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ABSTRACT
The School of Graduate Studies
The University of Alabama in Huntsville

Degree Doctor of Philosophy Program Biotechnology Science and Engineering

Name of Candidate Megan Elizabeth Breitbach

Title Interrogation of Epigenetic and Genetic Determinants of Complex Diseases

Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease
characterized by altered immune cells that induce systemic inflammation, organ damage
and, in some cases, premature mortality. DNA methylation studies focused on SLE have
revealed widespread hypomethylation of CpGs within interferon-related genes in SLE
patients relative to controls. However, most studies to date have focused on European
ethnicities leaving out the most at-risk population, African American females. African
American females are affected two to three times more often than females of European
ancestry. Furthermore, SLE tends to occur at an earlier age in African American females
with increased severity compared to any other affected population. This work aimed to
address the biological explanation for the racial disparity in SLE through interrogation of
genome-wide DNA methylation data from five sorted B cell lineages in a cohort of both
SLE patients and control females of both African and European ancestry. I aimed to
identify at what stage in B cell development aberrant epigenetic patterns arise and to
develop multivariate epigenetic signatures of SLE and its severity. I discovered that
epigenetic defects in African American female SLE patients are present in immature B

cells emerging from bone marrow (transitional B cells), while epigenetic defects appear



to develop later during B cell development in European American female SLE patients.
The most associated African American-specific CpGs occur at interferon-regulating
genes and are enriched for binding of transcription factors involved in immune
regulation, such as EBF 1. Lastly, these epigenetic changes proved to be highly predictive

of disease status in all African American patient immune cell populations.
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CHAPTER 1

GENETICS AND EPIGENETICS

1.1 An Introduction to Genetics

Deoxyribonucleic acid (DNA) is the hereditary material packaged within the cells of
most all organisms, including humans (“Cells and DNA” 2018). DNA is made up of four
chemical bases (adenine, thymine, guanine and cytosine) that together provide the
information for the development, growth and reproduction of organisms. The chemical
bases pair up in a double helical fashion that coils into larger structures referred to as
chromosomes, for which humans have 23 pairs. Of the ~3 billion base pairs across all 46
chromosomes, about 99% is shared across the human race. The 0.1% of the human
genome that exhibits variability across populations spans both regions that encode
proteins (genes) and noncoding (intergenic) regulatory regions.

Specific sequences of DNA encode genes, which are basic functional units of
heredity and can be thought of the instruction manuals for making ribonucleic acid
(RNA) and proteins (National Institute of General Medical Sciences 2010; “Cells and
DNA™2018). The human genome contains between 20,000-25,000 genes (“Cells and
DNA™2018). Every human will receive two copies of each gene; one from each parent,
which are referred to as alleles. Differences in alleles, in addition to de novo mutations
that arise spontaneously, are what make organisms unique from one another. Variation at

a nucleotide that occurs in only a minority of the population, or at a low allele frequency,



is referred to as a single nucleotide polymorphism (SNP). For example, SNPs in the
Melanocortin 1 Receptor (MC1R) are responsible for variation in hair and skin color as

well as freckling and mole count (Mengel-Jorgensen et al. 2006).

1.2 A Brief History of Genetic Discoveries

The advent of genomic analysis began in 1859 with the discovery of natural selection
and the publication of Charles Darwin’s classic, On the Origin of Species by the means of
Natural Selection, or the Preservation of Favored Races in the Struggle for Life. Gregor
Mendel provided further evidence for Darwin’s theory of natural selection with his
experimental work on peas in 1865. In subsequent years Frederick Miescher was the first
to isolate DNA, and Walter Flemming’s staining of chromatin allowed for the discovery
of mitosis (1879). It was not until 1909 that the word “gene” was coined by Wilhelm
Johannsen, who also is responsible for making the first distinction between one’s
hereditary disposition, or “genotype”, and one’s outward physical appearance, or
“phenotype” (Johannsen 1911). The discovery that chromosomes contain genes was
made by Thomas Hunt Morgan in 1911.

The 1950’s saw a large jump in the understanding of DNA and genetics, beginning
with Alfred Hershey and Martha Chase’s experiments in virus and bacterium, proving
that genes are made of DNA (1952). Francis H. Crick and James Watson performed the
Nobel Prize winning work of determining the structure of DNA in 1953. Joe Hin Tjio
defined the exact number of chromosomes in human cells in 1955, the same year that
Arthur Kornberg and his team isolated DNA polymerase. The semiconservative nature

of DNA replication was discovered in 1958 by Matthew Meselson and Franklin Stahl. In



1966 Marshall Nirenberg cracked the genetic code along with others by discovering that
a 4-letter alphabet (A, T, C and G) encodes 20 difference proteins based on order alone.

The transition from discovery to manipulation and experimentation of genomics came
in the 1960s. In 1968, the first restriction enzyme was discovered, paving the way for the
development of genetic research tools. Recombinant DNA was produced for the first
time in 1972, followed by the development of the Sanger method in 1975. The Sanger
method allowed for DNA sequencing using specific dyes to identify each of the 4 nucleic
acids in DNA. The development of polymerase chain reaction (PCR) method in 1983
allowed for more complex genotyping, including: tandem repeats, insertion and deletion
polymorphisms, and single nucleotide polymorphisms (Hirschhorn et al. 2002). With
PCR, genetic components could be associated with disease in a straightforward manner,
paving the way for future research in genomic medicine. Using PCR, one could amplify
regions of interest in those with disease and make comparisons with those that do not
have the disease. By 2002, over 600 genomic associations with common complex
diseases had been made using PCR technology (Hirschhorn et al. 2002).

Genetic sequencing only got bigger, better, and faster with the development of next
generation sequencing (NGS) technologies. Briefly, NGS consists of randomly breaking
DNA into fragments that are immobilized on a sequencing lane, allowing for thousands
of sequencing reactions to occur simultaneously. Primers are then hybridized to the ends
of each template for NGS. Dye-labeled nucleotides are incorporated during DNA
synthesis reactions, which can then be aligned to a reference genome or assembled de

novo.



NGS technology allowed for the completion of the monumental 13-year Human
Genome Project in 2003 (Zaveri et al. 2001). Furthermore, rapid development in NGS
technologies enabled the integration of basic translational and clinical research, paving
the way for a more detailed genetic understanding of complex traits (Boyle, Li, and
Pritchard 2017; Ziogas, Kyrochristos, and Roukos 2018). Companies like Illumina,
Roche, and Thermo Fisher Scientific offered sequencing machines capable of whole
exome, genome, transcriptome and targeted sequencing. With this, the cost of
sequencing a genome decreased much faster than predicted (Wetterstrand KA 2016).
The price of whole genome sequencing (WGS) began at approximately one million
dollars. In 2009, Illumina offered WGS with 30-fold coverage for approximately
$48.000. The price of NGS has rapidly decreased since then to approximately $1,000 in

2015.

1.3 DNA Methylation

In contrast to changes in DNA sequence, epigenetic modifications are dynamic,
reversible changes that occur throughout development and affect gene expression (Yan et
al. 2016). The word epigenetics means “in addition to changes in the genetic sequence”
and encompasses methylation, acetylation, phosphorylation, ubiquitylation and
sumoylation (Weinhold 2006). The most widely-studied epigenetic modification is
methylation, which typically occurs at the 5 position on cytosine within CpG
dinucleotides and is widely associated with altered gene expression (Guenette et al.
1992). DNA methylation influences various genetic processes, such as: chromatin

structure modulation, transcriptional regulation, genomic stability, X chromosome



inactivation, and silencing of parasitic elements (Robertson 2002). Three DNA
methyltransferases (DNMTs) exist that catalyze the incorporation of a methyl group from
S-adenosyl-L-methionine to cytosine: DNMT1, DNMT3A and DNMT3B (B. Jin and
Robertson 2013). DNMT]1 is responsible for maintenance of DNA methylation, while
DNMT3A and DNMT3B are responsible for de novo methylation. Additionally,
hydroxymethylation can occur at the same 5’ position of cytosine when a ten-eleven
translocation (TET) protein catalyzes the oxidation of the methyl group (Yong, Hsu, and
Chen 2016).

Approximately 80% of CpG sites in the genome are methylated, while the other 20%
remain unmethylated and are typically located in CpG islands near the promoter region of
genes (Yong, Hsu, and Chen 2016). CpG islands are stretches of approximately 500-
1000 bps of DNA with a CG:GC ratio of greater than 0.6. Most CpG islands remain
unmethylated so as to allow for the interaction of proteins with promoter regions. On the
other hand, gene body methylation, typically occurring at repetitive sequence sites, has
been shown to affect expression by altering intron-exon boundaries thus impacting
splicing. Yet, the three dimensional nature of DNA allows for physical interactions
between DNA regions far apart in linear genetic space further complicating canonical
models of the effect of methylation on gene expression (Yan et al. 2016).

Altogether, DNA methylation is an intricate and dynamic process that must be tightly
coordinated to ensure proper genomic stability as well as temporal and special gene
expression throughout development. When these processes are altered, normal cell
progression and development are impaired. For example, Breast Cancer Type 1 and 2

Susceptibility genes (BRCA1/2) are essential for homologous recombination- (HR)



mediated DNA repair that are often mutated in hereditary cases of breast and ovarian
cancer (Powell and Kachnic 2003). Epigenetic hypermethylation of BRCA1 and BRCA2
is associated with tumorigenesis in both sporadic and hereditary cases of various cancer
types (Anjum et al. 2014). Likewise, epigenetic silencing of Werner Syndrome ATP-
Dependent Helicase (WRN) via promoter methylation occurs in several cancers and leads
to loss of protein and enzyme activity causing chromosomal instability (B. Jin and
Robertson 2013).

Several technologies exist for profiling DNA methylation. Restriction enzyme-
based methods employ methylation-sensitive restriction enzymes (BstUI, HplI, NotI and
Smal) that cleave unmethylated target sequences leaving methylated DNA intact (Yong,
Hsu, and Chen 2016). This method can be coupled with DNA sequencing for the
identification of methylated DNA regions. Affinity enrichment methods utilize methyl-
CpG-binding domain (MBD) proteins or antibodies specific for 5-methylcytosine to
enrich for methylated DNA regions. Similarly, methylated DNA immunoprecipitation
(MeDIP) uses an anti-methylcytosine antibody to immunoprecipitated DNA containing
methylated CpG sites and can be coupled with an MeDIP-chip array or sequencing.
Bisulfite conversion methods exploit the ability of sodium bisulfite to deaminate
unmethylated cytosine to uracil, leaving methylated cytosine unaffected thus providing
single base resolution, and can be coupled with NGS. Illumina has developed several the
Infinium Beadchips, which have been the tool of choice for larger epigenome studies due
to the high coverage and low cost of the arrays (Yan et al. 2016). The Infinium
HumanMethylation450 Beadchip harnesses the interaction between sodium bisulfite and

DNA to cover over 450,000 CpG sites through amplification of sodium bisulfite-



converted DNA and hybridization to arrays. This allows for coverage of most CpG
islands (96%), CpG shores (92%) and CpG shelves (86%) across the genome. Illumina’s
newest array, the Infinium MethylationEPIC Beadchip expands upon the
HumanMethylation450 Beadchip by covering approximately 90% of those CpG sites in
addition to about 200,000 more CpG cites covering enhancer regions defined by the
Encyclopedia of DNA Elements (ENCODE) and Function Annotation of the Mammalian
Genome Phase 5 (FANTOMS) projects. Whole-genome bisulfite sequencing (WGBS)
technologies, such as BS-seq and methyl-seq assess methylation at almost every CpG site
including gene deserts or intronic regions at a much higher cost. Reduced-representation
bisulfite sequencing (RRBS) uses Msp1 restriction enzyme digestion, bisulfite conversion
and NGS for interrogation of the methylation pattern of specific DNA fragments. This
method is more cost-effective than WGBS but lacks coverage at intergenic and distal

regulatory elements.

1.4 Epigenetic and Genetic Mechanisms of Complex Diseases

The overarching goal of genomic medicine is to identify DNA sequence variation
associated with specific phenotypes (Antonarakis 2001). The expanded ability to
perform high-throughput genetic association studies of diseases brought about the
realization that very few diseases can be fully explained by one or even a small number
of genetic variants (Hirschhorn et al. 2002). We can now appreciate that ~80% of
disease-causing genomic associations are rare and lie in non-coding regions making
biological understanding of the these associations difficult to interpret (Manolio, Collins,

Cox, Goldstein, Hindorr, et al. 2009). Therefore, much of the heritability remains



unexplained for most diseases despite a large number of identified variants from
numerous genome association studies (Manolio, Collins, Cox, Goldstein, Hindorr, et al.
2009).

The most straightforward genetic diseases to interrogate are monogenic diseases,
which are caused by an abnormal mutant allele in one gene can be identified simply by
comparing disease DNA to controls (Antonarakis 2001). Most often, determination of
monogenic disease genes is performed by first assaying candidate genes for which the
phenotype is likely explained. For example, Cystic Fibrosis (CF) is a monogenic
disorder, characterized by elevated sweat chloride concentrations, exocrine pancreatic
insufficiency, progressive obstructive lung disease and male infertility (Gallati 2014).
The causative CF gene was identified in 1989 as Cystic Fibrosis Transmembrane
Conductance Regulator (CFTR) on chromosome 7. Since then, almost 2,000 variants
have been reported in CFTR as causative of CF. Another monogenic disorder among the
first to be genetically characterized is Huntington chorea, which results in motor
disturbances, psychiatric symptoms, and cognitive decline. The disease is fully explained
by a trinucleotide expansion (CAG) in the Huntingtin (HTT) gene, for which a repeat
length over 40 confers a 100% risk of developing the disease (Brinkman et al. 1997).
Although the genetic location of the disease-causing loci was determined in 1983, the
function of HTT has yet to be determined further supporting the notion that investigation
of genomic determinants of disease is a highly complex process (Gusella et al. 1983)

Unlike the few determined monogenic diseases, such as CF and Huntington Chorea,
most diseases are polygenic in nature (Manolio, Collins, Cox, Goldstein, Hindorr, et al.

2009). As Figure 1.1 demonstrates, most diseases are caused by a large number of



variants exhibiting a small effect on disease. According to the Online Mendelian
Inheritance in Man (OMIM), only ~1.4% of the total number of genes in the genome
(20,000-25,000) are responsible for mendelian, monogenic disorders (McKusick-Nathans
Institute of Genetic Medicine, Johns Hopkins University (Baltimore n.d.). Variants that
greatly increase disease risk and interfere with fitness are under greater selective
pressure, meaning that variants which remain in the human population mostly consist of
very rare variants with large effects on disease and common variants with very small

effects on disease.

Complex
o inheritance
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Figure 1.1 Genomic models of monogenic versus complex disorders.



Despite strong efforts in the field of genomic medicine, the determination of
predisposing mutant alleles for common disorders has proven to be extremely difficult for
multiple reasons, including: low allele frequency in the population, altered inheritance
patters, uncertain phenotypes, variable age of onset, etc. (Antonarakis 2001). In order to
detect rare variants with large effects on disease heritability, extremely large sample sizes
are needed for adequate statistical power. Even with larger sample sizes, the ability to
detect both rare variants, or those with a very small minor allele frequency (MAF <
0.05%), with large effects on disease heritability and common variants with very small
effects on disease heritability pose the largest challenge to genomic analysis to date
(Manolio, Collins, Cox, Goldstein, Hindorr, et al. 2009). Furthermore, most genome-wide
association (GWA) studies thus far have focused on European populations so as to avoid
false positives resulting from admixture and population structure, but in doing so have
left out more genetically diverse populations, such as individuals of African ancestry.
The failure to explore more genetically diverse populations further limits genetic
association findings. Overall, these barriers make sample obtainment for GWA studies
extremely difficult, meaning that unique and creative approaches to genetic analysis must
be taken for successful genomic associations to be made in cohorts that are smaller than
needed for appropriate genome-wide power.

Yet, researchers have proven that the determination of polygenic signatures,
encompassing numerous sites across the genome, for complex diseases can be
accomplished (Khera et al. 2018). For example, height is a highly heritable trait for
which a study including over 250,000 individuals concluded that common genetic

variants can explain ~60% of heritability (Wood et al. 2014). Researchers have since
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expanded on that knowledge by building polygenic risk scores, capable of predicting
one’s height based purely on genetic variation (Krapohl et al. 2016). Additionally,
polygenic risk scores have also been developed for cardiovascular disease, atrial
fibrillation, type two diabetes, irritable bowel disorder and breast cancer among many
other complex disease (Khera et al. 2018). In a cohort consisting of 184,305 European
American individuals, Khera et al. was able to determine a polygenic risk score for
cardiovascular disease (CAD) encompassing 6,630,150 variants which proved to be
capable of successfully predicting CAD in a validation cohort with an Area Under the
Curve (AUC) of 0.81 (Khera et al. 2018). The advantage of such polygenic scores is that
they can be used to stratify individuals based on genetic variation as early as birth, which
is most often much sooner than discriminative symptoms assessed clinically appear
(Khera et al. 2018). Yet, the downside to undergoing polygenic risk score determination
is that extremely large cohorts and subsequently large validation cohorts are required for
proper analysis. Furthermore, most polygenic scores to date have been assessed and
validated in cohorts of European ancestry, leaving out most genetically diverse
individuals.

Despite large efforts in discovering the heritability of complex diseases, there still
exists a large portion of “missing heritability” for most all complex diseases studied
(Manolio, Collins, Cox, Goldstein, Hindorft, et al. 2009). Several researchers point to
possible explanations for this missing heritability, which include the inability to account
for all possible gene-gene and gene-environment interactions when conducting genomic

studies (Trerotola et al. 2015). Epigenetic analysis of complex traits allows for the
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interrogation of gene-environment interactions and explains much of the missing
heritability for many complex diseases.

The first step in the initiation of gene expression involves alteration of chromatin
structure, a process largely dependent on the local epigenetic landscape (Relton and
Smith 2010). The epigenome is widely shaped by interactions with both genetics and the
environment. These epigenetic responses are maintained and transmitted to next
generations (Yan et al. 2016). Thus, epigenetic loci hold great potential for not only
association studies but also for the determination of biomarkers and predictors of
complex diseases.

A few drawbacks exist to such studies, with the first being the inability to determine
the casual relationship between epigenetic changes and disease. To accomplish this,
large cohorts with a longitudinal study design are needed. However, longitudinal studies
require strong patient commitment that is often rare in the general population. Despite
that drawback, many associations have been made between specific epigenetic changes
and phenotypes such as: cancer, smoking, age, exercise and alcohol intake amongst many
others (Relton and Smith 2010).

Another drawback to population-based epigenetic studies is the difficulty in
determining the distinct epigenetic signature for individual cell types. Most samples
assayed for methylation consist of multiple cell types, and so the epigenetic signature
could be a result of differences in cell types rather than the phenotype of interest (Yan et
al. 2016). Epigenetic studies performed on sorted cell types account for this, yet sorting
cells sufficiently requires expensive equipment and can prove to be quite difficult. With

continued research, technological advances and better patient recruitment strategies,
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knowledge of the biological significance of epigenetic changes associated with disease
will grow allowing for the exact relationship between epigenetic changes and disease to
be determined and possibly lead to development of epigenetic targets and predictors for

disease.

1.5 Aging as a Complex Disease

Aging is loosely defined as the time-dependent functional decline affecting all
organisms, and the link between biological and phenotypic aging has gained much
interest in the genomics field (Serrano et al. 2013). A common theme throughout all
aging processes is the accumulation of genetic damage, which in theory should make
studying the aging process relatively simple. However, the number of exogenous and
endogenous factors challenging genetic integrity and stability throughout lifespan
complicate aging research. While great strides have been made in the understanding of
the genetic underpinnings of aging, much more work must be done in order to gain a
complete understanding (Deelen et al. 2013). Traditional approaches to aging research
have utilized model organisms, such as flies or mice, to identify hundreds of genes
associated with aging (Costa-Reis and Sullivan 2013). This has led to a better
understanding of pathways that are key to controlling homeostasis and ultimately
longevity. Additional studies of model organisms have led to the formation the
“hallmarks of aging” including: cellular senescence, mitochondrial dysfunction,
deregulated nutrient sensing, loss of proteases, epigenetic alterations, stem cell
exhaustion, altered intercellular communication, genomic instability, and telomere

attrition (Serrano et al. 2013). One of the most researched pathways is insulin-like

13



signaling, as it has been established that longer-living organisms (i.e. humans) are more
sensitive to insulin-harboring mutations causing lower expression levels of key proteins
involved in the insulin-regulating pathway (Costa-Reis and Sullivan 2013).

