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ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree _Doctor of Philosophy _ College/Dept.__Engineering/Electrical and

uter Engineerin

Name of Candidate___ SHAMILA NATEGHIBOROQUJENI
Title _Attack Reconstruction And Secure State Estimation in Cyber-Physical Systems

A Cyber-Physical System (CPS) represents a tight coupling of computational
resources, network communication and physical processes. CPSs are composed of a set of
networked components including sensors, actuators, control processing units, and
communication agents that instrument the physical world to make it smarter. However,
cyber components are also the source of new and unprecedented vulnerabilities to
malicious attacks. Cyber security of CPS should provide three main security goals:
availability, confidentiality, and integrity. This means that the CPS is to be accessible and
usable upon demand, the information has to be kept secret from unauthorized users, and
the trustworthiness of data has to be guaranteed. To protect a CPS from attacks, three
security levels are considered: I) protection of the system from being attacked, II) detecting
whether any attack happened, and IIl) resilient control of the system after being attacked.
In this dissertation, we focused on attack reconstruction and secure state estimation in CPSs
under sensor and state attacks in order to facilitate the resilient control of attacked CPSs.
Numerous methods that study the resilient control of CPSs are presented in the literature.
Applications of these approaches are limited to the special formats of CPSs, attacks
mathematical models, and a variety of restrictive assumptions. To avoid these limitations,

sliding mode differentiators and observers, as a robust observation approach, are used in

iv



this dissertation for online reconstruction of the sensor and state attacks as well as state
estimation in nonlinear and linear CPSs under attacks. Next, the corrupted measurements
and states are to be cleaned up on-line to stop the attack propagation into the CPS via the
feedback control signal. A variety of attack scenarios are considered including (a) different
combinations of the number of potential attacks and the number of sensors (b) linearized
and nonlinear mathematical models of CPSs under attack. Corresponding observation
algorithms were proposed and studied for on-line attack reconstruction and state estimation.
The proposed observation algorithms and methodologies are applied to the US Western
Electricity Coordinating Council power network, whose states and sensors are under

attacks. Simulation results illustrate the efficacy of proposed observers.
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CHAPTER 1

INTRODUCTION

1.1 State of Art and Literature Review

Cyber-Physical Systems (CPS) represent the integration of the cyber-world of
computing and communications with the physical world. In many systems, control of a
physical plant is integrated with a wireless communication network [1-3], for example
transportation networks, traffic control and safety, electric power networks, water networks,
integrated biological systems, advanced automotive and industrial automation systems, and
economic systems [4-8].

More specifically, using computer networks and related Internet technologies in
industrial control systems to transfer information from the plant floor to supervisory
computer systems has increased significantly in the last decade. For example, most
industrial plants now use networked process servers to allow users to access real-time data
from the Distributed Control Systems (DCS) and Programmable Logic Controllers (PLC)
[9].

Talking specifically about another CPS, a platoon-based vehicular networked control
system is an advanced automated method of driving a group of vehicles with some common
interests on a road. In order to do that, each vehicle must be equipped with on-board sensors
including radar, camera, lidar and also with a shared wireless communication network

where inter-vehicle data in each vehicle are exchanged so that the platoon can reach its



common interest. Since the control commands and sensor measurements are transmitted
through wireless communication channels between vehicles, the content of these signals
can be modified by cyber-attacks [10]. Identification and modeling process as [11, 12]
which are based on data can be seriously affected by corrupted data.

Recent real-world cyber-attacks, including multiple power blackouts in Brazil [13], the
StuxNet attack [14] in 2010, Maroochy attack to the water services in Queensland,
Australia in 2000 [15], and a cyber-attack to Ukrainian power distribution networks [16]
illustrate the importance of providing security to CPSs.

In 2000, the Maroochy water services in Australia, were attacked by an employee who
attacked by infiltrating the Supervisory Control and Data Acquisition (SCADA) network
of water services and modified the control signals. The result of his attack was the
evacuation of one million liters of untreated sewage, over a three-month period, into storm
water drains and on to local waterways [15].

A car hacking attack experiment on a Jeep which was driving in 70 mph on a highway
in St. Louis, USA showed that cyber-attacks can cause very serious problem for modern
automotive systems. Various electronic control units, from wiper to brake and engine
systems, can be manipulated remotely by cyber attackers through the cellular connection
inside the vehicle [17].

A number of studies have shown cyber-attack on the Unmanned Arial Vehicles (UAV)
[18]. As an example, in 2011, US operators lost control of an RQ-170 UAV which was
landed in Iran. The reason could be that Iranian forces jammed GPS communications
followed by a spoof of GPS signals. As a result, the drone was landed in the Iranian's

desired location [19].



Cyber security of CPS must provide three main security goals of availability,
confidentiality, and integrity [20]. This means that the CPS is to be accessible and usable
upon demand, the information has to be kept secret from unauthorized users, and the
trustworthiness of data has to be guaranteed. Lack of availability, confidentiality, and
integrity yields denial of service or disruption, disclosure, and deception respectively (see
Figure 1.1).

A deception attack happens when an authorized party receives false data and believes it
to be true [21]. A specific kind of deception attack called a Replay attack is carried out by
“hijacking” the sensors, recording the readings for a certain time, and repeating such
readings while injecting an exogenous signal into the system’s sensors. In Replay attacks,
the system model is unknown to the attackers but they have access to the all sensors. In
[22-25], it is shown that these attacks can be detected by injecting a random signal unknown
to the attacker into the system. In the case when the system’s dynamic model is known to
the attacker, another kind of deception attack, covert attack, has been studied in [26, 27],
and the proposed algorithm allows cancelling out the effect of this attack on the system
dynamics. In systems with unstable modes, False data injection attacks are applied to make
some unstable modes unobservable [28, 30]. In a Stealth attack, the attacker modifies some
sensor readings by physically tampering with the individual meters or by getting access to
some communication channels [31, 34].

A Denial of service attack assaults data availability through blocking information flows
between different components of CPS. The attackers can jam the communication channels,
modify devices and prevent them from sending data, violate routing protocols, etc. [35-37].

A Disclosure attack refers to any intrusions to the privacy of the agents of a CPS which



include eavesdropping [38]. Most of the techniques which aim to provide a confidentiality

service use randomization of data [39, 40].

3 s Physical Layer
A i

Physical Plant

Cyber Layer
\ Physical attack \ Disclosure (confidentiality) attack
\ Deception (integrity) attack . Disruption (availability) attack

Figure 1.1 Attacks that May Happen to a Cyber-Physical System [41]

Cyber-physical system security including information security, protection of CPS from
being attacked and detection in adversarial environments have been considered in the
literature. A majority of the methods and tools for protecting CPSs from cyber-attacks are
based on the development of special resilient software [42-55]. Cryptography and
Randomization are two main approaches to protect a CPS against disclosure attacks:
Cryptography is an approach to prevent third parties or the public from reading private
messages by defining some protocols [56, 57]. Randomization is a defensive strategy to
confuse the potential attacker about deterministic rules and information of the system [58].

However, how to ensure the CPS can continue functioning properly if a cyber-attack has
happened is another serious problem that should be investigated. If the defense strategy
just relies on detection, then system's performance still degrades and the threat of the same
attack recurring is not diminished. In addition, in the interval between the onset of the

attack and detection, the system could experience significant damage [41]. A good example



of such a scenario is the Stuxnet [59]. The Maroochy attack happened because of the lack
of detection and resilience mechanisms as well [15]. In RQ-170, the absence of resilience
control caused the system to be unable to defend itself against the spoofing attack [19].

It is suggested in [20] that information security mechanisms have to be complemented
by specially designed resilient control systems until the system is restored to normal
operation. The focus of this dissertation is on reconstruction of the cyber-attack as a step
to provide the resilient control for a CPS.

The control/observation algorithms are proposed in the literature for recovering CPS
performance on-line if an attacker penetrates the information security mechanisms.

A game-theoretic approach that provides resilience consists of trying to minimize the
damage that an attacker can apply to the system or maximize the price of attacking a system.
For example, a zero-sum stochastic differential game between a defender and an attacker
is used to find an optimal control design to provide system security in [60].
Event-triggered control schemes instead of time-triggered schemes, which are based on
how frequent the attacks occur, are an appropriate strategy to increase the resilience of CPS
[61]. Event-triggered control is especially used to mitigate the effect of a disruption attack
[62]. Mean Subsequence Reduced as a resilient control approach ignores suspicious values
and computes the control input at every moment [63, 64].

In Trust-based approaches, a function of trust value between the nodes of system is
defined since some of nodes of system may be untrustworthy [65]. In [66], authors found
the number of attacks that can be tolerated so that the state of the system can still be exactly
recovered. They designed a secure local control loop to improve the resilience of the system.

In [67], deception attacks are analyzed in stochastic systems, and the number of sensors to



secure the system using a Kalman filter approach is proposed. In [68], new adaptive control
architectures that can foil malicious sensors and actuator attacks are developed for linear
CPS without reconstructing the attacks, by means of feedback control only.

The mentioned approaches suffer some disadvantages, limitations, and challenges,
including:

I It is assumed that the maximum number of malicious sensors in the network is known
and bounded. Once the number of attacked sensors exceeds the upper bound, the proposed
secure estimation or resilient control schemes fail to work.

1. Only specific types of malicious actions acting on the cyber layer are considered.

I11. Only special structures of the cyber-physical system are considered.

On the other hand, the Sliding Mode Control (SMC) and Higher Order Sliding Mode
(HOSM) control and observation techniques can handle systems of arbitrary relative degree
perturbed by bounded perturbations/attacks of arbitrary shape. The Sliding Mode
Observers (SMO) are capable to estimate the system states and reconstruct the bounded
perturbations/attacks asymptotically or in finite time [69-73] while addressing the outlined
challenges.

Detection and observation of a scalar attack by a SMO has been accomplished for a
linearized differential-algebraic model of an electric power network when plant and sensor
attacks do not occur simultaneously [74]. A SMO has been designed to simultaneously
reconstruct states, attacks, and unknown input of a linear discrete-time state-space model
when malicious attacks are sparse vector [75]. An adaptive SMO is designed coupled with
a parameter estimator and a robust differentiator for detection and reconstruction of attacks

in linear cyber-physical systems in [76] when state and sensor attacks do not happen



simultaneously. Cyber-attacks against Phasor Measurement Unit (PMU) networks are
considered in [77], where a risk-mitigation technique determines whether a certain PMU
should be kept connected to network or removed. In [78] the sliding mode-based
observation algorithm is used to reconstruct the attacks asymptotically. This reconstruction
is approximate only, since pseudo-inverse techniques are used.

In the mentioned studies above which use a Sliding Mode approach for resilient control

of CPSs, they all consider linear CPS and have their specific limitations.

1.2 Motivating Examples

In order to demonstrate the importance of reconstructing the cyber-attacks on cyber
physical systems, motivating examples are presented in this section. At first, two tutorial
examples of a CPS under state attack and a CPS under sensor attack are provided. Then,
the model of US Western Electricity Coordinating Council (WECC) power system under
stealth attack is investigated and it is shown how attacks degrade the performance of the

power network.

1.2.1  Tutorial examples

Example 1.
Consider a CPS under bounded attack, whose dynamics are described by

X(t)==2x @) +v (1) +u, (1) in
y)=x@) '
where y(r) is the measured output, v (¢) is the control signal, and u,(t) is the plant

attack signal. The goal is to design the control law v (z) that drives x (r) — 0 as time

increases in the presence of the bounded attack signal u, (7).



The problem can be addressed via
e feedback state controller design .

e reconstruction of the state attack u,(¢).

e using the reconstructed state attack i,(t) in the state feedback controller for

compensating the attack.

The controller that is robust to the attack signal is designed as
v(t)=-3x@)—u,) {1.2)
where #,(t) is an reconstructed attack signal base on the measurement y (¢). In order to

get the #,(¢), find the derivation of output of CPS (1.1) as

y)=x@)=-2x@)+v () +u,() (1.3)

Substituting x (¢) with y(¢) in(1.3) gives the on-line reconstruction of attack as

@)=y @)+2y @)—v ) (1.4)
The simulation results of applying the control signal (1.2) including the attack estimation
(1.4) are presented in Figures 1.2 — 1.4. As it is clear in Figure 1.2, the output of CPS (1.1)
under state attack is deviated from x =0 while its output after applying control signal

(1.2), shown in Figure 1.4, convergesto x =0 very well.
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Example 2
Consider the cyber physical control system whose sensor/measurement is corrupted by
a bounded attack signal

X()==2x@)+v (1)
y(@)=x(@)+u,)

(1.5)
where y(¢) is the measured output, v (¢) iscontrol, and u,(¢) isa sensor/measurement
corruption attack signal.
The goal is to design the output tracking control law v (¢) that drives x () >x_(¢)
as time increases in the presence of bounded measurement corruption attack signal u, (7).
The problem can be addressed via
e reconstruction of the sensor attack u,(¢).
e cleaning up the sensor measurement using the reconstructed sensor attack
u,(t).
e feedback controller design using the cleaned measurement.

Find the derivation of output of CPS (1.5) to compute the on-line reconstruction of sensor

attack u,(¢) as follows

Y@)=x@)+u,t)="2x@)+v () +u,() (1.6)

Replacing x (¢) with the second equation of eq. (1.5) gives

Y @O)==2(y () —uy@))+v @)+, () (1.7)
Laplace transform of (1.7) is written as

Y (s)(s +2)=U,(s)(s +2)+V (s) (1.8)
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where Y (s), U,(s) and V (s) arethe Laplace transform of y (¢), u,(t) and v (¢)
respectively. It is assumed that initial conditions y (0)=0, u,(0)=0. Therefore, the

estimation of cyber sensor attack u,(z) is obtained as

3G =L (Y (s)———l——V (s)) (1.9)
s+2
where L7'(.) shows the Inverse Laplace transform.
The “cleaned” measurement is computed as
Y e €)=y ) =10, (1) (1.10)
Then, it is used in the output tracking controller design
v(E)=x_(t)+2x_(¢)+3e(t) (1.11)

where e(t)=x_(t)~Y .. (), which converges to e(t)=x_(¢)—x (t) astime increases.

clean
Replacing x (t),eq. (1.5), where v (¢) isequaltoeq.(1.11)in e(t)=x_(r)—x(¢) gives

éit)y=—e() (1.12)
Equation (1.11) proves that the control signal eq. (1.11) makes ¢ — 0 by increasing time

and provides the tracking goal for CPS eq. (1.5). The results of the simulation for CPS eq.

