio. These values
are augmented along the trajectory of the coolant which emerges from the B1 film cooling holes.
Note that for other locations on the pressure side rim, suction side rim, and squealer recess, film

cooling effectiveness values are generally very near zero.
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(a)

(b)

APPENDIX A

EXPERIMENTAL CONDITIONS

Constants for Facility

Air CcO2 Dimensions
R (kI/kgmolkK) 8.314 R (k)/kgm 8.314 Film Cooling Holes Orifice
M (kg/Kmol) 28.9647 M (kg/Km 44.01 d_fc(m) 0.00094 d_1(in) 0.824]
d_1(m) 0.0209296
R=R/M (KJ/kgK) 0.287039 R=R/M (KI 0.188911611 A_fc(m”2) 6.94E-07 d_throat 0.1
d_throat { 0.00254]
k 1.4 k 13 A_fc (Sholes) {m*2)  3.47E-06 A_throat{ 5.06707E-06
C_p(Ki/keK) 1.006 C_p (Ki/ke 0.846 Kj/kgK A_1(mA2) 0.000344042
Area Ratic 67.8976
Measured Information
Inlet Cascade Main Flow at Exit Film Cooling Holes Film Cooling Plenum Sonic Orifice
Presintes 28.5942 psi Co2Setting 16 Py 30.693695 psi
197150.1 Pa 2 29.85746 psi 211625.6605 Pa
Psecinies 27.01041 psi 22 29.85746 psi Tr 6.038756 C
186230.3 Pa Pr. 29.85746 psi 279.188756 K
M. intet 0.286476 Mg, 0.221068853 205860 Pa
Frcoiniet 29.8994 C Pre 2.362996936 Ire 15.031 C Sonic Orifice Calculations
303.0494 K ¥ 303.736085 K 288.181 K :
Recovery factor 0.86 T,rf'r: 300.7960183 mi \E =0.0485
Mece, 298.8312 K Cre 3476726694 m/s T
Mree 303.7361 K Orc 76.85959826 m/s i, 0.000311577 kg/s
Feoinias 346.5353 m/s Data Set: Data Set 2020_01_12_1320 c
Seninier 99.27402 m/s 2019 _12 06 18 25SP 50at 205 (x/cx 0.48) 16
Pes,inter 2.171118 kg/(mA3)

Figure Al. (a) Constants for facility and (b) measured information for 2020-01-12-1320 c16 data.
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(a)

(b)

Film Cooling Calculations

Film Cooling Calculations

Film Cooling Parameters

me A
lo.sv) = . 89.79462 kg/(m"2s)

Mc 0.135986

loe 287.3838 K

Dcs 3.757987 kg/(m*3)
Ce 265.6637

v, 23.80424

Mc 0.135986

Blowing Ratio BR 0.494412056
Velocity Ratio VR 0.31088301
Density Ratio DR 1.590347625
Momentum Flux Ratio | 0.153704308

Discharge Coefficient Parameters
3.47E-06 m"2 A_fc (Sholes) (m"2)
M_c 0.135986
k_co2 13
R_co? 188.9116 J/KgK
T_Tc 288.181
PTc 205860

Variable Properties

Pe.ideal
Ce,ideal

Mc.:c{m!

v 1
cideal

cideal

.

cD

3.781592 kg/m"3
266.0237 m/s

0.117536

31.26737 m/s
0.00041 kg/s

0.000312 kg/s

0.759424

Figure A2. (a) Film cooling calculations and (b) variable properties for 2020-01-12-1320 c16 data.
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(a)

(b)

Constants for Facility

Air C02 Dimensions

R (kJ/kgmolk) 8.314 R (ki/kgm 8.314 Film Cooling Holes Orifice

M (kg/Kmol) 28,9647 M (kg/Km 44.01 d_fc(m) 0.00094 d_1(in) 0.824
d 1(m) 0.02093

R=R/M (KI/kgk) 0.287039 R=R/M (KJ 0.188911611 A_fc (m"2) 6.94E-07 d_throat ( 0.1
d_throat( 0.00254

k 14 k 13 A_fc (Sholes) (m*2) 3.47E-06 A_throat ( 5.07E-06

C_p (Kj/keK) 1.006 C_p (Ki/ke 0.846 Kj/kgK A_1(m#2) 0.000344
Area Ratic 67.8976

Measured Information

Inlet Cascade

Main Flow at Exit Film Cooling Holes

Film Cooling Plenum

Sonic Orifice

Prosintec 28.50995 psi
196569.3 Pa
Psce,intae 26.96212 psi
185897.3 Pa
Moz intec 0.283519
T,"::.:r.fs.‘ 28.20892 C
301.3589 K
Recovery factor 0.86
Meco.intes 297.2492 K
Freeinter 302.0279 K
Fesinlee 345.6168 m/s