With the advent of NGS, research has shifted from hypothesis-driven genetic analysis
of aging in model organisms to GWA studies in humans consisting of large cohort sizes
including those who have achieved a longer age. The increased life expectancy of family
members of centenarians provides evidence for a strong genetic component of life
expectancy, which could be captured in GWA studies (Santos-Lozano et al. 2016).
However, the role that environmental factors plays is difficult to determine in itself, but
also makes determination of genetic factors influencing aging throughout one’s life more
complex. Environmental factors known to influence aging include smoking, excessive
alcohol intake, poor diet, toxic elements, and hard manual labor making it nearly
impossible to control for these amongst many other factors that could confound GWA
analysis of genetic factors associated with aging (Moskalev et al. 2014). Consequently,
the only genetic factors with replicated evidence for genome-wide association with
longevity are Forkhead Box O3 (FOX03A4) and Apolipoprotein E (4POE) (Erikson et al.
2016). FOX03A4 is a transcription factor which plays an important role in cell cycle
regulation (Eline Slagboom, van den Berg, and Deelen 2018). APOE is involved in lipid
transfer throughout the bloodstream as well as injury repair in the brain (Shadyab and
LaCroix 2015). Variation in APOE has also been widely associated with Alzheimer’s
disease and CAD, two aging-related diseases.

Interest has grown recently in the realm of “healthy aging” or “health span” which

often has varied definitions but generally refers to the time span during which a person
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lives without chronic illness and physical impairments (Martin, Bergman, and Barzilai
2007). Determining genetic associations with the healthy aging phenotype has proven to
be extremely difficult. Most healthy aging and longevity-related studies have simply
found “suggestive” genetic determinants (Erikson et al. 2016). For example, a recent
study conducted on the Wellderly cohort of “well-aged individuals” failed to identify
genetic associations with healthy aging but did identify associations with age-associated
diseases, such as Alzheimer’s disease and CAD. Together this has led to the hypothesis
that healthy aging is more of a polygenic complex disease resulting from a genetically

decreased risk of aging-related diseases (Erikson et al. 2016).

1.6 Summary

DNA provides the instructions for growth, development and reproduction of
organisms. Approximately 1% of the genetic code differs across the human race. The
advent of NGS technologies has allowed for high throughput interrogation of genetic
variation across species. With this, we have obtained a deeper understanding of the
genotype-phenotype relationships originally discovered by Gregor Mendel’s
experimental work in peas over 50 years ago. Yet, missing heritability for many
phenotypes and in particular complex diseases still remains. Several lines of evidence
supports the hypothesis that the missing heritability might be largely explained by
epigenetic variation in individuals as a result of interaction between one’s genetic
makeup and environment. In this work I have expanded upon the analysis performed by

others in pursuit of obtaining a better understanding the genetic and epigenetic
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mechanisms of two complex diseases: accelerated aging and systemic lupus

erythematosus (SLE).
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CHAPTER 2

GENETIC VARIATION IN AGING-RELATED GENES AS A PREDICTOR OF

AGING STATUS

2.1 Introduction

Exceptional longevity is influenced by a combination of environmental and
genetic factors, and previous twin studies report that the heritability of biological aging is
approximately 25% (Herskind et al. 1996). Familial studies have suggested that
exceptional aging tends to run in families, yet the search for genetic determinants of
longevity has produced inconsistent results (Sebastiani et al. 2012, 2013; Pilling et al.
2017). Several GWA studies have attempted to pinpoint genetic influences of healthy
aging or longevity, yet only two loci, 4POE and FOXO34, have repeatedly reached
genome-wide significance (Broer et al. 2015; Deelen et al. 2014). Thus, an alternative
approach to understanding genetic factors underlying a complex phenotype like
exceptional aging is warranted.

In my analysis, I utilized a combrehensive targeted sequencing approach designed
to interrogate rare and common variants in both coding and non-coding regions within
twenty key genes with strong evidence for involvement in aging related processes and
have utilized traditional statistical and machine learning approaches to explore aging-
related genetic variants. The twenty genes were chosen because they have previously

been associated with various molecular functions involved in aging, such as DNA
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damage response and repair, telomere maintenance, metabolism, and cellular stress
resistance. There is ample evidence suggesting a causal role of DNA damage in aging
and age-related diseases, for example most progeroid syndromes, including Werner
Syndrome, Cockayne syndrome and Fanconi anemia, are characterized by accelerated
aging possibly as a result of hypersensitivity to genotoxins predominantly due to
problems with DNA repair and genome maintenance (Gensler and Bernstein 1981;
Hoeijmakers 2009; Behrens et al. 2014; Sounni et al. 2011; Vermeij, Hoeijmakers, and
Pathof 2016).

Several lines of evidence also suggest that levels of DNA damage increase with
age, whereas DNA repair capacity in mammals reduces with age (Niedernhofer et al.
2018). Comparative studies in mammals further indicate that species longevity positively
correlates with DNA repair efficiency (Hart and Setlow 1974). Long lived species such
as the naked mole rat, Heterocephalus glaber, and bowhead whale, Balaena mysticetus,
have a higher copy number of genes associated with DNA repair possibly allowing for
decreased susceptibility to age-accumulated DNA damage (Macrae et al. 2015). Therefore, I
hypothesized that variants associated with DNA repair, telomere maintenance and genomic
stability could be predictive of biological age. To interrogate this hypothesis, 20 genes were
picked for analysis based on 1) association with the aging phenotype, 2) association with
aging-related phenotypes or 3) association based on animal studies. Table 2.1 provides each
gene included in the study, along with biological function, biological association with aging
or age-related pathology and literature references for study inclusion. In brief, Alipoprotein E
(APOE) is a gene involved in cholesterol and lipid metabolism, which has been associated

with both neurodegenerative disorders and human longevity (Soto et al. 2015; Broer et al.
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2015; Pilling et al. 2017). Many of the genes chosen are associated with progeroid disorders,
which are characterized by accelerated aging. Fanconi Anemia Group A Protein (FANCA)
is a DNA repair protein, and mutations in this gene are responsible for a rare progeroid
disorder, Fanconi Anemia (Soria-Valles and Lopez-Otin 2016; Schumacher, Garinis, and
Hoeijmakers 2008; Krishnan, Liu, and Zhou 2011). Likewise, Werner Syndrome RecQ like
Helicase (WRN) is a gene involved in genomic maintenance and stability, and mutations in
WRN lead to the progeroid disorder known as Werner syndrome (Multani and Chang 2007;
Bendtsen, Juul, and Trusina 2012; Mohaghegh and Hickson 2002). Genes associated with
telomere maintenance for which mutations are linked to telomeropathies were included in the
panel of genes for this work, based on evidence supporting the necessity of telomere
maintenance in aging (Aubert and Lansdorp 2008; Opresko and Shay 2017). TERFI
Interacting Nuclear Factor (TINF2) helps regulate telomere length and mutations lead to
Revesz syndrome, which is characterized by symptoms characteristic of premature aging
(Savage et al. 2008; Kim, Kaminker, and Campisi 1999; Rubelj and Vondracek 1999). Many
genes involved in DNA repair were also included for analysis based on the previously
mentioned evidence for the association of DNA repair and aging. For example, Bloom
Syndrome RecQ Like Helicase (BLM) is involved in double-strand break repair and defects
are associated with segmental aging of the immune system, an elevated risk for diabetes
mellitus and cancer incidence (de Renty and Ellis 2017; Karow, Wu, and Hickson 2000;

Coppede and Migliore 2012).
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Table 2.1 Names, biological function and literature references for aging association of the

20 genes sequenced.

24 (CDKN2A)

associated with
disease of aging
(e.g., cancer,
atherosclerosis, type
2 diabetes,
glaucoma).
CDKN2A

Gene Function Biological Literature
association with reference for
aging/ age-related | study inclusion
pathology

Apolipoprotein E | Combines with lipids | Polymorphisms in (Soto et al. 2015;

(APOE) to form lipoproteins APOE are Broer et al. 2015;

which package associated with Pilling et al. 2016)
cholesterol and other | human longevity.
fats for transfer
through the
bloodstream.
Aprataxin Involved in DNA Defects in Aprataxin | (Krishnan, Liu,
(APTX) break repair and base | cause the autosomal | and Zhou 2011;
excision repair. recessive Coppede and
neurodegenerative Migliore 2012;
disorder Ataxia Katyal and
Oculomotor Apraxia | McKinnon 2008)
1 (AOA1).

Bloom Syndrome | ATP-dependent DNA | Defects associated (de Renty and Ellis

RecQ Like Helicase. Unwinds with segmental 2016; Karow, Wu,

Helicase (BLM) | DNA in the 3°-5° aging of immune and Hickson 2000;

direction. Involved in | system together with | Coppede and
double-strand break an elevated risk of Migliore 2012)
repair. otitis media and

pneumonia, an

elevated risk of

diabetes mellitus,

reduced fertility, and

higher cancer

incidence.

Cyclin Induces cell cycle Mutations near (Baker, Jin, and

Dependent arrest and acts as a CDKN2A were Van Deursen

Kinase Inhibitor | tumor suppressor. particularly 2008; Shiels 2010)
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expression increases
with age. Removal
of pl6+ve cells in
mouse models
increases health
span and lifespan.

Sialic Acid Mediates cell-cell Mutations in CD33 | (Griciuc et al.
Binding Ig-Like interactions and are associated with | 2013; Estus et al.
Lectin 3 maintenance of AD risk. 2019)
(CD33) immune cells in the

resting state.
Dyskerin Stabilization and Mutations in DKC1 | (Guetal. 2011;
Pseudouridine maintenance of causes premature Blasco 2007)
Synthase 1 telomerase. aging, bone marrow
(DKC1) failure and cancer.

Excision Repair
Cross-

Catalytic component
of a DNA repaid

Loss of ERCC4
causes systemic

(Mufioz et al.
2005; Q. Yuan et

Complementing | endonuclease accelerated aging al. 2014; Bogliolo
Rodent Repair responsible for 5° (XFE) and etal. 2013)
Deficiency, incision during DNA | neurodegeneration.

Complementation | repair.

Group 4

(ERCC4)

Excision Repair | Endonuclease Mutations in (Coppede and
Cross- involved in single- ERCCS lead to Migliore 2012)
Complementing | strand DNA Cockayne Syndrome

Rodent Repair nucleotide excision (CS), which is

Deficiency, repair at the 3” end. characterized by

Complementation premature aging.

Group 5

(ERCCS)

Excision Repair
Cross-

DNA-binding protein
involved in

Defects in ERCC6
cause CS and age-

Complementing | transcription-coupled | related macular
Rodent Repair nucleotide excision degeneration.
Deficiency, repair.

Complementation

Group 6

(ERCC6)

(Tuo et al. 2006;
Baas et al. 2010)

Fanconi Anemia
Group A Protein

DNA repair protein
involved in

Defects cause
Fanconi Anemia, a

(Soria-Valles and
Lopez-Otin 2016;

(FANCA) Interstrand Crosslink | progeroid syndrome | Schumacher,
(ICL) repair. with symptoms Garinis, and
common in Hoeijmakers 2008;
premature aging Krishnan, Liu, and
(sarcopenia, Zhou 2011)
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hypersensitivity to
infectious agents,

endocrine
abnormalities, etc.).
Lamin A/C Component of the LMNA mutations (Kawahara et al.
(LMNA) nuclear lamina. cause Hutchinson- 2011; Lopez-Mejia
Gilford syndrome etal. 2011;
(HGPS). Rodriguez et al.
2009)
Poly(ADP- Mediates poly-ADP- | PARP1 activation (Coppede and
Ribose) ribosylation of increases with age in | Migliore 2012;
Polymerase 1 proteins and plays a C. elegans. Krishnan, Liu, and
(PARPI) role in DNA repair, Increased activation | Zhou 2011;
chromatin has been associated | Maynard et al.
remodeling, telomere | with aging, 2015)
maintenance and neurodegeneration
mediator of and metabolic
inflammation. abnormalities in
humans.
DNA Polymerase | DNA polymerase Polb"” mice have an | (Cabelof et al.
Beta involved in base increased age- 2002;
(POLB) excision and repair. related mortality rate | Strosznajder,
and tumorigenesis. Jesko, and
Strosznajder 2000)
DNA Polymerase | Involved in Increased (Hiona and
Gamma mitochondrial DNA mitochondrial Leeuwenburgh
(POLG) replication. mutation load in 2008; Kujoth et al.
mice is associated 2005; Trifunovic
with premature et al. 2004)
aging.
Sirtuin 1 NAD-dependent SIRT1 (Grabowska,
(SIRT1) protein deacetylase. overexpression Sikora, and Bielak-
Involved in cell cycle | extends lifespanin | Zmijewska 2017;
regulation, response mice. Mutations are | Y. Yuan et al.
to DNA damage, associated with age- | 2016; Satoh et al.
metabolism, apoptosis | related pathologies | 2013)
and autophagy. such as myocardial
infarction (MI).
Sirtuin 6 NAD-dependent SIRT6 (Moskalev et al.
(SIRT6) protein deacetylase. overexpression 2014; Schumacher,

Deacetylase activity
towards histone
H3K9Ac and
H3KS56Ac. Required
for genomic stability.

extends lifespan.
Long-lived animals
have highly efficient
SIRT6 function.

Garinis, and
Hoeijmakers 2008;
Berman et al.
2012; Serrano et
al. 2013)

22




Deacetylates
telomeric DNA.

characteristic of
accelerated aging.

Superoxide Destroys superoxide | SOD2 mutations are | (Fabrizio et al.
Dismutase 2 anion radicals associated with heart | 2004; Velarde et
(SOD2) produced in cells. disease and al. 2012; Patel
increased risk of 2002; Qiu et al.
malignancies. 2010)
Telomerase Ribonucleoprotein Telomere attrition is | (Martinez and
Reverse polymerase that highly associated Blasco 2010;
Transcriptase maintains telomere with aging due to Blackburn, Epel,
(TERT) ends by the addition increased cellular and Lin 2015;
of the telomere repeat | senescence. Aubert and
TTAGGG. Lansdorp 2008;
Ghosh and Zhou
2014)
TERFI Component of the Mutations in TINF2 | (Savage et al.
Interacting telosome that is are linked to Revesz | 2008; Kim,
Nuclear Factor 2 | involved in telomere | syndrome, a Kaminker, and
(TINF2) length regulation and | telomeropathy with | Campisi 1999;
protection. symptoms Rubelj and

Vondracek 1999)

Werner
Syndrome RecQ
like Helicase
(WRN)

DNA helicase that is
involved in
maintenance of
genomic stability,
DNA repair,
replication,
transcription and
telomere
maintenance.

Mutations in WRN
lead to Werner
syndrome with
systemic aging
phenotypes

(Multani and
Chang 2007; Ding
et al. 2007;
Bendtsen, Juul,
and Trusina 2012;
Mohaghegh and
Hickson 2002)

Single variant association tests, such as linear regression, have been the statistical

tools of choice for large GWA studies. In fact, most longevity-targeted GWA studies have

taken this approach (Sebastiani et al. 2012; Broer et al. 2015: Pilling et al. 2017). However,

such univariate models leave out epistatic effects that may be predictive of heterogeneous

diseases, such as aging, meaning the actual number of genetic factors contributing to or

predictive of polygenic diseases are often precluded (Stephan, Stegle, and Beyer 2015).

More complex statistical approaches would account for genetic factors that alone have little
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association but when considered in a multiplex manner hold great predictive power. Random
forest and support vector machines (SVM) are just two of a multitude of ensemble learning
methods capable of analyzing large data sets such as those obtained in GWA studies.
Random forest couples bootstrap sampling and conditional inference trees for determining
the importance of variables for classifying data (Lunetta et al. 2004). 1 sought to use random
forest in my analysis of healthy aging as it is capable of handling sizable data sets, considers
the interactions between variables, and provides importance measures for predictors. On the
other hand, SVM is a type of supervised learning that not only supports high dimensional
data but is robust against noise and sparsity in the data (Furey et al. 2000). SVM function
by taking a set of input features or data and defining an optimal decision boundary or
hyperplane that most accurately separates the input space based on assigned binary
classifiers. Together these factors allow for better determination of genetic predictors in
polygenic diseases that might be due to nonlinear interactions in both common and rare

variants (Lunetta et al. 2004).

For this study, a panel of twenty aging-related genes was sequenced with a
targeted sequencing method previously developed by the Devin Absher Lab at the
HudsonAlpha Institute in a cohort of 200 individuals selected from the University of
Pittsburgh Claude D. Pepper Older Americans Independence center (Day, Song, and
Absher 2014). Half of the cohort was labeled as “early” agers, as determined by age (65-
75 years old) and the inability to either walk up a flight of stairs or walk for 15 minutes
without resting. The other half of the cohort is labeled as “late” agers due to age (>75

years old) and their ability to pass the walking tests performed on the “early” agers.
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After applying univariate and multivariate analyses to the sequencing data, I show that a
decision tree-based method, random forest, trained on genetic markers in the discovery
cohort shows promise in predicting “phenotypic age”. Despite the fact that a sample set
of 200 is small for this genomic study, I show that this exploratory analysis to determine
genetic predictors of aging provides a useful and novel mechanistic approach for
investigating the association of polygenic risk variants with complex diseases. Further
analyses with larger cohorts would find this approach valuable for determining a set of
genetic variants which alone would not hold predictive value but in combination are
highly predictive of accelerated aging. A predictive model of accelerated aging would
not only give insight into key biological processes of this complex phenotype but could
potentially be used in a clinical setting as a diagnostic tool to indicate patients that may

be at risk for early onset of age-related diseases.

2.2 Methods

2.2.1 Discovery set University of Pittsburgh Medical Center (UPMC) Cohort
participants

Participants were recruited from several sources with the help of Dr. Susan
Greenspan and Dr. Neil M. Resnick with informed consent in accordance to the
University of Pittsburgh Institutional Review Board IRB#: REN17120030 /
PRO14010101. Funds were provided by the National Institutes of Health grant for the
University of Pittsburgh Pepper Older Americans Independence Center (P30AG024827)
and by discretionary monies from the Office of the Senior Vice Chancellor for the Health

Sciences, University of Pittsburgh, a non- profit entity.
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Most participants were obtained through the University of Pittsburgh Claude D.
Pepper Older Americans Independence center, which maintains a registry of more than
2,500 older adults who live in the greater Pittsburgh area and are interested in
participating in clinical research. Print and radio ads were also used. Respondents were
screened with a standardized phone interview. Most respondents (~90%) were of self-
reported Caucasian ethnic background (Figures A.1 and A.2). Assessments were
performed under the guidance of Dr. Susan Greenspan, Dr. Neil M Resnick and Dr.
Arthur S. Levin. Initial statistical analyses between groups were conducted with the help

of Dr. Subashan Perera and Dr. Aditi U. Gurkar.

2.2.1.1 Assessments

Demographic information: Age, gender, level of education, and smoking
status.

Body composition: Height, weight and dual x-ray absorptiometry (DXA) to
measure total fat, lean body mass and calculate body mass index (BMI).

Cognitive function: Montreal Cognitive Assessment (MOCA) and Digit
Symbol Substitution Test (DSST). Higher scores indicate better cognitive
function.

