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ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree  Doctor of Philosophy ~ College/Dept. Science/Mathematical Sciences

Name of Candidate = Margaret Coreen Lund

Title Local Supervised Methods and Uncertainty Quantification for Boundary

Detection in Images

Boundary detection is a powerful tool for quantitative image analysis that
allows researchers to extract crucial information about a scene. Many existing meth-
ods rely on sharp changes in luminance, chromaticity, or texture within an image
to predict boundary locations between regions, and images without these features
have proven difficult to partition. This work presents two new supervised statistical
boundary detection methods based on image segmentation that incorporate spatial in-
formation to locate boundaries between regions with overlapping intensity histograms,
specifically for images where the regions are known but precise boundary locations
are unknown. The segmentation of a pixel is determined by comparing its intensity
to distributions from local, user-supplied training pixels, where local is defined differ-
ently for the two algorithms, and boundaries are determined as the borders between
the identified regions. The applications of each new algorithm are explored, and
each algorithm’s success is demonstrated on synthetic images as well as real images
from lab experiments. Additionally, because of the statistical nature of the algo-
rithms, methods for uncertainty quantification are explored and maps showing the
uncertainty in the boundary location and the distinguishability between classes are

provided.
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CHAPTER 1

INTRODUCTION

Research is what I'm doing
when I don’t know what I'm doing.

—Wernher von Braun

Boundary detection is a vital part of extracting information encoded in images,
allowing quantities of interest to be computed including density, velocity, pressure,
ete. [2,3]. For example, the U.S. Department of Energy research complex uses high-
energy X-ray sources to image objects, and subsequent analysis is applied to the
images to compute the boundary locations and density of the materials [4]. In remote
sensing from satellite images, traditional and modern segmentation algorithms are
used to identify ground cover such as forest, fields, and rivers [5-9]. The authors
in [10] calculate the volume of fruit by identifving boundaries in magnetic resonance
images. In medical biology applications, boundary detection methods are essential
for identifying boundaries of organs, tissues, or tumors [11-14]. For example, [15]
monitors changes in breast tissue location and density to infer breast cancer risk,
and in biological systems, boundary detection is used to identify bacteria cell motion
[16]. In each of these research fields, boundary detection methods are necessary to

distinguish between classes and provide vital information about the scene.



Despite the significant contributions in literature for boundary detection, there
are still images for which no existing methods perform well. Some research groups,
such as the ones who provided images for this dissertation, have spent years searching
for a method that will detect accurate boundaries in their images, and are forced to
choose between methods that provide inadequate results or identifying boundaries
by hand. In fact, because of the absence of suitable methods, many communities in
physics, medicine, and biology still manually determine boundaries in images (9,17,
18], which is time consuming and subjective. Many existing methods rely on sharp
changes in luminance, chromaticity, or texture to detect boundaries and may perform
poorly on images with low contrast, heteroskedasticity (variances vary across the
image), low signal to noise ratio, and regions with spatial trends in intensity.

This dissertation proposes two new supervised boundary detection schemes.
The first method, locally adaptive discriminant analysis (LADA), utilizes the statistics
of local training data to segment the image into classes. Here “local” is defined by
two user-supplied parameters in order to adapt to a wider range of images. The
second approach, anisotropic locally adaptive discriminant analysis (ALADA), does
something that no other existing method does- it utilizes the statistics of both pixel
intensities and training pixel locations in order to identify boundaries.

Each method provides a detailed algorithm for restricting training data for
each pixel to only the locally occurring classes, building a statistical segmentation
model based on the Gaussian assumption of quadratic discriminant analysis [26], and
identifying boundaries between the identified classes. By restricting training data

for each pixel to the locally occurring classes, these methods are adequately able



to separate classes with spatially varying intensities, making them appropriate for
images with shadows, heterogeneous illumination, low contrast, heteroskedasticity,
and high noise.

To enhance its utility for applications, we combine our boundary identification
with two methods for quantifying uncertainty in the boundary results. These meth-
ods use trainers based on probability distributions, allowing us to compute various
confidence measures for each pixel in the image. The results for the first test can be
interpreted as uncertainty in the boundary location, which can then be propagated
through calculations, giving error bars on quantities of interest. The second test
identifies regions where neighboring classes have statistically equivalent distributions,
meaning we cannot confidently choose one class over another. Researchers who are
interested in not only identifying boundaries, but also knowing how confident they can
be in the boundary locations will greatly benefit from these uncertainty quantification

methods.

1.1 Organization

The remainder of this dissertation is organized as follows. Chapter 2 explores
existing boundary detection methods and existing methods for uncertainty quantifi-
cation. In Chapter 3, LADA is explained and a step-by-step example is provided.
In Chapter 4, ALADA is explained and another step-by-step example is provided.
Chapter 5 presents two methods for quantifying uncertainty in the resultant bound-
aries. Chapter 6 presents three images captured during real laboratory experiments

to demonstrate LADA and ALADA results, as well as uncertainty quantification.



Results from four competitive methods are also included, for comparison. Finally,
Chapter 7 details the conclusions and future work. For the reader’s convenience, Ap-
pendix A gives explanations of several machine learning and statistics topics that are

used throughout this work.



CHAPTER 2

LITERATURE REVIEW

Digital boundary detection dates (somewhat surprisingly) back to the 1950’s,
when G.P. Dinneen started studying 90 x 90 block black-and-white images of various
letters of the alphabet using the Memory Test Computer at MIT. His 1955 paper,
“Programming Pattern Recognition,” aimed to identify handwritten letters and used
thresholding to identify edges as part of the process [19]. What began as rudimentary
thresholding studies evolved to include more complex methods, resulting in the sophis-
ticated, cutting-edge boundary detection algorithms being used today. The following
sections explore the many types of boundary detection, highlighting many notable,
competitive. and creative methods. The final section in this chapter highlights the
need for suitable uncertainty quantification methods for boundary detection. Since
segmentation is closely related to edge detection, we begin by explaining how seg-
mentation can be used for boundary detection, and include competitive segmentation

methods in this chapter.



2.1 Segmentation and Boundary Detection

One common technique for identifying boundaries in an image is to first seg-
ment the image, by partitioning it into cohesive regions or classes, such that each
pixel (or part of a pixel, in the case of subpixel methods) in the image is labeled as
belonging to one of the available classes, and each class has some unifying character-
istic such as color, intensity, or texture [20-22,26]. These methods typically rely on
sharp changes in luminance, chromaticity, or texture between classes to aid the algo-
rithm in identifying different classes [7,23,26]. If the image is segmented, the image
boundaries can be defined to be the boundaries between regions in the segmented

image, as shown in Figure 2.1.

2.2 Threshold Based Methods

The simplest way to segment an image, and subsequently identify image
boundaries, is by thresholding the image. Thresholding an image is done by choosing
an intensity value to be the cutoff point between two classes. All pixels with intensity
values below the threshold parameter are assigned to one class and all pixels with
intensity values at or above the threshold parameter are assigned to a second class, as
detailed in Algorithm 1. Variations of the most basic thresholding technique include
methods with multiple thresholds, to give a segmentation with more than two classes,
and ways to compute the threshold parameter from the pixel intensities, instead of
having the user choose a value [24]. More complicated versions of thresholding are

included in the following section on machine learning.



Figure 2.1: (a) Original image of coins, (b) image segmentation using thresholding
method, and (c) boundaries collected from the segmented image.
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Algorithm 1 Two-class thresholding algorithm for image segmentation

Given image X, define threshold parameter ¢,
For each pixel z;; € X:

e If z;; > t, place z;; into class 1.

e Else, place z;; into class 2.

Threshold methods perform well on images with regions that have high con-
trast, such as computed tomography images, but do not take into account spatial
relationships within the image [20,21,24]. When intensity scales vary across an image
or when there are gradual intensity changes between classes, the threshold parameter
becomes incredibly sensitive, giving vastly different results for small perturbations of

inputs.

2.3 Machine Learning Methods

Many boundary detection techniques are categorized as machine learning al-
gorithms, which is an umbrella term for algorithms that improve through experience.
In other words, the program “learns” without being explicitly programmed. Machine
learning algorithms become more precise as more data are analyzed.

Machine learning can be divided into two main categories, unsupervised and
supervised. Unsupervised algorithms learn from an unlabeled data set (only the
inputs and no desired outputs have been given) and discover relationships, structure,
and patterns in the data, which can be used to group data points into categories.
Unsupervised methods may be used for such purposes as identifying hidden trends in

the data or separating the data into groups. In the context of boundary detection,



unsupervised methods are often used to segment the image by clustering related pixels
into classes. These methods are useful when the user knows no additional information
about the data set or when the user does not want to influence the results by providing
a priori information.

One example of an unsupervised clustering algorithm is an iterative method
called k-means clustering, which partitions pixels into k élasses, with each pixel be-
longing to the class with the nearest mean, based on squared Euclidean distance.
Each iteration consists of three steps, the data assignment step where the pixels are
assigned to the classes, the centroid update step where the mean intensity of each
class is recalculated, and an update of the iteration count [25]. These steps are re-
peated until some convergence criterion is reached, whether that may be reaching a
certain number of iterations, or waiting until pixel assignments do not change. Note
that pixels are not guaranteed to converge to the same clusters every time, for dif-
ferent initial cluster centroids, and, in fact, are not guaranteed to converge at all.
Pseudocode is provided in Algorithm 2.

The k-means algorithm is widely used amongst researchers dealing with vast
amounts of unlabeled data but is less common as a boundary detection algorithm.
Although the algorithm iterates to find well-separated groups, it is still, essentially,
a thresholding algorithm and fails to find satisfactory results in images with classes
have overlapping intensity distributions.

The second branch of machine learning, supervised learning, involves algo-
rithms that learn from training data, sets of input values and their corresponding

output values. These algorithms identify patterns in the training data and build a



Algorithm 2 k-means algorithm for image segmentation

Given image X, and a number of clusters, K,
@y ,.1) (1)

Initialize cluster centroids, j; ', g5 ', ..., pi3’ randomly and let t = 1.
Repeat until stopping criterion are reached:
1. Label every pixel x;; € X to a cluster such that

f(zij) = arg mkin ||-Tij = M/(ct)H?-

2. Recompute cluster centers such that

N(t+1) " _z%‘éck Lij
k Icvkl

where C}, is the set of all pixels in cluster k and |Cy| is the number of pixels
assigned to cluster k.

.t=t+1

deterministic model in order to predict outputs for unlabeled input values. Super-
vised learning algorithms include classification methods, where the output values are
qualitative, and regression methods, where the output values are quantitative [26].
Both types of methods can be used for image segmentation and boundary detection.
For example, a researcher could use a supervised classification algorithm to segment
an image (where the outputs are discrete class labels) or they could use a supervised
regression algorithm to identify the probability of a boundary belonging between
neighboring pixels (where the outputs are continuous values between 0 and 1).
Supervised methods are very common in image processing, as the user often
has a priori information about the scene that can be used to assist the algorithm in

building a model. The user may know the correct class assignment for pixels in the

10



image and provide these pixel-label pairings as training data in order to predict a
class assignment for all the other pixels in the image.

Within the machine learning category, methods are further separated into
categories based on how the algorithms approach the task of boundary detection.
Techniques that detect boundaries by identifying strong changes in intensity gradient
are called edge-based methods while techniques that detect boundaries by identifying
homogenous regions are called region-based methods. Statistical methods use statis-
tics of the training data to predict class labels. Neural networks are part of a new
field that aims to process information in a way similar to a human brain, adopting

parts of the other three categories.

2.3.1 Edge-Based Methods

By definition, an edge is a curve that follows a path of rapid change in image
intensity [27], as opposed to a boundary which is a curve that marks the separation of
one material or region from another. Methods that identify boundaries by computing
edge gradients and selecting the regions over which the largest change occurs are
called edge-based methods or gradient-based methods. These are most successful
when distinguishing between regions of high contrast [20].

