Methods for Bioconjugation of Biochemical Sensors based on Metallic Nanoparticles

Jacob Rolin, Seyed Sadeghi, Nanophotonics Group, Physics Department

Background and Introduction

The purpose of this experiment was to determine the effect of different conjugation methods on quantum dot uniformity. The traditional method of bathing a sample in the conjugation chemicals was compared to the newer flow method.

Quantum dots (Qds) are nanocrystals that are alternatives to fluorescent dyes used in optics. Qds have molecules on their outer shell that can be indirectly adsorbed into gold nanostructures on glass slides (Fig 1.)

Previous experiments have used a flow chamber as the method to conjugate Qds to gold. These experiments offered promising results, but the flow method allows only one sample to be conjugated at a time.

The bath method allows multiple samples to be created at once, increasing conjugation efficiency.

Methods

10nm of Gold and 2 nm of Chromium were deposited through sputtering onto a glass slide

A mixture of sulfur containing molecules were either flowed over the sample, or poured onto the sample for 1-2 days

EDC/NHS was either flowed (Fig 2.) over the sample or stirred over the sample to activate carboxyl groups on the sulfur containing molecules

The samples were bathed in Qds for 30 minutes

Control Samples were created by only bathing the sample in Qds for 30 minutes

An EMMCCD camera was used to image the samples after the Qds were conjugated to determine quantum dot uniformity.

The Standard deviation of each images total pixel values was taken as a measure of uniformity

Results

There appeared to be no significant difference in the uniformity of Qds across flow and bathing methods

The gold in the first flow sample lifted from the sample in gold flakes in the EDC/NHS step. This was prevented in the second sample by stirring the EDC/NHS in a petri dish containing the sample, and by using a sample also containing a chromium adhesive layer beneath the gold

Fig 3. (a) and (b) show the standard deviations of each EMCCD camera’s image compared between each sample.

Impact and Conclusions

This work utilizes cheap amine quantum dots to make a uniform covering of Qds across a region of glass nano islands

This study also displays that using the flow method for Qd conjugation has no significant effect on the uniformity of Qds across a nano island sample

Using the bathing method, multiple samples can be created simultaneously instead of the single sample that can be created with the flow chamber

Due to the small number of controls, the effect on uniformity of the SAM can not be determined, which will require future trials.

References