General health: Comorbidities were assessed using a comorbidity index
(Rigler et al. 2002) ; a higher score suggests a greater number of comorbidities
and poorer health (Sangha et al. 2003). The SF-36 measured patients’ self-
reported health and wellness; higher scores indicate better health (J.E. Ware

1992). Finally, participants were characterized as frail, prefrail, or robust using
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the five-item Fried Frailty Index; higher scores indicate frailty (Figure A.3)
(Abellan Van Kan C, Geriatric, and Panel 2008).

Function and activity: The Community Healthy Activities Model Program
for Seniors (CHAMPS) Physical Activity Questionnaire was used to assess the
frequency of activity and estimate calories per week involved in the activity
(Stewart et al. 2001). Grip strength was assessed with a
standard dynamometer. The short physical performance battery (SPPB) was used,
which provides an integrated physical assessment based on several measures,
including gait speed, chair stand, and balance; a higher score indicates better

performance (Vasunilashorn et al. 2009).

2.2.2 Validation set (Wellderly cohort)

The Wellderly Cohort consists of individuals of at least 80 years of age with no
chronic disease or need for chronic medications. Sample collection and processing for
WGS as well as variant calling are previously described (Erikson et al. 2016).
Individuals used in this study had an average age of 86 and consisted of less males (n =
195) than females (n = 316). Comparison of overlapping clinical features in the
discovery and validation cohorts were assessed to ensure a similar population distribution

(Figure A.4). Furthermore, the cohort contains no enrichment for longevity variants.

Table 2.2 Comparisons of variables between aging cohorts: mean + standard *Computed
using independent samples t-, Wilcoxon rank sum, or chi-square tests, as appropriate.
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Demographics

Early Aged (n = 100)

Late Aged (n=100)

Early vs Late Aged p-value

Age

70.4+3.0

83.2+54

<0.0001

Sex (% female) 63 (63.0) 56 (56.0) 0.3133
Comorbidity Scale 44+ 1.8 2:5+1:6 <0.0001
Gait Speed (m/s) 0.92 +0.24 1.08 + 0.26 <0.0001
BMI 33.5+ 8.3 27.2+4.6 <(0.0001
Lean Body Mass (kg) 53.+11.8 47.4+9.9 0.0002
Total Mass (kg) 91.6:+235 73.6+15.3 <0.0001
% Fat Body Mass 37.9+ 8.6 32.2+7.8 <0.0001
MOCA 25.3+2.8 24.3+3.5 0.03
DSST Score 42.2+9.5 39.7+10.7 0.0808
Grip Strenth - dominant (kg) 26.7+10.8 26.7+10.6 0.9791
Chair Rise Time 14.7+13.8 12.4+11.8 0.0001
SPPB Total Score 9.1+2.5 10.2+1.8 0.0005
Balance Score 34+1.0 3.6+0.7 0.1873
Calories from all Activity Per Week 2320 +2186 3585 +3059 0.001
Calories from Moderate Activity Per Week |929 + 1495 2018 +2322 0.0001
Freq. of all Activity Per Week 13.9+9.8 19.7+10.6 <0.0001
Freq. of Moderate Activity Per Week 43+5.0 7.2+6.4 0.0003
Frail Scale 26+1.3 0.6+0.9 <0.0001
Physical Function Index 37.3+19.1 71.2+17:2 <0.0001
General Health Perception 52.8+22.2 78.2+14.3 <(0.0001
Bodily Pain 44.5+22.4 76:3+19.7 <0.0001
Social Function 69.0+24.5 92:1#15.7 <0.0001
Mental Health Index 65.2+14.3 75.84+9.4 <(.0001
Vitality 47.7+14.1 66.5+11.8 <0.0001

2.2.3 Participant group determination

The goal in participant group determination was to maximize the signal with

respect to any genetic differences between the groups. Because there is no standard

operational criterion for defining early and late agers, self-reported and performance-

based measures of mobility we used (Abellan Van Kan C, Geriatric, and Panel 2008), as

they are strongly associated with incident disability (Perera et al. 2014) and mortality

(Perera et al. 2016) in the elderly. As such, “early aged” participants were defined as

those 65-75 years of age who could not walk up a flight of stairs or walk for 15 minutes

without resting; and “healthy aged” were defined as those age 75 years and older who

could walk up a flight of stairs and walk for 15 minutes without resting. Participants with
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a history of a major cancer were excluded. Table 2.2 depicts the differences in

participant characteristics between groups.

2.2.4 Variant genotyping

Clone adapted template capture hybridization sequencing (CATCH-Seq) was used
with the help of the Absher Lab as an alternative to other sequencing methods due to the
low cost and high coverage ability of both coding and noncoding genomic regions (Day,
Song, and Absher 2014). CATCH-Seq yield is comparable to whole genome sequencing
(89% versus 98% at 100x) at a fraction of the cost. This allows for more samples to be
included in the study when only a small set of genes are under investigation, as is the case
in this study. CATCH-Seq probes were designed to capture ~150-200 kilobase (kb)
regions around each of the 20 target genes (Table 2.2) (Day, Song, and Absher 2014).
Standard [llumina sequencing libraries were hybridized to the CATCH-Seq probes and
the target-enriched libraries were subjected to 2 x 100 base pair (bp) paired-end
sequencing on HiSeq2500 sequencers. The resulting sequence data was aligned to the
human reference genome (GRCh37) with BWA (H. Li and Durbin 2009) and variants
were called using GATK v2 (McKenna et al. 2010) with exclusion filters for variants

with low mapping quality (mapq<20) and low genotype quality (q<30).

2.2.4 Quality control

2.2.4.1 Variant inclusion criteria
Quality control analysis was performed with mentorship and guidance from Dr.

Devin Absher. The initial datasets consisted of 25,273 variants in the discovery cohort
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and 8,018 variants in the validation cohort (Table A.1). Variants with less than 8 alleles
in the discovery cohort and over 10% missing data were excluded. Variants not covered
in both the discovery and validation cohort were also excluded. Variants were then
imputed across individual genes +/- 50kb using K-nearest neighbor imputation via the
impute package in R (Hastie et al. 2001). A total of 5,896 variants was selected for

further analysis.

2.2.5 Statistical Analysis
2.2.5.1 Total variance analysis

The sum of all variance between groups was analyzed using a Wilcoxon rank-sum
test to determine whether “early” agers had more or less genetic variance in the target

genes compared to “late” agers.

2.2.5.2 Single variant association
Logistic regression was utilized to assess the association of any single variant to
the age group phenotype. A quantile-quantile (QQ) plot was used for evaluation of the

distribution of p-values.

2.2.5.3 Gene association
Wilcoxon rank-sum tests were used to compare the distribution of CADD scores
of non-reference alleles near target genes (+/- 50kb) between early and late agers. P-

values were adjusted for multiple hypothesis via the Bonferroni method.
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2.2.5.4 Predictive modeling

Four-fold cross-validation with four different seeds using a random forest
regression model via the RandomForest package in R as well as SVM classification via
the 1071 package in R were conducted for predictive modeling of the aging phenotype
(Liaw and Wiener 2002; Dimitriadou et al. 2005). Default settings for number of trees
grown (n = 500) and number of variables tried at each split (mtry = 6) were used for each
random forest model. An SVM model was tuned using a range of costs (¢ = 0.1, 1.0,
10.0, 100.0) and gamma values (gamma = 0.5, 1, 2). Both random forest and SVM
modeling were performed on 28 different stratifications of the data in addition to a
control data set (Table A.2) resulting in 928 models in total. Most of the data subsets
consisted of different groups of genomic spaces within the sequenced data as well as
filters for frequency and deleteriousness. The first subsets of the data contained all
sequence variants in addition to groups with different filters, including a subset of rare
variants (tAF<0.1), very rare variants (tAF<0.01), mildly deleterious and highly
deleterious variants as defined by the Combined Annotation-Dependent Depletion
(CADD) score (CADD>10 and CADD>15 respectively). I then took subsets of only the
variants within the start and end site of the target genes, and then applied the same filters
as the first to analyze rare (tAF<0.1), very rare (tAF<0.01), mildly (CADD>10), and
highly (CADD>15) deleterious variants. The next set of subsections contained target
gene variants plus 50kb up- and downstream of the transcription start and end sites to
capture regulatory genomic space within the analysis. Once again, the same cutoffs for
allele frequency and CADD score were applied. The last genomic space stratification

included variants within exons of the target gene isoforms, thus eliminating intronic
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space from the models. Allele frequency and CADD score cutoffs further stratified the
exonic variant subset. In addition to stratifications of the genomic space, publicly
available databases such as the Genome-Wide Repository of Associations Between
Phenotypes (GRASP), the SNP and copy number annotation (SCAN) database and
software such as SIFT (Sorting Intolerant From Tolerant) were utilized for grouping the
data based on variant effect (Lonsdale et al. 2013; Leslie, O’Donnell, and Johnson 2014;
Gamazon et al. 2010; Ng and Henikoff 2003). For this I analyzed known versus
unknown variant models, SIFT deleterious variants vs SIFT tolerated variants, variants
effecting expression, and GWA variants. Lastly, I included a control set which was made
by randomly shuffling all of the variants.

I assessed the performance of each model using receiver-operating characteristic
(ROC). Additionally, I used Bayesian Classifier to determine the optimal cut-off
between early and late agers in the random forest regression analysis. Top performing
SVM and random forest models were tested on the validation (Wellderly) cohort of late
agers, and the misclassification percentage, based the optimal cut-off, was used to rank
each model rather than ROC-AUC since the cohort is made up of a single class (late
agers) rather than the binary class available in the discovery cohort. Top classifiers in the
best performing random forest model were determined by analyzing the Gini importance
measures (Gini coefficient) for each split in the top models, which gives a measure of
variable importance. In other words, the higher the Gini coefficient the better the

classifier is at accurately splitting the data between two classes.
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2.2.6 Enrichment Analysis

Enrichment for specific genomic domains and functions within the top variants
was determined using a variety of tools. Enrichment of rare or severely deleterious
variants was analyzed by assessing allele frequency and CADD scores of the top variants.
[ utilized the UCSC Genome Browser for determination of the specific location of each
variant for analysis of intronic or exonic SNP enrichment (Kent et al. 1976). GRASP
was used to discover whether the top classifying SNPs have been associated with specific
phenotypes previously (Leslie, O’Donnell, and Johnson 2014). The Roadmap
Epigenomics Project database was used to ascertain how many top variants were within
regulatory regions via data from the HepG2 hepatocellular carcinoma cell line as well as
GM12878 lymphoblastoid cells (Chadwick 2012). Lastly, enrichment for transcription
factor binding sites within the top 50 variants was assessed using data from the ENCODE

database (Encode Consortium, Carolina, and Hill 2013).

2.3 Results

2.3.1 Logistic regression

The data were first analyzed using logistic regression analyses to identify 1)
single variants associated with the early or late aging groups, and 2) single genes carrying
a combination of genetic variants associated with aging group. Neither the univariate,
nor the gene-based multivariate analyses yielded statistically significant associations with
aging group.

To identify high-impact aging-related variants, variants were tested for

association with the aging group using logistic regression. Top variants were within
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intronic and upstream regions of Lamin A (LMNA) (rs915180, p value = 0.0015) and
WRN (rs6989940, p value = 0.0017), however none of the top hits reached significance
beyond what would be expected by chance given the number of individual variant tests.
A QQ plot of the logistic regression p-values indicated deflation as a result a lack of

power owing to the small sample size in this study (Figure 2.1).
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Figure 2.1 QQ plot of the single variant logistic regression p-values (-log10).

2.3.2 Variant burden

I combined the number of alternate alleles among all twenty genes in each subject
following simple inclusion criteria of the variants for quality control to determine if early

agers had a larger variant burden in aging-related genes compared to late agers and found
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no significant difference (Wilcoxon p value = 0.75) (Figure 2.2). This method was then
repeated for each individual gene, for which I compared the total amount of non-
reference alleles in early agers compared to late agers in order to test whether the variant
burden in that gene differed between groups. There was little difference in total non-
reference allele count per target gene between early and late agers for most of the genes
analyzed (Figure A.5). However, LMNA approached the Bonferroni corrected p-value of

0.003 according to a Wilcoxon rank-sum test (p-value = 0.006, FDR = 0.1).
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Figure 2.2 Preliminary Analysis Boxplots showing number of variants called per
individual between groups. Wilcoxon rank-sum p-values: Late Agers vs Early Agers (p =
0.76), Late Agers vs Validation (p = 0.28), and Early Agers vs Validation (p = 0.14).
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Figure 2.3 Flow chart of study design.

2.3.3 Machine learning

The next computational approach was geared at determining the predictive power
of my sequencing data for aging status. Both random forest and SVM were applied to the
variant data to determine the best genetic predictors of late aging. The ability of both the
random forest algorithm and SVM to outperform other non-parametric classification
methods led my use of these predictive modeling approaches in this study (Lunetta et al.
2004; Furey et al. 2000). As depicted in Figure 2.3, the training cohorts were divided
into early and late agers for random forest model training, and top performing models
according to the ROC-AUC were then tested for prediction of aging status in the
validation cohort. Various stratifications of the data were fed into each algorithm to
determine the best subset of predictors. These subsets included: variants of both low and
high allele frequencies, variants that are known to effect expression (eQTL) defined by
the SCAN database, variants previously associated with aging determined by the GRASP
database, functional variants determined by ENCODE, variants with low and high levels
of deleteriousness as defined by the CADD scores, as well as variants near or within the

target genes. Four-fold cross-validated random forest at four different seeds was
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performed on these various filters of the variant data as previously described resulting in

a total of 16 models per filter, or 464 total models.
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Figure 2.4 Boxplots of the area under the curve (AUC) for the random forest model
performed using all variants (n = 5896), using alternate variants within exons that have a
CADD score over 15 (n = 20), and the control dataset (shuffled all variants data frame, n
=5896). Wilcoxon rank sum tests between all AUCs for each model were calculated
showing a significant difference between both the all variant model (p=4.77e-07) as

well as the control model (P = 7.55e-05) and the model containing exonic variants with a
CADD score over 15.
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Figure 2.5 Boxplots of the AUC for the SVM model performed using all variants (n =
5896), using alternate variants within TFBSs (n = 1180), and the control dataset (shuffled
all variants data frame, n =5896). Wilcoxon rank sum tests between all AUCs for each
model were calculated showing a significant difference between both the all variant
model (p = 2.0e-03) as well as the control model (P = 1.38e-07) and the model containing
alternate variants within TFBSs.

The distribution of ROC-AUCs, a measure of model sensitivity and specificity,
was compared to identify the top performing models (Table A.4). Random forest
performed on the non-reference alleles within the exons of the twenty target genes having
a CADD score greater than fifteen showed the greatest performance (mean ROC-AUC =
0.62) among random forest models, while the model trained on non-reference alleles
within TFBSs proved to have the highest performance amongst all SVM models (Figures

2.4 and 2.5) but failed to outperform the top random forest model. This model proved to
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outperform that of all sequenced variants (mean ROC-AUC = 0.51) (Figures 2.6 and 2.7).
For analysis of model predictive power in an independent cohort, I tested the ability of
the top random forest model to correctly identify the validation (Wellderly) cohort as late
agers. As previously stated, because this cohort lacked any early agers I used percent
misclassification rather than ROC-AUC to assess prediction accuracy as ROC-AUC
assessment requires two groups. This analysis revealed that the top model performed
well on the model validation (Wellderly) cohort (median misclassification = 0.02) (Figure
2.8). Additionally, smoking status, which is known to affect aging, was tested as a
predictor of age group for comparison of genomic data to environment in predicting
aging status, revealing that my model built on high CADD exon variants in aging-related
genes performed comparably (Figure 2.9) (Valdes et al. 2005; Astuti et al. 2017; Csiszar
2009; Bosse et al. 1980). Lastly, because there is a significant difference in BMI between
early and late agers (p = 5.6 x 10®), I tested the correlation between the predictor value
and BMI in the discovery cohort for the top performing model which revealed little
correlation between age group prediction and BMI (Spearman Rho = 0.07) (Figure A.6).
Furthermore, a scatterplot of the predicted age group from the best model (mean ROC-
AUC = 0.62) versus BMI in both cohorts details a lack of trend between the two values

further supporting that this is a model predictive of early versus late aging rather than

BMI (Figure A.7).
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Figure 2.6 ROC curve for the model performed on the discovery cohort resulting in the
median AUC (0.62) within the best performing data set (high CADD exon variants) with
confidence intervals representing the best and worst AUC for the dataset.
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Figure 2.7 ROC curve for the all variant model resulting in the median AUC (0.51) with
confidence intervals representing the best and worst AUC for the data set.
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One of the most advantageous aspects of the random forest, especially when
predicting phenotypes, is that it returns importance scores for each predictor in the model,
allowing for the ranking of classifiers within the dataset and associations between
predictors and phenotypes to be made. Classifiers in the top performing model were
ordered by their Gini coefficient, a measure of how well the classifier contributed to
accurately separating the classes. I found that most of the predictors within the top
performing model (high CADD exon variants) were nonsynonymous mutations within

genes that play a role in DNA repair and maintenance of genomic integrity.
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Figure 2.8 Boxplot of the misclassification error in the validation (Wellderly) cohort for
the high CADD (>15) exon predictive model (median misclassification = 0.02) compared
to that of the control, or randomly shuffled discovery data set, (median misclassification
=0.36).

41



0.6 0.8 1.0

True positive rate
0.4
3
I
1

0.2

0.0

| | | | ! 1
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 2.9 ROC curve for the model resulting in the median AUC (0.62, black line)
within the best performing data set (high CADD exon variants) with confidence intervals
representing the best (0.79) and worst (0.54) AUC (dash lines) for the data set compared
to the ROC curve for the AUC (0.59) of smoking years as a predictor of aging status
(green line).

2.3.4 Enrichment Analysis

Top variants were determined by averaging the Gini coefficients across the 16
models performed on the highly deleterious target gene exon data set. Enrichment
analysis was then conducted on these variants in regard to gene and variant effect. I
found that a majority of the top variants were located within and Excision Repair Cross
Complementation Group 4 (ERCC4), Excision Repair Cross Complementation Group 5
ERCCS, LMNA and Pol(ADP-Ribose) Polymerase 1 (PARP1) (Figure 2.10 & Table A.5).

Furthermore, six of the predictor’s regions have previously been associated with over
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fifteen different phenotypes in the GRASP database (Table A.6). Enrichment analysis of
variant consequence effect revealed that predictors are enriched for those that cause a
nonsynonymous change as well as a stop gain, or premature termination codon (p<0.001)

and depleted for synonymous mutations (Figure 2.11).
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Figure 2.10 Scatter Plot of the mean Gini Scores for each variant by gene from the 16
replications of the best predictive model (High CADD Exon Variants).
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Figure 2.11 Bar plot of the variant consequences for the predictors used in the best
predictive model. P-values represent the null expectation.