It is important to note that not all boundaries are edges (in the case of a grad-
ual change in image intensity between materials) and not all edges are boundaries
(sharp changes in intensity can occur as a result of shadows or heterogeneous lighting
across the image) although there is significant overlap in how edges and boundaries

are identified. The work presented here is concerned with detecting boundaries be-

11



tween regions and materials, while ignoring any edges created from shadows, irregular
illumination of the scene, and edges that occur as a feature of the imaging system.
The most common edge detection algorithms today are the Sobel edge detec-
tor, created in 1968, and the Canny edge detector, created in 1986 [28-30]. Sobel
detection computes the magnitude of the 2D image gradients using two 3 x 3 kernels,
one for horizontal edges and one for vertical edges, which are convolved with the
image. The vertical Sobel kernel, Ky, and the horizontal Sobel kernel, K, are given

here on the left and right, respectively,

. ) ) )
1 0 -1 N S
Kv=1|2 0o -2, Ke=1|0 0 0];
1 0 -1 i B g
L N L g

and pseudocode is provided in Algorithm 3.

Algorithm 3 Sobel edge detection

Given image X, horizontal kernel Ky, and vertical kernel Ky,

1. Compute the matrix convolution of the image with the vertical kernel to get
the gradient in the z-direction in order to identify the location and strength of
vertical edges.

Gz = K’V x X.

2. Compute the matrix convolution of the image with the horizontal kernel to get
the gradient in the y-direction in order to identify the location and strength of
horizontal edges,

Gy=KgxX.

3. Compute the combined gradient magnitude, GG, where

G=,/G2+ G2

G can be viewed as a map to identify regions of strong gradient, i.e. edges.

12



Canny edge detection is a more complex algorithm, built on the principles
of the Sobel edge detector. Like Sobel, it uses kernels convolved with the image to
identify regions of strong gradients, but that is only one of the many steps involved.
First, the image is smoothed with a Gaussian filter to remove noise. A 5 x 5 Gaus-
sian filter with standard deviation of ¢ = 1.4 is common but is not required. A
larger Gaussian filter will lower the detector’s sensitivity to noise but will increase
the localization error of the detector, while a smaller detector will do the opposite.
A larger standard deviation will detect stronger edges while a smaller standard devi-
ation will detect finer edges. Note that in real images from experiments, eliminating
even low-frequency noise can mean eliminating vital boundary information. The
smoothed image is then convolved with edge identifying kernels to compute gradients
in the horizontal and vertical directions. Additional kernels may be used to identify
the gradients in other directions, such as diagonals. These directional gradients are
combined to obtain the gradient magnitude. identical to the process in Sobel edge
detection, as well as the gradient direction. Then, an edge thinning technique is used
on the map of gradient magnitudes in order to “clean up” any edges, giving sharp,
clearly defined edges wherever the gradient was strongest. This can be done using
another Gaussian smoothing filter or skeletonization methods. The fourth step takes
two user-provided thresholds to further filter out some of the detected edges. Any
gradients smaller than the lower threshold are ignored, any gradients larger than the
high threshold are marked as strong edges, and any gradients between the thresholds
are marked as weak edges. Finally, the weak and strong edges are used to create a

final map of edges in the image. Strong edges are always included, and weak edges

13



are included if they are connected to a strong edge or sometimes if including them
means forming an enclosed region. Pseudocode for Canny edge detection is provided
in Algorithm 4.

Canny edge detection and its variants are customizable, allowing researchers
to tailor the algorithm to their specific images. This makes it very versatile and
adaptable but with the drawback that different formulations and input parameters can
give disparate results. Despite its lack of robustness, Canny edge detection remains
the most popular edge detection method in use today.

Advancements in technology have led to more complicated computational
methods, with recent works including a variation of the Sobel method called Pre-
witt operation [31], zero crossing detectors that use filters to identify regions where
the gradient starts increasing or decreasing (i.e. the gradient changes from positive
to negative or negative to positive, thereby crossing ‘zero’) [32], and other gradient
based methods [33,34]. Fuzzy logic edge detection uses intensity gradients to deter-
mine the degree to which a pixel belongs to an edge or a uniform region [35]. This
idea of partial membership to different groups is useful in determining uncertainty
in segmentations., and some fuzzy logic methods, such as fuzzy c-means clustering,
incorporate spatial information, which can help the algorithm be robust to noise in
the image [36].

Many additional edge-based methods use partial differential equations to iden-
tify boundary locations. These methods involve evolving an initial contour until some
cost function is minimized, where the cost function usually takes into account not only

the fit of a contour to a shape but also the smoothness of the solution. The level set
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Algorithm 4 Canny edge detection

Given image X, horizontal kernel Ky, and vertical kernel Ky, t,in, and tna,

I

Pad the image with zeros such that the n x m input X becomes the (n + 2) x
(m + 2) matrix X,,.

. Reduce noise in the image by convolving the image with a Gaussian kernel,

where the kernel is found using the formula

1 (i—(k+1)24+ (G- (k+1))2
= 2#02(‘ 202

);1§i.j§(2k+1).

Default parameters are k = 2 and o = 1.4.

. Identify location and strength of horizontal and vertical edges by finding the

gradient in the x and y directions,
Gx = K v X Xp,

Gy:KH*Xp.

. Compute the combined gradient magnitude, G, where

G=,/G2+G2.

Compute the gradient direction, 6, where

= atan(ﬁi).

Add 180° to results below —22.5° and then round each angle to the nearest of
four directions: 0°, 45°, 90°, or 125°, representing horizontal, positive diagonal,
vertical, and negative diagonal directions, respectively.

. Compute the map of maximum edges, N, where

N(l'ij) = G(.LU) if G(Z’a) < G(‘Q’U) < G(lb)
where z, and x; are the neighboring pixels of x;;, in the direction of 0(x;;), and

N(z;;) = 0 otherwise.

The final edge map is the union of the strong edge set, Fyong, and the weak
edge set, Fyeqr Where

Estrong = {N(xlj) > tmin}» and

Eyweak = {N(2i;) > tmin|i; neighbors a pixel in Eynq,}-
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approach is the most common of all such methods which identifies class means that
are as disparate as possible while, at the same time, creating smooth boundaries
between classes [37, 38|.

Finally, there are edge-based methods which require prior shape information
about the objects to be identified. These include atlas algorithms, which are often
used in the medical community to create models or templates for certain organ shapes
based on patient data. A new medical image can be analyzed but only by mapping
it to an appropriate existing template [11,39]. Another group of algorithms called
active contour models, or snakes, operate similarly to level sets where an initial curve
is evolved to fit an object in the image. However, for active contours, the user must
know a priori what the curve shape will be and roughly the curve’s location before

the algorithm can find the exact shape and location [40-42].

2.3.2 Region-Based Methods

The second category of boundary detection techniques are region-based, mean-
ing that they identify homogenous regions in the image as belonging to a single uni-
fied shape. Often, these methods will compute the statistics of some region and if
the neighboring pixels sufficiently match those statistics, they are added to the re-
gion [43]. Some region-based methods, including shadow detection [44] and texture
recognition [42,45,46], include both region criteria and spatial information and often
incorporate gradients, making them particularly useful for separating homogenous

regions (20, 33].
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Watershed methods use an image’s gradient map as a topological surface where
regions with large gradients represent peaks and regions of small gradient represent
valleys. Imaginary water placed on each pixel flows downhill and pixels whose “water”
drains to the same valley are defined to be from the same region [47-49)].

Many methods combine features of existing methods in order to provide im-
proved results. The region competition algorithm described in [50] presents a sta-
tistical framework for image segmentation that involves a sampling window with the
geometric aspects of snake models along with the statistical techniques of region grow-
ing and also imposes a minimum description length criterion to force semi-smooth

boundaries.

2.3.3 Statistical Methods

Statistical segmentation and edge detection methods utilize measures such as
the mean and variance of pixel intensities in order to determine the results. Region
growing methods often overlap with this category since they compare each new pixel
to the statistics of a region of pixels in order to decide if the pixel should be absorbed
into the region or rejected and assigned to another class. However, region growing
methods are a small subset of statistical methods.

Some supervised statistical algorithms use intensity distributions of the train-
ing data to build classifiers. Based on the statistics of the training pixels, non-training
pixels are sorted into the most probable class using Bayes’ theorem. Common meth-
ods include linear discriminant analysis, which assumes that each class of training

data has the same variance, and quadratic discriminant analysis (QDA), which allows
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classes to have different variances. Pseudocode for quadratic discriminant analysis is

given in Algorithm 5.

Algorithm 5 Quadratic discriminant analysis for image segmentation

Given image X, training data T from C' classes, and prior probabilities 7., for each
class ¢ = 1...C,

Compute the sample mean g, and sample standard deviation o for the training data
from each class ¢ = 1...C.

For each z;; € X:

1. Use the mapping function G to assign x;; to the class which maximizes the
posterior probability of x;;, such that

fc(ffij)ﬂc
C
> fulwis)mi
k=1

?

G(xi;) = arg max P(class = c|pixel = x;;) = arg max

where z;; ~ N(ue,;, 0c,; ).

These methods are extremely common in the literature but they assume Gaus-
sian distributions on the global training data. Data that are well-separated in feature
space result in better performance of the algorithms [26], which precludes images with
low contrast, for example. The work in this dissertation is based on the fundamental
ideas of quadratic discriminant analysis. Like QDA, we use statistics of the training
data to sort the image’s pixels, however, we do so in a localized, adaptive way, rather
than assuming that the training data can be used globally for the entire image.

Other methods such as expectation maximization (EM) iteratively fit Gaus-
sians or Gaussian mixture models to the data in feature space and adjust class as-
sigments to find the best clusters for each class [51]. Recent developments in EM
algorithms give non-parametric approaches to this problem [52|. Similar to fuzzy

logic methods, EM algorithms allow for each pixel to have partial class assignments.
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2.3.4 Neural Networks

Much of the latest work in machine learning has been conducted in the field
of artificial neural networks, which are computational models designed to work the
way a human brain does [25,53-56]. Figure 2.2(a) shows a cartoon of a biological
neuron, which works when electrical impulses are carried to a neuron. If the impulse
is strong enough, the neuron will pass on the electric pulse to other neurons, sending
information on through the brain. Similarly, a node in an artificial neural network,
as seen in Figure 2.2(b), will receive a weighted numerical input. This value is input
to an activation function, commonly an arctangent, sigmoid, or ReLU function, given

below.

arctangent : f(x) = tan™'(z)

‘ , _ =g
sigmoid : f(x) = e

ReLU : f(z) = max(0, z)

The output of the activation function is sent on to the next layer of nodes or set of
“neuron.” This propagation of information through the neural network is called the
forward pass. Figure 2.3 shows a diagram of a one-layer neural network. Note that
this cartoon has three inputs and two outputs, whereas for imaging applications, the
number of inputs and outputs would equal the number of pixels in the image. Each
connection between neurons has a weight which is updated with each iteration, so in

the case of large images, the number of weights can easily reach into the millions.
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Figure 2.2: (a) Biological neuron and (b) a common mathematical model for a
neural network [55]
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Hidden
Input

Figure 2.3: Cartoon of a neural network with one hidden layer [57]

Once the forward pass has been completed and values are given at each of the
output nodes, the backward pass begins. As neural networks are machine learning
algorithms, they must have an update rule through which they improve with each
iteration. For most neural networks, this is done via the backpropagation of errors, or
simply “backpropagation.” By calculating the derivative of a loss function between
the computed outputs and the true outputs, this error can be used to adjust the
weights that are present between any two nodes in the network. Alternating between
forward and backward passes can be performed until the loss is sufficiently low and
the network is sufficiently trained.

Boundary detection using neural networks is usually done using convolutional
neural networks, algorithms that involve convolving numerous kernels with images

in every layer, similar to how Sobel and Canny algorithms work. However, because

21



they involve numerous layers and potentially dozens of kernels of all shapes and
sizes, neural networks are able to identify shapes and pattern that are not apparent
at face value, making them far more powerful. Many complicated neural networks
involve more than one hidden layer (with Google’s deep net employing 22 hidden
layers). These networks are called deep neural networks and the field is referred to as
deep learning. Many researchers are making strides in image processing using these

advanced networks [58].

2.4 Uncertainty Quantification Methods

In addition to identifying class and boundary locations, applications benefit
from understanding associated uncertainties, with typical measures of error confusion
matrices, and kappa statistics [59]. These statistical measures provide an overall
assessment of the analysis, but for each of these techniques, applied researchers are
interested in knowing both the accuracy and the spatial position where the errors are
most likely to occur [60-62].