(1.5) controlled by eq. (1.11) are presented in Figure 1.5.
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Figure 1.5 (a). Attack Signal Reconstruction, (b). Output Tracking, (c¢). Tracking

Feedback Control
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Observations based on Examples 1 and 2:
¢ The attacks on the plant and on the sensors lead to significant degradation of the
system’s performance.
¢ The on-line reconstruction of attacks with a consecutive compensation by means

of feedback control recovers the system’s performance.

1.2.2  Electrical Power Network Example

In a real-world electrical power network only a small groups of generator rotor angles
and rates are directly measured, and typical attacks aim at injecting disturbance signals that
mainly affect the sensor-less generators [74]. The CPS that motivates the results presented
in this section is the US WECC power system [83, 84] under attack with three generators

and six buses, whose electrical schematic is presented in Figure 1.6.
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Figure 1.6 The Western Electricity Coordinating Council Power System [83]
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The mathematical model of the power network in Figure 1.6 under sensor stealth attack

can be represented as follows [83].

I 0 0] o -I 0 |[¢s 0 0
0 M, 0 @ =L, E, L ||o|+|B,|d+|PF, o
0 0 00 L, o L |lé] |B, A -
x B
y =Cx +Dd

g
where the state vector x =[5T o' OT] includes a vector of rotor angles o € R?,

vectors of the generator speed deviations from synchronicity @ € R?, as well as vector of
voltage angles at the buses & e R°.

The matrices E,,M, € R* are diagonal matrices whose nonzero entries consist of

the damping coefficients and the normalized inertias of the generators respectively and

given by
0.125 0 0 0125 0 0
M,=| 0 003 0 |,E = 0 0068 0 (1.14)
0 0 0.016 0 0 0.048

The inputs P, and P, are due to known changes in the mechanical input power to the

\

generators and real power demands at the loads. The L’ eR” is an edge-weighted

Laplacian of the graph associated with the lossless power network which is partitioned as

F B
LH:[%* e (1.15)
Ll,g Ll.l

] 3x3 ] 3x6 0 6x3 ] 6x6 a9 :
where Lg‘geR , L, eR™, L, eR™, L/, eR and L° is equal to
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[ 0.058 0 0 < =0058 0 0 0 0 0 |
0 0.063 0 0 0063 0 0 0 0
0 0 0.059 0 0 -0059 0 0 0

-0.058 0 0 0.265 0 B = 0085 <0092, °0

L= 0 -0063 0 0 0.296 0 0161 0 -0.072((1.16)

0 0 —0059 0 0 0.330 0 -0.170 -0.101
0 0 -0.085 -0.161 0 0.246 0 0
0 0 0092 0 - 0470 .0 0.262 0

.0 0 0 g <0072 010150 0 0.173 |

The vector y eR®, y = [5 a)]r , is the measurement vector, the vector d € R® is
the stealth attack vector corrupting the measurements and consequently affects the states
of the plant through the feedback control, B e R'>® and D eR®® are the attack
distribution matrices and C € R*" is output gain matrix.

Note that generator rotor angles 6, i =1,2,3 are supposed to converge to the constant
values, while the generator speed deviations from synchronicity @, —0 i =1,2,3 in a
case of nominal performance (without attack) of the studied network.

Consider the case when the sensors which measure the generator speed deviations from
synchronicity, @,,®,,®,, are corrupted by the following stealth attacks

d,=-1.1o +2sin(t), d,=-0.9m,+cos(0.5t), d,=-0.8a,+sin(t) (1.17)

In order to show the effects of the stealth attacks eq. (1.17) on the performance of the

electrical power system eq. (1.13), the system was simulated with and without attacks. The

results of the simulations are shown in Figures 1.7 and 1.8. In Figure 1.7, corrupted sensor

measurements ( @,,®,,®, under attack) and sensor measurements when there is no attack
are compared. In Figure 1.8, the states of system, vector of rotor angles &,,9,,d;, when

the power system is under attack and when there is no attack are compared.
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Observations based on Electrical Power Network Example:

The stealth attacks lead to un-appropriate degradation of the power network

performance. Estimation of the attacks and cleaning up the measurements before using

them in feedback control is very important for retaining the performance of the electrical

power system.

1.3 Research Contribution

Nonlinear and linearized CPS under sensor and state attacks are considered

I

IL.

I11.

A novel observation algorithm based on a sparse recovery (SR) technique along
with a sliding mode differentiator is proposed for reconstructing on-line the
sparse cyber-attacks on nonlinear CPS when there are more potential attacks
than sensors. The novel result of this work is presented in [79].

A finite time convergent Higher Order Sliding Mode (HOSM) observer based
on a HOSM differentiator is proposed to reconstruct on-line the plant attacks
and estimate the states of a nonlinear CPS when the number of sensors is greater
than the number of potential sensor attacks. The result of this work is published
in [80].

Fixed-gain and adaptive-gain SMOs that include a newly proposed dynamic
extension of the injection term is developed for the on-line reconstruction of
attacks in a linearized CPS when the number of sensors is greater or equal to
the number of potential attacks. Specifically, a novel adaptive sliding mode
observation algorithm that reconstructs the smooth bounded CPS attacks with
unknown boundaries on their amplitude and rates is proposed. Dynamic filters

that address the attack propagation dynamics are proposed and employed for
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attack reconstruction for the first time. The results of this novel approach is

presented in [81, 82].

1.4 Organization and Content

This dissertation consists of nine chapters. Chapter 1 presents literature review and
research objectives as well as motivating examples. Chapter 2 describes the problem
formulation. Chapter 3 provides background material that is used in this dissertation.
Chapter 4 discusses the attack reconstruction and state estimation in a linearized CPS when
the number of sensors is equal to the number of potential attacks. Chapter 5 studies attack
reconstruction and state estimation in a linearized CPS when the number of sensors is
greater than the number of potential attacks. Chapter 6 explores attack reconstruction in a
nonlinear CPS when the number of potential attacks is greater than the number of sensors.
Chapter 7, presents state estimation and attack reconstruction in a nonlinear CPS when the
number of sensors is greater than the number of potential sensor attacks. In Chapter 8,
proposed approaches in chapters 4 to 7 are tested in a real case study, the WECC power
network system, and the simulation results are illustrated to show the effectiveness of
developed approaches. Finally, chapter 9 declares conclusions and future works of this

research.

1.5 Summary

A Cyber Physical System contains components that are accessible wirelessly through a
network [1]. Many CPSs, including transportation networks, electric power networks,
integrated biological systems, industrial automation systems, and economic systems [1-3],

benefit from networked communication between different parts of a CPS. The downside of
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the CPS remote access is that an adversary has the capability to attack the system states
and sensors remotely, and cause damage to the CPS and degrade CPS performance [3].
Protecting CPS from being attacked is of paramount importance. At the same time, CPSs
should have the ability to continue working and recover their performancé after being
attacked.

Two tutorial examples of systems under cyber plant attack and sensor attack
respectively, and model of US WECC power system under stealth attack are discussed in
this chapter to show how cyber-attacks to plant and/or sensors can degrade the performance
of a CPS and why the on-line reconstruction of the cyber-attacks with a consecutive
cleaning up the measurements prior to using them in feedback control is of a prime
importance for retaining the performance of CPS.

There exist a variety of studies to find resilience-increasing mechanism for CPSs. They
mostly are based on Game theory, Event- triggered Control, Mean Subsequence Reduced
algorithms, and Trust-based approaches. These approaches suffer disadvantages including
having information of the maximum number of malicious sensors in the network,
considering specific type of malicious action acting on the cyber layer, or some especial
structure of the CPS.

Sliding mode observation techniques which can handle systems of arbitrary relative
degree perturbed by bounded perturbations/attacks of arbitrary shape are proposed in this
dissertation to reconstruct the attacks and secure an estimate of states of a CPS under sensor
and state attacks asymptotically or in finite time. The reconstructed sensor attacks can be
used for cleaning up the measurements so that the sensor attacks do not affect the CPS

performance through the feedback control. Also the state attacks can be compensated by

18



the CPS feedback control that employs the reconstructed state attacks.

In the next chapters 4-8, we will focus on the task of developing the algorithms of on-
line reconstruction of the plant’s and sensors’ cyber-attacks as well as state estimation that
may facilitate feedback control in order to recover the system’s performance demonstrated

prior to attacks.
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CHAPTER 2

PROBLEM FORMULATION

2.1 Mathematical Modeling

Consider the following CPS which is completely observable and asymptotically stable

affected by attack

x= fi(x)+B,(x) (u +d, (t))

2.1)
y=C(x)+Dd (1)

where x € R" presents the state vector of CPS, f (x)eR" is a smooth vector-field,
y € R” denotes the sensor measurement vector, and u € R? is the control signal. The
d,(t)eR" and d (1) eR" are the actuator and sensor attack respectively. The vector

C(x)eR” is the output smooth vector field, B ,(x)eR"" and D €R”™ denote the

attack/fault distribution matrices.
Since it is very difficult to distinguish cyber-attacks from other perturbations acting on
the CPSs, throughout this dissertation, cyber-attacks, faults, and disturbances are referred

to as attacks.
The output feedback control signal « is a function of sensor measurement y which

can be corrupted by the sensor attacks. This is

u(y)=y(Cx)+d,)=y(x.d,) (2.2)
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Replacing control signal « in CPS eq. (2.1) to find the closed loop CPS model gives

5= i)+ B (7 (xd,)+d,0) = £+ Bx)y(x.d, )+ B(x)d, @)

(2.3)
y=C(x)+Dd (1)
Assume that » can be written as
y(x.d,)=n(x)+r(d,) (2.4)
then, the closed loop CPS eq. (2.3) is given as
X =f()+B,(x)y (x )+ B,(x )y, (d, )+ B,(x)d, () B
y=C(x)+Dd,(t)
Therefore, the CPS eq. (2.1) after applying control signal u« is presented as
¥ =f () +B,(x)d, ) Bt
y =C(x)+Dgd, ()
where
fe)=f,(x)+B,(x)y (x)
d,()=7,(d,)+d, @) S
where d_(¢) presents the plant/state attack.
Define the attack/fault signal d(t) e R? where g =g, +g, as
d
i = [d’j (2.8)
where d, eR" and d, e R, and
B(x)=[B,(x) 0],D=[o0, D,] (2.9)

where B,(x)eR™", D, e R” 0 eR"“ 0, cR” . Then, the closed loop CPS

eq. (2.6) is rewritten as
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X =f(x)+B(x)d()

(2.10)
y=Cx)+Dd(t)

2.2 Problem Statement

The problem is two-fold

1. Develop an observation algorithm that reconstructs on-line the state x € R" and

attack signal d(t) e R? in CPS eq. (2.10) so that
X)>x @), dit)—>d() (2.11)
2. Develop an observation algorithm that reconstructs on-line the state x € R", the
plant attack signal & (¢) e R", and sensor attack signal d (t) € R” in CPS eq.
(2.6) so that

L) —>x@), d.@)—>d, @), Jy t)—>d, @) (2.12)

as time increases.

Remark 2.1 The attack strategies are presented in Table 1.1 and discussed in section

1.1.
Table 1.1 Attack Strategies
Attack plan d.(t)#0 | d,()#0 Access to | Need to know the
all sensors system model

Stealth attack v
Deception attack v
Reply attack v v v
Covert attack v v v

L N N
False data injection attack
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Remark 2.2 As soon as the sensor attack o (z) is reconstructed the measurement
y=C(x)+Dd () couldbe cleaned as
yclean =y_Dld\y(t)=c()€)+Dl(d\(t)_dﬂy(t)) —> yc[ean ZC('X?) (213)

as time increases. Next, the clean measurement y, can be used in the feedback control

of CPS. This allows blocking the propagation of the sensor attack to the dynamics of CPS

through the feedback control.
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CHAPTER 3

BACKGROUND

The algorithms which are used to reconstruct the attacks in this dissertation are

reviewed below.
3.1 Sparse Recovering Algorithm

The problem of recovering an unknown input signal from measurements is well known,
as a left invertibility problem, as seen in [85, 86] (in the nonlinear case see for example
[87]), but this problem was only treated in the case where the number of measurements is
equal or greater than the number of unknown inputs. The left invertibility problem in the
case of fewer measurements than unknown inputs has no solution or more exactly has an
infinity of solutions.

In this section, the problem is to find the exact recovery under sparse assumption denoted
for the sake of simplicity as “Sparse Recovery”, i.e. finding a concise representation of a
signal s which is described as

E=Ds +e¢ (3.B

N 3 3 5 .
where s € R" are the unknown inputs with no more than j nonzero entries, &eR"Y

are the measurements, & is a measurement noise, and ®eR"*" is a matrix where

M <N .
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Definition 3.1 The RIP (Restricted Isometry Property) condition of j -order with
constant ¢; € (0,1) (g; 1s as small as possible for computational reasons) of the matrix
@ yields

(-6, )lsE <fosE <(1+ ) 62
forany j sparse of signal s .
Consider @, as the index set of nonzero elements of @, then eq. (3.2) is equivalent to
[88]
1-g, <eig (LD, ) <1+, (3.3)
where @, is the sub-matrix of ® with active nodes.