2.4 Discussion

Although aging is highly dependent on environmental, behavioral and social
interactions, studies have shown that a quarter of the variance explaining aging is
heritable (Herskind et al. 1996). Yet, only a handful of genetic determinants explaining a
small portion of the heritability have been discovered thus far. This lack of discovery is
due in part by the complexity of the disease but also because of the rarity of the longevity
phenotype. Analysis of late aging rather than longevity allows for larger cohort sizes as
late agers are more common in the general population than long-lived individuals (>100
years old), yet the lack of a clear definition for “healthy” or late aging makes genetic

analysis and cross-study interpretation of this phenotype extremely difficult. Recently
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Reed et al. defined “healthy™ aging as living to the age of 70 in the absence of coronary
surgery, heart attack, stroke, diabetes, or prostate cancer, and they found an approximate
50% heritability of the defined phenotype in a cohort of male twins (Reed et al. 2004).
Several other late aging cohorts exist which are characterized by various definitions and
have resulted in inconsistent heritability percentages and gene association results
(Erikson et al. 2016; Brooks-Wilson 2013; Walter et al. 2011). Furthermore, large-scale
aging GWA studies to date have failed to identify recurrent specific genomic regions that
statistically associate with the longevity or late aging phenotypes. Albeit, combined
analysis of SNPs have identified pathways and multi-allele signatures associated with
aging phenotypes indicating that these studies should include polygenic or epistatic
associations in addition to the more traditional analysis of single gene associations to
more successfully discover genetic determinants of aging phenotypes (Brooks-Wilson
2013). This observation led us to design a unique approach for determining genetic
predictors of late aging by conducting targeted sequencing of twenty previously
determined aging-related genes in a cohort of “early” and “late” agers. This approach
allowed for the identification of a set of genetic variants associated with various aspects
of genomic integrity as possible predictors of late aging. While I point out that the size of
the discovery cohort (n = 200) is not ideal for a genomic association study, this process of
combining targeted sequencing and machine learning to identify a set of genetic factors
that together act as predictive determinants for a complex disease will be useful in further
genetic association studies of complex phenotypes for which individual variant

association is insufficient.
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My initial analysis of overall variant burden and individual variant association
with early versus late aging failed to produce any variant with statistically significant
association. While this is typical of GWA studies, especially those with either a complex
phenotype or small sample sizes, single variant association does prove useful for
prioritizing variants by p-value. In my analysis, two intronic variants within LMNA had
the strongest association (rs915180 and rs915179) and were also the most predictive
variants in the unfiltered data set random forest models (S8 Fig). Furthermore, these
variants have also been previously associated with longevity (S3 Table). In fact,
1s915179 is part of a haplotype within LMNA specifically associated with longevity
(Conneely et al. 2012). Sebastiani et al. used rs915179 as part of a “genetic signature” of
exceptional longevity and later found that this variant held up in a meta-analysis of
longevity (p = 0.0001) (Conneely et al. 2012). LMNA encodes Lamin A and C, which are
nuclear envelope proteins. These proteins are associated with Hutchinson-Gilford
progeria syndrome (HGPS), an extremely rare disease causing premature aging leading to
a life expectancy of about 13 years (Conneely et al. 2012). More interestingly, defective
forms of LMNA is produced in small amounts within cells of healthy individuals, and
there is evidence that this amount increases with age (Rodriguez et al. 2009). This
variant was also one of the first to be associated with Alzheimer’s disease in GWA
studies indicating that it may play a pivotal role in cognitive function which is known to
decline with increasing age. Lastly, rs915180 has been associated with suicide attempts
in patients with mood disorders, cardiomyopathy, chronic kidney disease and birth
weight in GWA studies (Perlis, Huang, and Purcell 2010; Kéttgen et al. 2010; Horikoshi

etal. 2013). Since this association failed to reach genome-wide significance, future
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studies involving larger cohorts are needed further assess the association of rs915179
with late aging.

Because the individual variant association proved inadequate for determining
variants within my data predictive of aging status I next focused my analysis on machine
learning. Random forest and SVM were performed on various stratifications of the data,
and assessment of the resulting ROC-AUC and misclassification percentages revealed
that the random forest model built using variants with a CADD score over 15 (high
CADD) proved to be the best performing predictor of aging status. As previously
mentioned, one of the highlights of using random forest is that it ranks predictors based
on how well they add to the purity of the model (Gini coefficient). The mean coefficient
for each predictor in all trials of the high CADD exon variants was used as a metric with
which to rank variants (Figure 2.10). The variant with the highest predictive power
(rs1136410) in my top performing model of aging status is located in PARP! and causes
an A>G alteration in the 17th exon (mean Gini = 1.26). PARP]I is responsible for
posttranslational modification of nuclear proteins in response to various types of DNA
damage as well as oxidative stress (Muiras et al. 1998:; Beneke and Biirkle 2007). With
an essential role in base excision repair (BER) and double strand break (DSB) repair,
PARPI has been known as the “sensor of nicks” within DNA (Czarny et al. 2017; Mao
etal. 2011). Interestingly, comparative studies among 13 mammalian species found that
the enzymatic activity of PARPI positively correlates with maximum lifespan in various
mammals, including humans (Biikle, Grube, and Kiipper 1992; Muiras et al. 1998:
Piskunova et al. 2008; Noren Hooten et al. 2012). Additionally, this variant has

previously been associated with survival in patients with early stage non-small-cell lung
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cancer, depression, and baseline hippocampal volume loss in apolipoprotein E
genotype €4 (APOE4) patients (Nho et al. 2013).

The next strongest predictor in the top performing model is located within
ERCCS5/XPG (mean Gini = 1.15), located on chromosome 13q22-33 which causes a G>C
(His1104Asp) change in the last (15th) exon of the gene (rs17655) (J. Zhao et al. 2018).
ERCCS is an excision repair gene that is responsible for forming the 3’ incision during
Nucleotide Excision Repair (NER) and known to be extremely polymorphic (J. Zhao et
al. 2018). The variant is located within the C-terminal of the gene and inhibits
interactions of ERCC5 with other DNA repair proteins (B. N. Xu et al. 2016). Damaging
variants in this gene can lead to deficiencies in the NER pathway causing both xeroderma
pigmentosum (XP) and Cockayne syndrome (CS), both of which result in symptoms
shared with phenotypic aging (O’Donovan et al. 1994; Barnhoorn et al. 2014).
Additionally, this specific variant, rs17655, is well-studied for its association with cancer
risk, especially for gastric and colon cancer (J. Zhao et al. 2018). The well-established
relationship between accelerated aging and deficient DNA damage repair (Gensler and
Bernstein 1981) in addition to the high importance this variant has in my top performing
model leads to the hypothesis that ERCCS is important for attenuating the aging process.

Next in importance within the predictors, is a variant within LMNA (rs513043)
which causes a missense mutation (G>A) in the 2™ codon and has a CADD score of
18.44 indicating a high degree of deleteriousness (mean Gini = 1.03). LMNA encodes
nuclear lamin proteins Lamin A and C for which mutations in this gene are associated
with numerous diseases including cardiomyopathies, lipodystrophy, muscular dystrophies

and progeroid (early aging) syndromes, such as HGPS. Again, the nuclear lamina has
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been repeatedly linked to aging; in fact, Sebastiani et al. used numerous LMNA variants
to build a “genetic signature” of longevity (Sebastiani et al. 2012).

Lastly, a variant in ERCC4 (rs1800067) was also one of the top predictors in the
best predictive model (mean Gini = 0.81). This variant causes a missense mutation
(G>A) in the 8th exon, has a CADD score of 36 indicating a very high degree of
deleteriousness within the gene, and has been associated with HDL cholesterol, and risk
of glioma and lung cancer. ERCC4 is an excision repair gene that forms a heterodimer
with Excision Repair Cross Complementation Group 1 (ERCC]I) for nucleotide excision
repair (NER). Reduced expression of ERCC4-ERCC] leads to XPF-ERCC1 (XFE)
progeria in humans that is characterized by systemic accelerated aging (Niedernhofer et
al. 2006). Moreover, other studies examining genes under positive selection in the
longest-lived mammalian species, the bowhead whale, identified ERCC/ as a top hit,
suggesting that this pathway may promote maintenance of health (Keane et al. 2015).
Jorgensen et al. showed that this variant is significantly associated with benign breast
disease (BDD), especially in patients with a family history of breast cancer (Jorgensen et
al. 2009).

Like many genomic studies of longevity and late aging, several limitations of this
study warrant comment (Martin, Bergman, and Barzilai 2007). First, in the absence of
field-wide consensus regarding the definition of early versus late aging, I relied on
physical function to differentiate the two groups. The parameters used to differentiate
them- the ability to walk 15 minutes without stopping and to climb a flight of stairs- are
well-validated (Abellan Van Kan C, Geriatric, and Panel 2008; Perera et al. 2014, 2016)

and can be viewed as integrative, i.e., incorporating the impact of both physiological
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decline and diseases. The advantage of using such standardized assessments of function
is the ability to differentiate participants into non-overlapping groups. The disadvantage
is that impaired function may reflect the effect of not only early aging but also
comorbidity. However, because aging is characterized by both constriction of
physiological reserve and the accumulation of diseases, it is difficult to disentangle the
impact of early aging and disease. It is possible that subtle effects of genes or alleles on
aging were masked by the impact of superimposed diseases but testing this hypothesis
will require a study large enough to identify a sufficient number of participants who
qualify as early agers in the absence of disease. It is also possible that conditions such as
comorbidity, obesity, and frailty lie in the causal pathway from any genetic
predispositions to functional outcomes. Therefore, efforts to control for them would
attenuate any associations between genetics and the function-based group definition.
Another limitation of this study, which is common amongst many genomic studies, is the
cross-sectional design; future studies are needed to examine longitudinal trajectories.
Furthermore, while the age cut-off of 75 years has been utilized for studies in older adults
with fractures (Boonen et al. 2010; McClung et al. 2012; Boonen et al. 2006), an older
age cut-off may alter the findings. Lastly, a validation cohort consisting of both early and
late agers would improve my confidence in the constructiveness of this model for both

early and late aging phenotypes.

2.5 Conclusion

Overall, this study found that more complex statistical analyses encompassing

epistatic effects rather than traditional single gene association tests are useful for
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interpretation of sparse or rare data. Random forest provided information complementary
to more traditional statistical analyses, including the ability to correctly classify the
validation cohort of “late” agers 90% of the time. The top predictors in the model were
within genes involved in DNA repair and stability, reiterating previous accounts that the
integrity of the genome is essential for “healthy” or late aging. I recognize that there are
many genes and possibly intergenic regions of the genome engaged with genome stability
and the biology of aging which were not included in this study, however the genes chosen
for analysis here are those with which the authors have had the greatest familiarity and
sequence knowledge. Additionally, I do point out that I did not account for admixture in
my analysis however I believe this would not drastically alter my results as most of my
discovery cohort and the entire validation cohort used were of self-reported EA descent.
While I realize that the training set has a low number of patients to achieve statistical
certainty, I propose that holistic analysis of rare variant data may have promise in a larger
cohort. Thus, targeted sequencing of genes involved in aging in combination with
machine learning should be considered as a method to determine predictors of complex

phenotypes.
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CHAPTER 3

EPIGENTICS REGULATION OF IMMUNE CELLS AND AUTOIMMUNITY

3.1 Epigenetic Mechanisms of Immune Cell Development

Hematopoietic cell development is a highly orchestrated process controlled by
lineage-determining TFs and epigenetic changes that ultimately lead to the maturation of
all cells (Oakes et al. 2016; Waddington 1956). Research involving immune, or
lymphoid, cell development has focused on determining the cell of origin of various
hematological diseases, such as myeloid malignancies, myeloproliferative neoplasms,
leukemia and lymphoma. Lymphopoiesis, or the development of lymphoid cells, begins
in the bone marrow where hierarchical epigenetic pfocesses stimulate hematopoietic
stems cell (HSC) differentiation into mature blood cells (Figure 3.1) (R. Li et al. 2018:;
Waddington 1956; Shapiro-Shelef and Calame 2005). External stimuli instigate
alterations in the epigenetic landscape and activation of TFs, such as Soi-1 Proto-
Oncogene (PU.1), Transcription Factor E2-Alpha (E24), Early B Cell Factor 1 (EBF1),
Interferon Regulatory Factor 4 (JRF4), Myocyte Enhancer Factor 2C (MEF. 2C) and B
Cell-Specific Activator Protein (PAX5), that encourage HSCs to take specific cellular
developmental pathways ultimately leading to maturation of B and T lymphocytes

(Pancaldi et al. 2015).
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In addition to transcriptional and epigenetic changes directing B and T cell
development, lymphocyte-primed cells must also undergo multiple checkpoints to ensure
adequate immune cell development. In healthy individuals, checkpoints throughout
immune cell development cbntrol for the production of autoreactive immune cells. In
patients with autoimmune diseases, immune cells escape these check points and go on to
produce autoantibodies against self-tissue causing systemic inflammatory responses (Z.
Jin et al. 2017; K. Chen, Liu, and Cao 2017; Q.-Z. Li et al. 2009; Baechler et al. 2003
Han et al. 2003; Garaud et al. 2011; Rhead et al. 2017; L. Wang et al. 2015; Absher et al.
2013; Toro-Dominguez, Carmona-Séez, and Alarcon-Riquelme 2014). Determining the
stage in cell differentiation, or cell of origin, in which aberrant epigenetic patterns as well
as when autoreactivity first occurs would lead to a better understanding of the etiology of
autoimmune diseases.

As depicted in Figure 3.1, differentiation from a long term- (LT) HSC to short term-
(ST) HSCs involves the guidance of hematopoietic-specific TFs, such as Runt Related
Transcription Factor 1 (RUNX1), Lysine Methyltransferase 2A (MLL), and LIM Domain
Only 2 (LMO2) (Orkin and Zon 2008). The ST-HSC then decides between lymphoid-
primed multipotent progenitor (LMPP) or a common myeloid progenitor (CMP)
commitment, a decision highly guided by transcriptional and epigenetic mechanisms
(Barneda-Zahonero et al. 2012; Pancaldi et al. 2015). Various lineage-determining TFs,
such as E24, PU.1, and E47, govern the decision between LMPP and CMP commitment
(Laurenti and Gottgens 2018; Yang et al. 2008). PU.1 is required for LMPP to CLP
differentiation as it primes expression of lymphoid genes while suppressing neutrophil

genes (Pang et al. 2018). E24, a helix-loop-helix TF of the E-protein family, induces
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PU.1 binding, which in turn alters chromatin accessibility to induce expression of
lymphoid genes (Semerad et al. 2009; Heinz et al. 2010). E47, an isoform of E24, is
essential for lymphoid differentiation and V(D)J recombinase activity (Yang et al. 2008;

Santos et al. 2011).
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Figure 3.1 Development of mature B cell subsets from hematopoietic stem cells (HSCs).

Once the LMPP commitment is made, a cell can then differentiate into a common
lymphoid progenitor (CLP), which is a precursor to B or T lymphocyte cell fate
(Barneda-Zahonero et al. 2012). If the B cell fate is chosen, a CLP will first differentiate
into a pro-B cell during which stage rearrangement of heavy chain (IgH) gene segments
occurs (Jung et al. 2006). Both EBFI and E24 play a role in this stage of development.

E24 regulates immunoglobulin (Ig) transcription and is essential for V(D)J
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rearrangements within the pre-B cell receptor (BCR), which is required for the first B cell
checkpoint. £24 and EBF] are epigenetic regulators that work in concert, regulating the
expression of each other throughout B cell development (Hagman, Ramirez, and Lukin
2012). They also play an important role in pre-BCR rearrangements (Vilagos et al. 2012;
Y. C. Lin et al. 2010). Pro-B cells that express an adequate pre-BCR, following V(D)J
rearrangement become pre-B cells, while those that do not undergo pre-BCR editing or
anergy (Melchers and Melchers 2015). Additionally, deletion of EBFI in the pro- to pre-
B cell transition results in the transition to the T cell and depletion of B cells in mice
(Nechanitzky et al. 2013). Only about 20% of pro-B cells pass this checkpoint in B cell
maturation, indicating the stringency of immune development (Rajewsky 1996). Pre-B
cells that do pass this checkpoint undergo clonal expansion and rearrangement of the
light chain (IgL) gene segments prior to the next checkpoint. At this stage, Pre-B cells
that do not present IgM on the cell surface undergo BCR editing or anergy while those
that do differentiate into transitional B cells and exit the bone marrow (Noviski et al.
2018; Shlomchik 2008).

Transitional B cells develop into naive B cells capable of recognizing antigen within
the spleen. At this point in differentiation, B cells are morphologically similar to T cells
(Alberts et al. 2002). It is only after antigen stimulation that epigenetic and genetic
changes occur so that B and T cells are distinguishable. TFs involved in this stage of
development include: PAXS, B Cell CLL/Lymphoma 6 (BCL6), Nuclear Factor Kappa B
Subunit 1 (NFKBI), MYC Proto-Oncogene (MYC), IRF4 and Interferon Regulatory

Factor 8 (/RF8) (Recaldin and Fear 2016). Mouse studies show that PAX3, is necessary

a5



for mature B cell development, as deletion decreases expression of mature B cell genes
and mature B cell antigens (Horcher, Souabni, and Busslinger 2001).

Naive B cells go on to form memory B cells with varied immune responses controlled
by interaction with cytokines, T cells, and antigens. During this transition from naive to
memory B cells, transcriptional and epigenetic mechanisms lead to higher proliferative
rates, increased Ig secretion, and enhanced survival (Seifert and Kiippers 2016; Good,
Avery, and Tangye 2014). Naive cells may proliferate and undergo hypermutation and/or
class switching, which results in BCR constant region switches from IgM/IgD to IgG,
IgA, or IgE (Stavnezer and Schrader 2014). Repression of genes involved in quiescence,
such as Kruppel Like Factor 4 (KLF4), Kruppel Like Factor 9 (KLF9) and Promyelocytic
Leukemia Zinc Finger (PLZF), led to increased proliferation rates of memory B cells
(Good and Tangye 2007). BCL6 upregulation in memory B cells influences T cell
interaction and consequently antibody response (Kitano et al. 2011). Lastly, expression
of members of the Tumor Necrosis Family Receptor B7 (TNFR), Cluster of
Differentiation 80 Antigen (CD80), Signaling Lymphocytic Activation Molecule
(SLAM), and B Cell CLL/Lymphoma 2 (BCL?2) family members influence memory B cell
maintenance through various mechanisms (Good, Avery, and Tangye 2014).

Altogether, these various transcriptional changes influence the memory B cell
pathway (switched, un switched and double-negative) that naive B cells can take (Alberts
et al. 2002; Brezinschek et al. 2012). Switched B cells are formed following BCR
switching, and undergo germinal center dependent hypermutation (Shapiro-Shelef and
Calame 2005). Non-switched memory B cells do not have switched BCR regions, and

undergo GC independent hypermutation. Double-negative (IgD"#CD27"%) B cells are a
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unique memory B cell in that double-negative B cells can differentiate into switched
memory B cells, and switched memory B cells can differentiate into double-negative B

cells (Y. C. B. Wu, Kipling, and Dunn-Walters 2011).

3.2 Systemic Lupus Erythematosus: An Immune Cell Disease

SLE is a historically complex autoimmune disease which lacks a clear definition
despite being first defined in 916 AD (Rekvig 2018). Multiple lines of evidence support
the hypothesis that dysregulated B cells are a major contributor to SLE (Zhang et al.
2001; Chan et al. 2013; Tipton et al. 2018). A more specific and commonly cited
hypothesis regarding the origin of SLE is that an environmental trigger, such as an
infection or drug exposure, elicits T cells to recognize self-antigens and induce B cells to
produce autoantibodies (H. Wu et al. 2017). B cells play a pivotal role in adaptive
immunity through their ability to produce and present antigens, proinflammatory
cytokines, and costimulatory factors to T cells. Dysregulation of B cell function,
signaling, or development can lead to excessive autoantibody production and B cell
hyperactivity (De and Barnes 2014). Multiple lines of evidence have demonstrated the
significant role that the epigenome plays in the etiology of several autoimmune diseases
(Absher et al. 2013; Coit et al. 2013; Jeffries et al. 2011). Association studies between
DNA methylation and SLE reveal widespread hypomethylation of CpGs within
interferon (IFN)-related genes in SLE patients relative to controls in numerous
populations, but the exact nature of the relationship has not been established (S. Chen et
al. 2019; Absher et al. 2013; Coit, Yalavarthi, et al. 2015; Mok et al. 2016; Yeung et al.

2017).
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3.2.1 Epidemiology of SLE

SLE is known to affect non-European ethnic populations more often, and at a higher
severity than European ancestral populations (Danchenko, Satia, and Anthony 2006). In
addition, females are affected 9 times more often than males (Yen et al. 2017; Jarukitsopa
etal. 2015). Gender, in combination with ethnicity, further increases risk for the disease.
Non-European females have a 3-fold higher prevalence for SLE than European females
(Danchenko, Satia, and Anthony 2006; Menard et al. 2016). African American (AA)
females have the most severe SLE-associated symptoms, often including severe organ
damage (Mohan and Putterman 2015a). The average age of onset is 36 years, and the
average duration is about 17 years (Leuchten et al. 2018).