For neural networks, [54] produces a confidence map indicating the number of
voting networks that agree on each pixel’s predicted label, and [63] presents a method
for estimating a pixel-scale confidence map when using boosting. Work by [5] takes
an alternative approach to developing uncertainty maps by using the spectral domain
rather than the spatial domain. Work by [64] presents an information-based criterion
for computing a thematic uncertainty measure that describes the overall spatial vari-

ation of the segmentation accuracy. Despite all of these advancements, no method is
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able to satisfactorily identify boundaries and provide uncertainty quantification for
the types of challenging images presented here.

For the majority of images, the literature contains a vast breadth of methods
for identifying object boundary locations. Techniques for edge detection and image
segmentation are typically tailored for each application to address the challenges
specific to each type of image [11,22,40,65,66]. However, boundary identification
is challenging for images with low contrast between classes, heteroskedasticity, and
objects whose intensities vary spatially. In such cases, quantitative analysis of the
images becomes difficult, and the analyst is often left to manually identify materials.

For images with spatially varying regions, there is still a need for a suitable
method that is able to identify boundaries between classes, even if the classes change
intensity across an image or have overlapping intensity distributions. In addition
to being able to handle these challenging images, an ideal method would be able
to provide uncertainty quantification for the results, identifying regions where the

algorithm is more or less confident in the given result.
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CHAPTER 3

LOCALLY ADAPTIVE DISCRIMINANT ANALYSIS

This chapter presents a supervised statistics-based algorithm for edge detection
called locally adaptive discriminant analysis (LADA). Like many other discriminant
analysis methods, LADA builds its classifier from user-supplied training data. The
novel idea behind LADA, however, is that instead of using all training data at once to
build a single classifier for segmenting every pixel, as with global methods, we restrict
the training data for each pixel of interest to the locally-occurring classes. These local
training data are used to build individual classifiers for placing each pixel into a class,
where region boundaries are defined to be the borders between classes.

It can be challenging to detect boundaries in images that contain shadows, het-
erogeneous illumination, strong gradients across classes, and weak gradients across
boundaries. Global segmentation-based methods rely on the classes being well-
separated in feature space and do not account for spatial variation in intensity within
a class, causing them to fail on images with classes that overlap in intensity. Edge
detection methods rely on sharp changes in intensity between classes and sometimes
identify non-existent boundaries in images that contain misleading shadows as well

as fail to identify boundaries when there are gradual changes between classes. By
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restricting the training data for each pixel of interest to only the locally-occurring
classes, we get a better representation of the pixel’s true class, without being mis-
guided by the irrelevant information in other areas of the image. The training data
are restricted for each pixel in the image via two user-selected parameters: a maxi-
mum radius 7 which limits how far away we look for training data, and a ‘number of
neighbors’ parameter n which limits how many nearby training pixels we use from a
class. Training pixels outside of each pixel’s subimage are temporarily ignored. The

LADA algorithm is described below, with pseudocode in Algorithm 7.

3.1 The LADA Algorithm

Given an image X, a pixel z;; in row ¢ and column j, and the set of training
data 7' C X, we are interested in determining the class, ¢, to which x;; most likely
belongs, for each x;; € X. The training data have class labels, ¢, with ¢ = 1,...,C,
for a total of C' known classes occurring in X. Let 7, C T be the set of all training
pixels from class ¢. Since LADA is a boundary detection method, we assume that the
user can identify the majority of the image, sans the boundaries, so the user is asked
to provide as much training data as is reasonable.

Rather than considering the entire set 7' to build a trainer for Zij, we tem-
porarily reduce the training data via two user-selected parameters: r and n. Typically,
training data is a single, non-changing set but with this method, the local training

data are used and will likely change for each x;;. Given the radius parameter, r, we
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define the subimage A;; C X about pixel z;; to be

Aijz{mleX’\/(i—k)2+(j—l)2§r},

which is the set of all pixels within radius r of pixel z;;. All training data outside
Aij are temporarily ignored and have no effect on the classification of z;;. Further
reducing the trainer’s view of local, the sets of local training data, T, ; C Ay, are
defined to be the sets of at most n nearest training pixels to x;;, for each class c.

Here, ‘nearest’ is defined using Euclidean distance to find the distance between any

two pixels, such that

(i, ) = /(i — k)2 + (5 — 1)2.

For each class, order all the training pixels within A;; from smallest to largest by their
Euclidean distance to x;; and collect the nearest n pixels for the set of local training
data, T,;. Note that ties are included so we could have more than n training pixels
from a class. Together, r and n determine our definition of local for LADA.

A simplified visual example of the restriction of the local training data for
parameters r = 3 and n = 4 is given in Figure 3.1. The two training data classes
that make up 7" are shown in pink (class 1) and blue (class 2) colored pixels, with
the center pixel identified as x;;. All pixels in subimage A;; (within radius r = 3)
are shaded, with elements of Ty, being the pink, shaded pixels with demarcation of
n4 and elements of Ty, being the shaded, blue pixels with demarcation of ns. Since

ties are included, the algorithm is not made to choose between the two blue training
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Figure 3.1: An example of defining local training data with » = 3 and n = 4. There
are two classes with training data represented by pink and blue pixels. The pixels
within A;; are indicated with diagonal gray lines, and the nearest four training points
for each class are marked with ns. Ties are included so the blue class collects 5 local
training pixels instead of 4.

pixels with asterisks, which are equidistant from x;;. Both are included, giving the
blue class 5 local training pixels, even with the nearest neighbors parameter n = 4.
Each class ¢ with |T,,;| > 3, where |T,, | is the number of elements in Lisi is
considered a potential class for z;; and the statistics of the locally occurring training
data are computed. A set with IT¢,;| < 3 is possible even with n > 3 if not enough
training pixels of class ¢ occur within A;j, and, in such a case, that class is not
considered as a candidate for the pixel’s class assignment. At least three training
pixels are required so that we can compute a sample standard deviation. The sample

mean, [, and sample standard deviation, ., are calculated for each class that is
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being considered such that

| Tkl
CzJ EkleTz ij

and

1
Oc¢y; — T T, Bt Z I:I;lcl — Hey; %
- ITCzll el | o

€T,
The sample standard deviation is calculated with a normalization factor of Feat= 1
because the local training pixels from class ¢ are being used to represent the unknown
local class ¢, and we wish to use an unbiassed estimator. This is called Bessel’s cor-
rection and is required anytime a sample mean is used instead of the true population
mean [67].

The local sample mean and local sample standard deviation are used to build a
Gaussian probability distribution for each potential class. Therefore, the probability

density function for each class f.(x) is given by

Maximum likelihood estimation is used to determine the class assignment for

z,;; by finding the class that maximizes the posterior probability of pixel x;:

Thus each pixel z;; is placed into the class which maximizes the density function.

The prior probability of being in each class is denoted by m. and we assume equal
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prior probabilities, as is common in literature [7]. Equivalently, we find the class ¢

where

P(mijliucz'j’acu) > P(:I;ij|/1’bij’ Ubij) Vb#ec,

or the class from which it most likely came. Then a mapping function is used to map

each pixel to its segmented class,

G(wij) = arg max P(wij|pe,;, 0c;)  if [Te,;| > 3, where @i ~ N (e, 0c,;)-

It is possible that, via choice of r, there are too few training points within
subimage A;; to reliably compute a sample standard deviation (i.e., |T,,| < 2, V ¢).

In such a case, we place z;; into the bonus class,

G(.’Ei]‘) =C + 1,

indicating there was not enough local information to identify to which of the C' classes
it belongs. In general, if a significant portion of the image is being placed into the
bonus class, the analyst might consider choosing more training data, if more are
known, or choosing a larger distance parameter r.

Finally, after every pixel has been placed into a class, the borders between class
regions are defined to be the boundaries. Let £y be a boolean matrix where an entry
is true if a vertical edge exists between the pixels, i.e. the neighboring pixels are from

different classes, and false if no edge exists between the pixels, i.e. the neighboring
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pixels are from the same class:
By = [boolean(G(mij) S G(mijﬂ))], Y 2y, ®i41 € X,

Similarly, we define Fy to be a boolean matrix for the set of horizontal edges where
an entry is true if a horizontal edge exists between the pixels and false if no edge

exists between the pixel:
EH = [boolean(G(a:ij) ?é G({L‘i+1j))}, Y Tijy, Tiy1j e X.

Together, Ey and Fy describe all of the LADA-determined boundaries. Pseudocode
for LADA is given in Algorithm 7.

There are no specific rules for how to choose values for r and n but we provide
general guidelines. As long as the user provides training data for a significant portion
of the image, the user should choose smaller values for » and n. This is especially
important in images with strong spatial variation, where using only the closest train-
ing pixels is important for guaranteeing distributions that appropriately represent the
pixel of interest. If the user determines too much of the image is placed in the ‘bonus’
class, a larger value for r is recommended so more training pixels can be reached.

It should be noted that as r approaches the bounds of the diagonal distance
of the image and n is increased to the cardinality of the largest training data set, the
effect of looking at local training data diminishes and the focus becomes global. In

such a case, this algorithm converges to quadratic discriminant analysis [26]. The al-
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Algorithm 6 Locally adaptive discriminant analysis

Given image X, define training data 7 with C classes, where T, is the set of all
training pixels for a class ¢, (i.e. |JT. = T and (7T, = @), and local parameters r and

n.
For each pixel z;; € X:

1. Define A;; to be set of all training pixel locations centered at x;;, with radius r
such that

Ay ={oue X | iR+ G-DP <r}.
2. Forc=1to C:

a. Define the local training data T, to be the set of the n nearest training
points to z;; within A;; that belong to class ¢, with ties included.

b. Compute the sample mean i, and sample standard deviation Oy OE{ Ty, }
for every T¢,, with |T., | > 3.

3. Place x;; into class ¢ for which

) arg max P(wi;|pe,;, 00,;) if |T,;| >3
"Ei s ) = c
! C+1 otherwise

} . where zi; ~ N (fe, . 0,).

After every pixel has been placed into a class, the borders between class regions are
defined to be the boundaries. The set of all vertical boundaries is stored in the matrix
Ey and the set of all horizontal boundaries is stored in matrix Ey where

EV —= [boolean(G(xij) 7é G(zij+1))], A Tijy, Tij+1 € X,

and
Ey = [boolean(G(x,-j) o G(xiﬂj))}, V Zi,- Tip1; € X.

gorithm may be restricted further to perform similarly to linear discriminant analysis

if 0.,, = 0y; for all considered classes c.

3.2 LADA Example

In this section, LADA is demonstrated on an image of a noisy staircase. Fig-

ure 3.2 shows a 450 x 450 pixel image of a noisy staircase displaying varying intensities
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Figure 3.2: A synthetic RGB image displaying high levels of noise and gradients
across classes.

across the upper right and lower left classes. Pixels in the upper right region tend
to increase in intensity from the outside to the staircase while pixels in the lower left
region tend to decrease in intensity from the outside to the staircase.

Figure 3.3 shows the user-defined training data, where the pink and tan regions
are training data and the black region is where no training data have been selected.
For this image, there are 18,332 pixels, or 9.05%, that have not been selected as
training data and the average gap between training regions is 20 pixels wide. As
LADA is a method for boundary detection, it is reasonable to assume the user has

knowledge about the majority of the image, sans the boundaries. Images such as this
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Figure 3.3: The user-selected training data for two classes. Black regions are where
no training data have been selected.

are difficult for edge detection methods because of the high noise level, classes with
overlapping intensities, and spatially varying class intensities.

In this example, parameter values of n = 30 and r = 15 are used. Figure 3.4
shows examples of the circular subimages for five pixels in the image. Using the local
training data, each pixel is placed in a class using discriminant analysis. Figure 3.5
shows the final segmentation, where each pixel has been assigned to one of the two
user-defined classes or to the bonus class. Note that the bonus class is only chosen
in regions where a pixel was more than r = 15 pixels away from the nearest training
pixels. To prevent pixels from being assigned to the bonus class, the user could choose

more training data in those regions or choose a large r value.
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Figure 3.4: The original image with examples of circular subimages for five pixels
in the image.