The problem of SR is often cast as an optimization problem that minimizes a cost
function constructed by leveraging the observation error term and the sparsity inducing

term [88] i.e.
s =arg min=|é-Ds|f +40(s) (3.4)
seRY 2 2

where the sparsity term ©(s) canbereplacedby ©O(s)= ||s ||l 2 Z’, |s ; | as long as the RIP

conditions hold. The A >0 in eq. (3.4) is the balancing parameter and s is the critical

point, i.e., the solution of eq. (3.1).

For sparse vectors s with j-sparsity, where j must be equal or smaller than

[88], solution to the SR problem is unique and coincides with the critical point of eq. (3.1)

when the RIP condition for ® with order 2; is verified [88].

Under the sparse assumption of s and fulfilling j-RIP condition of matrix @, the
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estimate of s proposed in [88] is
. " - P
W) ==y OO =1, )a@) -y |
s@)=a(@) (3.5)
where v e R" s the state vector, s(¢) represents the estimate of the sparse signal s

of eq. (3.1), and x>0 is a time-constant determined by the physical properties of the

implementing system. Note that [.|# = Hﬂ sign(.) and a(t)=H,(v) where H,() isa
continuous soft thresholding function and defined as
H () =max(p|-1,0)sgn() (3.6)

where A4 >0 is chosen with respect to the noise and the minimum absolute value of the

nonzero terms.

Under Definition 3.1, the state v of'eq. (3.5) converges in finite time to its equilibrium

point v*,and s(¢) in eq. (3.5) converges in finite-time to s * of eq. (3.4).
3.2 Line-by-Line Super-Twisting Sliding Mode Observer for Linear Systems

Consider the following linear system

X =Ax +Bd(t)
r (3.7)
y=|:yl y2 grosy yq] :CX, y’, :C’_x

where x e R” presents the system states, y € R” is the output of system, and
d(t)eR? denotes the unknown input to the system, while p =¢ . The y;€R and C,
isthe i” rowof matrix ¢ for i =1,...,q .

Assumption (A 3.1): The system in eq. (3.7) is assumed to have an input-output vector
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relative degree 7 = {r,,rz,...,rq } 1.6

CjA"B =0 foral k<r;—1

5 _ (3.8)
C,A""'B#0, j=1,2.q

Without loss of generality, it is assumed that 7 <...< v, , where the integers 1<r, <r,
are such that rank (C,B)=rank (B). Furthermore, the r,, i =1,2,..,¢ are chosen

q N o g
such that 7, = Zi:l , 1s minimal.

The problem is the state estimation and unknown inputs reconstruction in the linear

system eq. (3.7) subject to unknown inputs d (¢).

According to (A 1.3), expression y,=CxeR for i =1,....g are as follows

¥, =y, =C,Ax

y.il :yiz =C, A’

: (3.9)
.V'iri_1 =y; =C,4 o

¥ =CA"x +C,A" " Bd ()

Consider the following observer [89] to estimate y/ for j =1,...,i —1 as follows

(3.10)

where

7 =v()7’_’" _yirl), 25 57, 1 G.11)



Denoting e, =y, —y,, the error dynamics are given by

éy,. =.)}i_)j‘;
=C,Ax _V(yi_);i):yil e (yi_.);i)

1 1

éy,‘ =_}}i _.);i
=Cd’ v (5, -3, )=y v (5, -7)) (3.12)
é =y =9

=Ca" e (57 =5 )=y o (57 =50

¢, =y -3 =Ca"x+C,A" Bd@®)~v (5] -7 )

Yi

where in each case the continuous injection term v(.) is given by the Super Twisting

(STW) algorithm [90]

V(s =pls))+ 4] |57 | sign(s!)
@(s! )= Bl sign(s]), A/,B/ >0

(3.13)

where 2/ eR and B’ €R are suitably chosen gains and the s/ e R for i =1,...,q

and j =1,...,r,, are the sliding variables where

1

Si:yi_.};i

PR Y g o
s{=Y; =¥y, , for ¥ =yl

(3.14)
It is assumed that ‘yim’SL{ for j=1,..,r_, and |C,A"x +C,A" Bd(t)|<L’

where L/'s are fixed and known.

It is shown [89] that with A/ and S’/ chosen as[91]

A =1.5,/L{, B =11 (3.15)

for i =1,...,q and j =1,..,r , a second order sliding mode emerges in finite time on
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e, =y, -y, =0.

As aresult, y ; —v (y, —¥,) in finite time, therefore, the estimation of ,.l which is

~ 1 . .
shown as y,, is obtained as

7, =v(y,-¥,)=C,Ax (3.16)

By replacing eq. (3.16) in eq. (3.12), y iz is given in the same way. Continue the Line-by-

Line observer egs. (3.10)-(3.15), then it is given for 1<i <g that

y j i : (3.17)
v, =V()7,l =3, ):CiAJx, 2<j<r, -1

Remark 3.1 The values L/ >0 are difficult to predict.

Overestimating L] >0 may lead to the gains 4/ and S/ being overestimated,

and, therefore, to increase chattering. The adaptive version of the unknown input estimation

algorithm, egs. (3.10) — (3.15), with non-overestimated gains is discussed in Chapter 5.
Consider the SMO of the form

X =A% +G,(y,-C,#)+G,u.(y, -C,%) (3.18)

where the matrices G, e R™* and G, e R"™" are of appropriate dimension and are to

be designed. The auxiliary output

¥y, Wwhich contains both real and synthetic

measurements and the matrix C, are defined as follows
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" 5 a — _
V(yl ys) C
V(J;"bl—l _yrﬂx*]) CA"'GI—]
y,=| V" I e =l (3.19)
Y, :
. quz Ty =1
~ Ty =1 ra]—l - -
v (yq Yy )_
and v,(.) is the injection vector
P(y,-Cx) . ’
. —(x+n, — = if(y,-Cx)=0
o, -Caty={ ! °)HP (v, —C.5)) (320)
0 otherwise

where 7, is a small positive constant and x is a positive constant suitably larger than

the upper bound of the unknown input d [89]. The positive definite matrix P can be

found by solving a corresponding Lyapunov equation [92].

The presented results can be summarized as
Proposition 3.1 [89]. The states x are estimated asymptotically in eq. (3.18) using the
SMO in egs. (3.10) — (3.15) and the STW injection terms in egs. (3.13) — (3.15), while the

unknown input d inthe CPS eq. (3.7) is estimated asymptotically as

d=((c.B) c,B )_1 (c,B) C.G,w), (3.21)

3.3 Higher Order Sliding Mode Observer for Nonlinear Systems

Consider the following locally stable system
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X=f(x)+Bx)d ()

(3.22)
y=Cx)
where x e R” denotes the system states, y e R” is the output vector, d(t)eR?

represents the unknown input to the system, where p =q .

. T : .
The  vector is s [yl P T e yq:l and  matrix B is
B =[bl,b2,...,bq]e R™ where b, e R",Vi =1,...,m are smooth vector-fields defined

onanopen Qc R”.
The problem is: considering a nonlinear system with unknown input in eq. (3. 22), find
an observer to reconstruct the unknown input vector and estimate the states of system.
System Transformation: The following properties introduced by Isidori in [93] are
assumed at a neighborhood of any point x € Q:

Assumption (A 3.2): The system in (3.22) is assumed to have vector relative degree
P = {rl,rz,...,rq } 5 i.e.

LLiy (x)=0 Yj=l..,q9, Vk<r,—1, Vi=l,..gq

LyLi™y, (x)#0 foratleast one 1</ <q (3.23)
Assumption (A 3.3): The matrix
L (L) L (L'y) oL (L)
Lay=| B2 Da(8a) o 4 (1)

8s (3.24)

ril L =] r -1
L, (L/ yq) L, (L/ yq) qu (L/ yq)

is full rank.

Assumption (A 3.4): The distribution I" =span {b,,bz,...,bq} is involutive [93, 94].
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which means that no new direction is generated by the Lie bracket of the distribution vector
fields. This ensures that the zero dynamics (when they exists) can be rewritten

independently of the unknown input.

The system given by eq. (3.22) with the involutive distribution T" = span {b, 2 ,...,bq}

: q .
and total relative degree » = ) = r. <n can be rewritten as
gr L

0 0 i |
5=|° o e : Vi =1
TREa R e B Y Rl 5 R s
000 0 0f L'y, (x) aLe Ly (x)d @)
7=g(8,7)
where
0, 71 (x) y:(x)
0. i L.y.
o=[5 5, =+ 8T, a=|s" || B err victg
5ir- ir; (x) L‘l‘i—l (X
f '7: 'f yl( ) (326)
7/1 nr+l(x)
|7 || he(x)
r= - :
- n,(x)

Assumption (A 3.5): The norm-bounded solution of the internal dynamics y =g (5, y)

is assumed to be locally asymptotically stable [95].

The variables 7, (x),...,n,(x) are defined to satisfy
L, n()=0Vi=r+L..n,9 =],...49 (3.27)

if assumption (A 3.4) is satisfied then it is always possible to find n —r functions

7,.(x),...,n,(x) such that
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W(x)=col {77, 1O )sees Ty (X )yenns Ty (% ),...,nq,,q b S M T )} eR" (3.28)

is a local diffeomorphism in a neighborhood of any point x e Q= Q< R” which means
x =¥"(8,7) (3.29)

In order to estimate the derivatives &, (¢) Vi =1,....q, Vj =1,..,r, oftheoutputs y,

in finite time, higher-order sliding-mode differentiators [96] are used.

(r; /(r; +1))

Zo=ve, vo =~k |z v, @ sign(z4 -y, ©))+z1,

s i i il,i o, ifm=bm) . i i
zZ, =V, v, ==4 lz] =V sign (zI —v0)+zz,
(3.30)
Zo =V, 1 v:l, 1 =4, ‘Z,i;.—l _V;;_Z‘(l/z)Sign (Z,':’__1 v,';__z)+z' ,
Z, =—ﬂ’sign(z, v,';_l)
for i=l..uq.
By construction,
511 = ﬁ]l(x) :Z(l) sees 5‘,: :ﬁ,l] (x) :Z,li_la 5:1 = ﬁ,l,(x) :Z,I]
: (3.31)
O =A(®)=2§ smn 8 =l (x)=20, & =1}l (x)=2]
Therefore, the following exact estimates are available in finite time:
1l ﬁ,l(-x’\) Sl
" 5. 7., (F L | 82
& =0 s 77'2:( ) eR" Vi=l..,q 6= 5 eR" (3.32)
5’\’_'_ ﬁirl (‘x‘\) Sq
Next, integrating eq. (3.32) and replacing & by 5 , the internal dynamics is
7=g(5.7) (333)

and with some initial condition from the stability domain of the internal dynamics, a
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asymptotic estimate 7 can be obtained locally

7;1 ﬁr+|(‘xj.\)
PR (3.34)
Ve 7, (X)

Therefore, the asymptotic estimate for the mapping eq. (3.29) is identified as
W(3) =col {ﬁ“ sy (s Ay (s n iy, (€)1 (E)sn, (F)} (3.35)

The asymptotic estimate X of the state vector x can be easily identified via eqs.

(3.29) and (3.35) as

£ =9 (3, 7) (3.36)

Since the finite-time exact estimates 5, of &

ir; ?

Vi =1,...,q are available via the

higher-order sliding-mode differentiator, and using the estimates &, y for &, y, an

asymptotic estimate d (t) ofthe unknown input d(¢) in eq. (3.22) can be identified as

(3,) [z (¥(6.9))]

~

d@t)="L" (\p-‘ (4. )/)) 52:"2 e (3.37)

4, ) \Eiva (27(8.7)))]

where L(‘I"l (3,?))= j=1Lbijrin1yli (x).

Remark 3.2: The convergence d —>d can be achieved only locally and as time

increases due to the local asymptotic stability of the norm-bounded solution of the internal

dynamics y=g (5,}/). However convergence will be achieved in finite time if the total

relative degree » =n and no internal dynamics exist.
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CHAPTER 4

Attacks Reconstruction in Linearized Cyber Physical Systems: The Number of

Sensors Is Equal to the Number of Potential Attacks

4.1 Introduction

Consider the linearized format of a CPS eq. (2.10) as

X =Ax +Bd

4.1
y =Cx +Dd 1)

The problem is to reconstruct the norm-bounded smooth sensor attack d(z) € R?, where

e @)=L,

d (¢ )" <L,, L,L,>0 and find the state estimation so that the estimate

d@t)—>d), ¥¢)—x() (4.2)
as time increases.

Equation (4.1) can be the model of a linear CPS that is controlled by a feedback control

which uses the corrupted measurements as it is shown in Figure 4.1.

System

x(¢)

ult) &}:.5._ o

y{t)
vl Clontroller gl

Figure 4.1 The closed-loop CPS in the Presence of Sensor Attacks
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The dynamics of CPS in Figure 4.1 is given by

X% =Ax +Bu

(4.3)
y =Cx +Dd

where the triplet (Z ,B ,C) is completely controllable and observable, x € R" denotes

the states of CPS, u € R" is a control input signal, and y € R” represents the sensor

measurements. The d(¢) e R? is the smooth norm-bounded sensor attack signal that is to
be reconstructed on-line.
The following assumption is made:
(A 4.1): the Kimura-Davison condition [97]
m+p+lzn 4.4)
holds.
Assuming assumption (A 4.1) holds then there exists a static output feedback control
u ==Ky (4.5)
where K € R is a gain matrix, that stabilizes the CPS in eq. (4.1).
Substituting control input eq. (4.5) into CPS eq. (4.1) results in the following closed loop
CPS

X% =(4-BKC)x —-BKDd
y =Cx +Dd

(4.6)

The closed-loop CPS eq. (4.6) can be rewritten as eq. (4.1) where 4 =4 —BKC is

Hurwitz, and B =—BKD .
Discussion: Assume that the sensor attacks are reconstructed, i.e. d (t)—>d(@) as

time increases. Then the polluted measurement y =Cx +Dd can be “cleaned” as
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Y clean =Y —Dd , then Ve —Y —>0 as time increases, where y =Cx is a measured

clean
output in the absence of attack.