The annual incidence of SLE ranges from 1-10 per 100,000 people, while the
prevalence of this disease is estimated to range between 5.8-130 per 100,000 people
indicating the difficulty in diagnosing patients (Jarukitsopa et al. 2015). Because
symptoms affect each patient differently based on their genetic background and
environment, diagnosing patients is often a difficult and prolonged process. A 46-year
longitudinal study focused on SLE mortality revealed 50,249 SLE-caused deaths between
1968 and 2013 and that the reduction in SLE mortality was less than that of non-SLE
mortality, indicating that treatment for the disease is lagging behind modern medicine.

(Yenetal. 2017).

3.2.2 Clinical manifestations of SLE
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SLE affects multiple organs and systems, and the defining symptoms of SLE have
changed over time. Originally, SLE was only characterized by cutaneous symptoms, but
as more and more cases arose additional symptoms have been added to the diagnosing
criteria. Currently 11 criteria are used for clinical diagnosis of SLE, as defined by The
American College of Rheumatology (ACR) and The Systemic Lupus Collaborating
Clinics (SLICC), which together are termed the SLE Disease Activity Index (SLEDALI).
Patients need only present 4 of the 11 symptoms during observations by a physician at
any given time, which allows for hundreds of unique SLE phenotypes amongst patients
(Rekvig 2018). Therefore, clinical presentations vary drastically amongst patients. Even
in single patients, symptoms can be unpredictable and vary over time from mild to severe
(Mohan and Putterman 2015a). This has led to high rates of misdiagnosis in SLE patients
who consequently go years before being correctly diagnosed and treated.

The most prevalent early symptoms of SLE (fatigue and joint pain) are common
symptoms shared by a multitude of common diseases making the early detection and
diagnosis of the disease extremely difficult (Leuchten et al. 2018). Yet, an earlier
diagnosis is key in SLE, as altered innate and adaptive immune responses can have
detrimental effects to organs causing severe and irreversible damage. SLE patients
fluctuate between symptomatic (flare) periods and quiescent periods. During quiescent
periods patients are generally asymptomatic and have lower SLEDAI scores (1-3). Flares
occur when the immune system attacks multiple tissues, such as the skin, kidneys, heart
and lungs (Coit et al. 2016). The most common symptoms present in patients during a
flare include: skin bleeding, severe inflammation, Raynaud’s syndrome, photosensitivity

and leg edema (Leuchten et al. 2018). Nephritis is the most prevalent severe
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manifestation of SLE, affecting anywhere between 40-70% of SLE patients and leading
to mortality in over 50% of those afflicted (H. Wu et al. 2017; Mohan and Putterman
2015a; Menard et al. 2016)

One of the most common clinic assessment for diagnosing SLE is elevated serum
antibody levels, including antinuclear antibodies (ANA) or anti-double stranded DNA
antibodies (anti-dsDNA) (M. Zhao et al. 2016b). Yet, current clinical diagnostic tests for
these autoantibodies lack specificity (ANA) or sensitivity (anti-dsDNA) leading to
insufficient clinical utility (H. Wu et al. 2017). Serum complement, and C-reactive
protein levels are additional biomarkers commonly used by physicians for indication
disease status in patients, however they too yield low clinical utility (M. Zhao et al.
2016a). Unfortunately, even if these tests result in positive outcomes for SLE, current
treatment (corticosteroids and hydroxychloroquine) do not significantly improve patients’

outcomes (H. Wu et al. 2017; Merrill et al. 2010).

3.2.3 Etiology of SLE

It is widely believed that SLE is caused by a combination of genetic predisposing
factors and environmental triggers that result in dysregulation of both innate and adaptive
immune responses (Figure 3.2) (H. Wu et al. 2017; Absher et al. 2013). As previously
mentioned, a common hypothesis regarding the disease origin is that an environmental
trigger causes T cells to recognize self-antigens resulting in the production of auto
antibodies by B cells. Yet, a full understanding of the pathogenesis of SLE has yet to be

determined.

60



Figure 3.2. SLE is believed to be caused by genetic risk factors and environmental
triggers leading to immune cell hyperactivity.

Several environmental triggers have been cited over the years for association with
SLE risk, including excessive ultraviolet light exposure, silica dust, and smoking, yet the
mechanisms and timeline for development of disease in response to such stimuli still
remains unknown (Tsokos et al. 2016; Kamen 2014). Viral and microorganism
infections, such as the Epstein-Barr virus (EBV), cytomegalovirus and herpes simplex
virus type 2, have also been associated with SLE risk. The microbiome has recently
gained interest as a risk factor for SLE, as it is thought that the collection of fungi,
bacteria and viruses that coexist in the body may modulate the immune response (Tsokos
etal. 2016). Vitamin D insufficiency is another environmental risk factor with

compelling evidence as being associated with SLE, however this factor may be
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confounded by patient intolerance to ultraviolet light, a main source of vitamin D (Kamen
2014). Other environmental influences on SLE with less compelling evidence include:
metals, such as mercury, pesticides asbestos, industrial chemicals and solvents, air
pollution, smoking and certain cosmetic products (Kamen 2014).

The identification of SLE-associated specific polymorphisms in genes involved in
reactive oxidative species production leads to another hypothesis in regards to SLE
etiology, which is that SLE is caused by genetic variation in genes encoding metabolic
enzymes for pathways involved in SLE pathophysiology in conjunction with
environmental triggers stressing those pathways (Kamen 2014). Understanding both the
environmental and genetic risks, as well as the combined risks will allow for the
determination of SLE etiology and pathophysiology and preventative measures that can
be undertaken in populations with increased susceptibility to the disease such as AA

females during childbearing years (Jarukitsopa et al. 2015).

3.2.4 Genetics of SLE

A strong genetic component for SLE is well known, but poorly understood owing to
the multifactorial nature of the disease and it’s disparate manifestations (Deng and Tsao
2017). Over 100 SLE risk loci encompassing over 40 genes have been identified thus far
(Mohan and Putterman 2015a). Yet, the contribution of these loci to the heritability of
SLE is undetermined leading to the hypothesis that epigenetic variations may explain the
missing heritability of SLE. To date, the genomic region having the strongest association
with SLE risk is the human leukocyte antigen (HLA) region (Costa-Reis and Sullivan

2013). However, the HLA region is the most gene-dense region of the genome,

62



consisting of over 100 genes, further complicating the genetics of SLE predisposition.
Other susceptibility loci associated with SLE risk include genes involved in various
pathways, such as Toll-like receptor and a-1FN signaling (ACPS5, ETS1, IRF5, STAT4,
etc.), NFkB signaling (IRAK1, TNFAIP3, TNIP1, etc.), apoptosis, and clearance of
cellular debris (TREX1, DNASEI, etc.) (Costa-Reis and Sullivan 2013). Overall, most of
the genetic variants identified to infer risk to SLE are common variants with small effect
size (Costa-Reis and Sullivan 2013). Incomplete concordance in identical twins and
sporadic, rather than familial, cases strengthen the hypothesis that other factors play a
large part in disease risk (H. Wu et al. 2017).

In addition to genetic variation, vast epigenetic alterations in SLE patients compared
to healthy individuals exist increasing evidence that epigenetic variation might explain
the missing heritability of SLE (Absher et al. 2013; Jeffries et al. 2011; Coit, Yalavarthi,
etal. 2015; S. Chen et al. 2019). Many factors influence methylation of DNA, including
nutrition and diet, stress, age, and life experiences, allowing methylation-based studies to
identify combined genetic and environmental risks for disease. Despite repeated
observations that epigenetic variation plays a significant role in the etiology of several
autoimmune diseases, the exact relationship has not yet been determined between the
aberrant IFN epigenetic signature characteristic of SLE patients and disease (Absher et al.
2013).

Expression of IFN-associated genes is strongly correlated with SLE disease activity,
as measured by SLEDAI score. Yet, epigenetic modifications remain stagnate between
flare and quiescent periods, raising the question of exactly how epigenetic modifications

affect expression of SLE-associated genes (Landolt-Marticorena et al. 2009; Feng et al.
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2006). This is potentially explained by the nature of the methylation studies, which have
generally been performed using whole blood or mixed immune cell populations. As
previously mentioned, methylation analysis of mixed cell populations is well known to
have confounding results as the epigenetic signature unique to individual cell types varies
tremendously (Jaffe and Irizarry 2014). Furthermore, recent epigenetic research has
shown that variation in epigenetic regulation is highly correlated with ethnicity (Wiley et
al. 2013). Langefeld et al. performed one of the largest ethnicity-specific SLE genomic
studies thus far revealing ethnicity-specific risk loci, concluding that ethnicities must be
studied independently to fully understand the genetic mechanisms of SLE (Langefeld et
al. 2017). A unique AA immune signature was recently established in CD4+ T cells
compared to European American (EA) CD4+ T cells within healthy subjects (Coit,
Ognenovski, et al. 2015). Cis-acting genetic variants were found to be correlated with
this epigenetic variation within naive T-cells in healthy AA patients. Therefore,
exploring both genetic and epigenetic associations with disease in sorted cell types from
single ethnic populations would allow for more precise interrogation of disease,

especially in the case of SLE which predominately affects a specific ethnic population.

3.3 Summary

Development of lymphocytes from hematopoietic stem cells is tightly regulated
by both genetic and epigenetic processes. Multiple checkpoints exist throughout this
process to prevent the development of immune cells that produce autoantigens against
self-tissues, or autoreactive immune cells. Patients with SLE are burdened by the

production of autoreactive immune cells resulting in systemic inflammation which can
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lead to organ failure. Several studies have identified epigenetic defects in SLE patients,
and particularly in the immune cell lineage. These observations have led to the

generalization that SLE is an immune cell-driven disease.
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CHAPTER 4

EPIGENETIC DEFECTS IN THE B CELL LINEAGE OF SYSTEMIC LUPUS

ERYTHEMATOSUS PATIENTS DISPLAY POPULATION-SPECIFIC PATTERNS

4. 1 Introduction

SLE is a complex autoimmune disease characterized as a dysregulated immune
system causing chronic inflammation for which underlying mechanisms of pathogenesis
and effective treatments remain elusive (Rekvig 2018; Morawski and Bolland 2017). AA
females are the most at-risk population for developing SLE, and they also have the most
severe SLE-associated symptoms often including acute and irreversible organ damage
(Yen et al. 2017; Bentham et al. 2015; CDC 2018; Guillermo J. Pons-Estel, MD*,
Graciela S. Alarcén, MD, MPH*, Lacie Scofield, MSPH+ ,; and Reinlib, PhDi, and
Glinda S. Cooper 2010; Somers, EC Marder, W Cagnoli, P Lewis and Deguire, P Gordon
2014; Lewis and Jawad 2017). Most SLE genomic studies to date have focused on
European and Asian ethnicities leaving out the most at-risk population, thus I focus on

AA females in this study (Iwamoto et al. 2018).

This study was designed to analyze whole genome DNA methylation data from B
cell subsets in a cohort of both SLE and control females to identify where in B cell
development aberrant epigenetic patterns arise and to identify multivariate epigenetic

signatures of SLE and its severity. To accomplish these tasks, B cell subsets were sorted
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from AA females with SLE (n=24) and without SLE (n=25) as well as EA females with
SLE (n = 18) and without SLE (n = 13). B cell subsets analyzed include transitional,
naive, un-switched, switched and IgD-/CD27- double negative B cells. I used regression
analysis to test single CpG associations within each B cell type with SLE in addition to
ethnicity-specific SLE-associated CpGs across B cell types. The strongest associated
single CpGs were used in machine-learning approaches to build a multivariate model of
SLE. The models were tested across ethnicity groups in an independent cohort consisting
of both CD19+ pan-B cell and CD4+ pan-T cell samples to test whether this signature

could predict SLE status in broader cell populations.

My results demonstrate that epigenetic defects in female AA SLE patients are
already present in immature B cells emerging from bone marrow (transitional B cells),
while epigenetic defects appear to develop later during B cell development in EA female
SLE batients. Furthermore, I observed that AA-specific CpG sites associated with SLE
are enriched for IFN-regulated genes and near EBF1 regulatory sites, and that AA-
specific SLE CpGs are predictive of SLE status in mixed immune cell populations from

AA females.
4.2 Methods
4.2.1 Discovery Set Participants

The discovery cohort was obtained through recruitment to the Rheumatology
outpatient clinic at the University of Alabama at Birmingham. Patient samples were
collected with consent and in compliance with the University of Alabama at Birmingham

Institutional Review Board. A total of 80 patient samples were used in which 49 were of
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self-reported AA ancestry and 31 were of self-reported EA ancestry (Table B.1). Age,
gender, self-reported ethnicity, and smoking status were recorded for each patient
regardless of SLE status. Additional clinical data was also obtained from SLE patients,
which included: Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score,
as determined using the ACR guidelines, flare status, BMI, nephritis presence and stage,

creatinine level, proteinuria, glucose level, and prednisone usage and dose (Table B.2).

4.2.2 Validation Set Participants

The validation cohort was obtained from the outpatient Rheumatology clinic at
the University of Alabama in Birmingham and detailed in Absher et al. 2013 (Absher et
al. 2013). Overlapping subjects from the discovery cohort were removed leaving 43
CD19+ pan-B cell samples and 45 CD4+ pan-T cell samples from AA female patients
and controls, as well as 24 CD19+ pan-B cell and 23 CD4+ pan-T cell samples from

female EA patients and controls (Table B.3).

4.2.3 Cell and DNA Isolation

Individual B cell subsets from the discovery cohort were sorted using flow
cytometry. Pure subsets of 5 B cell lineages were separated using antibodies particular to
lineage-specific cell surface receptors. Overall, the minimum number of samples
extracted for a specific cell type was 42 (IgD-/CD27- double negative) and the maximum
was 72 (Naive) for all discovery samples (Figure B.1). Cells were then lysed and DNA

was extracted using Qiagen DNAeasy kits according to the manufacturers protocol.
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4.2.4 Methylationd450 Assays, Quality Control and Batch Normalization

The Infinium HumanMethylation450 array (Illumina, San Diego, USA) was used
for measuring DNA methylation levels. 500 ng of each sample was bisulfite converted
(Zymo EZ DNA), amplified, hybridized and imaged. Raw data intensity files were
processed using GenomeStudio. CpG probes with detection P-values over 0.01 and those
affected by common variants were filtered out. ComBat was then used to correct for
batch effects in which a single array (12 samples) was used to describe a batch. Infinium
chemistry corrections were then made to correct for differences between probe types.
Genome-wide data methylation analysis was then performed using the R statistical suite

(version 3.5.1).

4.2.5 Regression Analysis

Multivariate linear regression was performed to identify CpG methylation
changes associated with SLE status both independent and dependent of self-reported
ethnicity. In detail, a simpler model was performed first for the interrogation of single
CpGs associated with SLE status incorporating age and smoking status as covariates
(Equation 1). A second, more complex model included age, gender, self-reported
ethnicity and smoking status as covariates for the discovery of CpGs associated with the
interaction of SLE status and ethnicity (Equation 2). Both models were performed on
AA and EA female samples across all 5 B cell lineages resulting in a total of ten
regression models in this stage of analysis.
Equation 1:

p~Age + Smoking + Ethnicity + SLE
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Equation 2:

B~Age + Smoking + Ethnicity + SLE + Ethnicity * SLE

4.2.6 Predictive modeling

Random forest regression was performed on the AA female transitional B cell
samples (n = 38), since that was the first B cell stage for which aberrant methylation
associated with SLE status was detected. I tested various p-value cut-offs (5x10%-5x10°)
resulting from multivariate linear regression as well as various variance cut-offs (0.02-
0.1) with m-tries ranging from 1 to 20 and 1000 trees using the RandomForest package in
R (Breiman 2001). For each iteration, a random sample of 25 was used for the training
set, and the remaining samples were used as the test set. Using the same approach,
multivariate linear regression using L1 penalized log partial likelihood (LASSO) was
performed via the glmnet package in R (Friedman, Hastie, and Tibshirani 2010). Three-
fold cross validation using an alpha parameter of 1 was performed to find the optimal
lambda value. The lambda plus one standard deviation, and an alpha of 1 was then used
to build the model. Ridge regression using AA female samples was performed similarly
to LASSO, with the only difference being that the alpha parameter of 0 instead of 1 was
used.

An optimal prediction cut-off for separation of SLE and control was determined
for the model based on the training and used to calculate the misclassification percentage
in the test set. Model prediction accuracy was then assessed in individual B cell lineages
in EA and AA patient samples as well as CD19+ pan-B and CD4+ pan-T independent

sample sets from EA and AA patients. ROC-AUC was used to assess the model’s
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sensitivity and specificity in each of the test sets described in addition to misclassification
percentage as defined by the training set optimal cut-off. Top performing classifiers from
each random forest model were determined based on their Gini coefficient, a function
unique to the random forest algorithm which assigns the coefficient based on ability to
accurately separate cases from controls during the model training phase so that the higher
the coefficient, the better the CpG is at separating SLE cases from controls in the model.
Random forest, LASSO and Ridge regression were also performed on all sorted
EA B cell samples combined, using 1/3 as the training set (n= 24) and the rest as a test set
using the same p-value cut offs and m-tries tested in the AA modeling. Modeling was
performed using the switched B cell stage since B cell stage for which substantial
differences in methylation associated with SLE status was detected in EA samples. The
top performing model was then determined using the same approach as was used for AA

analysis.

4.2.7 Transcription Factor Enrichment

The GM 12878 chromatin immunoprecipitation sequencing (ChIP-seq) from the
ENCODE data portal was used for genome-wide transcription factor binding site (TFBS)
interrogation (Davis et al. 2018). Using BEDtools, the intersection between the
Methyl450 annotation file and the ChIP-seq bed file was performed (Quinlan and Hall
2010). Permutation testing then allowed for the determination of whether specific TFs
binding within 500 bps of the top CpGs were enriched compared to all sites assayed.
Orthogonal analysis was conducted on top TFBSs enriched using ChiP-seq data. Position

frequency matrices (PFMs) for the most enriched TFs were obtained from JASPAR, and
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the FIMO package within the MEME suite was used for analysis of motifs within 500
bps of CpGs of interest (Bailey et al. 2009; Grant, Bailey, and Noble 2011; Khan et al.
2018). Permutation testing allowed us to determine whether top CpGs were enriched for

a specific binding motif compared to the other sites assayed.

4. 3 Results

4.3.1 CpG methylation is altered in immature B cells from SLE patients

To identify loci where DNA methylation levels were associated with SLE,
performed epigenome-wide regression analysis in sorted B cells for which I found
statistically significant methylation differences in SLE patients compared to disease-free
controls (Figures B.2.1-B.2.5 and Table B.4). Across all 5 B cell subsets, 60 CpGs
reached genome-wide significance (p < 1.07x107) in which 13 occurred in transitional B
cells, the earliest B cell stage assayed, indicating that epigenetic defects in SLE patients
are already present as immature B cells emerge from bone marrow. The most significant
CpGs were found in multiple genes, particularly near IFN-regulated genes (Figure 4.1).
Top SLE-associated CpGs from transitional B cell regression displayed a distinct
hypomethylation pattern within AA SLE patients compared to controls that is less

apparent in EA patients and controls (Figure 4.2).
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Figure 4.1 Multiple CpGs across the genome are associated with SLE in transitional B
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Figure 4.2 Hypomethylation of IFN-regulated genes is more severe in AA SLE patients
compared to healthy AA patients. Heatmap of the methylation status across the top 15
CpGs associated with SLE status (based on p-value) from transitional B cell regression.
Individual patients are represented by columns and grouped by ethnicity and disease
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status. All subsequent rows represent top CpGs and are colored based on methylation.
Hierarchical clustering of CpGs resulted in grouping representative of the methylation
change in SLE patients versus controls.

