Polarization Switching in Gold Nanostructure Array

Harrison Knox, Dr. Seyed Sadeghi Nanophotonics Group, Physics Department

Background

Metallic nanoparticles resonate upon incident light, forming localized surface plasmon resonances (LSPRs). In arrays of such nanoparticles, these resonances can couple to each other via light diffraction, forming photonic-plasmonic resonances (PPRs). In this project we study in-plane scattering of light in such arrays and polarization switching between LSPRs and PPRs.

Methodology:

Samples of Au nanoparticle arrays in a glass slide are placed under a white light source. Initially, a stationary collecting objective is placed underneath to measure extinction. Afterwards, a moveable objective scans the sides of the sample to measure in plane diffraction patterns along the length of the sample while changing the polarization state of the incident light (Figure 3 below.)

Results:

Extinction of this sample shows two unique spectra for both X and Y polarized light (Figure 2 above.) These represent distinct resonance modes, identified as an LSPR by X polarization and a PPR by Y polarization. Figure 4 shows surface plots generated of the spectra along the –x side of the sample show the LSPR at 0° polarization and the PPR at 90°, while plots of the +y side show the opposite (at notably different levels of intensity.) This material can be used for chemical identification and biosensing methods, improvements to photovoltaic devices, and advancements in optical computing technology.

Conclusion

Interpreting Figure 4 above, we see that for Au nanoparticle arrays, the resonance modes switch with the polarization of the incident light from an LSPR to PPR with ultrafast response times.

Acknowledgements:

A special thank you to Dustin Roberts for the time he has spent listening and helping further my understanding of the topics presented, as well as designing the measurement system used. My respect and gratitude is for the UAH Office of the President, the Office of the Provost, the Office of the Vice President for Research and Economic Development, the Dean of the College of Science, the Dean of the College of Engineering, the Alabama Space Grant Consortium, and the National Science Foundation.

Reference:


Acknowledgements:

A special thank you to Dustin Roberts for the time he has spent listening and helping further my understanding of the topics presented, as well as designing the measurement system used. My respect and gratitude is for the UAH Office of the President, the Office of the Provost, the Office of the Vice President for Research and Economic Development, the Dean of the College of Science, the Dean of the College of Engineering, the Alabama Space Grant Consortium, and the National Science Foundation.