Therefore, substituting y =Cx for y =Cx +Dd in eq. (4.5) gives

%= Ax+Bd x=Ax
e ' 4.7)
y — Cx i 1 Dd as time increases y = Cx

In the other words, the compensated dynamics of the CPS eq. (4.1), whose sensors are
under attack, will converge as time increases to the stable CPS eq. (4.7) with the desired
asymptotic dynamics that are not affected by the sensor attack signals. The problem of the
output feedback controller eq. (4.5) design is out of the scope of this dissertation.

The main problem addressed in this chapter is on-line reconstruction of the sensor attack

signal d () and state estimation in CPS eq. (4.1) as it is shown in Figure 4.2.

Control station Plant Sensors
g, | n Stealth attack

i
F

Attack monitor

Figure 4.2 Sensor Attack Analyzer
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4.2 On-line Attack Reconstruction:

The case when the number of sensors and the number of attacks is the same (p =¢q ) is

studied, and two different scenarios are investigated:

(a) all sensors p =g can be attacked,

(b) k sensors (k < p =gq) are protected from the attacks.

4.2.1 Attack Reconstruction: All Sensors Can be Attacked

Since the CPS eq. (4.1) is completely controllable and observable, it can be partitioned

S e
X, Ay Ay || x, B, (4.8)

y =Cx,+C,x,+Dd

as

where p=q, x,eR"”, x,eR”, C,eR”™?  C,eR", DeR"™ , and
det(C,)#0.
Firstly, the closed-loop CPS eq. (4.1) is transformed to a form convenient for the

observer design. Specifically, the state variable x, eR” is replaced by the sensor
measurements y € R”. This is

X, =G, x,+G,y +Gyd

. (4.9)
Yy =G,x,+G,,y +G;d +Dd

where
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Gn :C1A11 _C1A12C2_IC1 +C2A21 _CzAzzcz_lcl
G, :C1A12C2_] "'CzA:zzC;l
G,,=—CA4,C,'D+C,B,—C,A4,,C,'D +C,B,

(4.10)
G, =4, _AIZCZ_ICI
Gy ="412C2_I
G, = —AIZCZ_'D +8,
An observer is designed mimicking system CPS eq. (4.9)
X, =G, %, +G ¥
1 21 Y 4.11)

y =G %, +Gpy +v
where v eR” is the injection term. The estimation errors are introduced as follows

e, =y -y

e, =X;=X,

Xy

(4.12)

The following assumptions are made concerning matrices in egs. (4.9) and (4.10):

(A 4.2): The matrix G,, is Hurwitz.

(A 4.3): The entries of the matrix transfer function G, (SI Gy )-1 G,,+G;+Ds have

numerators with the roots located in the left hand side of the complex plane (a minimum

phase case). Here s is the Laplace variable.
(A 4.4): For the term ¢ =G, e, +G ¢, +G d +Dd  the following inequality holds at
least locally:

le|<Ls, L., +Ls, L., +Lg,Li+LyL, <L, (4.13)

where |G, |, <L, . |Gyl <Ls, » Gul, <L, > [P, <L,

€y

8L, . T B B B By B Hil il e,

€y
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4.2.1.1 Fixed-gain Sliding Mode Observer

The first main result is formulated in the following Theorem:
Theorem 4.1 [81]: Consider the CPS in egs. (4.9) and (4.10) with the observer eq.

(4.11), whose injection term v is designed in a unit vector format
ey
u:(p+L3)H, p,L, >0 (4.14)
y

that makes the observer eq. (4.11) and eq. (4.14) the SMO. Assume that the assumptions

(A 4.1) - (A 4.4) hold. Then the sensor attack signal d(z) is exactly reconstructed as

A

d:(G“(sI—Gz,)_] G23+G13+Ds)—lu (4.15)

eq
where v,, is the equivalent injection function, e, — 0 in finite time, and d (t)—>d@)

as time increases in the sliding mode. This novel result is published in [81].
The proof of the Theorem 4.1 is presented in Appendix.

Remark 4.1:  Unlike in the estimation algorithms presented in [91], where the
attack term d(f) is assumed slow varying (d(z)~0), in this work it is assumed that
d()#0 . In order to exactly reconstruct the time varying attack d(¢f) the dynamic
extension of the equivalent control v,, is proposed as in (4.15). This is the major novelty

of the proposed attack reconstruction algorithm in egs. (4,14), (4.15).

Remark 4.2: Given equivalent control v, the attack estimate in eq. (4.15), where

the dynamic filter appears naturally, is exact.

Remark 4.3: Although the equivalent control v,, was conceived as an abstraction to

allow the analysis of the reduced order sliding motion, a close approximation can be
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obtained in real-time by low-pass filtering of the switching signal eq. (4.14) [98]. Therefore,

if o, satisfies
i, =(p+L3)”Z—y”—Ueq , (4.16)
¥

where 7>0 is a (small) time constant, then

Ueq =] Ueq

~0O(7). (4.17)
Therefore, the v, estimation error in eq. (4.17) is small for a small enough choice of 7
[98].

Replacing v, by 0O, in(4.15) we obtain

d =(Gyy(sI =Gy, ) ' Gy +Gyy +Ds )515 . (4.18)

eq
The attack estimation error after a transient is over and can be computed as

-l

Uy ~ Uy “ ~0(7) (4.19)

where

e £
H(G“ (s ~Gyy) " Gy +Gpy+ s

=A, A>0 . (4.20)

Note that the low pass filter in eq. (4.16) is the simplest choice, but other higher order
systems with low-pass characteristics can be employed.

Remark 4.4: In many practical cases the entries of the transfer function

- -1
(G” (sI —GZI) ]G23 +Gy +Ds) of the estimator eq. (4.15) are the regular ones. This

fact is demonstrated in the case study. It means that the SMC injection term v in eq. (4.14)

e

can be used in eq. (4.15) instead of v, , bearing in mind that o, , 1s recovered/estimated
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approximately via the low pass filtering of © that takes place while o is processed by

B -
the proper transfer function (G” (sI -G,) 1 G,y +Gy ¥ Ds ) ‘

4.2.1.2 Adaptive-gain Sliding Mode Observer

In subsection 4.1.2.1 it was assumed that the perturbations term ¢ is locally norm-
bounded as in eq. (4.13), and the boundary L, >0 is known. In many practical cases this

bound is unknown, and the gain of the sliding mode injection term eq. (4.14) in the fixed
gain SMO in eq. (4.11) can be overestimated. This gain overestimation could increase
chattering that is difficult to attenuate.

In this section an adaptive-gain SMO is considered for the attack on-line reconstruction.
The following assumption is made:

Assumption (A 4.5): The disturbance term ¢ satisfies the conditions

lol < Ly. )¢ < L., 4.21)

where L,,L, >0 exist but are unknown.

The dual layer nested adaptive SMO [99] is used for designing the injection term v in
€q. (4.14). In accordance with the dual layer nested adaptive sliding mode observation
algorithm [99], the constant gain L, in the injection term eq. (4.14) is to be replaced by
the adaptive gain L(¢) (without L(¢) overestimation). This is

u:(p+L(t))% p>0. (4.22)

y

Following the dual layer nested sliding mode observation adaptive algorithm in [99]

applied to the unit-vector injection term in eq. (4.14), an error signal is defined as
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O’(t)=L(t)—$ o, )| -z, (4.23)

where the scalars 0<a <1, £>0, and 0, represents a low-pass filtered estimate of
v,, obtained as

W =v-0 . (4.24)

The task of selecting 7 >0 is discussed in Remark 4.3.

The adaptation dynamics of L(¢) in eq. (4.22) are defined as [99]
L(t)=-r(t)sign(c@)), (4.25)
where 7(t)>0 is a time-varying scalar that is supposed to supersede the upper-bound of

the rate of change of the generalized attack,

|g0|| <L,, by some finite time. In this paper it
is assumed that »(¢) has the structure

r@)=2L0,+0@) (4.26)
where ( is a fixed positive scalar. The evolution of £(¢) is chosen to satisfy an adaptive

law [99]

'f(z)—_—{ﬂo-(t)’ ifIO'(t)|>O'0 4.27)

0 otherwise

where y,0, >0 are design scalars.

The second main result is summarized in the following proposition.
Proposition 4.1 [81]: Consider the CPS in eq. (4.9) and eq. (4.10), and assume that
the assumptions (A 4.1) — (A 4.5) hold. A SMO is designed as in eq. (4.11) with the adaptive

injection term in eqgs. (4.22) - (4.27). If &£>0 in eq. (4.23) is chosen to satisfy
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R ] (428)
for any given o, ineq.(4.27), L, ineq.(4.21), x>1,and, 0 <a <1, then

e the injection term eq. (4.22) exploiting the dual layer adaptive scheme given by
eqs. (4.23)-(4.27), drives o(t) to a domain |a(t )| <&/2 in finite time and consequently
ensures a sliding motion e, =0 can be reached in finite time and sustained thereafter.
Furthermore, the gains »(¢) and L(¢) remain bounded;

e The sensor attack signal d(¢f) is reconstructed in the sliding mode as time
increases as in eq. (4.15) with the equivalent adaptive injection term v, or o,.
The proof of the Proposition 4.1 is presented in the Appendix.

Remark 4.5: The proposed unit vector injection gain-adaptation algorithm in egs.

(4.22) - (4.27) does not require the knowledge of boundaries L,, L, >0.

Discussion: In accordance with Theorem 4.1, the fixed-gain injection term eq. (4.14)
depends on a magnitude L, of the perturbation ¢ in eq. (4.13). Note that ¢ contains
the attack and its derivative terms d,d . Apparently, the value L , is difficult to estimate.
Therefore, the gain p+L, of the fixed-gain injection term in eq. (4.14) could be

significantly overestimated, and that can amplify the residual rippling in the attack
estimation eq. (4.15). On the other hand, the adaptive-gain injection term in egs. (4.22) -

(4.27) has a non-overestimated gain that is automatically tuned without any prior

knowledge about L,. This provides a minimal residual rippling level in eq. (4.15) as well

as convenience (self-tuning) in the observer implementation.
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422  Attack Reconstruction: Some Sensors Are Protected From the Attacks

Again consider the system (4.1), whose sensors are under attacks where % sensors
(k <p, p=gq) are protected from attacks

Assumption (A 4.6): k& out of p sensors are protected, and the remaining p —k
sensors might be attacked/corrupted.

Separating the protected and unprotected measurements, CPS eq. (4.1) can be partitioned

as
_x1_ _An 4, A, || x, B,
X, =4y Ay Ay ||x, |+ B, |d
(X5 | |4y Ay An || X B, (4.29)
_ - e X
Y1 = C, Cy C13:| x]z +|:0:|d
| Y2 ] _C21 Cyp Cy D,
X3
where
_ Vi .
7=[yl.r7] vy eR:,y e R
Jer 7 7T = k —k
¥ —[xl oy oy ] X, €R"7,x,eR" ,x, eR” 4.30)

B =|:BIT ,BZT ’B3T ]T ’B] GR(”_p)XP,BZ L= kap)Bj ER(p_k)XP
D, e R

It is assumed that

Assumption (A 4.7): The square matrices C,, e R** and C,, e R”7> "™ are non-
singular.

Next, the partitioned CPS eqs. (4.29), (4.30) are transformed to a convenient form for

the Lyapunov analysis. Specifically, the state variables x, e R* and x,eR’™ are

replaced by the output variables y, e R* and y, e R”™*. This is:
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X,=0x, +0uy t 0y, +0d
Y1 =0,%,+0,y,+0xy, +0,d (4.31)
V2, =03%,+03ny, +03y,+03d +Dd

where
O, =4, +A,h,+ Ak,
Q,, =A4,,hy, +A43h,,
Q3 =A,hy + A 3hy,
Oy =Aphyy +A3hy + B,
0y =Cd,, +C A4, +C 4,
+(C'“A12 L3 PRSI +C|3A32)h” +(C“A13 L S O +C,3A33)h2l
On= (CIIAIZ +C 4y, +C13A32)h12 +(C11A13 +Cpd +C13A33)h22’
Oy = (CHAIZ +Cpdy, +C13A32)h|3 +(C11A13 +Cppd,; +C13A33)h23’
0,5, =CB,+C,B, +C 3B,
Q5 =Cpd; +C Ay +C 4
+(C21A12 +Cpdy +C23A32)hn +(C21A13 +C Ay +C23A33)h21
Oy, = (C21A12 +Cpd,, +C23A32)h12 +(C21A13 +C Ay +C23A33)h22,
Qs = (C21A12 +Cpdy +C23A32)h13 +(C21A13 +C Ay +C23A33)h23’
0,,=C,B,+C,B,+C B, (4.32)
with

. = - -1
hy, (1 —-C,, CiCy CZ2) Ciy (_C”+C13C23 CZ')
= =1 ¥y -1
hy, =(1 -C,, Ci,Cy sz) o
; B * SR 3
hs =—(1 ~Cp Tl Isz) £, ClCh
) B = 3
hy :_(1 -Cp, lClsczs ]sz) Cp, [C|3C23 IDI (4.33)
" - _l i N .
h21 =(1 —Cy lczzCu 1C13) C23 l(_C21 +CuC lC“)
g B = .
s =—(1 = ol lCn) Cy Coli
1

hys Z(I _sz_lczzclz_lclz) szﬂl

by =—(1-Cy7'C,C7C )"'c D
24 23 2202 13 23 1

The main results relating to sensor attack reconstruction in systems with
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k <p, p=q sensors protected from the attacks are presented in the following Theorem
that presents the novel original results which was published at [81].
Theorem 4.2 [81]: Consider CPS in egs. (4.31) - (4.33), and assume that assumption
(A 4.7) holds. The proposed SMO is given by
)61 ZQII'fl +Q12J51 +Q13J;2

-);1 :Q217€1 +Q22331 +Q233;2 +y (4.34)
J;Z :Q31)61 +Q32351 +Q33);2 +v,

where v, e R* and v, e R”™* are sliding mode injection terms that are defined as

€,
v =(p +Ly )2
(4.35)
g
L, :(pz +L12)”é
with  p,p,,L,,,L,, >0 and
e, =x,—%, e =y,~Y, e, =y,~Y, (4.36)
Then the sensor attack is estimated as
j [a;l:l H,(s)" (Uleq —le(s)dz) 437)
. 43
- —-1 -
4 (_H21(S)H11(S) lle(s)’*’sz(S)) (UZeq —H,, (s)H ,(s) lUleq)

in the sliding mode V>t where ¢=¢, is the sliding mode reaching time, and

O (SI _Qu)—lQM +0,,

a?, eR*, dA2 eR”™* | where the matrix -
05 (SI ~0n) Qu+Q0s +Dysl

} eR”” s
partitioned as

05, (SI =01) Q4 +0n4 }_|:H11(S) le(s)} (4.38)

QSI(SI_Qll)_1Q14+Q34+D|SI i H, (s) H,l(s)
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while the matrices H, (s)eR** | H,(s)eR""™M, H, (s)eRPH*
H22 (S) = R(p-k x(p—k) :

The proof of the Theorem 4.2 is presented in Appendix.