97.98879 m/s

2.17877 kg/(m*3)

M.
pf(

[':_: fc
sfc
Cre

re

Data Set:

2019_12_06 18_25 SP 50t 205 (x/cx 0.48)

0.221068853

2.376361054
302.0279418 K
299.1044093
346.6936747 m/s
76.64317302 m/s

Co2 Setting

Data Set

15
31.16812 psi
31.16812 psi
31.16812 psi
214903.6 Pa
13.17277 C
2863228 K

2020 01 07 1930 ¢
15

Py 32.20422 psi
222040.4 Pa

Tr 1471137 C
287.8614 K

Sonic Orifice Calculations

i T,
I NTT _0.0485
i

N 0.000708 kg/s

Figure A3. (a) Constants for facility and (b) measured information for 2020-01-07-1930 c15 data.
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(a)

(b)

Film Cooling Calculations

Film Cooling Calculations

Film Cooling Parameters

[OCSI"C] =

Mec
TS ¢
Pes
e
Ve

Mc

Me 504.1239 kg/(mA2s)
Ar
0.203451
284.556 K
3.795332 kg/(m*3)

264.3534
53.78289

0.203451

Blowing Ratio
Velocity Ratio
Density Ratio
Momentum Flux Ratio

BR 1.120748159
VR 0.701730966
DR 1.597119428
| 0.786463688

Discharge Coefficient Parameters
3.47E-06 m”2 A_fc (Sholes) (m”2]
M_c 0.203451
k_co2 1.3
R_co2 188.9116 J/KgK
T Tc 286.3228
PTc 214903.6

)

Variable Properties

ﬁf.:(‘:eﬁ[
cideal
M

Ve ideal
Neidea
M,
cD

cideal

i
i

3.973341 kg/m”"3
265.1646 m/s

0.283593
75.19896 m/s
0.001037 kg/s

0.000708 kg/s
0.683166

Figure A4. (a) Film cooling calculations and (b) variable properties for 2020-01-07-1930 c15 data.
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(a)

(b)

Constants for Facility

Air C0o2 Dimensions

R (kl/kgmolK) 8.314 R (kJ/kgm 8.314 Film Cooling Holes Orifice

M (kg/Kmol) 28.9647 M (kg/Km 44.01 d_fc(m) 0.00094 d_1(in) 0.824
d_1(m) 0.02093

R=R/M (KJ/kgk) 0.287039 R=R/M (KJ 0.188911611 A_fc(m”2) 6.94E-07 d_throat ( 0.1
d_throat( 0.00254

k 14 k 1.3 A_fc (5holes) (m*2) 3.47E-06 A_throat ( 5.07E-06

C_p (Kj/kgK) 1.006 C_p (Ki/ke 0.846 Kj/kgk A_1(m*2) 0.000344
AreaRatic 67.8976

Measured Information

Inlet Cascade

Main Flow at Exit Film Cooling Holes

Film Cooling Plenum

Sonic Orifice

PTw:..'.':.'e.'
PS—.c.;.v:.'e.’

‘fo:.::‘.tet

T.'-x‘:r_.'er

Recovery factor
sz

27.78572 psi
191575.9 Pa
26.58906 psi
183325.2 Pa
0.251568
28.40414 ¢
301.5541 K
0.86

298.307 K
302.0828 K
346.2312 m/s
87.10085 m/s
2.141005 kg/(m*3)

Mf(
pfr
L{(ﬂ'
sfec
Ere
Tse

Data Set:

0.221068853
2.375929885
302.082752 K
299.158689
346.7251313 m/fs
76.65012708 m/s

2019_12_06 18 25 SP 50at 205 (x/ox 0.48)

Co2 Setting
Prtl
Peez

D
fTr‘

TTc

Data Set

18
33.84525 psi
33.84525 psi
33.84525 psi
233354.8 Pa
11.89818 C
285.0482 K

2020_01_12_350_c1
8

Pr 35.55785 psi
245162.8 Pa
Tr 4.104006 C
277.254 K

Sonic Orifice Calculations

i T
Do NTT _0.0485
4R

Mg 0.001268 kg/s

Figure A5. (a) Constants for facility and (b) measured information for 2020-01-12-1350 c18 data.
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(a)

(b)

Film Cooling Calculations

Film Cooling Calculations

Film Cooling Parameters

[.DCSI"(‘] =

me

A

365.3547 kg/(m"2s)