The epigenetic defects observed indicated that those individuals carrying severe
defects tended to carry severe defects across all of the significant CpGs, and that those
with mild effects tended to carry mild effects across all loci suggesting that the epigenetic
pattern behaves as a correlated module, rather than a set of independent, heterogeneous
effects at each CpG. Further interrogation revealed that methylation specifically within
the top 15 CpGs (based on transitional B cell regression) was highly correlated in AA
SLE patients and in controls, but there was a strong anti-correlation between both groups
indicating strong differences in the methylation at these sites correlated with disease
(Figure B.3), a trend which was not seen in EA patients (Figure B.4). To further examine
the population-specific nature of these epigenetic defects, I ran additional regression
models using an interaction term between SLE and ethnicity revealing numerous sites
across all 5 B cell subsets that approached and/or reached genome-wide significance
(Figures B.5.1-B.5.5). Most of those top CpGs resulted from early B cell (transitional
and naive) analyses and were near IFN-regulated genes. The highest AA-dependent SLE
association (cg17980508, p = 1.12x10°) resulted from transitional B cell regression and
is located near Interferon Induced Protein 44 Like (/FI44L) (Table B.5). The highest EA-
dependent SLE-association (cg13710613, p = 8.13x10®) resulted from naive B cell
regression and is located near Euchromatic Histone Lysine Methyltransferase 1 (EHMT])
(Table B.6).

Analysis of methylation at top individual AA- and EA-specific sites (cg17980508,

€g21549285, and cg13710613) across B cell development in both AA and EA patients
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and controls revealed that methylation strongly distinguishes AA but not EA disease
patients from controls (Supplementary Figures 6-8). The difference in percent
methylation within AA patients and controls is broader earlier during B cell development
and decreases in later B cell stages further suggesting that aberrant hypomethylation

occurs at the earliest stages of B cell development in SLE patients of AA ancestry.

4.3.2 DNA methylation patterns in transitional B cells can predict SLE status in AA
females

The modular nature of the epigenetic defects I observed in immature B cells from
SLE patients suggested that a multivariate predictive model could be used to distinguish
patients from controls, and that a machine learning optimization approach would identify
the strongest, and potentially most informative genes that carry these aberrant epigenetic
states. Multiple machine learning approaches were tested using methylation status in
transitional B cells to predict SLE in AA patient samples. Average ROC-AUCsS across
the discovery and validation cohorts for AA females was highest for the top performing
ridge regression model (p-value cutoff = 1x10*, average ROC-AUC = 0.97), yet the
mean standard error (MSE) was lowest in the random forest regression model (0.02)
(Table B.7). When considering performance across individual B cell subsets, the random
forest regression model performed well in both early and later AA B cell stages
(misclassification errors of naive = 2%, un-switched = 3%, switched = 3%, and double
negative = 6%). Applying the same models to EA B cell stages produced poor predictive
success, indicating that the AA SLE signature is distinct from that in EA (Figure 4.3 A).

For validation, each model’s ability to distinguish SLE patients from controls in data
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from broader cell populations using previously published data from CD4+ pan-T cells

and CD19+ pan-B cells were tested. The top AA random forest regression model

accurately predicted SLE status with ROC-AUCs of 0.967 and 0.945 respectively in AA

patients and controls (Figure 4.3 B).
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Figure 4.3 Machine learning identifies an epigenetic signature in transitional B cells that
can predict SLE in AA patients. A) Model performance based on misclassification
percentage across B cell stages in AA females (blue) and EA females (yellow). B)
Validation ROC curves for AA CD19+ pan-B cells (green) and CD4+ pan-T cells (dark
green) as well as EA CD19+ pan-B cells (blue) and CD4+ pan-T cells (light blue).

Unlike pure regression analysis, for which top results are often within correlated

regions of the genome, random forest results present unique and highly predictive sites

across the genome. Most of the top predictors (based on Gini importance) were

associated with various genes scattered throughout the genome (Table B.8). The top

predictor, cg07839457, is near the transcription start site (TSS) of NLR Family CARD

Domain Containing 5 (NLRCS). Methylation analysis at cg07839457 across B cell

development revealed perpetuation of the hypomethylated state in AA disease patients
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compared to controls but not EA patients and controls (Figure B.9). Further interrogation
of the methylation status at other highly predictive sites in transitional B cells revealed

consistent hypomethylation in SLE cases for almost every CpG regardless of SLEDAI

index.
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Figure 4.4 Machine learning in switched B cells modestly predicts SLE in EA patients.
A) Model performance based on misclassification percentage across B cell stages in AA
females (blue) and EA females (yellow). B) Validation ROC curves for AA CD19+ pan-
B cells (green) and CD4+ pan-T cells (dark green) as well as EA CD19+ pan-B cells
(blue) and CD4+ pan-T cells (light blue).

The optimal data reduction method for predictive modeling in EA patients utilized
a p-value cut-off of 1x10™ for CpGs associated with SLE status and dependent on EA
ethnicity in the switched B cell subset. This model modestly distinguished EA SLE
patients from controls, with <45% misclassification error across all B cell subsets and
proved to have poor performance in AA B cells, resulting in misclassification

percentages ranging from 42-68% across the 5 B cell stages assayed (Figure 4.4). As for
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validation performance, the top EA model had a ROC-AUC of 0.571 and 0.755 for EA
CD19+ pan-B cell and CD4 cells respectively (Figure 4.5). Performance was much
lower for AA validation mixed immune cells, having a ROC-AUC of 0.539 and 0.537 for
CD19+ pan-B cell and CD4 cells respectively. Predictors in the top EA random forest
model had Gini coefficients ranging from 0.299-0.009 (Table B.9). There was a lack of
methylation difference between EA SLE patient samples and controls (Figure B.10), in

contrast to AA predictors for which severe differences in methylation exist.

4.3.3 SLE-associated CpGs near IFN-regulated genes are enriched for EBF1 binding
To determine whether CpGs significantly associated with SLE based on
methylation status reside in regulatory regions of the genome, I performed an enrichment
test of TFBS status near the top 100 CpGs (based on p-value) of the SLE-association
analysis revealing enrichment for RNA Polymerase 11 Subunit A (POLR2A), EBF1I,
Chromodomain Helicase DNA Binding Protein 1 (CHD1), Werner Helicase Interacting
Protein 1 (WRNIP1), Metastasis Associated 1 Family Member 3 (MTA3), Signal
Transducer and Activator of Transcription 3 (STAT3) and IKAROS Family Zinc Finger 1
(IZKF1). A similar analysis of the ethnicity-specific SLE-associated sites identified
enrichment of CpGs in binding sites for POLR2A (p < 5x10*), EBFI (p < 8x10*), POU
Class 2 Homeobox 2 (POU2F2) (p <3.27x10"), and RELA Proto-Oncogene, NF-KB
Subunit (RELA) (p< 4.46x10™") (Figure 4.5). Amongst the most enriched TFs, EBF is of
particular interest, as it is an essential pioneer TF for B cell development (R. Li et al.
2018). Further interrogation of EBF binding using a bioinformatics-based approach to

identify EBF1 motifs (5'-TCCCNNGGGA-3") within the DNA sequence surrounding
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those top SLE-associated CpGs strengthened this hypothesis, as hypermethylated sites
significantly associated with SLE in transitional B cells were enriched for EBF/ motifs.
Amongst the top 100 SLE-associated population-specific CpGs based on p-value, 36
were near (+/- 250 bps) an EBF] binding motif, which was much greater than expected
based on analysis of EBFI motifs near CpGs on a random subset of 100,000 CpGs
covered by the Methyl450 array (p < 0.015). Genes associated with CpGs both near an
EBF1 ChiP-seq peak and an EBF1 motif included IFN-regulated genes such as, NLRCS,
Interferon Induced Transmembrane Protein 1 (/FITM]I), and the HLA class |
Histocompatibility Complex PS5 (HCP5) among others, further strengthening the

hypothesis that EBF1 regulation is actively involved in SLE disease biology.

POLR2A ETT]
TAF1 =
EBF1 IELL

YY1 ]
PML ]
RUNX3 ]

POU2F2 e

ELF1 ]
SIN3A ]
MXIL o]

MAZ |
TCF3
PAXS

WRNIP1
MAX
CTCF

GABPA *** p <0.001

MTA3 *P<0.05

TBLIXR1

[ I T I I 1

0 10 20 30 40 50
Percentage of CpGs overlapping with TFBS's

2



Figure 4.5 SLE-associated CpGs are enriched for EBF1 binding. TF enrichment within
the top 100 ethnicity-dependent SLE associated CpGs using ENCODE ChIP-seq data.
TFs that are statistically (based off of an empirical p-value) more enriched compared to
the rest of the CpGs assayed are indicated by an asterisk (POLR2A, EBF1, POU2F2 and
RELA).

4.4 Discussion

In this work, I used various statistical and machine learning methods to better
understand the biological changes that occur throughout B cell development in SLE
patients and the differences in these effects between AA and EA patients. My initial
analysis was focused on following up previous studies that performed linear regression
analysis in mixed cell populations. To discover CpG methylation associated with SLE
status, I first implemented a simple regression model for SLE status within the discovery
cohort across all 5 purified B cell subsets regardless of ethnicity. Several CpGs reached
genome-wide significance (1.07x107) across B cell subsets, including many that have
been previously associated with the disease (Absher et al. 2013; Coit, Yalavarthi, et al.
2015; Jeftries et al. 2011; Coit et al. 2013; Park et al. 2017; Lugar et al. 2012; Wahadat et
al. 2018). 1 was able to show that CpGs near IFN-regulated genes are hypomethylated in
AA SLE patients from the earliest circulating B cell stage indicating that B cells might be
epigenetically “primed” for an aberrant immune response in AA SLE patients prior to
maturation. When analyzing EA SLE patients, I observed methylation changes in mature
B cell stages, indicating potential differences in etiology between ethnicities. These
epigenetic differences may explain the differences in disease presentation and severity
between the ethnic groups as well. Epidemiology studies reveal that SLE risk and burden

is significantly higher in AA females compared to other affected populations, which
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could potentially be explained by the more severe epigenetic signature observed in AA
females in this work. To further interrogate the ethnicity-specific methylation changes,
we also performed a more complex regression model to identify ethnicity-specific SLE-
associated CpGs. We note that many genes associated with our top AA-specific CpGs
(based on p-value) are IFN-regulated and/or have previously been associated with SLE in
other cohorts of various ancestral background (H. Wu et al. 2017; Bing et al. 2016;
Mohan and Putterman 2015b). However, the same observation was not made for EA-

specific CpGs.

The observed high level of within-patient correlation across genes
suggests a modular epigenetic defect in SLE patients, prompting us to build multivariate
predictive models of disease using machine learning optimization. The AA-specific
predictor was extremely effective at distinguishing SLE patients from controls, with high
sensitivity and specificity (ROC-AUC = 0.94). Of the 34 CpGs used in the top
performing AA SLE prediction model, 7 had a statistically significant SLE association p-
value (p<1.07x10”) and were near 6 different IFN-related genes, providing ancillary
evidence that IFN plays a major role in SLE biology. A CpG at the TSS of NLRCS5, and
near a TFBS for EBF I among multiple other TFs, had the highest predictive power for
SLE status (Gini = 0.461). NLRCS is one of 22 NLR family proteins, is highly expressed
in the cytoplasm and nucleus of lymphocytes, and is a known regulator of major
histocompatibility (MHC) class molecules (Meissner et al. 2010; Kobayashi and van den
Elsen 2012). In Coit et al.’s analysis of genome-wide methylation in naive CD8+ T-cells,
hypomethylation at this same site near NLRC5 was observed (Coit et al. 2013). 1

hypothesize that hypomethylation in SLE patients at this site might alter regulation of
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MHC class 1 molecules in response to upregulated IFN expression, which is
characteristic of SLE. The next highest predictor (Gini coefficient = 0.453) is near
Interferon Induced Protein With Tetratricopeptide Repeats 1 (/FIT]), an IFN stimulated
gene that activates the innate immune system in response to inflammatory stimulation
(McDermott et al. 2012). IFIT1 not only contains known risk alleles for SLE, but has
also been repeatedly noted for having both decreased methylation and increased
expression in SLE patients compared to control (Coit, Yalavarthi, et al. 2015; McDermott
etal. 2012; Ye et al. 2003). A CpG near the 5° UTR of MX Dynamin Like GTPase 1
(MXT) (cg21549285) was also within the top predictors. This site is near a TFBS for
RUNX3, MY C Associated Factor X (MAX) and STAT3, and is characterized by
hypomethylation in AA cases compared to controls across B cell development. MX1 is
activated by IFIT1, another top gene from my analysis, indicating that the model
successfully found biologically relevant relationships between CpGs to build a superior
predictive model of disease. MX1 is downstream in the type 1 IFN pathway and is an
important component of the early innate immune system as it plays a role in the IFN-
induces antiviral response against various viruses, but it’s role in response to IFN
stimulation in the absence of virus has yet to be determined (Melén et al. 1994
Nakayama et al. 1991; Haller and Kochs 1996). MX1 hypomethylation, increased RNA
expression and higher protein concentrations are consistently observed in SLE patients
(Shimizu et al. 2017; Coit, Ognenovski, et al. 2015; Watanabe et al. 2013). Multiple
CpGs associated with MX 1 were observed to be highly associated with SLE status in this

analysis, and methylation at two MX1 CpGs reveals almost perfect separation of AA SLE
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patients from controls leading us to hypothesize that a targeted assay for MX1

methylation would be fruitful in diagnosing SLE.

To assess whether SLE-associated CpG sites were in regulatory regions of the
genome, the TFBSs near those regions using publicly available ChIP-seq data were
interrogated. An increased number of binding sites for POL2RA, EBFI, POU2F2 and
RELA in the top SLE-associated CpGs compared to all other CpG sites assayed was
observed. Of particular interest is the enrichment of EBF1 interaction at highly
associated IFN sites, as this TF is known as a pioneer TF especially in the B cell lineage
(R. Li et al. 2018). Through a distinct DNA binding domain (DBD) at the N-terminus,
EBF1 binds DNA as a homodimer at a palindromic recognition site consisting of 18 base
pairs (5'-TCCCNNGGGA-3') stabilized by an a-a motif, referred to as a zinc knuckle
(Treiber et al. 2010). EBF1 operates as an epigenetic regulator that induces
demethylation, nucleosome remodeling and active chromatin modifications to target
genes (Vilagos et al. 2012). Binding sites for EBF that are lowly methylated are
enriched for enhancer sites that undergo TF-mediated changes in methylation (R. Li et al.
2018). A limitation to ChIP-sequencing is the inability to distinguish between direct and
indirect protein-DNA interactions. To supplement the EBFI enrichment observed in
ChIP-seq data, I performed a motif enrichment analysis in the top 100 SLE-associated
CpGs, for which I observed an increased occurrence of EBF1 motifs (p< 0.015) within
500 bps the top 100 CpGs associated with SLE status in comparison to the rest of the
CpG sites assayed. From these observations, I hypothesize that EBFI plays a role in the
immune response through regulation of [FN-regulated gene expression. A possible

mechanism in which this might occur is that hypomethylation at or near the EBFI motif
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of IFN-regulated genes, as frequently observed in this data, increases chromatin
accessibility at those regions allowing for higher affinity of EBFI binding. This would
allow for increased expression of downstream genes involved in the IFN pathway and
dysregulation of the immune response in AA SLE patients. ChIP-PCR experimentation
in conjunction with methylation analysis in patient-derived B cells for which the
methylation levels at EBFI binding regions should be performed to further investigate

this hypothesis.
4.5 Conclusion

In conclusion, this work has allowed for the identification of an aberrant
epigenetic signature that developed early in B cell development in AA patients. This
AA-specific SLE signature is enriched for EBF/ interaction and serves as an effective
multivariate predictor of disease. A limitation to this study is the lack of genetic variant
analysis. The presence of an SLE-related epigenetic signature, with a population-specific
severity, could indicate either a shared set of methylation quantitative trait loci
(methylQTLs) in each of the genes that are only carried by AA SLE patients, or
alternatively, a defective signaling pathway that leads to correlated epigenetic effects at
multiple genes. Given that the effects are seen at many unlinked genes and the
unlikelihood of shared genetic variants at each of these unlinked genes among AA SLE
patients, the former hypothesis is more likely. To add confirmation to this hypothesis, |
analyzed CpG p-values within genes‘with known AA-specific SLE genetic associations
from previous studies and found a lack of association with methylation and SLE status
for those sites (Ghodke-puranik et al. 2019; Silvia N. Kariuki et al. 2010). If known

SLE-related genetic risk factors were drivers of epigenetic effects, I would have expected
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an overlap between those loci. Additionally, we point out that another limitation to this
study was the number of EA patients included. The vast difference in methylation (effect
size) observed in AA patients compared to controls allowed for the determination of
several CpGs highly associated with SLE status, yet the observed effect size was much
lower in EA patients compared to controls. While our EA sample size should have been
sufficient to detect the effects seen in the AA patients, if they exist, power calculations
indicate that we were well powered to detect an effect size of 0.09 (i.e. 9% change in
methylation). Despite the limitations addressed, this study was the first to interrogate
genome-wide methylation across individual B cell developmental stages in both AA and
EA SLE patients. Overall, the epigenetic patterns appeared to be different in AA and EA
patients, suggesting some mechanistic differences in etiology that may be related to the

different clinical paths that these patient populations experience.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Summary of previous findings

SLE is a complex autoimmune disease characterized by altered immune cells
which form immune complexes that induce systemic inflammation, organ damage and in
some cases premature mortality (Papp et al. 2012). Many hypotheses regarding the
initiating factors leading to SLE exist. A commonly cited hypothesis is that an
environmental trigger, such as an infection or drug exposure, induces apoptosis causing T
cells to recognize self-antigens and, in the presence of increased IFN, B cells to produce
antibodies to self-antigens (autoantibodies) (H. Wu et al. 2017). This cycle of self-
antigen recognition and increased IFN levels can result in dysregulation of B cell
function, signaling, or development ultimately resulting in excessive autoantibody
production and B cell hyperactivity (De and Barnes 2014). Recent work has found
evidence that epigenetic dysregulation of B cell differentiation is an important
mechanism underlying SLE pathogenesis (Absher et al. 2013; Coit et al. 2013 Jeffries et
al. 2011). Yet, the exact nature of the relationship between epigenetic dysregulation and
B cell autoreactivity has not been established.

DNA methylation studies focused on SLE have revealed widespread

hypomethylation of CpGs within IFN-related genes in SLE patients relative to controls in
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European and Asian populations (Absher et al. 2013). Population-specific risk loci have
recently been identified, concluding that different ethnic populations must be studied
independently to fully understand the genetic mechanisms of SLE (Langefeld et al.
2017). Through interrogation of genome-wide methylation across individual B cell
developmental stages in both AA and EA SLE patients, I have identified an altered
epigenetic signature enriched for IFN-regulated genes that is present in the earliest stage
of B cell development and is specific to AA female patients. Specifically, MX7, IFITI,
IFITMI, and IFI44L are of interest as they reached genome-wide significance and, when
incorporated into a multivariate predictive model of SLE, proved to be effective in
discriminating AA SLE patients from controls regardless of which immune cell type was
used for validation. Further interrogation of top associated IFN CpGs of AA patients
revealed an enrichment for EBF/ binding, indicating a role for EBF in IFN signaling.
EBF1 is of specific interest because of its ability to demethylate promoter regions of
target genes as well as its essential role in maintenance of B cell development (Vilagos et
al. 2012).

The conclusions that: 1) AA and EA patients have unique epigenetic changes
specific to disease, 2) epigenetic dysregulation exists in the first developmental stage
(transitional) of B cells in AA patients, 3) the most associated AA-specific CpGs occur at
IFN-regulating genes and are enriched for binding of TFs involved in immune regulation,
such as EBF, and 4) these epigenetic changes are highly predictive of disease in all AA
patient immune cell populations instigate further hypotheses about the pathophysiology
of SLE. Particularly with respect to AA patients, a population for which SLE research

lags behind despite being the most at risk and severely affected demographic.
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Specifically, these conclusions have generated the following hypotheses: 1) that
hypomethylation of IFN-regulating genes primes B cells for an increased response to
IFN, 2) that EBF'I occupancy is required for an IFN response at important IFN-regulated
genes, and 3) that the IFN epigenetic signature across mature immune cells in AA
females is heritable. In the following sections I will provide more detailed evidence to
support these hypotheses and propose experiments that could be performed to test these

hypotheses.