Remark 4.6:  Unlike in the estimation algorithms presented in [91], where the
attack term d(¢f) is assume slow varying (d(f)~0), in this work it is assumed that
d(t)#0 . In order to exactly reconstruct the time varying attack d(¢) the dynamic
extension of the equivalent control v, ,v,,, is proposed as in eq. (4.37), (4.38). This is
the major novelty of the proposed attack reconstruction algorithm in (4.35) - (4.38).

Remark 4.7: The injection terms v,,0, in eq. (4.35) can be also designed in the dual

layer adaptive form as shown in section 4.2.1.2. Note that the problem of estimating

Uiy sVsey used in eq. (4.37) is discussed in Remark 4.3.

Remark 4.8: Estimating the attack vector 4 = {Z‘} in eq. (4.37) requires inversion
2
of the matrices (that represent the dynamic filters) of smaller dimensions rather than in eq.

(4.15) due the fact that k£ < p sensors are protected from the attacks.
4.3 Summary

In this chapter, linearized cyber-physical systems when the number of sensors is equal
to the number of potential attacks are studied. Two different cases are considered. At first,
all of the sensors are prone to get attacked. Then, some of sensors are protected from attacks.
Novel finite time convergent SMOs, including observer with gain adaptation, which use

the dynamic extension of injection term, are proposed for on-line reconstruction of the
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sensor attacks and estimation of: states. The filters that address the attack propagation
dynamics are proposed and employed for the attack reconstruction for the first time and
this novel result is published in [81]. As soon as the attacks are reconstructed, the corrupted
measurements are cleaned from attacks, and the feedback control that uses the cleaned
measurements/outputs provides the cyber-physical system performance close to the one
without attack.

In next chapter, we will discuss attack reconstruction for linearized CPSs when the

number of measurements is greater than the number of potential attacks.
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CHAPTER 5

Attacks Reconstruction in Linearized Cyber Physical Systems: the Number of

Sensors is Greater than Number of Potential Attacks

Two approach of attack reconstruction are discussed in this chapter. At first, a novel
SMO with dynamic extension of the injection term is proposed. Next, an adaptive line-by-
line super twisting SMO is developed to estimate the states of CPSs and reconstruct the

plant attacks.

5.1 Sliding Mode Observer with Dynamic Extension of Injection Term

A fixed and an adaptive SMO based on filtering of injection term is designed to

reconstruct the attacks in this section.

5.1.1 Introduction

Consider the linearized closed loop CPS eq. (2.10), this is

X =Ax +Bd
y =Cx +Dd

(5.1)
where x € R" denotes the CPS states, y €R” represents the measured output,
d(t)eR? is the attack signal, and n>p >q.

The objective is the online reconstructing of attack signal d (1) € R? in linearized CPS in

eq. (5.1) knowing that n > p >gq .
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Assume that:

(AS5.1) thepair (4,C) isobservable and the output distribution matrix C has full

row rank;

(A5.2) Rank(D)=gq .

(A 5.3) The attack d(¢) and its derivative are norm bounded, i.e. ||d ||<k , and

“cj"<ld where k,,/, >0 are known.

5.1.2  System’s Transformation

Assume the assumptions (A 5.1) and (A 5.2) hold, then [91] there exists a matrix

N e R"™P” such that the square matrix

o ol (5.2)
C'_C 3

is nonsingular and the change of coordinates x 7 .x creates, without loss of generality,

a new state-space representation (A B,C ',D) where

- All A12 _ -1 r_ Bl = i i gt
A'= P =T AT,~, B'= 5 =T B, C'=CT, —[OPX(”_p) T oy |+ 53
21 22 2
After linear changing of coordinate, CPS eq. (5.1) is rewritten as
x:] =A% ¥Ax%, +Bd (5.4)
X, =4x 44 2, 48B4
and the sensor measurement is
y =x,+Dd , (5.5)
where x,eR"”, x,eR” , B,eR"?“ | B,eR”™ , and 4, eR"""" |

-1



Ay e R\"WPPE, A, e RP¥n?) A,, R,
It is well-known that (4,C) is observable if and only if (A4,,,4,,) is observable [91].

Define a further change of coordinates ¥, =x,+Lx, where L eR"™ is the
design matrix, then the system egs. (5.4) - (5.5) can be re-written as

X =A% +Ax,+Bd
X,=A,% +A,x,+Bd , (5.6)
y =x,+Dd

where A=A, +LA,, A,=-A,L+A,—LA,L+LA,,, B,=B,+LB,, 4, =4,,,

A,,=A4,,-A,L, B,=B,. Since (A”,AZI) is observable there exist choices of the
matrix L so that the matrix A,, =4, +LA4,, is Hurwitz.
Since the number of sensor measurements are greater than the number of attacks, p >gq,

there is a nonsingular (output) scaling matrix Q € R”*” chosen such that

_ 0(p—q)><q 5.7
QD—[ A } (5.)

where D, € R is nonsingular. Assume that the assumption (A 5.2) holds, then the

matrix O in (5.7) can be obtained by Gaussian elimination (or QR reduction).

Define y as the scaling of the measured outputs y according to

y =0y (5-8)

Then, the output of CPS can be partitioned as unpolluted measurements y, and polluted

measurements y, as

- || Ox, o 0o 9
S P g
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where y, e R’ and y,eR?.

For convenience scale the state component x, and define X, =Qx,. Then eq. (5.6)

can be rewritten as
J?,:/T_“f] +A,,%,+Bd 5.10)

-~ = - _ — D
X, =A%, +4,.%,+B.d

where

AR 0
y :sz{ }d , (5.11)
2

with A_H:/III’ ‘le =1‘112Q_1, B, =B,,

Define X, =col (¥,,,X,, ), where ¥, €R”? and x,, € R?. Note that by definition
x,, is known (since it is obtained from protected sensor measurement y ) and it is free
from the attack i.e. independent of d . Consequently the system CPS in egs. (5.10)-(5.11)

can be written in partitioned form as

X, =A%+ A Xy + A%y +Bd

1
Xy IZZXax_l +’Z22ax_21 +‘Z22bx_22+B—2!d (5.12)
X gy = A X + A X gy + Ay X 5+ Brd
where the scaled sensor measurements from eq. (5.11) are
Vi=Xy, V,=Xp+Dyd. (5.13)
Finally, CPS egs. (5.12)-(5.13) are rewritten as
X =Ax +Bd
¥ =CF (5.14)
y,=C,x +D,d

where
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1 All A12a A12b Bl
X=Xy |, A=|4y, Ay, Ay, |, B=|By
_ P 3 . (5.15)
X2 216 2¢ 22d 2
Cl = I:O(p—-m x(n=p) ](p—m (p—m) 0(p—m Yxm :I’ CZ = [Omx(n'm) Imxm :I

where A,, is Hurwitz, and the virtual vector measurement j, is not corrupted (we can

consider it as the vector of protected sensor measurements) and y, is the vector of

attacked/corrupted measurements.
5.1.3  Fixed-gain Sliding Mode Observer Design

Define a (sliding mode) observer for the CPS egs. (5.14) - (5.15) as
z=Az +G,(7,-2,)+G,(7,-2,)-G,v (5.16)
where z =col (z,,Z,,,Z,,) and the partition of Z is conformal with the partition of X
of CPS in eq. (5.15). The signal o ineq. (5.16) is a nonlinear injection signal that depends
on (y,—z,,) and isused to induce a sliding motion in the estimation error space.

Define the gain matrices in observer eq. (5.16) as

A12a Ale O(Il—p)Xm
A s - == ‘2
Gl - A22a _Azz ’Gz N A22b 7Gn - O(p—m)xm (5-17)
1 s
0m><(p—m) A22d _A33 Imxm

where  4,,, E R PHE &, eREHe™) Ay, 2 S Az eRE™m
Ay, €eR™" and the matrices 43, R o), A3, e R™™  are user selected Hurwitz

matrices. In particular, assume that A4;, is symmetric negative definite. The injection

signal veR" is defined as
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: (5.18)

& (p+77)”372 i > P11 >

where the modulation scalar gain p will be defined in the sequel and 7 is a positive

design scalar.

It is assumed that

(A 5.4) The matrix (s[ -A" )ﬁl is Hurwitz, where

A*=A4-BD;'C,-G_C,. (5.19)
Define & =x —Z . Then it follows & =col (e,,e,,,¢,,) where
€, =X,=Z|, €y =X, —Z,s €p=Xy—=2Z,. (5.20)
It follows
e, =V,~Zy,=€,+Dyd, (5.21)
and by direct substitution from egs. (5.12) and (5.16) it is given that
A4, 0 0 A, B, 0
e=\4,, 45, 0 |e-| A4,, |Dd+|B, |d+|0|v. (5.22)
A, - Ayl A,y — A3, B,, k.
The idea is to force a sliding motion on
(5.23)

€, =V27 29 =0

The first main novel result that is based on the SMO with the fixed-gain injection term, is

formulated in the following Theorem 5.1.

Theorem 5.1 [82]. Assuming the assumptions (A 5.1)-(A 5.4) hold, and m, >0 satisfies

the conditions

<



le@)] < mk,

¢=|:Z21b ‘;4_220 ]e_ll _<A_22d _BzzDle)Dzd

&, =col (&)

(5.24)

then, as soon as the sliding mode is established in finite time in eq. (5.22) in the sliding

surface eq. (5.23) by means of the injection term eq. (5.18) with p=mk, +||D2||w l,,the

attack d is asymptotically estimated as

d =G*(s)v,
where

G'(s)=C"(s-4") B’

c :[Omx(n—m) _D2—1:|

0
B"=|0

(n—p)xm

(p—m)xm

1

m*xm

and v,, isan equivalent injection term.

Proof of Theorem 5.1 is given in the Appendix.

(5.25)

(5.26)

(5.27)

(5.28)

Remark 5.1:  The dynamic extension of the equivalent control v,, is proposed as in

€q. (5.25) to find the exact reconstruction of the time varying attack d(¢). Additionally,

unlike the SMO developed in [91], where the attack term d(¢) is assumed slow varying

(d(t)~0), in this work it is assumed that d(t)#0, This is the major novelty of the

proposed attack reconstruction algorithm in eq. (5.25).
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Remark 5.2: Although the equivalent control v, ~was conceived as an abstraction to

allow the analysis of the reduced order sliding motion, a close approximation can be
obtained in real-time by low-pass filtering of the switching signal eq. (5.18) [98]. Therefore,

if O, satisfies

0, :—(p+n)liﬂ 0., (5.29)

|372 _2—22”_

where 7 >0 is a (small) time constant, then

Ueq — Ueq

~O(7) (5.30)
Therefore, the v,  estimation error in eq. (5.30) is small, for a small enough choice of =
[91].

Replacing v, by 0, ineq.(5.25) gives

>

d =G*(s)o,, , (5.31)

Therefore, the attack estimation error after a finite-time transient can be computed as

ki -d|<lo"e|

5, -u,|~0@) . (5.32)

Remark 5.3: In a case when the filter transfer function G”(s) is a regular one and
represents a low pass filter, additional filtering eq. (5.29) of v in eq. (5.18) in order to

estimate v, in eq. (5.31) may be not needed, and d can be obtained as d =G )8,

since v, will be estimated by filtering of v by the low pass filter with the transfer

function G*(s).
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5.1.4  Adaptive-gain Sliding Mode Observer Design

In eq. (5.24), it was assumed that the perturbations term ¢ is locally norm-bounded,
and p in the injection term eq. (5.18) is known. In many practical cases the boundary of
attacks are unknown, and the gain of the sliding mode injection term eq. (5.18) in the fixed
gain observer in eq. (5.16) can be overestimated. The gain overestimation could increase
chattering that is difficult to attenuate. Additionally, considering known bounds for attacks

is meaningless in many cases. The constant gain p in eq. (5.18) can be replaced by the
adaptive gain p(¢) by means of applying the dual layer nested adaptive sliding mode

observation algorithm [99] i.e.

—Zp

v=—(p(t)+n) 2222 (5.33)
Gl ey

N

A sufficient condition to ensure sliding on e, =0 in finite time is

o(t)> |A§3ey2 +¢+Dzai“ (5.34)

An error signal is defined as

)= pO)-— |5, ©)] -2 (539)

where the scalars O<a <1, £>0.
The adaptation dynamics of p(¢) in (5.33) is defined as [99]
pt)=-r(t)sign(o(t)) (5.36)
where r(¢)>0 isa time-varying scalar which satisfies an adaptive scheme. It is assumed
that »(#) has the structure

() =0, +L(t) (5.37)
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where ¢ is a fixed positive scalar. The evolution of /(¢) is to satisfy an adaptive law

[30]

)= {y|o(z)| if lo(t)|> o, 6 38

0 otherwise

where y >0,0, >0 are design scalars. The second main results are summarized in the

following Proposition 5.1.