The set of all boundaries between two pixels belonging to different classes is
defined to be the set of LADA-determined boundaries. Figure 3.6 shows the LADA-
determined boundaries. For clarity and completeness, the LADA boundaries are also

shown superimposed on the original image in Figure 3.7.
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Figure 3.5: The LADA segmentation, where each pixel has been assigned to one of
the two given classes (blue and green) or to the bonus class (yellow).
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Figure 3.6: The LADA-determined boundaries, found using the above segmentation.

36



Figure 3.7: The original image with the ALADA-determined boundaries superim-
posed on top.



CHAPTER 4

ANISOTROPIC LOCALLY ADAPTIVE DISCRIMINANT ANALYSIS

In this chapter, we present another new method for boundary identification
in images: anisotropic locally adaptive discriminant analysis (ALADA) which is an
extension of the LADA algorithm presented in Chapter 3. ALADA is motivated by
the fact that one size subimage may not be appropriate across an entire image. If the
image has both large gaps and small gaps between training regions, there should be
a way to adapt the size (and in this case, shape and direction) of the subimage,
based on the available training data. As with LADA, the ALADA algorithm is
a local, supervised, statistics-based method, derived from a discriminant analysis
approach. Local training data are used to build a classifier for assigning a class to each
pixel, where region boundaries are considered to be the borders between classes. The
novelty of this algorithm comes from how local training pixels are downselected. The
training data used to assign a pixel’s class are collected from the regions of the image
surrounding the pixel, where the size, eccentricity, and direction of the subimage are
varied, based on the training data and a single, insensitive, user-supplied parameter.

ALADA retains the basic structure of the LADA algorithm and adds to it

the concept that in order to assign a pixel near a suspected boundary to a class,
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Figure 4.1: An example of ALADA ellipses superimposed on an image, demonstrat-
ing how the elliptical training data are collected along suspected boundary lines.

the pixels along that boundary are likely the most informative. This is because they
are typically the best representatives of the behavior at the boundary surrounding
the pixel of interest. Therefore, for pixels near a suspected boundary, we collect all
local training data and then downselect it in an elliptical shape, with the major axis
oriented in the direction of least variation, i.e. along the suspected boundary for each
pixel. Data along a boundary are assumed to be most representative of a pixel’s class,
because many objects’ pixel representation is consistent near the boundary but may
differ as distance from the boundary increases. In such cases, this is often due to
lighting and shadows in the image, or, in the case of penetration imaging, density of
the object being imaged. A visualization of what these ellipses might look like are
given in Figure 4.1 and their generation will be discussed.

As previously mentioned, while the pixel intensities from a class may vary

across an image, they are much more consistent along a boundary. Take the right-
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most ellipse in Figure 4.1, for example. Figure 4.2 shows examples of three possible
local subimages, each of which would provide slightly different training data. When
training data are collécted in an ellipse along the boundary, densities of the intensity
values are better separated in feature space. For example, the training data distri-
butions in Figure 4.2 have sample means of .5515 and .7123 for training data taken
across the boundary (top left, yellow distributions), sample means of .5248 and .7406
for training data taken from a circular region (top center, peach distributions), and
sample means of .5108 and .7622 for training data taken along the boundary (top
right, blue distributions).

The eccentricity of the ellipse, or how far it deviates from a circle, is also
determined by the local training data. When training data are all found in a spe-
cific direction, the eccentricity approaches 1, giving a more flattened elliptical shape.
When the pixel of interest is surrounded by training data, the eccentricity approaches
0, giving a circular or near-circular shape, as there is no evidence for collecting train-
ing data in a certain direction.

While LADA’s parameters prove successful on many images, ALADA goes a
step further and is a much more adaptive algorithm where each pixel’s selected local
training data are custom-tailored based on the user-provided information. The minor
axis of each ellipse is determined by an insensitive user-selected parameter; pixels
surrounded by training data require a smaller minor axis while pixels near a suspected
boundary require a larger minor axis, to collect training data from a larger region.
The major axis length and orientation are determined by the statistical relationship of

local training pixel locations. Training data-dense regions will yield a smaller major
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Figure 4.2: Examples of intensity densities of (top left, yellow distributions) elliptical
training data across the boundary, (top center, peach distributions) circular training
data, and (top right, blue distributions) elliptical training data along the boundary.

axis length such that the subimage approaches a circle, while regions near suspected
boundaries will produce a major axis that is larger (sometimes much larger) than
the corresponding minor axis and, as described before, these ellipses will lie with the
major axis along the suspected boundary. These anisotropic local training data are
then used to build local Gaussian distributions and maximum likelihood estimation

is used to determine the most probable class for the pixel of interest.

4.1 The ALADA Algorithm

Given an image X, pixel x;; in row i and column j, and a set of training data

pixels 7" C X, we are interested in determining the class, ¢, to which x;; most likely
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belongs, for each x;; € X. The training data have class labels with ¢ = 1, ..., C, for a
total of C' known classes occurring in X. Let T, C T be the set of all training pixels
with class label c.

The user provides a value for the ‘number of neighbors’ parameter, n, which
effectively determines the anisotropic local training data for each pixel in the image.
By design, we will choose a subset of T for x;; such that at least n training pixels
will occur for at least one class in the subset we collect. Requiring more than one
class to have at least n training pixels could cause pixels surrounded by training data
from a single class to look far away to collect n training pixels from a second class,
causing the algorithm to no longer be local. We use a k-nearest neighbors algorithm
on the training data 7 to first determine the n nearest training pixels (using Euclidean
distance) from each class for pixel x;; [68]. See Appendix A.4 for more information.
The smallest radius needed to reach n training pixels from a class is identified to be

the minor radius, r1,,;, of the ellipse to be constructed, where

ri,; = arg min ({ {eneT. | Vi-—k2+(G-02<7} l o n)

for some c. As with LADA, we collect all training pixels within the minor radius r, 5
so in the case of a tie, there may be more than n pixels from a class.

This value for r1;; will be the minor radius of our elliptical subimage but it is
temporarily used as the radius of a circular subimage. Once r1,, is computed, define

A;j to be the set of row, k, and column, [, pairs for each training pixel within radius
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r1;; of pixel x;;,

Ay = {(k,l) ‘ zweT, Vi-—kE+ G- < rli]}.

These locations of the training data subset are used to calculate the major radius of
the ellipse and its tilt, or angle, relevant to x;; and the suspected nearby boundary.

To work towards computing the tilt, or angle, principal component analysis
(PCA) is implemented to calculate the angle of least variation [69]. PCA considers
the (k, 1) coordinates of each locally identified training pixel in A;;. By calculating the
2 X 2 covariance matrix of A;;, we then compute its eigenvalues, A1,; and Ay, where
A1;; = Ag;;. Recall that the values of the covariance matrix represent the data’s spread
along the horizontal and vertical directions while the eigenvalues of the covariance
matrix represent the data’s spread along the eigenvector directions. The spread of
the ellipse’s axes should reflect the spread of the local training data so we set the
ratio of the major axis to the minor axis equal to the ratio of the major direction of
spread to the minor direction of spread:

T2 /\1,-]-

1 /\2. )

ij
The major radius of the training data ellipse for z;;, T9,;, 18 computed such that

7%
X,

T2 = Ty
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Regions of the image saturated with training data will have A;,; = Ay,; since
the training data locations in A;; are uncorrelated, giving an ry;; value equal to 7y,
i.e. the elliptical subimage is reduced to a circle, as in the LADA algorithm. Such an
occurrence is most common for z;; in the middle of a region of training data, far from
a suspected boundary. Regions where all the training data are found in one direction,
i.e. along the sides of the image, will have A;,; = 1 and Ay, = 0, resulting in a ratio
that approaches infinity. The user may choose to set a maximum value for the ratio
to prevent this. If no maximum ratio value is set and the calculated major radius
approaches the dimensions of the image, the elliptical subimage shape will approach
that of a band of width ry,; that extends across the entire image in one direction.

The final value we compute using the eigenvalues and eigenvectos of A;; is 0;;,
the assumed angle, or direction, of least variation. Note that PCA is typically used to
find the principal component, or the direction of greatest variation, which lies normal
to the boundary. PCA eigenvectors are, by definition, orthonormal, so by taking the
eigenvector associated with the smaller eigenvalue, we obtain the direction along the
suspected boundary instead of across it. Let e Mo, be the eigenvector associated with
the smaller eigenvalue,

e,
which describes the direction in which the local training data locations have small-
est variance, i.e. along suspected boundaries. Note that e, is a vertical distance

across the rows and ey, is a horizontal distance across the columns. Using basic
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trigonometry, we compute 6,; from e Ao such that

e,
0;; = arctan ( 1”)

62“

where 0;; is how far we want to rotate the ellipse so that it lies along the assumed
boundary.

The anisotropic (elliptical) subimage is found using the equation for a shifted,
rotated ellipse at an angle of ;; with minor radius r1,; and major radius 7y, and

stored in set Bjj,

Bi; = {xkz

[(k — i) sin(63;) + (I — j) cos(0y)]*

+ 2

Let T.,; be the set of training data pixels from B;; that belong to class ¢ such

that

Te; ={zm € (B NTe)}.

Define |T.;| be the number of elements in 7.,. Each class where |T.,,| > 3 is con-
sidered as a potential class for x;;. Classes that are not found in the anisotropic
subimage, or that have fewer than three pixels in the subimage are ignored and will
have no effect on the segmentation of x;;. A set with |T,,,| < 3 is possible if not
enough training pixels of class ¢ occur within B;;, but at least three training pixels

are required so that we can compute a sample standard deviation.
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The sample mean and sample standard deviation for each known local class
are used to build probability distributions. A Gaussian distribution is assumed for
local training data so, for each class, the probability density function fe(x) is given

by
2
1 ! (“J ‘_”"u')
e * '

fc(xzj) = O_Cij\/%'

Maximum likelihood estimation is used to determine the class assignment for
z;; by finding the class ¢ that maximizes the posterior probability of class ¢, given

pixel x;;:
fc(wij)ﬂc

P(clzy) = =
l;f'k(wij)ﬂk

)

such that each pixel z;; is placed into the class that maximizes the density function.
Again, we assume equal prior probabilities, as is common in literature [7]. Equiva-
lently, we use the mapping function G : z;; — ¢ to find the class from which z;; most
likely came, where

G(zi;) = arg max P(i;|He,; Ocsy )

This process is repeated for all x;;.

Note that ALADA does not have the ‘bonus’ class that LADA uses for pixels
that do not have any classes with at least three local training pixels. This is because
each ALADA subimage is constructed to have at least one class with n > 3 training
pixels so there is always at least one class being considered.

Finally, after every pixel has been placed into a class, the borders between class

regions are defined to be the boundaries. Let Ey be a boolean matrix where an entry

46



is true if a vertical edge exists between the pixels, i.e. the neighboring pixels are from
different classes, and false if no edge exists between the pixels, i.e. the neighboring

pixels are from the same class:
EV = [boolean(G(xij) 7& G(Iij+1))}, \ Tij, Tij+1 € X.

Similarly, we define Ey to be a boolean matrix for the set of horizontal edges where
an entry is true is a horizontal edge exists between the pixels and false if no edge

exists between the pixel:
EH = {boolean(G(wij) 7£ G(.’L’i+1j)):|, v Lij, Tit1j eX

Together, Fy and Fy describe all of the ALADA-determined boundaries. Note that
since Fy and Fy represent the boundaries between pixels, the matrix sizes are one
row and one column smaller than the image itself. Pseudocode for ALADA is given
in Algorithm 8.

As with LADA, there are no specific rules for how to choose parameter n > 3
but in general, the user should choose a small value, usually under 100, to ensure that
only the closest training pixels are being used to build classifiers. As n approaches the
cardinality of the largest training data set, 7., ALADA grows less ‘local’ and more

‘global.’
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Algorithm 7 Anisotropic locally adaptive discriminant analysis

Given image X, define training data T with C classes, where T, is the set of all
training pixels for class ¢ (i.e. |JT. =T and [T, = 0), and local parameter n.