5.2 Epigenetic Mechanisms of IFN Signaling in SLE

IFN’s role in increasing antigen presentation, activating dendritic cells, and
increasing MHC expression along with initial observations that treatments directly
affecting the IFN pathway induced SLE led researchers to examine the role IFN
perturbation plays in SLE pathophysiology (Ioannou and Isenberg 2000; Iwamoto et al.
2018; Blanco et al. 2001; Timothy B. Niewold 2008). High serum IFN is now a known
heritable risk factor for SLE, and patients with high serum IFN tend to have increased
downstream, IFN-induced gene expression (T. B. Niewold et al. 2007; Timothy B.
Niewold and Swedler 2005; Mathian et al. 2015; Ivashkiv and Donlin 201 5; Petri et al.
2009; Wahadat et al. 2018; Feng et al. 2006; Hoffman et al. 2017; Bennett et al. 2003;
Baechler et al. 2003). Several GWA studies have identified multiple genetic variants
within IFN genes across the genome unique to AA patients, such as APOLI, MHC, HLA,
ITGAM, BANKI, IRFS, IRF5, MW 1 and IFIH]I, that confer increased risk for SLE,
solidifying the importance of this pathway in SLE etiology (Freedman et al. 2014:

Matzaraki et al. 2017; Sanchez et al. 2011; Lodolce et al. 2010; J. Wu et al. 2014; Lessard
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etal. 2012; Robinson et al. 2011; Kelly et al. 2008; Harley and Alarcon-Riquelme 2013;
AlFadhli et al. 2016). A positive correlation between autoantibody production, serum
IFN levels, and SLE activity has been shown, and the correlation is strongest in AA SLE
patients compared to other ethnicities (Hamilton et al. 2018). Specifically, IFN-regulated
gene expression correlates with SLE symptoms in AA patients more strongly than any
other ethnicity (Iwamoto et al. 2018; Ko et al. 2013). Ko et al. showed that increased
IFN-regulated gene expression patterns are directly related to the presence of
autoantibodies in AA SLE patients while the same is not true for EA SLE patients (Ko et
al. 2013). Furthermore, higher serum IFN levels in AA SLE patients compared to EA
patients coincide with higher autoantibody levels (Weckerle et al. 2011).

The work I performed interrogating the methylation profile of sorted B cells
revealed significant hypomethylation of IFN-regulated genes associated with SLE status
in AA SLE patients. Together with previous observations, this leads to the conclusion
that SLE patients have increased IFN levels and altered IFN-related gene expression.
However, the causal relationship between the hypomethylated state of IFN-regulated
genes and IFN levels in SLE patients has yet to be determined. The hypothesis that IFN-
regulating genes are already hypomethylated allowing for more rigorous B cell activation
in response to IFN can be tested by direct manipulation of DNA methylation in important
regulatory regions of IFN-regulated genes, treatment with IFN, and exposure of B cells to
activating stimuli, as depicted in figure 5.1. To manipulate the DNA methylation at
specific sites in the genome of B cells, the clustered regularly interspersed short
palindromic repeats (CRISPR) deactivated CRISPER associated protein (dCas9) system

can be coupled with either the TET enzyme or a methyltransferase (Dnmt3a). Targeted
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demethylation can be performed though the use of the Tet enzyme, which demethylates
cytosines in the genome through dioxygenase-catalyzed 5-methylcytosine oxidation (Ito
etal. 2011). Xu et al. recently demonstrated the catalytic domain of the Tet enzyme can
be combined with the bacterial CRISPR system for efficient and accurate targeted
demethylation of CpG sites throughout the genome (X. Xu et al. 2016). By tethering the
dCas9, specific guide RNAs (gRNAs) to the target region of the genome, and the
catalytic domain of the TET enzyme (Tet1-CD) specific demethylation of the CpG sites
found to be hypomethylated near IFN-regulating genes in AA SLE patients could be
performed. The same approach can be taken for targeted methylation, except instead of
using the Tet enzyme a DNA methyltransferase responsible for de novo methylation

(Dnmt3a) would be used (Liu et al. 2016).
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Figure 5.1 Experimental design for the interrogation of the epigenetic mechanisms of the
IFN response.

After altering the methylation status of IFN-regulating sites, half of the cells
would then be treated with IFN. Treatment with or without IFN in conjunction with
Cluster of Differentiation 40 Ligand/Interleukin 4 (CD40L/IL-4) stimulation would be
performed on CRISPR treated B cells in addition to untreated and non-targeting CRISPR
control treated B cells (Donahue and Fruman 2014). To assess differences in activation
between treatment groups, B cells can be sorted using flow cytometry based on activation
markers (CD69 and CD25). Furthermore, targeted methylation sequencing prior to and
following stimulation with CD40L and IL-4 can reveal changes in nearby DNA
methylation of IFN-regulated genes following treatment. The outcome affirming the
hypothesis that hypomethylated IFN-regulated genes increase B cell activation in
response to IFN, would be that IFN treatment of B cells with the CRISPR demethylated
target sites leads to increased activation (as measured by proportion of cells expressing
CD25/69) relative to control B cells and stable DNA methylation post-IFN treatment
compared to pre-IFN treatment. If IFN treatment in the control and CRISPR methylated
and/pre demethylated B cells leads to increased activation relative to the B cells with no
IFN treatment and target sites become demethylated following IFN treatment, then the
outcome would support the alternative hypothesis, that increased IFN leads to
hypomethylation of IFN-regulating genes in B cells. Multiple possible outcomes could
occur to support the null hypothesis, that there is no relationship between IFN levels,
hypomethylation of IFN-regulating genes in B cells, and B cells activation. These

include the observations that 1) there are no activation differences across treatment and
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control B cells, 2) B cells with methylated target sites have more activity than B cells
with demethylation target sites, and 3) B cells without IFN treatment have more activity

than those with IFN treatment.

5.3 EBF1 as a Regulator of IFN Response

The observation of enrichment for EBF'I binding sites near significantly
hypomethylated CpGs in my work begs the question of whether hypomethylation of IFN-
regulated promoter regions influences EBFI binding, or EBF binding demethylates
IFN-regulated promoter regions. The EBF family of TFs consists of 4 members which
are highly conserved evolutionarily, yet structurally unique compared to other TF
families (H. Lin and Grosschedl 1995). Work over the past 20 years has led to a better
understanding of not only the EBFI structure but also its function as a cell-type specific
TF (Siponen et al. 2010; Nechanitzky et al. 2013; Barneda-Zahonero et al. 2012).
Originally identified in B cells and olfactory neurons, EBF is now appreciated for its
involvement in various specialized cells, such as adipocytes and osteoclasts. Extensive
work has shown the essential role that EBF plays in promoting B cell maturation from
the earliest progenitor stage (R. Li et al. 2018; Nechanitzky et al. 2013; Siponen et al.
2010). EBFI operates as an epigenetic regulator that induces demethylation, nucleosome
remodeling and active chromatin modifications to target genes (Vilagos et al. 2012).
Binding sites for EBF that are poorly methylated are enriched for enhancer sites that
undergo TF-mediated changes in methylation (R. Li et al. 2018). Time resolved analysis
of EBF] activity shows that EBF] occupancy coincides with expression and precedes

chromatin accessibility (R. Li et al. 2018).
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Together, the observation that significantly demethylated IFN CpGs in AA SLE
patients lie within £BF'I binding sites, and the knowledge that EBF1 acts as a pioneer TF
throughout B cell development and maturation, supports the hypothesis that:
hypomethylation of IFN-regulated genes and EBF binding leads to dysregulation of IFN
signaling in B cells of AA patients with SLE. In order to test this hypothesis, a similar
approach to the previous question could be taken utilizing the CRISPR system in sorted B
cells, as depicted in figure 5.2. Use of the CRISPR system with the activated Cas9
endonuclease allows for the mutation of sites of the genome when tethered to a gRNA
specific to the region of interest (Mali et al. 2013). In this case, the EBFI motif (5'-
ATTCCCNNGGGAATT-3") within MX1 regulatory region would be targeted as MX]
methylation status proved to be highly indicative of SLE status in AA females in my
work, and it is a known GTPase in response to IFN stimulation (J. Wang et al. 2012;
Haller and Kochs 1996). For this experiment, the binding motif for EBF would be
mutated to inhibit binding of EBF within the promoter region of MX/. In addition to a
MX1 mutated EBFI binding group, a control group and a nontargeting CRISPR control
group would also be tested in the presence and absence IFN treatment. Targeted
detection of EBF/ binding can be performed using ChIP quantitative PCR (qPCR). ChIP
qPCR allows for the interrogation of protein-DNA interactions of regions of interest.
Furthermore, qPCR and targeted methylation sequencing of the MX7 promoter region
would give insight into EBFI motif ablation on the surrounding epigenetic state and

expression level of MX1.
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Figure 5.2 Experimental design for the interrogation of the role of EBF1 in the IFN
response.

Evidence to support the hypothesis that EBF is required for an IFN response at
important IFN-regulating sites include the observations of 1) hypomethylation of MX7 in
control compared to MX/ mutant B cells and 2) increased expression of MX/ in control B
cells compared to MX] mutant B cells. However, the alternative hypothesis, that EBFI is
not required for an IFN response at important IFN-regulating sites, would be supported if

the MX1 mutation does not alter methylation or expression compared to control B cells.

5.4 Genetic influence of the Epigenetic IFN Signature

In my work, I observed that the epigenetic IFN signature seen in transitional B
cells is shared amongst other mature B cell subsets as well as pan-T cells and monocytes
of AA female SLE patients. As previously mentioned, GWA studies have identified

multiple genetic variants within IFN genes across the genome unique to AA patients
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(Freedman et al. 2014; Matzaraki et al. 2017; Sanchez et al. 2011; Lodolce et al. 2010; J.
Wu et al. 2014; Lessard et al. 2012; Robinson et al. 2011; Kelly et al. 2008; Harley and
Alarcon-Riquelme 2013; AlFadhli et al. 2016). Yet, these findings do not offer a
complete understanding of the heritability of SLE, a disease for which multiple sub-
phenotypes exist. Several lines of evidence suggest that identification of IFN-associated
loci rather than SLE-associated risk loci may lead to a better understanding of SLE
susceptibility since increased IFN is a widely shared trait among all SLE sub-phenotypes
(Robinson et al. 2011; S N Kariuki et al. 2015; Rullo et al. 2011; Timothy B. Niewold et
al. 2008). Recent work has identified genetic variants that increase SLE susceptibility
through effect of the epigenome, known as methylation quantitative trait loci
(methylQTL) and histone quantitative trait loci (hQTL) (Demirci et al. 2016; Pelikan et
al. 2018; Imgenberg-Kreuz et al. 2016). These recent observations compliment the
conclusion made from my work, that the IFN epigenetic signature is shared amongst
diverse immune cells in AA SLE patients. Ultimately, these findings support the
hypothesis that the IFN epigenetic signature in AA females with SLE is determined by an
inherited genetic background or haplotype.

An ideal experiment to address this question would be a twin study conducted on
discordant AA female twins, as the present work showed a more severe difference in
methylation in AA females compared to EA females. SLE familial studies to date have
misrepresented populations affected by SLE (Deafen et al. 1992; Alarcén-Segovia et al.
2005). One of the largest SLE familial studies thus far took a multiethnic approach by
incorporating American populations of African and Caribbean descent as well és

Europeans in the determination of familial aggregation of SLE amongst other
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autoimmune diseases (Alarcon-Segovia et al. 2005). By doing so, Alarcon-Segovia et al.
identified that familial aggregation of SLE is much higher in the AA population (0.375)
compared to the European (0.010-0.081) and African Caribbean (0.110.25) populations,
suggesting that inheritance of SLE should be studied for individual populations rather
than multiethnic populations as a whole to better understand the hereditary nature of
complex diseases such as SLE. Furthermore, twin studies offer an improved model for
understanding of the heritability of complex diseases compared to more general familial
approaches. Through interrogation of disease outcome in monozygotic twins, the degree
of genetic versus environmental components of complex diseases can be identified. Data
from the National Twin Registry demonstrates that the concordance rate for SLE in
monozygotic twins is no more than 24% while that of dizygotic twins is approximately
2%, suggesting a strong environmental component for SLE susceptibility.

To answer the question, of whether the IFN epigenetic signature in AA females
with SLE is determined by genetics, AA female twins with and without SLE would have
both methylation and RNA sequencing performed on sorted B cells, as depicted in Figure
5.3. Thypothesize that the IFN epigenetic signature would be present only in twins
affected by SLE. The observation of an IFN hypomethylated signature in affected twins
only would support this hypothesis, and would indicate that the genetic background alone
is not responsible for SLE risk but rather a nongenetic event, such as an environmental
trigger, leads to the epigenetic IFN signature observed in SLE patients. If the [FN
epigenetic signature is observed both in SLE twins and healthy twins, the alternative
hypothesis would be supported indicating that the epigenetic defects observed in AA

female SLE patients are the result of a shared genetic background.
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Figure 5.3 SLE twin study design.

Obtaining both gene expression and methylation data from twins allows for the

ability to determine whether these hypomethylated IFN CpGs correspond with increased
IFN gene expression. Based on the canonical model of methylation, CpG methylation
near gene promoter regions and near TSSs are negatively correlated with gene expression
(Coit et al. 2013; Coit, Yalavarthi, et al. 2015; Busslinger, Hurst, and Flavell 1983;
McGhee and Ginder 1979). Therefore, I would expect to see higher expression of IFN-
regulating genes in SLE patients who bear hypomethylation at the previously identified
SLE-associated CpGs, especially since most are within the promoter regions and TSS of
their corresponding genes. Alternatively, recent work has highlighted differences from

the canonical model of methylation and expression (Olsson et al. 2014; Wagner et al.
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2014; Hu et al. 2016). Lack of direct relationship between methylation at these sites and
gene expression would indicate more complicated epigenetic regulation of gene

expression at these IFN-regulating sites.
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APPENDIX A

Table A.1 Number of variants before and after QC in both cohorts.

Data set Number of SNPs

Initial Wellderly 8018

Initial UPM 25273

Final (both) 5896

Table A.2 Number of variants in each data set for Random Forest predictive modeling.

Number of

Subset Variants
Variants 5896

Rare Variants 2773

Very Rare Variants 998
Medium CADD Score Variants 530

High CADD Score Variants 140

Target Variants 1962
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Rare Target Variants 963
Very Rare Target Variants 331
Medium CADD Score Target Variants 203
High CADD Score Target Variants 60
Variants +/- 50kb of Target Genes 4522
Rare Variants +/- 50kb of Target Genes 2102
Very Rare Variants +/- 50kb of Target Genes | 751
Medium CADD Score Variants +/- 50kb of

Target Genes 410
High CADD Score Variants +/- 50kb of

Target Genes 113
Exon Variants 228
Rare Exon Variants 99
Very Rare Exon Variants 45
Medium CADD Score Exon Variants 51
High CADD Score Exon Variants 20
CodingAnnoType variants 162
Known Variants 5067
Unknown Variants 829
TFBS Variants 1180
SIFT Deleterious Variants 28
SIFT Tolerant Variants 56
eQTL Variants 30
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GWAS Variants

1540

Control

5896

Table A.3 Single Variant Association of the aging phenotype.

Adj. P-
Chr Pos rsID Gene P-Value | Value tAF
1 156079083 | rs915180 LMNA 0.0015 1 0.56
1 156078249 | rs915179 LMNA 0.0017 1 0.56
8 30910690 | rs6989940 | WRN 0.0017 1 0.07
8 30911082 | rs6991755 | WRN 0.0017 1 0.07
1 156045662 | rs10047112 | MEX3A 0.0028 1 0.59
1 155993678 | rs55935614 | SSR2 0.003 1 0.05
1 156074845 | rs6661281 | LMNA 0.0035 1 0.6
8 30909416 | rs55932348 | WRN 0.0037 1 0.04
8 30897476 | rs55895301 | WRN 0.0039 1 0.05
8 30907657 | rs56111434 | WRN 0.0039 1 0.06
8 30926637 | rs11574211 | WRN 0.0044 1 0.06
8 31026051 rs2553257 | WRN 0.0045 1 0.9
RP11-
9 21999800 | rs3218007 | 149124 0.0057 1 0.16
RP11-
9 22000247 | rs3218005 | 149124 0.0057 1 0.16
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RP11-

9 22000841 rs3218002 | 149124 0.0057 1 0.16
CDKN2B-

D 22053895 rs17756311 | AS1 0.0059 1 0.07
CDKN2B-

9 22054164 | rs74655961 | ASI 0.0059 1 0.07
CDKN2B-

9 22054356 1s17694572 | AS1 0.0059 1 0.07

8 30993804 | rs56359757 | WRN 0.0067 1 0.04

8 31018962 1s67722242 | WRN 0.0067 1 0.04

Table A.4 Labels for Random Forest Models based on data filter.

Label Subset Number of Variants
1 Variants 5896

2 Rare Variants 2773

3 Very Rare Variants 998

4 Medium CADD Score Variants 530

5 High CADD Score Variants 140

6 Target Variants 1962

7 Rare Target Variants 963

8 Very Rare Target Variants sS4l
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9 Medium CADD Score Target Variants 203
10 High CADD Score Target Variants 60
11 Variants +/- 50kb of Target Genes 4522
12 Rare Variants +/- 50kb of Target Genes 2102
13 Very Rare Variants +/- 50kb of Target

Genes 751
14 Medium CADD Score Variants +/- 50kb of

Target Genes 410
15 High CADD Score Variants +/- 50kb of

Target Genes 113
16 Exon Variants 228
17 Rare Exon Variants 99
18 Very Rare Exon Variants 45
19 Medium CADD Score Exon Variants 51
20 High CADD Score Exon Variants 20
21 CodingAnnoType variants 162
22 Known Variants 5067
23 Unknown Variants 829
24 TFBS Variants 1180
25 SIFT Deleterious Variants 28
26 SIFT Tolerant Variants 56
27 eQTL Variants 30
28 GWAS Variants 1540
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29

Control

5896

Table A.5 Genomic information of top predictors from the best performing model.