0.360966
279.5839 K
3.862829 kg/(m"3)

262.0336
94.58216

0.360954

Blowing Ratio BR 2.006172146
Velocity Ratio VR 1.233946508
Density Ratio DR 1.625817758
Momentum Flux Ratio | 2.475509115

Discharge Coefficient Parameters
3.476-06 m"2 A_fc (Sholes) (m*2
M_c 0.360054
k_co2 13
R_co2 188.9116 J/KgK
T_Tc 285.0482
PTc 233354.8

)

Variable Properties

ﬁf.il’;?ﬁ:
eideal

“r ideal

Veideal

He
cD

Neideal

4.333777 kg/m"3
264.5738 m/s

0.458154
121.2154 m/s
0.001823 kg/s

0.001268 kg/s
0.695439

Figure A6. (a) Film cooling calculations and (b) variable properties for 2020-01-12-1350 c18 data.
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(a)

(b)

Constants for Facility

Voo inter

95.35109 m/s
2.110522 kg/(m"3)

2019_12_06 18 25 SP 50at 20's (x/cx 0.48)

23

Air COo2 Dimensions
R (k)/kgmolK) 8.314 R (kl/kgm 8.314 Film Cooling Holes Orifice
M (kg/Kmol) 28.9647 M (kg/Km 44.01 d_fe{m) 0.00094 d_1(in) 0.824
d_1({m) 0.02093
R=R/M (Kl/kgk) 0.287039 R=R/M (K] 0.188911611 A_fc (m2) 6.94E-07 d_throat 0.1
d_throat [ 0.00254
k 14 k 1.3 A_fc (Sholes) (m~2)  3.47E-06 A_throat( 5.07E-06
C_p (Kj/kgK) 1.006 C_p (Kj/ke 0.846 Kj/kgk A_1(mA2) 0.000344
AreaRatic 67.8976
Measured Information
Inlet Cascade Main Flow at Exit Film Cooling Holes Film Cooling Plenum Sonic Orifice
Prosintet 27.57517 psi Co2 Setting 23 Pr 40.90632 psi
190124.2 Pa P 1 38.46143 psi 282039.3 Pa
Psee,intes 26.15701 psi P02 38.46143 psi Ty 1.473767 C
180346.3 Pa P 38.46143 psi 274.6238 K
M., intee 0.275679 M. 0.221068853 265182.4 Pa
Mo intet 28.43974 ¢ Pfe 2.37482551 e 11.15598 C Sonic Orifice Calculations|
301.5897 K L{} fe 302.2232307 K 284.306 K i, \[Fr
Recovery factor 0.86 e 299.2978079 Vi 0.0485
Tseointae 297.6983 K Fre 346.8057413 m/s T
T o,inter 302.2232 K Tre 76.66794746 m/s M 0.00201 kg/s
Ceinlat 345.8778 m/s Data Set: Data Set 2020 01_07_1445 c

Figure A7. (a) Constants for facility and (b) measured information for 2020-01-12-1445 c23 data.
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(a)

(b)

Film Cooling Calculations

Film Cooling Calculations

Film Cooling Parameters

[.0(31.(] =

m,

Ae

579.1789 kg/(m"2s)

0.563735
271.3699 K
3.979751 kg/(m"3)

258.1558
145.5314

0.563735

Blowing Ratio BR
Velocity Ratio VR
Density Ratio DR

Momentum Flux Ratio |

3.181025852
1.898204359
1.675807895
6.038237137

Discharge Coefficient Parameters

M_c

k co2
R_co2
T_Tc
PTc

3.47E-06 m"2

0.563735
1.3
188.9116 J/KgK
284.306
265182.4

A_fc (5holes) (m*2]

)

Variable Properties

E'f.:fiec:i
c.ideal

Veideal
M,
cD

le ideal

Meideal

4.937722 kg/m*3
264.2291 m/s

0.644345

170.3868 m/s

0.002919 kg/s
0.00201 kg/s

0.688415

Figure A8. (a) Film cooling calculations and (b) variable properties for 2020-01-12-1445 c23 data.
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(a)

(b)