Proposition 5.1: Consider the system in (5.22), with
alt)=Aje, +p+D,d (5.39)
and assume that |a(t)|<a, and |d(t)|<a, where a, and a, are finite but unknown,

A SMO is designed as in (5.16) with the adaptive injection term in egs. (5.33) - (5.38). If

& >0 1neq. (5.35) is chosen to satisfy

1 1(qa, Y
~& >0l +—(9—1) (5.40)
4 A1

for any given o,, ¢ >1,and, O<a <1, then

e the injection term eq. (5.33) exploiting the dual layer adaptive scheme given by
egs. (5.34) - (5.38), drives o(t) toadomain |o(f)|<&/2 in finite time and consequently
ensures a sliding motion e, =0 can be reached in finite time and sustained thereafter.

And, the gains »(¢) and p(¢f) remain bounded;
e the sensor attack signal d(¢) is reconstructed as in eq. (5.25) with the equivalent
adaptive injection term v,, or O, .
The proof of the Proposition 5.1 is presented in the Appendix.

Remark 5.4: The proposed unit vector injection gain-adaptation algorithm in eq.

29



(5.33)-(5.38) does not require the knowledge of the boundaries k,,/, >0 in ||d || <k,

and ”d u P
5.2 Line by Line Super Twisting Sliding Mode Observer

In this section, the problem of on-line secure state estimation and attack reconstruction
in the face of an offensive that corrupts the sensor measurements and perturbs the states of
cyber-physical systems, are investigated. The states of a cyber-physical system and state
attacks are reconstructed on-line using a novel adaptive line-by-line super-twisting

observer.
5.2.1 Introduction

Consider the linearized format of the CPS model under the state and sensor attack in
eq. (2.6) when the number of sensors is greater than the number of sensor attacks. That is

% =Ax +Bd_(t)
y=Cx+Dd, () °

P >q—q, (5.41)
where x €R" presents the state vector of CPS, and y €R” denotes the sensor

measurement vector. The d (1) eR” and d, (1) e R”™ are the state and sensor attack

respectively.

The objective is to estimate the states x (¢) and reconstruct the state/plant attack d_ (¢),

and sensor attack d (/) on linear CPS eq. (5.41).

Since p >g —q,, there exists a nonsingular transformation M €R” so that

60



0,
MD { } (5.42)

where 0, eR” ) p e R anq

P—Pisq—4q, (5.43)
Therefore, linear CPS eq. (5.41) can be presented in a partitioned format in accordance

with eq. (5.42) where it is required that

X =Ax +Bd _(t)
y,=Cx (5.44)
y,=Cx +D1dy @)

where C, e R™, C, e R”™™ are the partitions of matrix MC .
Note that

e y,eR” and y,eR’” are the partitions of the transformed
measurement vector My . Therefore, they are called the virtual protected
measurement and the virtual unprotected measurement respectfully.

e d eR" represents the state attack which may comprise of the plant attacks

and/or sensor attacks that get propagated to the plant through feedback control.
Remark 5.5: Note that eq. (5.43) means that the number of sensor attacks is greater than
or equal to the number of virtual unprotected sensor measurements.

The problem of online reconstruction of the attack signals, i.e.

cfx @)—>d, @) a;y (t)—>d,(¢), is addressed in two steps: first, using the protected
measurement y, and applying the novel adaptive line-by-line STW disturbance observer,

the plant states x (#) and the state attacks d_(¢) are reconstructed. Then, using the on-
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line estimated states x(¢), and corrupted measurements y, and by applying a SR
algorithm discussed in Section (3.1), sensor attacks af.‘, (t) are reconstructed.

Remark 5.6. Note that the reconstructed sensor attacks ci . (t) areused for cleaning up
the measurements for preventing the propagation of these attacks to the attacked plant
through the feedback control. The reconstructed state attacks Ci,r (t) are assumed to be
matched to the control and can be included in the feedback controller for compensating the

state attacks.

Assumption (A 5.5): The number of virtual protected measurements is equal or greater

than the number of state attacks, i.e.

q, = p, (5.45)
5.2.2  State Attack Reconstruction

Consider the linear CPS eq. (5.44) and assume that we have p, =q, virtual protected

sensors so that

Xx=Ax+Bd (1)
T (5.46)
J’]:[J’n iz seees J’uh] =Cx, y;=Cx

where y, €R and C, isthe i* row of matrix C, for i =1,...,q,.

Assume that assumptions (A 5.5) and (A 3.1) are verified for linear CPS eq. (5.47) and
r= {rl,rz,..., 5 } gives the input-output vector relative degree of linear CPS (5.47) as it is

defined at (A 3.1)

Consider the following SMO
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X =A% +G,(y,, ~C . ¥ )+G,0.(y,, —C,, %) (5.47)
where the matrices G, e R"™" and G, e R”" are of appropriate dimension and are to
be designed. The auxiliary output y, ~which contains both real and synthetic

measurements and the matrix C,, are defined as follows

i Yu ] : -
V(yll—ylll) C_”
~ Ty -1 Tay -1 Cl ]A -
v (y 1 —Yu ) :
Vie = : R ‘ (5.48)
' Cllll
qul :
: Tag ~1
o V=1 75, =1 ‘Clq!A J
_V (qu: =Yg )
where v, (.) is the injection vector
Plrw~Cxh . "
5 _(K+770) ( : l A)’ i (y,-Cx)#0
Uc (y la _Clax ) = “P (y la .—Cla‘x ) (549)
0 otherwise

where 7, is a small positive constant and x is a positive constant suitably larger than
the upper bound of attack d_ . The positive definite matrix P can be found by solving a
corresponding Lyapunov equation [92].

The continuous injection term v(.) is given by the STW algorithm [90]

vis})=p(s/)+ A/ |s,."’%sign(s,.")
@(s]) = Blsign(s]), A ,B/ >0

(5.60)

where 4/ eR and S/ eR are suitably chosen gains and the s/ e R for i =1,...,q,
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and j =1,...,r,,, are the sliding variables where

I_ ~
8 =V Xy
I o™

L, (5.61)
] =Yy =Yy, Jor j=2,.,r,

Then it is assumed ‘)7,71 <L! for j=l..n,,and |C, 4" x +C, A4 '7_|§dx @=L

where L!'s are fixed and known.

It is shown [91] that with A’/ and B’ chosen as [21]

A =l.5,/L,’.' , =1L (5.62)
Remark 5.7.  The values L/ >0 are difficult to predict.

Overestimating L/ >0 may lead to the gains A/ and S’ being overestimated,

and therefore to increase chattering. The adaptive version of the attack estimation algorithm

with non-overestimated gains is discussed in next section.

The presented results can be summarized as

Proposition 5.2 [89]. The states x of linear CPS eq. (5.46) are estimated

asymptotically using the SMO in egs. (5.47) — (5.62), while the state attack d, is

estimated asymptotically as
A g =t T
d, =((c.B) C,B) (C,B) C,G,®), (5.63)
5.2.3  Novel Adaptive Gain State Attack Line-by-Line Super Twisting Observer

The state attack line-by-line STW Observer discussed in section 5.2.2 and 3.2 suffer

from the problem of overestimating the unknown bounds Z/ >0 as mentioned in Remark

3.1. In this section, it is proposed to augment the line-by-line STW observer in eqs. (5.47)
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—(5.62) by a gain adaptation algorithm with non-overestimated gains.
In accordance with [100], the STW algorithm in (5.60) that drives s/,s/ —0 in finite
time is augmented as

vis)) =)+ 2] Ols!|* sign(s) )~ (s/ L]

_ (5.64)
P(s]) = p (t)sign(s])
with the adaptive gains
X O=LO®, B O=LOA, (5.65)
where the new term is defined as
> L)
s/ L) =———=5/, 5.66
#ol =75 s (5.66)
and A, are fixed positive scalars satisfying
PA,+A, P+&,P+PB B/ P+C/C, <0
TV 0
4,=| 2°° 2|,B, =M,c0 =[1 0] ; (5.67)
~F 0
b p
P=|: 1 2:|, PPy >0, py <pps, £ >0
P, DPj
The double layer adaptive gain law is formulated in [100] by
LI@)=0 @)+, (5.68)
for i =1,..,q, and j =1,...,r, where
U @) ==p@)sign(& ©))
' (5.69)
PO =r|& )
j j ity
& @)=L )-—1,’ ©)|-5 (5.70)
af,’ ™

65



where 5 and a are fixed positive scalars satisfy 0<a<I1/f <1 and ., is a small
positive scalar. The equivalent injection signal #, (¢) can be approximated in real-time

by low pass filtering of the switched signal i.e.
i, ()=~ (B ©sign(s! ) -it,, ©)) (5.71)
i T i

where 7 is a small positive constant.

Remark 5.8. The adaptive gains in (5.65) are non-overestimated [100].
The results are summarized in the following Proposition.

Proposition 5.3. The states x of linear CPS eq. (5.46) are estimated asymptotically in
using the SMO in eq. (5.47) — (5.62) and the adaptive STW injection terms in egs. (5.64)-

(5.71), while the state attack d_ in eq. (5.64) are estimated asymptotically as
~ T _l T
dx 2 ((ClaB ) ClaB ) (ClaB ) C]aGn (Uc )eq (5.72)

Remark 5.9. The novel observer design in eq. (5.72) makes Oix estimation possible
with unknown boundaries L/ >0.

Remark 5.10. Note that the Adaptive Dual Layer Unit Vector Observer technique [99]
can be applied to the unit vector observer in (5.49) as well. This will provide a self-tuning
capability to the observer (5.47), while the adaptive gain of the injection term will not be
overestimated. The novel adaptive SMO that comprises the adaptive line-by-line STW
algorithm (5.64) - (5.70) and the adaptive unit vector injection terms is capable of
reconstructing both the states and state attacks without knowing the attack boundaries.

This novel result was submitted to the American Control Conference 2020.
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5.2.4  Sensor attacks reconstruction

Consider the corrupted sensors of the system (5.46) as
y,=Cx +Dd () (5.73)
where y, eR”™,D, e R”™") g (1) e R " . Note that, according to eq. (5.43), the
number of sensor attacks is equal or greater than the number of virtual unprotected
measurements, p —p, <q —q,.
Using X estimated by the SMO (5.47), it follows
Dd @¢)=y,-Cx (5.74)
Note that if

1. the number of attack signals and the number of corrupted sensors are the same:

q9—-9,=p—q,,and D, isinvertible, then the sensor attacks is reconstructed easily as

=

d,(t)=(D,)" (y,-C¥) (5.75)

2. the number of attack signals are greater than the number of corrupted sensors,

1e. ¢ —q,> p —q,, then a sparse vector d,(t) canbe reconstructed.

Assumption (A 5.6): The sensor attack d , () 1isaj-sparse vector. i.e. There is only a

limited number, ; , of the non-zero sensor attacks d, eR"™ at any time instant.

Specifically, the index set of non-zero sensor attacks is presented as

(OR :{kl,kz,...kj}, J <q —q,, where
2f +1€ p=p, (5.76)

Assumption (A 5.7): Matrix D, satisfies the RIP condition in definition 3.1.
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The sensor attack d,(¢) in (5.74) is reconstructed using the SR Algorithm presented
in Section 3.1 as

W) =— [v O+(D/' Dy ~1y 4609 )a©) —D,T}/JB
d,(t)=a(t) (5.77)
where v e R? is the state vector, cfy (t) represents the estimate of the sparse sensor
attack d (t), u>0 is a time-constant determined by the physical properties of the

implementing system.

Note that [.]5 = Hﬂ sign(.) and a(t)=H,(v) where H,(.) isdefined as eq. (3.6),
that is
H, )= max(|v|—i,0)sgn(v)

where A4 >0 is chosen with respect to the noise and the minimum absolute value of the
nonzero terms.

Under assumption (A 5.7), the state v of eq. (5.77) converges in finite time to its

equilibrium point v, and sensor attack estimation dAy (t) in eq. (5.77) converges in

finite-time to sensor attack d (¢) in CPS eq. (5.44).

5.3 Summary

In this chapter, linearized cyber-physical systems under attacks are investigated when
the number of sensors is greater than the number of potential attacks. Two approach are
proposed to estimate the states and reconstruct the attacks.

At first, a novel SMO is proposed. The attacks are reconstructed on-line by using a

filter that uses dynamic extension of the injection term and is proposed for the first time.
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Next, an adaptive line-by-line STW SMO is developed to estimate the states of CPSs
and reconstruct the plant attacks without any overestimated gain.

In next chapter, state estimation and attack reconstruction in nonlinear CPSs are

investigated.
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CHAPTER 6

Attack Reconstruction in Nonlinear Systems: the Number of Potential Attacks Is

Greater Than the Number of Sensors

6.1 Introduction

The nonlinear CPS in eq. (2.10) is considered when the number of potential attacks are

greater than the number of sensors, i.e.

X =f(x)+B(x)d)

y =C(x)+Dd () where q >p (6.1)

Assumption (A 6.1) It is assumed that the attack vector d (¢) is sparse, meaning that

numerous attacks are possible, but the attacks are not coordinated, and only few non-zero

attacks happen at the same time. i.e. the index set of non-zero attacks is presented as
D = {k,,kz,...kj}, J <q , where

2j+1<p (6.2)
The objective of this chapter is to reconstruct on-line the time varying attack sparse

vector based on the sensor measurement y in CPS eq. (6.1).