For each pixel x;; € X:

1. Compute radius ry,;, defined to be the minimum r such that

r1,; = argmin (‘ {oneT. | ViE—-k2+(G-02<r} ' s n) for some c.

2. Define A;; to be the set of all training pixel locations centered at x;;, within
radius r1,; such that

Aij = {(k,l) } om €T, Vi-k2+(G—12< 7"11.]}.

3. Perform principal component analysis on A;; to find major radius and angle of
least variation:

a. Compute the covariance matrix of A;; and its corresponding eigenvalues,
Ay, and Mg, with A;, > Az,;, and the eigenvector associated with the

; €3,
smaller eigenvalue, ey, = [61”}
ij
2i;

b. Define 73, to be the major radius such that

llJ

X2,

T2,; = T1;;

J

c. Define 6;; to be the angle of least variation, the direction given by €,
such that .
0;; = arctan (ﬁ)

€9;;

4. Compute B;;, defined to be the elliptical subimage of X centered at z;; with
minor radius r1,; and major radius ro,; at an angle 0;;, as
2
k —1)sin(0;;) + (I — 7) cos(6;;

Bij:{mk, [(k — i) sin(0y) + (= j) cos(0y)]”

2
1,

rs

v

[(k = 1) COS(GU) = (l = ]) Sin(eij)]Q < 1}
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Algorithm 8 continued

5. Forc=1 to C:

a. Define the local training data set
Te; = {#r | 1 € B;; and zy € Te} .

b. Compute the sample mean y,,; and sample standard deviation o, of {T¢,, }
for every T, with |T.| > 3 where

1
”Cij = |Tc | Z Tkl

*J -TkleTciJ

and

1
— 7 e — 4,2-
e P

-73klET"U
6. Place w;; into class ¢ for which

G(z;;) = arg max P(zij|the;;, 0c;;), where xi; ~ N (pic,;, 0c,;)-

After every pixel has been placed into a class, the borders between class regions are
defined to be the boundaries. The set of all vertical boundaries is stored in the matrix
FEyv and the set of all horizontal boundaries is stored in matrix Fy where

EV = [boolean(G(:I:,-j) 7é G(J;ij+1))j|7 v Lij, Tij4+1 € X,

and
Ey = [boolean(G(:z:ij) 2 G(:I;Hlj))}, V zi, Ziy1; € X.

4.2 Visualizing ALADA

A simplified version of the local anisotropic training data collection process
is demonstrated in Figure 4.3. The original image, shown in Figure 4.3(a) is of a
grayscale sphere on a table. The shadows on the sphere and table regions cause strong
changes in gradient within both classes, providing a bimodal intensity distribution on

a global scale for either class, which, if training data is taken from both modes, would
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fail the Gaussian assumption of common global techniques such as linear discriminant
analysis and quadratic discriminant analysis. Gradient based methods will identify
edges between all the well-lit and darkened regions, even though the user knows a
priori that some of those are not boundaries between materials. While our algorithm
could be applied to every pixel in the image, we demonstrate the training data downs-
election process for pixel xss 267, marked by a red ‘x,” which has an intensity value of
.60.

The user-selected training data for three classes, ‘background.” ‘table,” and
‘sphere,” are demonstrated in Figure 4.3(b), superimposed over the original image.
Given n = 75, a radius of 71, ,,, = 15 pixels is calculated. Figure 4.3(b) shows an
enlargement of the circular subimage about xss 267 with radius rig .6, = 15 pixels. The
green and blue regions identify the local training data and their locations will be used
for principal component analysis. From PCA and subsequent calculations, we obtain
the major radius, 7., ,,, = 45 pixels and the angle of least variation, #sg967 = .40
radians. Figure 4.3(c) shows the elliptical subimage, Dss 267-

Figure 4.4(a) shows the intensity distributions for the training pixels from the
entire image shown in Figure 4.3(b), left. Global image segmentation methods that
compare the pixel intensity to Gaussian fits of all the training data would place this
pixel into the ‘table’ class because, with an intensity of .60, the table class has the
largest likelihood of being correct, despite the user’s a priori knowledge that this
pixel is nowhere near the table. Figure 4.4(b) shows the intensity distributions of
the anisotropic local training data for wss.e7 that have been downselected in Fig-

ure 4.3(c). Only the ‘background’ and ‘sphere’ classes are considered because they
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(c)

Figure 4.3: (a) A cartoon image of a sphere on a table with pixel of interest, ss 267,
marked by a red ‘x.” (b) The user-selected training data for three classes and the
training data within radius ry,,,,, of the pixel of interest are displayed. The major
radius, 7o, .-, and the angle of least variation 0sg 967 are calculated and demonstrated
in (c), where anisotropic local training data are those located within the ellipse.
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Figure 4.4: (a) Intensity distributions for the full set of training data pixels and (b)
intensity distributions of training data pixels that are anisotropically local to 258,267
from Figure 4.3(c), right. In both plots, the intensity of asg 67 is indicated with an
arrow.

are the only classes present in the anisotropic local data. From these intensity dis-
tributions, we would fit Gaussian distributions, using the sample mean and sample
standard deviation of each local class’s training data. Since Gaussian assumptions
are more reasonable at the local level, the fitted distributions differ minimally from
the original intensity distributions. Restricting the training data in this way makes

it clear that pixel wss 967 is best represented by the ‘sphere’ class.
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4.3 ALADA Example

In this section, ALADA is demonstrated on an image of a synthetic noisy
triangle, for which the true boundaries are known. Figure 4.5 shows a 200 x 200 pixel
image of a triangle sitting on a surface. The image was created with intensity values
of —.5, 0, and .5, with additive Gaussian noise generated from a standard normal
distribution added to each pixel. Finally, a gradient was added to give the classes
overlapping intensities in feature space. Pixels in the background region tend to
increase in intensity from top to bottom while pixels in the triangle and lower region
tend to decrease in intensity from top to bottom. While simple in construction,
images such as this are difficult for edge detection methods because of the high noise
level, heteroskedasticity, the gradual changes between classes, classes with overlapping
intensities, and spatially varying class intensities, particularly in the regions where
all three classes meet.

Figure 4.6 shows the user-defined training data, where the pink, tan, and white
regions are training data and the black region is where no training data have been
selected. For this image, there are 3110 pixels that have not been selected as training
data and the average gap between training regions is 7 pixels wide. As ALADA is
a method for boundary detection, it is reasonable to assume the user has knowledge
about the majority of the image, sans the boundaries.

In this example, a parameter of n = 10 is used. Figure 4.7 shows a map of Pl
values, calculated for each pixel using n and the user-defined training data. For this

image, the minimum minor radius is ry,; =2 and is found in regions of solid training
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Figure 4.5: A synthetic grayscale triangle image displaying high levels of noise and
gradients across classes.

data, and the maximum minor radius is r;,, = 5.8310 and is found at the widest
gap between training data regions, at the top of the triangle. PCA is performed on
the training data within the r;,, radius for each pixel, and the ratio of eigenvalues is
found, as given in Figure 4.8(a). Note that evén though these eigenvalue ratios have
values up to 13.0286, in practice we have chosen to cap this value at 4, to limit the
size of the elliptical subimages. Figure 4.8(b) shows the ry,; values for each pixel,
computed by multiplying each ry,; by the corresponding eigenvalue ratio.
Performing PCA on the training data within the ry,; radius for each pixel also
gives the information needed to find the angle of least variation for each pixel, shown

in Figure 4.9.
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Figure 4.6: The user-selected training data for three classes. Black regions are where
no training data have been selected.

Using ry,,, 7,,, and 6;;, the anisotropic subimage is found for every pixel in

i 2450
the image. Figure 4.10 shows examples of the anisotropic subimages for five pixels in
the image. Using the anisotropic, local training data, each pixel is placed in a class
using discriminant analysis. Figure 4.11 shows the final segmentation, where each
pixel has been assigned to one of the three classes.

The set of all boundaries between two pixels belonging to different classes is
defined to be the set of ALADA-determined boundaries. Figure 4.12(a) shows the
true boundaries for the synthetic image while Figure 4.12(b) shows the ALADA-

determined boundaries. For clarity and completeness, the ALADA boundaries are

also shown superimposed on the original image in Figure 4.13.
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Figure 4.7: A map of ry,, values, calculated for each pixel using parameter n and
training data.

Figure 4.8: (a) A map of the ratios of eigenvalues, obtained by PCA, and (b) a map
of the ry,; values.
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Figure 4.9: A map of the angles of least variation, 0;;, measured in radians.

Figure 4.10: The original image with examples of anisotropic subimages for five
pixels in the image.
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Figure 4.11: The ALADA segmentation, where each pixel has been assigned to one
of the three classes.

5

(a) (b)

Figure 4.12: (a) The true boundaries, and (b) the ALADA-determined boundaries.



Figure 4.13: The original image with the ALADA-determined boundaries superim-
posed on top.
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CHAPTER 5

UNCERTAINTY QUANTIFICATION

This chapter shows how the statistical natures of LADA and ALADA allow for
uncertainty quantification of the detected boundaries. Using data collected during the
LADA and ALADA processes, two uncertainty maps can be constructed to describe,
first, the confidence in the selected segmentation based on local information, and
second, the ability to discriminate between classes at boundaries. For the former,
maximum likelihood estimation is used, and, for the latter, a combination of Welch’s

t-test and an F'-test is used.

5.1 Maximum Likelihood Estimation

Given a LADA or ALADA segmentation for a pixel, we wish to quantify
the probability that the pixel belongs to that class. Previous chapters have already
stated that the estimation methods by which LADA and ALADA determine the
segmented class, ¢, are considered maximum likelihood estimators (MLEs). In terms
of segmentation, an MLE is a technique for determining the class that maximizes the
probability distribution for an observed pixel intensity [67]. For a grayscale image,

it is assumed that the local population mean p.,; and variance o.,; are known for
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the class ¢ to which pixel x;; is segmented, obtained via the local training data.

Essentially, the class is selected using the following optimization:

G(z;;) = arg max P(zijlpseyys Ocyy)s . where  zy; ~ N(pg,,, 00,;)

Consider the example in Figure 5.1(a): given the Gaussian distributions for
two, hypothetical local classes and the intensity observation marked by the black star,
the pixel would be segmented into class 1, given by the blue line, since it has greater
probability density at that observation. However, because the observation is on the
tail of the class 1 distribution, it is not well represented by that class either. MLE
is, essentially, a way of quantifying how well or how poorly a pixel is represented
by its segmented class, or in other words, the probability that a pixel belongs to its

segmented class. The hypotheses of interest are

H()Z Tyij S

Haf Tij ¢C,

where pixel z;; has been placed in class c.

The resulting MLE p-value is used to quantify evidence against the null hy-
pothesis. A small p-value indicates that we have enough reason to reject the null
hypothesis, i.e. that we are not confident that the pixel has been placed into its true

class, while a large p-value indicates that there is not enough evidence to reject the
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Figure 5.1: (a) While every pixel is segmented as belonging to a class, the assigned
class is not always particularly likely. For the observation (black star), neither class
1 nor class 2 is very probable, though it is more likely to belong to class 1 (blue line)
based on probability density. (b) For a given class distribution (magenta line) and
observation (black star), the p-value is computed as the probability of observing that
value or something more extreme.

null so we must accept that the null is trie, i.e. that the pixel has been placed into
its true class.

From the selected class’s local distribution, the p-value is computed, the prob-
ability of observing the pixel z;; or something more extreme, given the segmented
class ¢ and its associated parameters:

P (X 2 xijl#c,:,-yo'c,-_j) if mij > )tl’cij
p-valuey i =

P(X < TijlHesys aci].) otherwise

An example of a one-sided p-value is demonstrated visually in Figure 5.1(b) for a
distribution with mean y.,, = 0.5 and o.,, = 0.38, and observation z;; = 0.8. Notice

that the further a pixel value is from the class mean, the smaller its p-value will be.
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Assuming pixel x;; had equal probability of having observed either positive
or negative noise, the p-value is multiplied by two, for a two-sided p-value. For an
image segmented by LADA or ALADA, we can produce a corresponding image of
p-values from the statistical inference given here, in order to better identify parts of
the segmentation of which we are less confident [70]. Regions of small p-values (which
are usually found in areas of strong spatial variation - i.e. boundaries) can highlight
parts of the image where the user should take special care to provide as much training
data as possible or can signal that smaller parameter values might be needed in order

to provide a less uncertain result.