Constants for Facility

Air C0o2 Dimensions

R (kl/kgmolK) 8.314 R (kl/kgm 8.314 Film Cooling Holes Orifice

M (kg/Kmol) 28.9647 M (kg/Km 44,01 d_fc(m) 0.00094 d_1(in) 0.824
d_1(m) 0.02093

R=R/M (KJ/kgk) 0.287039 R=R/M (K 0.188911611 A_fc (m"2) 6.94E-07 d_throat ( 0.1
d_throat( 0.00254

k 1.4 k 1.3 A_fc (Sholes) (mA2) 3.47E-06 A_throat( 5.07E-06

€_p (Kifkgk) 1.006 C_p (Kj/ke 0.846 Kj/kgK A_1(m*2) 0.000344
AreaRatic 67.8976

Measured Information

Inlet Cascade Main Flow at Exit Film Cooling Holes Film Cocling Plenum Sonic QOrifice
Presinter 27.36978 psi Co2 Setting 26 Py 44.02724 psi
188708 Pa Peeq 41.17959 psi 303557.2 Pa
Psee intee 25.94677 psi P ez 41.17959 psi Tr 2.754567 C
178896.7 Pa Pre 41.17959 psi 275.9046 K
Mo inter 0.277235 M;. 0.221068853 233923.4 Pa
T co,intee 29.65797 ¢ Pre 2.365215894 I're 12.36842 C Sonic Orifice Calculations
302.808 K B'-'[ fe 303.4511311 K 285.5184 K i, \/T_r
Recovery factor 0.86 e 300.5138226 T 0.0485
Meosinter 298.8571 K fre 347.5095444 m/s r
Teointer 303.4511 K Pre 76.82353638 m/s te 0.002428 kg/s
Fooinlet 346.5503 m/s Data Set: Data Set 2020 01 12 1505 c
Voo inter 96.07601 m/s 2019_12_06 18 25 SP 50at 205 (x/cx 0.48) 26
Peointer 2.085441 kg/(m"3)

Figure A9. (a) Constants for facility and (b) measured information for 2020-01-12-1505 c26 data.
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(a)

(b)

Film Cooling Calculations

Film Cooling Calculations

Film Cooling Parameters

[PfSI":] =

699.6581 kg/(m"2s)

0.675719
267.2169 K
4.041603 kg/(m"3)

256.1728
173.114

0.67577

Blowing Ratio BR 3.850532314
Velocity Ratio VR 2.253397815
Density Ratio DR 1.708767217
Momentum Flux Ratio | 8.676781102

Discharge Coefficient Parameters
3.47E-06 m™2 A_fc (Sholes) (m*2
M_c 0.67577
k_co2 1.3
R_co2 188.9116 J/KgK
T_Tc 2855184
PTc 283923.4

)

Variable Properties

t’r.:f:'er:[
c.ideal
M

Ve ideal
M,
cD

cideal

Neideal

5.264232 kg/m*"3
264.7919 m/s

0.726855
192.4653 m/s
0.003516 kg/s

0.002428 kg/s
0.690555

Figure A10. (a) Film cooling calculations and (b) variable properties for 2020-01-12-1505 c26

data.
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APPENDIX B

DATA FILE DIRECTORY

Blowing _ o
Type of Data ) File Name Date Description
Ratio
50 percent span Excel file that contains output
2019 10 09 data from labview and
10-09-19 _
17 _30 SP 51 at calculations for pressure and
26.2s.xIsx Mach number distributions.
90 percent span Excel file that contains output
2019 10 11 170 data from labview and
) 10-11-19 _
Pressure ratio 0_SP50 at 26.7 calculations for pressure and
and Mach /A sec.xlsx Mach number distributions.
number Excel file that contains output
o 2019 10 21 202 )
distributions _ data from labview and
5 tip_SP50 at 10-21-19 _
] calculations for pressure and
24.4 tip.xlsx L

Mach number distributions.

Excel file that contains output
Downstream )

data from labview and
Pressure Results | 10-09-19 )

calculations for pressure
SP 47 EDIT.xlsx o

distributions.

Pressure readings and
2020-01-12-1520 Temperature readings from
c0.xlsx )

LabView

Raw output from Flir

Heat transfer 2020-01-12- ResearchIR software
coefficient and 1520_c0.avi containing all data from the
adiabatic film 09-12-20 infrared camera

cooling 0 htc1520¢0smooth Matrix of spatially resolved
effectiveness .mat heat transfer coefficient
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Htc1520cOratios
mooth.mat