Chr

Pos

226555302
103528002
156099669
14029033
91354521
91326099
32974493
50690821
89873364
89866691
31012237
32984657
31030535
103518693
50680422
50708599
103527849

50732202
89873337

Ref. Allele
A G
G C
i G
G A
G A
C T
C i
G A
C G
€ G
(@ G
A T.
C 'R
G A
G T
C T
G ¢
T G
T A

Alt. Allele

Gene

PARPI
ERCC5
LMNA
ERCC4
BLM
BLM
APTX
ERCC6
POLG
POLG
WRN
APTX
WRN
ERCCS
ERCC6
ERCC6
ERCCS
RP11-
123B3.6
POLG

rsID

rs1136410
rs17655
rs513043

151800067

rs7167216
rs11852361
rs104894103
rs114852424
rs61752784
rs121918054
rs78488552
rs141195622
rs11574410
rs142438319
rs145720191
rs41549213
1s9514066

rs4253046
rs 138929605
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tAF

0.24

0.38

0.17
0.03

0.07

0.05

NA

NA
0.0037
5.00E-04
9.00E-04
0.0014
0.0018
NA
0.0023
NA

1

NA
NA

Exon

17/23
15/15
2/13
8/11
19/20
13/20
7/8
4/15
3/23
1/4
32/35
6/8
35/35
10/15
10/15
721
15/15

5/6
3/23

SIFT
Category
tolerated
deleterious
deleterious
deleterious
deleterious
deleterious
NA
deleterious
deleterious
deleterious
deleterious
tolerated
NA
deleterious
deleterious
tolerated
deleterious

deleterious

tolerated

CADD
Score
20.9
18.44
18.33
36
152
19.45
35

35

32
255
19.22
18.05
40
205
32
219
17.11

17.18

15.41

GINI Score

1.262
1.150
1.027
0.810
0.446
0.406
0.316

10.270

0.243
0.229
0.222
0.218
0.211
0.203
0.190
0.167
0.108

0.036
0.015



Table A.6. Information for GWAS variants in the top performing model.

snp ID GWAS P-value PMID GWAS Phenotype
157167216 5.10E-05 23555315 Breast cancer
rs1136410 4.20E-04 20686565 LDL cholesterol
rs1136410 9.50E-04 20686565 Total cholesterol
Hypertension, combined
rs1136410 1.00E-03 17554300 control dataset, gender
differentiated
rs1136410 1.90E-03 20935629 Waist hip ratio
rs1136410 2.60E-03 22504419 Infant head circumference
Diastolic blood pressure
rs17655 1.40E-02 21909115
(DBP)
1s7167216 1.70E-02 23722424 College completion
rs11852361 2.10E-02 23722424 College completion
Coronary artery disease
rs1136410 2.10E-02 23202125
(CAD)
rs1800067 2.30E-02 20686565 HDL cholesterol
Age at death with kuru
rs1136410 2.30E-02 22210626
exposure
rs1136410 2.60E-02 23474815 Refractive error
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rs1136410 3.20E-02 19060906 LDL cholesterol
rs1136410 3.40E-02 21124317 Neuroblastoma (brain cancer)

Triglycerides change with
rs11852361 3.50E-02 20339536

statins

Triglycerides change with
1s7167216 3.80E-02 20339536

statins

Total cholesterol change with
1s7167216 3.90E-02 20339536

statins

Salmonella-induced
rs1136410 4.00E-02 22837397

pyroptosis
rs1136410 4.10E-02 18483556 Eye color
rs1136410 4.20E-02 20383146 Chronic kidney disease
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Figure A.1 Bar plot of the discovery cohort Hispanic background distribution.
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Figure A.2 Bar plots of the non-Hispanic discovery cohort ethnic background.
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Figure A.3 Bar plot of discovery cohort frailty group (1-3) by age group (Early and Late).
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Figure A.4 Box and bar plots of overlapping phenotype data in the training and discovery
cohorts.

109



Adj. P = 0.61 Adj.P= 047 Adj.P = 047

o w - o °
g1+ 7 90 y B
! ) o D R | !
3] — 32 52} —
o -
8 g § ©
5 8 & o~ - s
> = : > J_ l > =5 |
; I ke i | 1
81+
e (=} ° ° o -4 4 4
Early Late Early Late Early Late
Adj.P = 047 Adj.P= 047 Adj. P = 0.61
-4 o n - 4 > _ o [J
o _| =1 |
o < o “ T
8 8 $ N ey
c - E ™ - - |
[} @ ©
5 - ¥ & s 1H B
> 2 > | | >
5 g I & - _:_ _'L
g - e c— o - 4 s o
Early Late Early Late Early Late
Adj.P= 047 Adj.P= 0.47 Adj. P = 047
g e S
T4 o | — i 8
4 1
@ 1+, | 2 g g +
~ -
c ! T c e
© © - ©
> [~ Ta o> > [~ =t | ide
- e °
- Y. 3%
0 - ol [0S
Early Late Early Late Early Late
Adj.P= 0.1 Adj. P = 0.99 Adj.P= 0.73
-1 8 = 0 b i
Q. 2 7 | T g - % &
=14 ' “Im
@ 1 T @ - s @ 7]
€ o |
© 8 ] : f g 8 - ! s © | !
S S P E 1. t
> o . > of > i)
e <
-t 8 - -
o 4 B 14 = 5 L o °
Early Late Early Late Early Late
Adj. P = 0.71 Adj.P = 0.99 Adj. P = 0.47

35
2 -3 45

]

o

1
1

Variants
0 20 40 60 80
1 1
Variants
25
|
Variants
1
-

15

L g vy TR S aliuke L
Early Late Early Late Early Late
-1 Adj. P = 0.61 Adj. P = 0.47 Adj. P = 0.71
0 - 9 -1 T T e i 3
- T n -
= | i I ¥
T . 2 - ! Eog-l-t ]
cC - ! | B e | &5 sy =
o i AT B
© ® ~ &
o
> 8 - =8 > 8 -
=
& S o 4 4 & 4 L
Early Late Early Late Early Late
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Figure A.6 Bar plot of the Spearman Rho correlation coefficient between the predicted
age group and BMI, the predicted age group and the actual age group, and the actual age
group and BMI.
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Figure A.7 Scatter Plot of the age group prediction versus BMI for the discovery and
validation cohorts in the top model.
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APPENDIX B

Table B.1 SLE discovery and validation demographic data.

Discovery |Discovery [Validati Validati Discovery |Discovery [Validati Validati
Control Control Control Control

Cohort SLE (AA) [(AA) SLE (AA) [(AA) SLE (EA) [(EA) SLE (EA) [(EA)
Number of
Patient: 24 25 23 22 18 13 11 13
Median Agel
(years) 37 37.37 28 29.5 38.145 37.13 37 25
Age Range
(years) 22-49 23.96-47.13 |19-49 22-48 22-54.47 24.13-48.13 |25-47 21-65
Number of
Smoked 1 0 N/A N/A 1 3 N/A N/A
Number of
Patients in 3
Flare N/A N/A A 0 N/A N/A 4 0
Median
BMI 28.45 N/A N/A N/A 30.11 20.23-44.27 [N/A N/A
BMI Range[17.97-52.18 [N/A N/A N/A 20.23-44.27 [N/A N/A N/A
Median
SLEDAI |2 N/A N/A N/A 0 N/A N/A N/A
SLEDAI
Range 0-12 N/A N/A N/A 0-4 N/A N/A N/A
Median
Nephritis
Stage 3 N/A N/A N/A 0 N/A N/A N/A
Nephritis
Range 0-5 N/A N/A N/A 0 N/A N/A N/A
Number of
Patients
with
Nephritis |14 N/A N/A N/A 0 N/A N/A N/A
Median
Creatinine
Level 0.85 N/A N/A N/A 0.75 N/A N/A N/A
Creatinine
Level Rangd0.6-2.1 N/A N/A N/A 0.6-1.0 N/A N/A N/A
Median
Proteinuria [0 N/A N/A N/A 0 N/A N/A N/A
Proteinuria
Range 0-2 N/A N/A N/A 0 N/A N/A N/A
Median
Glucose 87 N/A N/A N/A 89 N/A N/A N/A
Glucose
Range 50-312 N/A N/A N/A 81-103 N/A N/A N/A
Median
Prednisone
Dose 5 N/A N/A N/A 0 N/A N/A N/A
Prednisone
Dose Range|0-40 N/A N/A N/A 0-10 N/A N/A N/A
Number of
Patients on
Prednisone [13 N/A N/A N/A 5 N/A N/A N/A
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Table B.2 Individual discovery sample demographic and clinical information

Age |Gender
SLEI0643 (24
SLE10797 |

SLE1189 _\47
11894 133
VSLEI 1897 ‘22
SLE11906 22
SLE11913 ‘45
SLE11929 :39
SLEN933 31

ISLE11947 |22
SLE4091 143
SLE4207 |28

76
SLE3759

SLEIS46 48
SLE11928 '43

SLEI956 | 43
SLE11957 |41
SLE10558 |44
SLESS 149
SLE1182 48
SLEL1971 |28
SLE11335 |38
|SLE11453
|SLE11972 |48

SLE11977 ‘36

—
w

SLE11978 |42
|SLE11979 ‘37

CNTLAOIO |45 46
(.NTLS]7O 3737

|CNTL11943/32.21
-’L{.‘NTLI 1944 36.47

[CNTL 11963 449
|CNTL 11966 41.79
}cNTL1|970443

C ”976 37 38
120 443

TL139 14 8

CNTL4230 38 63
CN IL479| 38 38
CNTL]]57I 37.13
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15447
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Table B.3 Individual validation sample demographic and clinical data.

SUBID AGE GENDER  |ETH SLE FLARE cp4 D19

SLE11414 29 F AA s Post 1 1
SLES274 24 F AA s Post 1 1
SLE10495 26 F AA s Post 1 1
SLE10024 30 F EA s Post 1 1
SLE1190 45'F AA s Post 1 1
CNTL11423 28 F EA c | Control 1 1
CNTL10414 26 F AA c Control 1 1
CNTL10412 33F AA c Control 1 1
CNTL3968 32/F AA c Control 1 1
CNTL4122 21 F EA c Control 1 1
SLE1167 28 F AA s Flare ‘ 1 y
SLE11440 45 F EA s Post 1 1
SLE4090 25 F AA s Post Ty 1
SLE11445 19 F AA s Post 1 1
CNTL10897 27'F AA c Control 1 1
CNTL10450 28'F AA c Control 1 1
CNTL10576 33°F AA c Control 1 1
SLE10494 31F EA s |Post 1 1
SLE92 33F AA 3 Post 1 1
SLE4046 49 F AA s Flare 1 1
SLE11476 46 F AA s Post 1 1
|CNTL466S 26 F AA c Control 1 1
CNTL10413 25 F AA c Control 1 1
SLE11473 41 F AA s Post 1 7
SLE4048 48 F AA s Post 1 7
SLE10374 20 F AA s Flare 1 1
SLE1627 aF AA s Flare 1 1
CNTL10943 48 F AA c Control 1 1
CNTL11394 21F EA e |Control 1 1
CNTL4184 34 F AA C Control 1 1
SLE10347 23 F AA 5 |Post 1 1
SLE11548 24 F EA s Flare 1 1
SLE10593 37 F EA s Flare 1 1
CNTL11432 25 F AA c Control 1 1
CNTL11533 28 F EA C Control 1 1
CNTL11577 25 F AA 3 Control 1 1
CNTL11573 2F EA = Control 1 7
SLE10011 2F AA s Post 1 1
SLES424 26/F AA s Post 1 1
SLE1121 32F AA s Flare 1 0
SLE11586 25 F EA s Flare 1 1
SLE3667 30 F AA s Post 1 1
CNTL11558 32 F AA C Control 1 1
CNTL11559 23 F EA c Control 1 1
CNTL11578 34 F AA C Control 1 1
CNTL11451 24'F EA c Control i 1
CNTL11575 2F AA c Control 1 1
SLES422 2F AA s Flare 1 0
SLE1072 47'F EA s Post 1 1
SLE11530 37]F EA s Flare 1 i
CNTL11550 25 F EA C Control 1 1
CNTL11463 38 F EA c Control 1 i
CNTL11556 a4 F EA c Control 1 1
CNTL4136 32|F AA C Control 1 1
SLE3686 25 F EA s Post 1 1
SLE2534 29 F AA s Post 1 1
SLE11352 32 F EA s Post 1 1
SLE11555 26 F AA s Post 1 1
CNTL11570 25 F AA c Control 1 1
CNTL11561 31F AA c Control 1 1
CNTL11471 21F EA C Control 1 1
CNTL11080 27\F AA C Control 1 T
SLE11546 39F EA s Post 1 1
CNTL11301 22|F AA c Control 1 i
CNTL11406 29 F EA c Control 1 1
CNTL1501 41F AA c Control 1 1
CNTL4492 34 F AA c Control 1 1
SLE4440 2F AA s Flare 1 1
CNTL1690 65 F EA c Control 0 1
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Table B.4 SLE Regression significant CpGs.
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Table B.6 Significant EA-specific SLE-associated CpGs.

CHR /MAPINFO_[INFINIUM_DESIGN_TYPE UCSC_REFGENE_ RAME UCSC_REFGENE_GROUP [RELATION_TO_UCSC,CPG_SLAND 'TFS |17 G (Ao [Se  Adise [tnge Adtuse Confl 8oy
.

(e
laano63 9/ 140524551 0 EMMTY e BodyRody 1/se0umas 46T07 9841019 94€ 11 954007 413008 41603 0181 brave
auosa 7 s NOUPAANOUPAL [1stEaon 5 TR N_Shore 1/POURZA REST TAF) TAFI TCFI2 1Y) BCUAFL CEBPB LRI, FOXMT NFIC PMLPOUF RUNXS 591 TCHA BUHEAD MAX RELA CHOR,E2F8 MAZMYIL TSP MYC & 31609 1 S8E.03 5 59€.019.64€.01 1,008 07 46002 0066 s

Table B.7 Model validation comparison results.

| RF Regression RF Variance  LASSO RegressionLASSO VarianceRidge Regression Ridge Variance
Cut-off P? 1E-4 Variance * 4E-2/P 2 SE-2 | Variance * 6E-2 (P * 1E-3 Variance * 7E-2
M Try 5 1S SNAT NA INA INA

VS 0.02 018 0.1 0.13 o1 02

|Lambda NA INA 10.09 10.23 17.85 |5.79

| Early Misclassification 10.03 0.06 10.03 10.03 10.04 0.05

 Late Misclassification 10.07 0.19 0.05 10.05 0.46
| Transitional Misclassification ' 0.07 0.07 10.77 0.07 10 0
'Nasve Misclassification 0.02 0.1 0.02 2 10.05 10.07
|Un-switched Misclassification 0.03 10.26 0.03 0.07 10.03 10.48
Switched Misclassification 0.03 022 0.08 0 0.06 1053
Double Neg. Misclassification 0.06 0.14 bos o 10.06 036
Discovery AUC 10.92 0.96 10.88 96 0.92
CD4 AUC 0.97 10.93 10.98

|CDI19 AUC 0.95 0.93

0.98 0.7
0.97 0.97 0.85

Table B.8 Top AA SLE Random Forest predictors (based on Gini Importance).

Cpa CHRMAP] NFINIUM _DESIGN TYPESC_REFGENE NAMICSC REFGENE_GROUP RELATION_TO_UCSC_CPG_ISUARBETF > Importance
007839457 16 3 g 1581500 N_Shore 1 [POLRIAELFY TAFL,USFI,Y Y1 ATF2,EBFI FOXMI,TCFS BHLHE 10, MAX.MAZ MXI1 SINS A SMC3,USFIMYC 0.461
03552874 1019113143 11 TFITL Body [T /RUNXIMAXSTATS 10453
42199141 |11 MXI SUTR SUTR S Shore I [POLRIATAFL YY1 PAXS POU2F2 0374
42797588 11 MXI TSSIS00,SUTR |N_Shore 1 [POLR2ACHD2 0363
ol 70088769 111 1L SUTR 1 [POLR2A.TBP,WRNIFI (0356
g22764925 22 24979964 |11 aat SUTR o o 0345
cg22030808 3 122281881 11 PARPY |SUTR SUTR TS$1500,SUTR SUTR,SUTR. StN Rshore o o l0320
cgOSERII2S 4 169239131 11 DDX60 SUTR IN_Shore {1 [CTCF POLR2A,Y Y1 WRNTPL 0320
081011 D152 |1l FITMI Body [N Shore 1 |POLRIA POU2F2 WRNIP) 0313
03038262 11 315262 |1l IFITM) YUTR N_Shore 1 POLR2A WRNIPI 0302
|c07285983 1174844490 11 RABGAPIL Body. 55200 1 |EBFIRUNX3ZEB]
14864167 '8 66751182 11 PDE7A Body N_Shelf 0 o 024
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Table B.9 Top EA SLE Random Forest predictors (based on Gini Importance).

CpG CHR MAPINFO INFINIUM DESIGN TYPE UCSC REFGENE NAME .UCSC_'REFGiENE_ GROUP vRELATION»TD;UCSC,CPGJSLAND Importance
©g25334892 '8 15668801 I
126794885 |8 12908302 |11
1g09128529 |2 227586520 |

1cg01791778 12 583901 Il 5 3 . | S_Shore 023
1cg26948823 116 1255116 11 CACNAIH.CACNAIH |Body:Body S Shore 0178
|ca09563102 2 47889 1l [ S Shore 0171
1cgl0504436 22 24180492 11 DERL3:DERL3:DERL3 | Body; Body:Body Island 0.17
[cg18163909 1 1897959 I KIAAI751 ¢ S Shore (0161
1g07262519 | 162657172 |11 SLC4A10 | 0.16
1cg02070740 1 146763914 11 (CHDIL |Body 10157
gl2029281 6 35461818 |1 TEAD3 SUTR N_Shelf 0.139
0820177522120 62410437 11 ZBTBA6 3 Body S_Shell 0.138
|cg20595846 |14 76597468 11 | | 'N_Shore 10,136
log03841832 |4 9981202 11 SLC2A9;SLC2A9 0.131
16g17251609 13 65489574 11 MAGII:MAGII:MAGI 1 . 10,103
1g00283887 |7 157935557 Il PTPRN2;PTPRN2;PTPRN2 IN_Shelf 10,101
cg21930668 1 17592170 11 PADI3 | Body 10,097
0820388256 9 34588432 11 |CNTFR.CNTFR |SUTR:SUTR N_Shore 009
|cg00102726 21 46897181 |11 COLISALCOLISAICOLIBAI | Body;Body;Body N Shore 10094
1cg04830191 1 1212868520 11 BATF3 |Body 'N_Shelf 0.088
[cg26108416 |1 49226683 11 BENDS:AGBL4 |Body:Body 10,087
cg12807588 (1 53688861 11 | S_Shelf 10.086
|cg1 7880816 19 3789435 1l MATK [sSUTR S Shelf 0.084
cgl6640358 2 239892057 11 T S Shelf 0.084
cg07591515 1 |51810132 11 TTC39A |Body N_Shore 0083

120



® Discovery Afr. American
o ® Discovery Eur. American
v 7 Validation Afr. Amenican
* Validation Eur. American

= RE
N
o
-—
o -

Trans. Naive Un Switch Switch D.Neg CD4 CD19

40

30

Frequency

Figure B.1 Bar plot of cell coverage across discovery and validation cohorts.
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Figure B.2.1 Q-Q Plot of transitional B cell SLE regression p-values.
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Figure B.2.2 Q-Q Plot of naive B cell SLE regression p-values.
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Observed P-value (-log10 scale)
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Figure B.2.3 Q-Q Plot of un-switched B cell SLE regression p-values.
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Figure B.2.4 Q-Q Plot of switched B cell SLE regression p-values.
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Figure B.2.5 Q-Q Plot of double negative B cell SLE regression p-values.
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Figure B.3 AA transitional B cell top SLE-associated CpG methylation correlation.
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Figure B.4 EA transitional B cell top SLE-associated CpG methylation correlation.
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Observed P-value (-log10 scale)
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Figure B.5.1 Q-Q Plot of transitional B cell ethnicity-specific SLE regression p-values.
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Figure B.5.2 Q-Q Plot of naive B cell ethnicity-specific SLE regression p-values.
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Observed P-value (-log10 scale)
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Figure B.5.3 Q-Q Plot of un-switched B cell ethnicity-specific SLE regression p-values.
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Figure B.5.4 Q-Q Plot of switched B cell ethnicity-specific SLE regression p-values.
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Figure B.5.5 Q-Q Plot of double negative B cell ethnicity-specific SLE regression p-

values.

133



IFI44L: cg17980508

B
o = Af. American Control 0]
= Af. American SLE T ®) T
Eur. American Control S | T (o) | o)
®= Eur. American SLE | |
T
co. el T | .} |
o o' |
| T
5 b
= I
.E; 0 @) | T | P L O I
5 a1 75 riozd H P Ht
= | 0. b
Q £ s
= 75
Y 4 Tol: ] 1 [
£ o I : | Yty
() ! Figl I g Ay
8) i | | O| | | | : |
® . OT % §n & : | l =
o ez o e I 2 1
| | i L
®) o) Lo
1
i S8 .
o : ! |
|
1 1 1
Transitional Naive Unswitched  Switched Double Neg.
B-Cells

Figure B.6 Methylation levels across B cell development for the top AA-specific CpG in
AA and EA control and SLE samples.
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Figure B.7 Methylation levels across B cell development for the top MX1 CpG in AA
and EA control and SLE samples.
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Figure B.8 Methylation levels across B cell development for the top EA-specific CpG in
AA and EA control and SLE samples.
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Figure B.10 Heatmap of methylation at top EA predictor CpGs in EA SLE patients and
controls.
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