5.2 Combined ?-test and F-test

The second method we present for uncertainty quantification is a combination
of two hypothesis tests to determine if neighboring class distributions are distinguish-
able. First, a Welch’s t-test, or Welch’s unequal variances t-test, is used to determine
if the two distributions have equal means and second, an F-test is used to determine
if the two distributions have equal variances. The p-values from the two tests are
combined and together used to determine if the two classes have sufficiently different
local distributions.

Similar to a student ¢-test, Welch’s version compares two populations, or
classes, in order to accept or reject a null hypothesis. Both tests assume that the
data are independent, identically distributed (i.i.d.) and come from a Gaussian dis-
tribution, but, while the student ¢-test assumes that the classes have equal variances,

Welch’s t-test is designed for classes with unequal variances. Additionally, Welch’s
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t-test is more robust to Type I error (rejecting a true null hypothesis) than a student
t-test when dealing with unequal sample sizes [71]. Since most of the images on which
ALADA and LADA are performed are heteroskedastic, it would be an invalid over-
simplification to assume equal variances. Note that Welch’s ¢-test is an approximate
solution to the Behrens-Fisher problem, which describes the problem of conducting
a hypothesis test to determine if two Gaussian distributions with unequal variances
have equal means, based on i.i.d. samples from the two distributions.

Welch’s t-test is designed specifically for comparing the means of two groups.
The null hypothesis states that the class means are equal and the alternative states
that the class means are different. We are interested in knowing if any two means
of local classes are evidenced to be equal, so we perform multiple Welch’s ¢-tests to

compare only two classes at a time. In our case, the hypotheses of interest are

Hy : Hei; = Hbjs

H, : Hec;; 7é b5

for all classes ¢ and b local to pixel ;.
Evidence against the null hypothesis is quantified via the test statistic, L

which is given by the formula
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where ji.,, and p,; are the sample means, 07, and o7, are the sample variances, and
|T.,,| and |T;, | are the number of pixels, for the local classes ¢ and b, respectively. A
large t;;-statistic indicates that we should accept the null hypothesis which states that
the two classes have the same mean and are undifferentiable with such a measure.
The Welch'’s t;;-values are computed for each pair of local classes and the largest value
is considered, which provides the most evidence that there are at least two classes
with equal means.

The denominator of the ¢;;-statistic is a linear combination of the independent
sample variances, and the degrees of freedom associated with this are estimated using

a two-class case of the Welch-Satterthwaite equation,

2 2 2
(o0
Tey | | Te

Vi =~ )
P AR
ITCijIQ(\TCij| EE 1) |Tbij 2(|Tbi_j| i 1)

which is rounded to the nearest integer.

The test statistic and its corresponding degrees of freedom can be used to find
the associated p-value. One can either use a table of values from a two-sided Student
t-distribution, or use the cumulative distribution function (CDF) of a t-distribution.
To account for a two-sided p-value, this CDF value is multiplied by two, giving the

formula

2
F(L vij+1.3 _ELL)

7 1y 2 1(27 2. V23w

p-value, = 20DF(t;;) = 1+ 2tijr(l/32+ ) .
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where o F} is the hypergeometric function.

Note that in the case that the two classes have equal sample sizes, the Welch’s
t-test statistic simplifies down to the Student t-test statistic and when the classes
have equal sample sizes and equal variances, the Welch’s t-test’s degrees of freedom
simplifies down to the Student t-test’s degrees of freedom.

Next, an F-test, or Fisher’s F-test is employed to compare the variances of the
neighboring class distributions. Like the t-test, this test assumes that the data are
independent, identically distributed (i.i.d.) and come from a Gaussian distribution.
The null hypothesis states that the local class variances are equal and the alternative
states that the local class variances are different. Like before, we are interested in
knowing if any two variances of local classes are evidenced to be equal, so we perform
multiple F-tests to compare only two classes at a time. In our case, the hypotheses

of interest are

for all classes ¢ and b local to pixel z;;.
Evidence against the null hypothesis is quantified via the test statistic, Fij,

which is given by the formula

2
e
A5 g
Tb,;
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2
C; i

where 07 > O'Z_L_j. Note that it is not required that the larger variance be in the
numerator, but doing so forces the F-test into a right tailed test, which simplifies
subsequent calculations. Degrees of freedom are also required; an F-test has two
degrees of freedom parameters, one for the numerator, V,;» and one for the denomi-

nator, v,;. Each degree of freedom parameter is the number of data points (in this

case, training pixels) being used to calculate the sample variances, minus one

Veyy = |Teyy| =1 and  wy,, = |Ty,| — 1.

The F}j-statistic and its associated degrees of freedom can be used to find the
associated p-value. One can use a table of values for the p-values of an F-distribution

or use the CDF of the F-distribution, which is given by the formula

o U
== Y , 2 Cij ij
p-valuep, = CDF(Fy;) =1 wy;r, ( 5 >,
Vci]. F""j+ubz'j

where [ is the regularized incomplete beta function.
Once both p-values are computed, they are combined to form a joint hypothesis

test,

: i , RV
Ho : pie,; = p,; and 0. =0y

H, : otherwise,
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where the null hypothesis is the case where the local Gaussian distributions are sta-
tistically equivalent and the alternative is that the local Gaussian distributions are
distinguishable. The work presented by Frank et al. [72] describes several ways in
which to combine the p-values of t-tests and F-tests for this exact purpose. Remem-
ber that the goal is to identify regions where the local classes are undifferentiable,
so in order to be as conservative as possible, we want to accept the null whenever
appropriate. This is done by employing the method of taking the maximum of the
two p-values, since large p-values indicate evidence in favor of the null hypothesis.

Therefore, the combined p-value is

Dvalug s pined,, = max{p-value, ,p-valuer,, I

Analysis performed in this dissertation tests for significance at the a = .05

level so the combined p-value is compared to .05. The following decision rule is used

p-valu€combinea,; > -05 : accept Ho,

P-value ompined;; < 05 : reject Ho.

Since this test is conducted for each pixel in the image with two or more local
classes, the results can be visualized with a map of hypothesis test results. One
color can represent accepting Hp, another color can represent rejecting Hp, and a
third color can represent pixels where only one class is considered and no test was

conducted. Thus, the image is used to indicate “problem areas” within an image
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highlighting areas where it is especially difficult to discriminate between classes and

may be improved upon by editing the training data.
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CHAPTER 6

RESULTS ON REAL DATA

In this chapter, LADA and ALADA are demonstrated on examples from real
physics experiments. First, we discuss when to use LADA versus ALADA, based on
the image content and training data. Then, LADA is demonstrated on a time series of
a mixture of plastic and coarse olivine sand as it is dynamically compressed. ALADA
is demonstrated on an electron microscope image of shear bands in a piece of 1075
steel. Finally, an additional ALADA example is given of laser-induced cylindrical
shock waves for which a polar transformation is utilized to simplify the boundary
detection process.

Before delving into specific examples, let us further explore when it is appropri-
ate to use LADA and ALADA. Because ALADA takes elliptical training data along
suspected boundaries, it is important for the training data regions to have mostly
smooth, straight boundaries, as in the synthetic example provided in Section 4.3.
Training data regions that have cusps or concave regions can cause the elliptical
training data to be taken in irregular patterns, collecting training data which is not
most representative of the pixel in question. For images with these sorts of train-

ing data, LADA is best suited for detecting edges, as long as the distances between
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training data regions are all relatively equal. Since LADA uses a single r value for
the radius of each circular subimage when finding local training data, the r value
should be appropriate for the entire image. If the user chooses training data such
that there are small gaps between some regions and large gaps between other regions,
they will have to choose between a small r parameter, which would be appropriate
for the small gap but cause pixels in the large gap to be placed in the bonus class, or
a large r parameter, which would be appropriate for the large gap but could be too
large to find a clean local bound in the smaller gap. When the user is attempting
to detect boundaries in an image with irregularly shaped training data or with very

different sized gaps between training data, another method may be more appropriate

than LADA or ALADA.

6.1 Time Series Example

Here, we demonstrate LADA on x-ray images taken from a dynamic physics
experiment, conduced on the IMPULSE (IMPact System for ULtrafast Synchrotron
Experiments) system at the Dynamic Compression Sector at the Advanced Photon
Source [73,74]. A sample of synthetic olivine sand (Green Diamond) encapsulated in
a plastic holder is adhered to an immobile block and impacted with a cylindrical 4
mm diameter aluminum impactor at 769 m/s. A diagram of the experiment setup
can be found in Figure 6.1. The compression wave is launched into the sand and
plastic holder which is captured using a scintillator, which fluoresces when struck by
charged particles, and an array of optical cameras. The images are attenuation x-ray

phase contrast images where the lighter the color, the more the beam is attenuated
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Figure 6.1: The experimental setup and imaging system for an aluminum impactor

striking a sample of synthetic olivine sand encapsulated in a plastic holder from the
left.

by the x-rays. Details such as motion, boundary width between regions, boundary
structure, and the number of regions are desired to better understand how this sand
compresses under dynamic loading and interpret the state of the material.
Traditionally, the gas-gun field has relied on velocimetry measurements which
treat the sample as a black box, obtaining measurements from the back surface of
the material. For homogeneous materials, this approach is often sufficient but lacks
important internal sample information necessary to characterize heterogeneous mate-
rials with their additional degrees of freedom. The recent emergence of in-situ x-ray
probes during an ultra-fast loading experiment like that of the IMPULSE setup [73]
has provided a way to observe the internal state of a sample assembly, in real time.
In the IMPULSE setup, multiple images of the same sample are recorded during a

loading process which allows the sample to be characterized as it evolves in time.
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Unfortunately, every traditional segmentation and edge detection method used by
this group produced unsatisfactory results because of the high levels of noise and the
gradual changes between classes. Thus, a new technique is necessary. The LADA
boundary detection method allows for a precise and reliable means to statistically
determine the various regions of a compacted heterogeneous sample. LADA pro-
vides a productive means to detect and address the various regions of heterogeneous
materials with a more scientifically objective, statistically significant, and rigorous
methodology to extract the physics and dynamics of these heterogeneous samples.
Figure 6.2 shows three images from a series captured during an experiment
with 769 m/s impactor velocity, recorded at 306.8 ns, 613.6 ns, and 1380.6 ns after
impact, respectively. The pixel size is 1.68 um per pixel. In the series of images, we
see the compression wave propagating through the sand from left to right, with the
darker region on the left being olivine sand that has been compressed. By the third
image, the plastic target capsule enters on the left-hand side of the image (lighter

intensity region).

6.1.1 LADA Results

Figure 6.3(a) shows the hand-chosen training data where, from left to right, the
training data regions are plastic target capsule (red), compressed sand (yellow), and
uncompressed sand (light blue). The uncolored regions are areas where no training
data have been chosen. As this is a difficult image, the gap between training classes

is wide in many regions to avoid giving false training data. Figure 6.3(b) shows the

73



Figure 6.2: Time evolution of coarse olivine sand loaded from the left by Al impactor
at 769 m/s recorded at (a) 306.8 ns, (b) 613.6 ns, and (c) 1380.6 ns after impact,
respectively.
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segmented image using input parameters n = 100 and r = 31, which is the smallest
radius we can use without having any pixels placed in the bonus class.

Figure 6.4(a) shows the MLE 2-sided p-value map corresponding to the LADA
segmentation in Figure 6.3, where dark blue corresponds to areas of higher uncer-
tainty. Figure 6.4(b) shows the original image with boundaries (yellow), identified by
LADA using input parameters n = 100 and r = 31. Uncertainty regions are given
in teal, where a priori knowledge about the experiment that the compression wave is
a planar wave is used to make the decision to fit linear bounds around the regions
of p-values < 0.05. Here, conservative vertical bounds are used to capture the entire
region of p-values < 0.05 about each boundary.