Etal520cOasmoot
h.mat

Etal520c0bsmoot
h.mat

Matrix of ratio of spatially
resolved heat transfer
coefficient to baseline case

without film cooling

Matrix of adiabatic
effectiveness relative to the
mainstream temperature

corrected for flow effects

Matrix of adiabatic
effectiveness relative to the
local wall temperature

corrected for flow effects

Heat transfer
coefficient and
adiabatic film
cooling

effectiveness

0.49

2020 01 12 132
0 _c16.xlIsx

2020 01_07_132
0_c16.avi

htc1320c16smoot

h.mat

Htc1320c16ratios

mooth.mat

Etal1320cl16asmo

oth.mat

Etal320c16bsmo

oth.mat

01-12-20

Pressure readings and
Temperature readings from
LabView

Raw output from Flir
ResearchIR software
containing all data from the

infrared camera

Matrix of spatially resolved

heat transfer coefficient

Matrix of ratio of spatially
resolved heat transfer
coefficient to baseline case

without film cooling

Matrix of adiabatic
effectiveness relative to the
mainstream temperature

corrected for flow effects

Matrix of adiabatic

effectiveness relative to the
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local wall temperature

corrected for flow effects

2020 _01_07_193
0_c15.xlsx

2020 01 07 193

Pressure readings and
Temperature readings from
LabView

Raw output from Flir
ResearchIR software

0_cl5.avi containing all data from the
infrared camera
htc1930c15smoot Matrix of spatially resolved
h.mat heat transfer coefficient
Heat transfer i i i
o Matrix of ratio of spatially
coefficient and )
] o htc1930c15ratios resolved heat transfer
adiabatic film o _
_ 1.12 mooth.mat coefficient to baseline case
cooling 01-07-20 : : .
) without film cooling
effectiveness i _

Matrix of adiabatic
etal930c15asmoo effectiveness relative to the
th.mat mainstream temperature

corrected for flow effects

Matrix of adiabatic
etal930c15bsmoo effectiveness relative to the
th.mat local wall temperature

corrected for flow effects

Pressure readings and
2020_01_12 135 Temperature readings from
0_c18.xlsx )

Heat transfer LabView
coefficientand | 2.01 01-12-20 | Raw output from Flir

adiabatic film
cooling

effectiveness

2020 01 _07_135
0 _cl18.avi

ResearchIR software
containing all data from the

infrared camera
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htc1350c18smoot
h.mat

Htc1350c18ratios
mooth.mat

Eta1350c18asmo
oth.mat

Etal350c18bsmo
oth.mat

Matrix of spatially resolved

heat transfer coefficient

Matrix of ratio of spatially
resolved heat transfer
coefficient to baseline case

without film cooling

Matrix of adiabatic
effectiveness relative to the
mainstream temperature

corrected for flow effects

Matrix of adiabatic
effectiveness relative to the
local wall temperature

corrected for flow effects

Heat transfer
coefficient and
adiabatic film
cooling
effectiveness

3.18

2020 01 12 135
0_c18.xlIsx

2020_01_07_144
5 ¢23.avi

Htc1445c23smoot
h.mat

Htc1445c23ratios
mooth.mat

Etal445c23asmo
oth.mat

01-12-20

Pressure readings and
Temperature readings from
LabView

Raw output from Flir
ResearchIR software
containing all data from the

infrared camera

Matrix of spatially resolved

heat transfer coefficient

Matrix of ratio of spatially
resolved heat transfer
coefficient to baseline case

without film cooling

Matrix of adiabatic
effectiveness relative to the
mainstream temperature

corrected for flow effects
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Etal445c23bsmo
oth.mat

Matrix of adiabatic
effectiveness relative to the
local wall temperature

corrected for flow effects

Heat transfer
coefficient and
adiabatic film
cooling
effectiveness

3.85

2020 01 12 150
5 ¢26.xlsx

2020_01_07_150
5 c26.avi

htc1505¢c26smoot
h.mat

Htc1505c26ratios
mooth.mat

Etal1505c26asmo
oth.mat

Eta1505c26bsmo
oth.mat

01-12-20

Pressure readings and
Temperature readings from
LabView

Raw output from Flir
ResearchIR software
containing all data from the

infrared camera

Matrix of spatially resolved

heat transfer coefficient

Matrix of ratio of spatially
resolved heat transfer
coefficient to baseline case

without film cooling

Matrix of adiabatic
effectiveness relative to the
mainstream temperature

corrected for flow effects

Matrix of adiabatic
effectiveness relative to the
local wall temperature

corrected for flow effects
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APPENDIX C

SOFTWARE DIRECTORY

Software

File Name

Description

LabView

PressureV3.vi

LabView program used to collect and store
raw flow condition data from thermocouples

and pressure transducers

Flir ResearchIR

N/A

Used to collect and store infrared images

from the infrared camera

MATLAB PostProccessinglupdate.m Used to generate matrices of temperature
from infrared video data

MATLAB PostProccessing2update.m Used to generate plots of results from
matrices of heat transfer data

MATLAB desT2qgsiimpl.m Subroutine used to calculate heat transfer

MATLAB Airfoil.m Used to plot ratios and line plot figures and

extract the line plot data for heat transfer

ratios and adiabatic effectiveness
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