6.2 System transformation

Feeding the sensor measurements under attack, y , of the CPS eq. (6.1) to the input of

the low pass filter that facilitates filtering out the possible measurement noise gives
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Z =l(—z +C(x)+D(x )d(t))
T (6.3)

whose output z € R”, is available. Then, the CPS in eq. (6.1) is rewritten as

{5 =1(£)+Qd (1) 6.4)
y=C¢&

where y € R”, and

1 1
§=|:z} )= —;1 0 {z}r ;C(x)
* (p+n)x1 ®

G0 &)
1
a=|7P® =[Q Q, .. Qq]w)xq (6.5)
B(x)

e=f€ .€; v Coglvitay B, ]
Assumption (A 6.2) The transformed CPS in eq. (6.4) is assumed to have a vector

relative degree 7 = {i’l,rz,...,rp} , L&

LQJL‘W,@):O Vj =1,..,g VA<r, -1 Vi=1,.,p

: (6.6)
Lg, L} Ty ()20 foratleastonel<j <g '

Assuming that the assumptions (A 3.4) and (A 3.5) in Section (3.3) are satisfied for system

(6.4), then input-output dynamics of system (6.4) are presented as

“ 0
010 -0 0 0
y 001 - 0 0 .
Y, = y e . + : , (6.7)
: : o -i€dm O : .
000 0 0] [Lw(© LZLQ,,.L;V‘«/,-<§>d,.
j=1 o

where
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RAGINRAG)

Y;:@) _| i@ for i=l,..p (6.8)

RAGIRIRAG)

where (&) isthe i entry of vector y(&). Each of system output y;, atits own

relative degree r, , satisfies following equation

@=L (§)+2LQI_L_;>:—‘://,.dj, i=1..,m. (6.9)
j=l

Therefore, system eq. (6.4) can be rewritten as the following algebraic equation
Z,=F()@), (6.10)

where

| Ly
Z = |- : , (6.11)

! :
] L, ©

where Z, 6 eR”, F(£)eR”, and

LQ,L?_IV/I LQZL_?_]‘//I LQHL_;!—IV/I |
LQ,L?—"//z LQZL;?_lWZ L, L;'z—ll//z
F($)= . ' “ (6.12)
Lo LP v, Lol?w, - LoL™y,

Remark 6.1: The derivative Yf} ,...,Yf,’, are computed exactly in finite time using

higher order sliding mode differentiators [28] discussed in egs. (3.30) and (3.31).
6.3 Sparse Recovery Algorithm

Assumption (A 6.3): The matrix F(&) is supposed to satisfy the RIP condition in
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definition 3.1.

The attack d(¢) in (6.10) is reconstructed using the SR Algorithm presented in Section
3.1as

w©) == [vO+(FE F©-1,,)a0) F& |
d@t)=a() (6.13)
where v € R? is the state vector, d (t) represents the estimate of the sparse signal d (¢)
of eq. (6.10), and x>0 is a time-constant determined by the physical properties of the

implementing system.

Note that [.|# = H'B sign(.) and a(t)=H,v) where H,() is a continuous soft

thresholding function and defined as eq. (3.6), that is
HA(v)=max(|v|—/1,0)sgn(v)

where A >0 is chosen with respect to the noise and the minimum absolute value of the
nonzero terms.

Under Assumption (A 6.3), the state v of eq. (6.13) converges in finite time to its
equilibrium point v*, and d () in eq. (6.13) converges in finite-time to d (t) of eq.
(6.10).

The results of this chapter have been published in [79].
6.4 Summary

In this chapter, considering nonlinear cyber-physical systems when the number of
potential attacks is greater than the number of sensor measurements, attacks are

reconstructed using higher order sliding mode differentiation techniques in concert with
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the SR algorithm, when only several unknown attacks out of all possible attacks are non-
zero. The relative degree approach and SR algorithm has been applied to the system while
recovering the attacks on the sensors and the plant.

In the next chapter, state and sensor attack reconstruction in nonlinear CPSs is
investigated when the number of sensor measurements is greater than the number of

potential attacks.
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CHAPTER 7
Attack Reconstruction in Nonlinear Systems: the Number of Sensors is Greater

than the Number of Potential Attacks

7.1 Introduction

Consider the nonlinear CPS model under the state and sensor attack in eq. (2.6) when

the number of sensors is greater than the number of sensor attacks, that is

X =f(x)+B,(x)d, ()
y=C(x)+Dd ()

P >q9-q, (7.1)
where y eR”, d (¢)eR" and d, (t)eR"™.

The objective in this chapter is to reconstruct the state attack d_(¢), and sensor attack
d,(¢) inthe nonlinear CPS eq. (7.1).

Since there are more sensors than potential sensor attacks in CPS eq. (7.1), p >¢q —q,,

there exists a nonsingular output transformation M €R”*” so that
y=M7"y=M"Cx)+M'Dd, (7.2)

where the matrix M is selected to satisfy the condition

A 0,
M™D, = {DJ (7.3)

where 0, € R @) D, eRPPHM) and p—p <q—q,.

The transformed sensor measurement vector y in eq. (7.2) is partitioned as
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7= [y_‘ } (7.4)
YV

where y, eR”, y, eR”™".
Next, CPS (7.1) is presented in a partitioned format in accordance with egs. (7.1), (7.4) as

% =f (6)+B,(x)M, ()
y,=C,(x) (7.5)
y,=C,(x)+Dyd ()

where C,eR” and C, eR"™™.

Remark 7.1. The virtual measurement j, in eq. (7.5) is not affected by the attack

corruption signal and can be classified as a protected measurement.
Assumption (A 7.1): The number of protected measurements is equal or greater than

the number of plant attacks, i.e.

P29, (7.6)

Remark 7.2. Equation (7.3) gives that the number of unprotected measurements is

equal or less than the number of attacks that may corrupt the measurements, i.e.
pP—pPi =949, (7.7)
The considered problem is: given the nonlinear CPS dynamics in eq. (7.5) with virtual
protected 7, € R” and unprotected y, e R”” sensors, and attack signals d, e R"
on the plant and d, e R”™ on the sensors (sensor corruption signals), reconstruct the

attack signals.
The attack reconstruction is to be accomplished in two steps:

Step 1: The plant state x () and the attack d_(t) vectorsare estimated by applying

the HOSM observer described in Section (3.3) with respect to the protected output y,
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only, so that
RO —>x@), d,()—>d, @) (7:8)
in finite time, where x (), a?x (t) are the estimation of CPS states and the reconstruction

of plant attack respectively.

Step 2: Given the state X (¢), which is estimated on-line, the unprotected sensor

attack d, is then estimated as cfy by applying a SR algorithm as it is described in

section (3.1) [87].
7.2 State Attack Reconstruction

Consider the part of CPS eq. (7.5) associated with the virtual measurements protected

from the attacks

X =f(x)+B(x)d, ()

7.9
y,=C(x) 2

Note that only ¢, outof p, virtual protected measurements are employed, and that
the other p, —q, virtual protected measurements can be used at the second step of the
proposed algorithm. The aforementioned modifications are addressed by defining 3 . and
B, in eq. (7.9) are as y =[)7” Fig ses Vg T 5 B :[bl,bz,...,bql]eR"x"' where

b, eR",Vi =1,...,q, are smooth vector-fields defined on an open = R".

The problem is to estimate the states of nonlinear CPS eq. (7.9) with unknown input, and

reconstruct the state attack vector d_(¢).

Assume that the CPS in eq. (7.9) has the vector relative degree » = {r, sFyzeeesly, } as it
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is defined in Assumption (A 3.2) in Chapter 3.

If the CPS in eq. (7.9) satisfies assumptions (A 3.3) and (A 3.4), then, the CPS given

by eq. (7.9) with the involutive distribution I' =span {b,,bz,...,bql} and total relative

q o
degree r=1" r, <n canbe rewritten as

1 0 - 0 0 i 0
. {001 .0 0 0 _
s e g Y 5 F : Y=kt 10)
000 0 0],  |L"7 ()] | X LLTY, (x)d0)
y=g(6,7)
where
5, i M,(x) 5)—1,- () % M,a(X)
0 0. L (x L.y, (x (X
s=| 7|, &="7|= '7’2:( Mo D) | povicy g, = e '7'*2:( N1
5‘7! 5”}‘ ’7[". (x ) _L_/‘ 0 _1)71, (x )- }/n—r '711 ('x )

The norm-bounded solution of the internal dynamics y = g(5,7) is assumed to be

locally asymptotically stable [95] as it is mentioned in (A 3.5) in Chapter 3.

The variables 7,,,(x),...,n7,(x) are defined to satisfy
L, (x)=0 Vi=r+l,..,n,Vj =1,...q, (7.12)

if assumption (A 3.4) is satisfied then it is always possible to find »n—r functions

7,,(x),....,n7,(x) such that

\P(X ) :COI {771|(x )a'", 771;'1 (x )3"" 77q11(x )7"'3 77q,,;” (x )a 77,.+1(x )7"'9 77,, (X )} € R* (713)

is a local diffeomorphism in a neighborhood of any point x e Qc QcR” which means

x =¥"3,r) (7.14)
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In order to estimate the derivatives J; () Vi =1,....q;, Vj =1,...,r, of the outputs

y, in finite time, higher-order sliding-mode differentiators [96] presented at egs. (3.30)

and (3.31) are used.

The following exact estimates are available in finite time:

:1T ﬁ,1()€) 5’\17

. S 7% Y
2|9 || T8 R vim1ng 6|0 [eR (7.15)

s | @) 5

L“in | _

A

Integrating the second equation in eq. (7.10) and replacing & by o, the internal
dynamics is given as

7=2(8.7) (7.16)
and with some initial condition from the stability domain of the internal dynamics, a

asymptotic estimate 7 can be obtained locally as

};1 ﬁrﬂ('x‘;)

A 7;2 7Iir+2 ('f)
¥ = : = :

(7.17)
Voer 1,(x)
Therefore, the asymptotic estimate for the mapping eq. (7.14) is identified as
kP(x‘)=cozr{ﬁ”(x"),...,ﬁl,.l(x“),...,ﬁql1()6),...,71,.,.“(x“),ﬁ,_+,(;e),...,ﬁ,,(x")} (7.18)

The asymptotic estimate X of the state vector x of CPS (7.9) can be easily

identified via egs. (7.15) and (7.17) as
£=y" (M) (7.19)

An asymptotic estimate cix (t) of the cyber state attack d (f) in eq. (7.9) can be
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identified as

d t)=L" (‘P“ (é,y‘)) e (7.20)

where L(‘I’“I (5‘,}7))=Zq L, L5, (x).

j=1""8;
7.3 Sensor Attacks Reconstruction

After the state vector x () and the plant attack d_(t) of CPS eq. (7.1) are
reconstructed in eqgs. (7.19) and (7.20), then, the sensor attacks d,(t) can be

reconstructed as the following discussion:

Consider the attacked part of system eq. (7.5) as

x=f(x)+B,(x t
- S (x)+B(x)d, () 3l
7, =C,(x)+Dyd, (¢)

where y2 = Rp_ql s D2 = R(p_ql)x((l—ql) s dy (t) c R(q_ql) .

Two cases that cover all possible situations are considered to reconstruct the sensor

attack d, ().

Case 1: If the number of sensor attacks and the number of corrupted sensors is the
same, i.e. p—q,=q—q,,and D, isinvertible, then using ¥ estimated by the SMO in
eq. (7.19), there is a unique solution for estimation of sensor attack as

d,t)=D;'(y,-C,()) (7.22)

Case 2: If the number of sensor attacks is greater than the number of corrupted sensors,
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ie. p—q,<q—q, and the following assumption is verified for sensor attack d .

Assumption (A 7.2): The attacks d, e R”™ on the unprotected sensors j, € R”™”

are assumed not to be coordinated, meaning that there is only a small number of non-zero

attacks at any point in time, i.e. the index set of non-zero attacks is presented as
D, = {kl,kz,...kj}, J <q —q,, where
2i+1<p=p, (7.23)
Considering the corrupted sensor measurements dynamic of CPS (7.9) and using f
estimated by the SMO in eq. (7.19), it is given that
V,-C,(xX)=D,d () (7.24)
Assumption (A 7.3): Matrix D, satisfies the RIP condition in definition 3.1.

The attack d(¢) in (6.10) is reconstructed using the SR algorithm presented in

Section 3.1 as

) = '["(")*(D;Dz‘I(q—ql)x(q—q.))a(’) ‘DzrVJB

d,(t)=a() (7.25)
where v e R? is the state vector, a;y (t) represents the estimate of the sparse signal
d,(t) , u>0 is a time-constant determined by the physical properties of the
implementing system.

Note that [.]# = ||ﬂ sign(.) and a(t)=H,(v) where H,(.) is defined as eq. (3.6),
that is

H,)=max(p|-1,0)sgn@)
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where A4 >0 is chosen with respect to the noise and the minimum absolute value of the
nonzero terms.

Under assumption (A 7.3), the state v of eq. (7.25) converges in finite time to its

equilibrium point v", and sensor attack estimation (f_v (t) in eq. (7.25) converges in
finite-time to sensor attack d,(¢) in CPS eq. (7.21).

The results presented in this chapter has been published in [80].
7.4 Summary

In this Chapter, nonlinear CPSs under deception attacks and sparse sensor attack when
the number of sensor measurements is greater than the number of potential sensor attacks
are considered. The states of system and the deception state attacks are reconstructed on-
line using a HOSM observer. A SR algorithm is used to reconstruct the stealth sensor
attacks to the unprotected sensors.

In the next chapter, the proposed algorithms in Chapters 4 to 7 are tested on the WECC
power network system and the effectiveness of mentioned approaches are shown through

the simulation results.
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CHAPTER 8

CASE STUDY: CYBER ATTACK RECONSTRUCTION IN THE US WESTERN

ELECTRICITY COORDINATING COUNCIL POWER SYSTEM

The objective of this chapter is to see how different approaches proposed in Chapters
4 to 7 are work to estimate the states and reconstruct the attacks in a CPS case study

which is considered the US WECC power network system in this chapter.