Figure 6.5 shows the progression of the front of the compression wave as it
propagates through the three images shown in Figure 6.2. Using the boundaries found
by LADA, and the accompanying conservative vertical uncertainty regions around
each boundary, the user can compute quantities such as velocity and propagate the
uncertainty through their calculations, giving scientific results that are quantitatively
meaningful. Here, the author chose input parameters of n = 100, and the smallest r
possible such that no pixels were placed into the bonus class which was r = 42 for

the first image, r = 31 for the second image, and r = 32 for the last image.

6.1.2 Results from Other Methods

Figure 6.6 demonstrates a few alternative methods. The reader is cautioned

against using the three edge detection methods on images with gradual boundaries be-
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(b)

Figure 6.3: We show the (a) training data and the (b) LADA segmentation for the
second image in Figure 6.2.
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Figure 6.4: (a) The corresponding MLE 2-sided p-value map shows how confident
we are in each pixel’s assigned class. (b) The image with its final LADA-determined
boundaries, using input parameters n = 100 and 7 = 31, and regions of uncertainty
surrounding each boundary, found using the 9-sided p-value map at an alpha value of
o — .05. Vertical uncertainty regions are found because of a priori knowledge about
the planar nature of the compression wave.

r
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306.8 ns 613.6 ns 1380.6 ns

Figure 6.5: A map showing the progression of a single boundary from the three
images in Figure 6.2, along with their regions of uncertainty. Again, we fit vertical
uncertainty regions because of the authors’ a priori knowledge about the planar nature
of the compression wave. Using these boundary locations and the times at which each
image was taken, we can compute quantities such as velocity of wave front.

cause, in practice, the input parameters have significant effect on location of detected
edges.

The first alternative method is Sobel edge detection, which was performed
using the Matlab command edge ( image, ‘Sobel’,t). The best result was obtained
using a threshold of ¢ = .1, as shown in Figure 6.6(a). Lowering this threshold causes
even more bounds to be detected while raising the threshold causes some edges to be

filtered out, including edges that are near our suspected boundaries.
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The second alternative method is Canny edge detection, which was performed
using the Matlab command edge (image, ‘Canny’,t,o), where ¢ is a threshold pa-
rameter and o is the standard deviation of the Gaussian filter, which determines the
size of the Gaussian filter [75]. Smaller o values smooth the image less and give results
that contain weaker, more irregular edges that are more susceptable to noise while
larger o values smooth the image more, blurring noise such that only the stronger,
smoother boundaries are returned [34]. The default value for this parameter is ¢ = /2
but we must increase it significantly in order to filter out all the unwanted edges that
Canny finds. Here, the best result is obtained using parameters (t = .4, o = 12), as
shown in Figure 6.6(b).

Third, we use the edge detection backpropagation artificial neural network
described in [76] and using the accompanying in [77]. The neural network uses one
hidden layer with 12 hidden nodes and is trained on 16 different 4 x 4 edge patterns
for 500 epochs. Here, a learning rate of ¥ = .01 and a momentum term of o = .9 are
used. To account for the size discrepancy between the edge patterns and the original
image, a 300 x 488 pixel version of the image was used instead of the original 600 x 976
pixel version, although training the original image with larger edge patterns would
have produced a similar result.

Finally, the quadratic discriminant analysis segmentation is provided. This
algorithm has no input parameters but does take in training data. The training data
provided here was the same training data provided for the LADA algorithm. The
boundaries could be collected from the QDA segmentation but as the reader can see,

the results are extremely noisy.
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(d)

Figure 6.6: Boundary detection results using (a) Sobel edge detection, (b) Canny

edge detection, (c) a backpropogation neural network, and (d) segmentation results
using QDA.

6.2 Shear Bands ALADA Example

Now we demonstrate ALADA on an optical microscopy image taken of shear
bands formed in a carbon steel chip under high strain rates during orthogonal cutting.
Material response exhibits a dependency upon the rate of deformation, or
strain rate. At lower strain rates, deformation is typically accommodated uniformly.
At higher strain rates, some materials, such as carbon steel, begin to accommodate
strain non-uniformly in localized bands of severe deformation known as shear bands.

In the machining process, shear bands form periodically and the spacing of the shear
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Figure 6.7: Image of 1075 steel displaying shear bands from a high strain rate
impact.

bands is dependent upon the cutting speed and related to the strength of the material.
When the shear bands are closely spaced, the strength approaches that of the material
during uniform deformation but as the spacing increases, the average strength of the
material decreases. It is thus important to characterize the conditions under which
shear bands form as well as their geometric parameters such as thickness and spacing.
Figure 6.7 shows a sample of 1075 steel that has been struck by a cutting block under

a high strain rate.
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6.2.1 ALADA Results

Figure 6.8(a) shows the hand-chosen training data for the shear bands (green),
the steel chips (blue), and the background (orange). The uncolored regions are areas
where no training data have been chosen. Figure 6.8(b) shows the segmented image
using an input parameter of n = 40. The author has also chosen to cap the larger

radius of each anisotropic subimage using the rule:

to prevent the subimages from getting too large.

Figure 6.9(a) shows the MLE 2-sided p-value map corresponding to the AL-
ADA segmentation in Figure 6.8(b), where dark blue corresponds to areas of higher
uncertainty. Figure 6.9(b) shows the F-test and t-test p-value map, which identifies
regions where we can confidently distinguish the local class distributions (dark blue)
and regions where the local distributions are indistinguishable (green). Yellow regions
are where only one class is considered. Note that a larger value for input parameter
n or choosing more training data would result in wider regions where two or more
classes are considered for each pixel assignment. A smaller n parameter value or
choosing less training data will result in thinner regions where two or more classes
are considered.

Finally, Figure 6.10 shows the original image with boundaries (red), identified
by ALADA using an input parameter of n = 40. Using these boundaries, the user

can identify the exact location and width of the shear bands which, according to the
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(b)

Figure 6.8: We show the (a) training data and the (b) ALADA segmentation for
the shear band image in Figure 6.7.
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(b)

Figure 6.9: (a) The MLE 2-sided p-value map shows how confident we are in each
pixel’s assigned class. (b) The F-test and ¢-test map shows how confident we are that
the available classes are distinguishable, in areas where at least two classes are being
considered.
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Figure 6.10: The ALADA-determined boundaries superimposed on the original
image.

providers of this image, has never been done in the literature. Additionally, the user
can identify uncertainty regions about each boundary using the MLE p-value map, if

desired.

6.2.2 Results from Other Methods

The same four methods presented for the previous example are given here on
the shear band image. We again start with Sobel edge detection, where the best result

is obtained using the threshold parameter ¢ = .12, and can be found in Figure 6.11(a).
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Again, lowering this threshold causes even more bounds to be detected while raising
the threshold causes some edges to be filtered out, including edges that are near our
suspected boundaries.

Next, Canny edge detection is done using parameters (t = .2, ¢ = 2), and is
shown in Figure 6.11(b). Larger o values would smooth the image, reducing noise
and unwanted edges, but doing so also removes details around the shear bands, which
are the features of interest in this image [34]. Even with extensive parameter tuning,
Sobel and Canny edge detection results are of little to no use, as they are not able to
distinguish between actual edges of interest and edges that are the result of noise.

Figure 6.11(c) shows the results from an edge detection backpropagation ar-
tificial neural network, using the same parameters are used as in the previous neural
network example: 1 hidden layer, 12 hidden nodes, trained on 16 different 4 x 4 edge
patterns for 500 epochs, with a learning rate of » = .01, and a momentum term of
a =.9. Again, to account for the size discrepancy between the edge patterns and the
original image, a 418 x 507 pixel version of the image instead of the original 835 x 1014
pixel version.

Finally, Figure 6.11(d) shows the quadratic discriminant analysis segmenta-

tion. The training data provided here was the same training data provided for the

LADA algorithm.
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Figure 6.11: Boundary detection results using (a) Sobel edge detection, (b) Canny
edge detection, (c) a backpropogation neural network, and (d) segmentation results
using QDA.

6.3 Polar Unroll ALADA Example

One additional example is provided to show how an image may be adapted
to be appropriate for ALADA boundary detection. Figure 6.12 shows a picture of a
laser-induced converging shockwave, collected using optical imaging [78].

When shock waves travel through a material, the material is irreversibly

changed. Temporal quantitative analysis of wave dynamics requires all measure-
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Figure 6.12: Image of a laser-induced, cylindrically converging shock wave propa-
gating in water. The goal is to segment the image into regions of unshocked water,
shock front, shocked water, laser ring, and outside (listed in order from image center
moving outwards).

ments, (in this case, images) to be collected from a single shock experiment. As a
result, the signal-to-noise ratio is limited and the images contain high noise content,
especially for high spatiotemporal resolution [79].

When strong shock waves travel through a material, they can separate into
multi-wave structures, beginning with a one-dimensional elastic wave where the mate-

rial is reversibly compressed and followed by a series of plastic waves corresponding to
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the irreversible changes that occur upon fast dynamic compression. In an image, the
multi-wave structure can appear as a relatively uniform material with bright, narrow
attributes that separate the regions. In some cases, there are changes in pixel inten-
sity or in texture between the different regions of the shock, but in most cases these
classes are difficult to separate with current boundary detection techniques because
the various physics classes (e.g. shock wave) have very little to distinguish them from
the other classes (e.g. are overlapping in feature space).

Figure 6.12 is an image of a cylindrically converging shock wave traveling
through a thin layer of water that is between thick glass substrates [78]. The shock
wave is generated from the interaction of a 200 micrometer diameter laser ring with
an absorber to produce a shock wave that travels within the sample plane, perpen-
dicular to the incident laser. A 180 femtosecond duration pulse from the same laser
collects a shadowgraph image in transmission, which gives an image that is a spatial
map of the second derivative of the density for the material [80]. In this experiment,
six images were taken in a single experiment at 5 nanosecond intervals in order to
visualize the convergence and subsequent divergence of the shock, which depicts the
two-dimensional physics of the complex system. To obtain quantifiable data from
these images, the shock must be precisely and accurately located with clear under-
standing of any error from that measurement. Identifying the location of the shock
wave throughout a series of images will enable the researcher to compute quantities
such as velocity.

Locating the shock is a challenging problem, but one well-suited to a local,

supervised method. The boundaries of the center rings are fairly clear, allowing the
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user to take training data with small gaps between training regions. However, the
outer rings have more gradual boundaries, forcing the user to be more conservative
when selecting training data. These differences in gap size between training data
makes LADA a poor choice since there is unlikely to be a single set of parameters
that is appropriate across the entire image. On the other hand, ALADA performs
better when the training data are selected along linear boundaries, to ensure that
ellipses follow along the suspected boundaries without protruding into one class over
another. This example explores how a radially symmetric image can be transformed
to be better suited for ALADA boundary detection.

Before beginning any ALADA analysis, the image is transformed or “unrolled”
from its starting polar form to a rectangular coordinate system. First, we find the
largest possible circular subimage in Figure 6.12, centered around the center of the
inner shock. Figure 6.13 shows the “unrolled” version of this subimage, with the
center of the cylindrical shock transformed to lie along the top of the unrolled shock
image and the outer ring transformed to lie along the bottom of the unrolled shock
image, such that the vertical axis represents the radius from the pole, or center of
the shock, while the horizontal axis represents the angle from the polar axis in the
counterclockwise direction. Note that this transformation stretches pixels that are
close to the pole and compresses pixels that are far from the pole.

From here, ALADA is performed as usual. Figure 6.14(a) displays the hand-
selected training data, with the classes beginning at the top of the image and moving
down: unshocked water (blue), shock front (green), shocked water (orange), and laser

ring (red). Looking at the original image, these regions begin in the center of the
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Figure 6.13: A polar transformation is used to “unroll” the image in Figure 6.12,
in order to simplify the boundary-detection process.

image and move out. Figure 6.14(b) shows the resulting ALADA segmentation using
the input parameter n = 40. As with the previous ALADA example, the larger radius

of each anisotropic subimage is capped using the rule:

) A1
Po,: =Ty, Min¢ —,4 ¢,
J ] AQ

to prevent the elliptical subimages from getting too large.
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(b)

Figure 6.14: We show the (a) training data and the (b) ALADA segmentation for
the laser shock image in Figure 6.13.
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Figure 6.15(a) shows the MLE 2-sided p-value map corresponding to the AL-
ADA segmentation in Figure 6.14(b), where dark blue corresponds to areas of higher
uncertainty. Figure 6.15(b) shows the F-test and ¢-test p-value map, which identifies
regions where we can confidently distinguish the local class distributions (dark blue)
and regions where ‘the local distributions are indistinguishable (green). Yellow regions
are where only one class is considered.

Finally, Figure 6.16(a) shows the ALADA-determined boundaries (red) on the
unrolled shock image, identified using the ALADA segmentation in Figure 6.14(b).
By reversing the original transformation, we can “reroll” the image and the ALADA-
determined boundaries to obtain the polar results, as shows in Figure 6.14(b). Note
that transforming the unrolled version back into polar form generates a circular image,
and cannot recreate parts of the image outside of the circle. The outer red circle
identifies the outer limit of the image, and is not in fact part of the identified image
boundaries. Using these boundaries, the user can identify the exact location of each
‘region in the shock, and, using the other images taken during this experiment, can
measure the speed and pressure of the shock front as it moves over time. Additionally,
the user can identify uncertainty regions about each boundary using the MLE p-value

map, if desired.
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(b)

Figure 6.15: (a) The MLE 2-sided p-value map shows how confident we are in each
pixel’s assigned class. (b) The F-test and ¢-test map shows how confident we are that

the available classes are distinguishable, in areas where at least two classes are being
considered.
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(b)

Figure 6.16: The ALADA-determined bounds on (a) the unrolled shock image and
(b) the original shock image.
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CHAPTER 7

CONCLUSIONS

This dissertation presents two new supervised boundary detection methods
for images with low contrast between classes, heteroskedasticity, and objects whose
intensities vary spatially. The first algorithm, locally adaptive discriminant analysis
(LADA), uses two user-supplied parameters to subsample local training data in a
circular region about each pixel. This method is best for images where the distances
between training regions are relatively equal, in order for the input parameters to be
appropriate for the entire image. The second algorithm, anisotropic locally adaptive
discriminant analysis (ALADA), uses a single input parameter to subsample local
training data in an elliptical shape along boundaries of interest. This algorithm is the
first of its kind to use both the statistics of pixel intensities as well as the statistics
of pixel locations. Since the algorithm relies on spatial distribution of training data,
it is most appropriate for images with smooth, straight training boundaries.

After presenting LADA and ALADA, two methods for uncertainty quantifica-
tion (UQ) were explored. The first, maximum likelihood estimation, can be used to
describe confidence in the selected class for each pixel. When viewed as an image, the

map of MLE p-values shows regions of high confidence, where the user can be satis-
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fied with the result, and regions of low confidence, where the user may want to select
additional training data, or choose different parameters. The regions of low p-values
can also be used to place regions about the boundaries, demonstrating uncertainty
in the boundary location. The second UQ method explored is a combination test
using a Welch’s ¢-test statistic and an F-test statistic. Wherever two or more classes
are being considered, this test can be used to determine the separability of the local
classes. Rejecting the null hypothesis means that there is not sufficient information
to say that the distributions are equivalent. Accepting the null means determining
that the two local classes have statistically equal means and variances, meaning we
cannot confidently choose one class over another. Viewing these p-values as a map
can show the user regions where they cannot be sure of a boundary’s exact location
because the training data distributions on each side are indistinguishable.

Finally, the algorithms and the UQ methods were demonstrated on real images
from lab experiments. LADA was shown on a series of three images from a planar
shock wave experiment, where the resulting boundaries and their uncertainty regions
can be propagated through equations to find quantities such as velocity. ALADA was
shown on a material science experiment sample showing parallel shear bands, where
the boundaries and UQ can be used to find width of the shear bands and percentage
of the metal that has been weakened. Four alternative methods were also used on
both these images, giving inferior results to LADA or ALADA, and none of the
alternative methods provide any sort of uncertainty quantification. Lastly, ALADA
was also used on a special image from a cylindrical laser shock wave experiment

that first required a polar transformation. Transforming the image made ALADA an
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appropriate boundary detection choice and after finding the results, the image was

retransformed back into the original coordinate system.

7.1 Future Work

Boundary detection is a rapidly developing field and there are many avenues
yet to be explored. The largest change the author would like to explore is the possi-
bility of eliminating the Gaussian assumption in the LADA and ALADA algorithms.
The normality studies presented in this work show that while the normality assump-
tion is more accurate at the local level than at the global level, it is still not accurate
for a majority of the image. To remedy this, LADA and ALADA could be altered to
fit the local training data to whichever distribution offers the best fit. Research has
already been released showing how one might use the first four moments of a data
set find the best fit to a distribution from the lambda family of distributions [81].
Doing this would offer more reasonable assumptions for a more confident result. Un-
certainty quantification would be much more challenging, as different hypothesis tests
have different assumptions on how the data are distributed, but the algorithm would
be more correct.

Another possible alteration to LADA and ALADA is to iterate on the prior
probabilities. As they currently stand, LADA and ALADA assume equal prior prob-
abilities for all local classes, a common assumption when little is know about the local
distributions or when the researcher wishes to use a more frequentist approach. How-
ever, there is likely some preference to one class over the other, based on prevalence

of local training data or nearby class assignments. If this idea were to be pursued,
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a mode filter should be used where after LADA or ALADA has been completed and
all pixels have been assigned a class, the proportion of local class assignments should
be used as the prior probabilities for a second run through the LADA or ALADA
algorithm. Special weight could be given to the class that was originally assigned for
each pixel.

Finally, as a simple way to speed up the algorithms, training pixels could
be automatically assigned to their labeled class. LADA and ALADA are boundary
detection algorithms and as the training data should be sufficiently far from the
boundary, the author sees no reason why those pixels should not be automatically

classified.
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APPENDIX A

SUPPLEMENTAL MATERIAL

A.1 Hypothesis Testing

In statistics, we are often interested in whether or not a mathematical state-
ment related to random variables is true. A statistically-justified way of determining
if such a statement is true is via a hypothesis test. Hypothesis tests typically have
four steps [83].

First, a null hypothesis, Hy, is proposed stating that the observations are the
result of pure chance. A corresponding alternative hypothesis, H,, is chosen stating
that the observations are the result of a real effect, with some amount of chance
variation. For example, a researcher may wish to determine if a set of observations,

X, comes from a distribution with mean 0. They would create the hypotheses

Hozp:0

Ho 1 u#0

where 1 is the mean of the distribution from which the observations are selected.
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Second, the researcher chooses an appropriate test statistic based on the prob-
ability model of interest. Test statistics used in this dissertation include a Welch’s
i-test statistic, a two-sample F'-test statistic, a combined ¢-test and F-test statistic,
and a Shapiro-Wilk test statistic. The first three will be explained in Chapter 5 and
the Shapiro-Wilk test is presented in the next section. Each test statistic has its own
formula where input values such as sample mean, sample standard deviation, and
degrees of freedom are found using the data set in question.

Step three uses the test statistic to compute a p-value which is the probability
of obtaining a result equal to or more extreme than what was actually observed,
assuming the null hypothesis is true. Smaller p-values mean a small probability
of the observation occurring, indicating that the researcher should reject the null
hypothesis.

Whether or not a researcher rejects the null hypothesis depends on what signif-
icance level they choose, which corresponds to the confidence level of the hypothesis
test. The most common significance level is o = .05, corresponding to a confidence
level of 95%), which is what will be used for the entirety of this dissertation. If p < q,
the researcher concludes that the observed effect is statistically significant and rejects
the null hypothesis in favor of the alternative hypothesis. If p > «, the null hypothesis

is accepted.

A.2 Normality Testing

Normality assumptions are common in statistical applications, even when such

an assumption is unwarranted. Discriminant analysis methods such as LDA and
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QDA assume that global training data are normally distributed and since LADA and
ALADA are based on these methods, they, too, follow Gaussian assumptions. In
order to determine how appropriate these assumptions are, we use the Shapiro-Wilk
test to determine if each pixel’s local training distributions are normally distributed.

The Shapiro-Wilk test is a hypothesis test where the null and alternative

hypotheses are as follows

Hy : population is normally distributed

H, : otherwise.

The test statistic for the hypothesis test is given by

K

(Z?:l aix(’)>
W' e = n y
. zizl(wi = .“m,-)Q

where a; are Shapiro-Wilk coefficients and 2 is the i** smallest number in the sample.

The coeflicients a; can be found using the formula

mTv-—l
(a1, a9, ... ,a0,) = c

where C' is a vector norm given by

C = ||C 'm|| = (mTV 1y~ Im)l/2
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and the column vector m is comprised of the expected values of the order statistics
of iid random variables sampled from a standard normal distributions. V is the
covariance matrix of those normal order statistics [84].

This test statistic can be converted to a p-value which is tested at the o = .05
level to determine if we accept or reject the null. Below are the Shapiro-Wilk results
for each image in this dissertation. The last column is the percentage of local distri-
butions that fail to reject the null hypothesis, i.e. the percentage of local distributions

that are Gaussian.

Image Name Reference Normality Rate
Synthetic staircase Figure 3.2 14.25%
Synthetic triangle Figure 4.5 84.86%
Olivine sand impact 1 | Figure 6.2(a) 34.21%
Olivine sand impact 2 | Figure 6.2(b) 44.70%
Olivine sand impact 3 | Figure 6.2(c) 46.73%
Shear bands Figure 6.7 18.63%
Unrolled shock Figure 6.13 32.49%

A.3 Principal Component Analysis

For some m x m matrix, A, an eigenvector is a nonzero m x 1 vector v such
that Av = Av for some scalar X\. The scalar \ is called the eigenvalue correspond-
ing to the eigenvector v [82]. An eigenvector’s direction is unchanged when linear

transformations are applied to it.
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Essentially, an eigenvector is a direction and the corresponding eigenvalue
tells how much variance there is in the data in that direction. Principal component
analysis orders these eigenvalues, or variances, from greatest to least, to describe the
underlying structure in the data by identifying the direction where there is the most
variance. These vectors are always orthogonal to each other so n-dimensional data
will always have n eigenvector-eigenvalue pairs or n principal components.

When PCA is used for ALADA, the data sets are images where we are inter-
ested in the spatial spread of pixels, not the spread of pixel intensities. Therefore.
only two dimensions - the row and column of each pixel - are used, while pixel inten-
sities are ignored. If a data set has, say, n pixels, then we take the n x 2 matrix of
pixel locations and find its 2 x 2 covariance matrix. This matrix’s eigenvector corre-
sponding to its larger eigenvalue is called the first principal component or direction
of greatest variation, while the eigenvector corresponding to the smaller eigenvalue is

called the second principal component or the direction of least variation.

A.4 k-Nearest Neighbors

The k-nearest neighbors algorithm is a non-parametric supervised classification
method. Tt is a “majority voting” method, meaning that each new, unlabeled data
point is classified according to the mode of the surrounding training data. The number
of surrounding training data being considered is determined by the user-supplied
parameter k.

In the ALADA algorithm, k-nearest neighbors is used to determine the radius

of the circular subimage, which is also the minor radius of the elliptical subimage.
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The user supplies a number of neighbors parameter, k, which in this case is how many
local training pixels are required. For each pixel in the image, the algorithm is used
to determine the minimum radius r;,, needed to have at least & training pixels in the
subcircle.

The general algorithm for k-nearest neighbors classification is given in Algo-
rithm 6. For the ALADA algorithm, an abbreviated version of k-nearest neighbors
is used. The algorithm is performed as listed below until Step 3, at which point the

minor radius is set equal to the £ distance, such that

= dk.

Tlij

Algorithm 9 k-nearest neighbors for classification

Given image X, define training data 7" with C' classes, and a number of neighbors, k.

For each pixel z;; € X:

1. Calculate d(x;;,t) Vt € T, where d denotes the Euclidean distance between the
pixels.

2. Arrange the calculated Euclidean distances in non-decreasing order such that
di<dy<ds<....

3. Take the first k& distances d;, dy, ...d; from this sorted list.
4. Find the & training points corresponding to the k distances.

5. Let k. denote the number of training data belonging to the ¢** class such that
ke >0and ) k.= k.

6. Place x;; into the class ¢ for which

G(x;j) = arg max k..
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