8.1 Mathematical Model of Electrical Power Network

The descriptor (Differential Algebraic Equations (DAE)) swing mathematical model is
adopted to describe the electromechanical behavior of electrical power networks [83, 84].
The DAE swing mathematical model for a power network stabilized by a linear output

feedback controller is given by [84]:

I 0 0]¢ 0 -1 0 |&|[o 0

0 M, Ollo|=-|L,, E, L, |@|+B,dO)+P,

0 0 o0}@6 L, o L, ||6]| |B, P, (8.1)
| , e i

y =Cx +Dd(t)

where x = [5T o O ]T is the vector of states of the system, S eR*, weR* ,0eR’

are vectors of the phase angles of the source measured in rad, generator speed deviations

from synchronous measured in rad /s , and the bus angles measured in rad respectively.
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The index a is the number of generators, and 5 is the number of buses in the electrical

system. The vector y € R” is the sensor measurement vector, the vector d € R? is the

attack vector, and B e R®* D e R are the attack distribution matrices; P

@’ F, 0
are known changes in the mechanical input power to the generators or real power demand

at the loads. The matrices E,,M, € R™ are diagonal matrices whose nonzero entries

consist of the damping coefficients and the normalized inertias of the generators

respectively. Finally, the matrices L) L7, L], L], form the following symmetric
susceptance matrix
LG Lt9
= [Lf;g Lg-’} (8.2)
l.g 1.l

that is the Laplacian associated with the susceptance-weighted graph.

Assumption (A 8.1) The matrix L,g., is nonsingular (such an assumption usually
holds in practical electric power systems).
In the next section, assumption (A 8.1) is used in order to change DAE to Ordinary
Differential Equation (ODE).

Note that the following terms that appear in the electric power network model (8.1)

0 0
B,|d)+|P, (8.3)
B9 PH

are due to the output feedback control that processes the output y =Cx +Dd ()

corrupted by the attack signal d(¢).
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8.2 Transformation of DAE to ODE

Assuming (A 8.1) holds, the variable # can be expressed as
0=(R!,) (~Rf,5+P,+Bd) (8.4)
substituting eq. (8.4) into eq. (8.1) it is obtained that
el losm Mok
o| |¢,(0,0) P, .

.
y =C +Dd (t)
®

(8.5)

where

[%(5 w)}= oo {5 }
®,(0,m) Mg_l (—Rﬁ.g +R:1 (ng./) ng @ ) (8.6)
R

5)'B)

PH(:)=Mg_l(})(u_Rg().l(R10.l)_lP€)’ By, =M, (B RG(

8.3 Parameterization of Mathematical Model of Western Electricity Coordinating

Council Power System

The electrical power network considered in this chapter is a classical nine-bus

configuration adopted from [83, 84]. It consists of 3 generators { Lo gz,g3} and 6 load
buses {b,,...,.b} aspresented in Figure 1.6. Therefore, we have a)=[a)l w, a)3]T eR’,

T
5=[8, 6, 8] €eR’, and #eR®. The matrices M, and E_, which are the

diagonal matrices of the generator inertial and damping coefficients are shown in eq. (1.8),

the Laplacian matrix associated with the susceptibility-weighted graph is the symmetric

susceptibility matrix L’ e R*® and is given in (1.10)-(1.11). The inputs P, and P, are

«
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due to known changes in the mechanical input power to the generators and real power

demands at the loads and are defined as

P,=[0.716 1.63 085] , P, =[0 -125 —094 0 -1 0] . (87)

8.4 State Estimation and Attacks Reconstruction Using the Proposed Sliding Mode

Observation Algorithms

The proposed approaches in the chapters 4 to 7 are applied to estimate the states and
reconstruct the sensor and/or state attacks of the WECC power network described in

Section 8.3.

8.4.1 Reconstruction of Attacks and Estimation of States: the Number of Sensors

and the Number of Potential Attacks Is Equal

In this section, it is considered that the generator speed deviations from synchronous
weR’ are measured. Therefore, the output of system eq. (8.1) is
y=w+d({t) (8.8)

where  y=[y, y, »J R . o=[o o o] R .,  and

d=[d, d, d,] eR® represents the stealth attack to the sensors.

The problem is reconstructing the attacks in the Linear WECC power system when the
number of measurements and the number of attacks is equal.

In this study, it is given that
B(u:13’ B6=06x3' (89)

Therefore, THE WECC power network eq. (8.1) is rewritten for this parameterized case as
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I 0 0}¢ 0 -I 0 [[5] [0 0
29 o 0
0 M, O||w|=- R,, E, R, w|+|1|dE)+| P, (8.10)
i A X
0 0 o0}@ R’, 0 R/ | 6] |0 A
y=Cx+Dd(t)
The system eq. (8.10) is reduced to
S=w
& =0,(8,0)+P,, +Md(t) . (8.11)
y =w+d(t)

The WECC power system eq. (8.11) can be presented in a numerical format as follows

6, 0 0 0 10087 o JJ[o o 0]
5, 0 0 0 010]|4 0 0 0 0
5, 0 0 0 001|¢ 0 0 0 0
= + - d(t)
@ | |-0.3145 0.1187 0.1158-10 0 || @ | | 1.1886 | |8 0 0
@, | | 04363 -0.8474 04111 0-20 ||w,| | 18.6934 | |0 294118 0 (8.12)
(&, [ 09046 08736 -1.77820 0 -3||@, | [-11.9475] [0 0 62.5]
] ] [4
v, |=| @ [+|d,
V] les] | d;

In order to apply the sensor attack reconstruction algorithm proposed in Chapter 4 the

system eq. (8.11) is presented in the form of eq. (4.9) as

S=y-d()
) 4 . (8.13)
y = ¢a)15+¢(02y ~¢(o2d(t)+PH(u +Mg d(t)+d(t)
where ¢ (J,®) is presented in the form of
@,(0,0)=¢, 0+¢,,y —,d(t). (8.14)

8.4.1.1 Sliding Mode Observer: All Sensors Can be Attacked

Note that in this case, no sensors have been protected, and all sensors might be attacked,
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i.e. the number of sensors under attack could be zero, one, two, or three. It is not known
ahead of time if any particular sensor is attacked.
The observer for WECC power system described in eq. (8.13) is designed in the format
ofeq. (4.11) as
{é =¥ ) (8.15)
y=¢,0+@,y +P, +0

where o© is the injection term designed in a format of eq. (4.14). that is

u=(p+L3)||z+”, p,L,>0,
Yy

Finally, in accordance with eq. (4.15), the sensor attack is reconstructed as

-1
¢i=(_%‘—(pw2+M;+s1) v, . (8.16)

g
S q

Remark 8.1 The matrix (ﬂ ~ @ +M g_' +si M] eR™ isinvertible.
S

Note that the problem of estimating v,, used in eq. (8.16) is discussed in Remark 4.3

in Chapter 4.
8.4.1.2 Sliding Mode Observer: Some Sensors Are Protected

Consider the case when the first sensor, is protected from the attack, in other words
Dd@)=[0 d, d.,] (8.17)

and the output/sensed equations in eq. (8.10) becomes

vy, | [o] [0 0 0]4,
Yy |=|@ |+|0 1 04, |. (8.18)
yi| o] [0 0 1]|d,
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To apply the sensor attack reconstruction algorithms proposed in the Section 4.2.1.1 the

WECC power network eq. (8.13) with one protected sensor/measurement is presented as

Y1
6= y,—d,
B . (8.19)
¥
y=0,0+0,|y,-d, +PH[0+M;d(t)+d(z)
y3—d3

Then, the state/attack observer is designed as follows

=Y (8.20)
.); :¢(015+¢102J; +P6w+u

where o is the injection term.

The attack signals d,,d, are exactly estimated as

d Y . &
{ 2}:(%_%#(1\4;)'“@2] Uy (8.21)

where, in accordance with eq. (4.37),

, [-0.8474 0.4111 , [2 0
“=| 08736 -17782] Y270 -3
(M' )—l _ 29.4118 0 , i UZeq (8,22)
¢ 0 62.5 el
eVZ e."\
02:(p1+L”)“e' , z)3=(p2 +L]2)-e_~
Y3 Y3
where  p,p,,L,,L;,>0 and e, =y,—¥,, e, =y,;-p, . The estimation of

Uy » Uy, 18 discussed in Remark 4.3 in Chapter 4.

-, -1 % % 5
Remark 8.2 The matrix (ﬂ O—~@.,F (M . ) +sl mj eR* is invertible.
s
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Apparently, the invertibility condition presented here is easier to verify than the one in the

Remark 8.1 due to the reduced order of the matrix to be inverted.
8.4.1.3 Cleaning up the Measurements Corrupted by Attacks

As soon as the attacks are exactly reconstructed in (8.16) or (8.21), the measurement
vector y =w+d(t) is to be “cleaned up” from the attack signal as y_=y - (t). The
“cleaned” WECC power system eq. (8.11) becomes
80 = a)(.‘

16, =0,(8,,0,)+ Py + M, (d () -d (1) (8.23)

ve=a,+(d®)-d @)

where J,,@,,y_ are the states of the system and the output of the system after “cleaning”

the measurements respectively. Note that the WECC power system eq. (8.23) converges to

S =,
d)c = ww(5c’a)c)+P9(u (824)
yc = Cl)c

as soon as a?(t) —>d ).
9.4.1.4. Simulation Results

Simulation set-up: The simulation results have been obtained via MATLAB.
Three simulation experiments have been performed for sensor attack reconstruction in the
WECC power system in eq. (8.10).

Experiment 1  No sensor attacks are assumed, i.e. d(t)=0.

Experiment 2 It is assumed that the attacker has access to the actual measurement
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vector y” =(@,@,,®,) . The attack named stealth attacks [31, 32] that completely

corrupts the measurement vector are considered as
d,=—1.1o,+2sin(t), d,=-0.9w,+cos(0.5¢), d,=-0.8w, +sin(t). (8.25)

Experiment3  The stealth attacks are reconstructed on-line and the measurements

are “cleaned up.”

The SMO parameters used in the simulations are presented in the following table.

Table 1. Simulation Parameters

Sampling time (sec) 107 Parameter y in(4.27) | O.1
Integration algorithm Euler Parameter « in(4.23) | 0.1
Parameter p in (4.14) and (4.22) | 0.01 Parameter ¢ in(4.23) | 0.1
Injection term gain L, in (4.14) | 100 Parameter (, in (4.26) |1
Parameter o, in (4.27) 0.01

Note that the gain of injection term, L,, in eq. (4.14) is assumed unknown in the
adaptive scheme. Also, no LPF is used for estimating v, , since the transfer matrix in

attack reconstruction formula eq. (8.16) has the LPF property. Therefore, v isused in eq.

(8.16), while v, is recovered automatically.

In this study, the attack observations are done by both the fixed and adaptive gain SMO
presented in Chapter 4. The results are presented in Figures 8.1 — 8.11.

The results of the experiments 1: The plot presented in Figure 8.1 demonstrates the
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convergence of the measured outputs y,,v,,y,

synchronous measured in rad /s ) to zero as expected.

y(t)

a4

-3

(generator speed deviations from

time{sec)

Figure 8.1 Outputs of WECC Power System without Attacks
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The results of the experiments 2: Figure 8.2 demonstrates the measured outputs

Y1,V,,y5; Wwhile the sensors are under stealth attacks eq. (8.25). It can be observed that

the outputs are corrupted and do not converge to zero due to the stealth attack.

The results of the experiment3: Figure 8.3 shows the compensated outputs, i.e. when the

attacks are reconstructed and the measurements are cleaned from the attacks.
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time(sec)
Figure 8.2 Outputs of WECC Power System under Stealth Attack
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Figure 8.3 Outputs of WECC Power System After the Corrupted Measurements Are
Cleaned
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The cleaned output dynamics (Figure 8.3) practically coincide with the outputs of the
systems without attack (see Figure 8.1) after a short transient. In Figures 8.4 — 8.6, the
outputs of system in the three scenarios (without attack, corrupted by attack, and

compensated after being attacked) are compared.

25 : : ; :
——Y, corrupted —— Y, compensated — — —vy 4 without attack
21 |
SO DN
1} \A:N__ B ~
4 . L
— i “Q::NZ?‘. = -
g of
05t
TR
SAARRARARRAR
2k
'2,5 i 1 1 !
0 5 10 15 20 25
time(sec)
Figure 8.4 Comparing y, without Attack with Corrupted y, and Compensated y,
After Being Attacked
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Figure 8.5 Comparing y, without Attack with Corrupted y, and Compensated y,
After Being Attacked
2 ; ; ,
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< 05 1
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A5 HH |
; —— ¥, corrupted
2 ;; | ——, compensated
25+ i:j — — -y, without attack
F3 1 i 1 1.
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. time(sec)
Figure 8.6 Comparing y, without Attac

k with Corrupted y, and Compensated y,
After Being Attacked
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It is shown in Figures 8.7 — 8.9 that sensor attacks d,,d,,d, are accurately estimated

by cf,,cfz,cfS. The attack observation is done by both the SMO and the adaptive SMO

presented in Chapter 4. Figures 8.10 and 8.11 show the sliding mode injection terms used

in both observers.

06 T T T T T T T T
11
- — ~dl )
04 F
086
D8 i 1 i L i i : i I
0 05 1 i5 2 25 3 35 4 45 5

time({sec)

Figure 8.7 Comparing Sensor Attacks d, with Its Reconstruction d,
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Figure 8.8 Comparing Sensor Attacks 4, with Its Reconstruction d,
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3 4
iy

ey ————
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0.5 3 :
g 05 1 15 2 25 3 356 4 4.5 5
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Figure 8.9 Comparing Sensor Attacks o, with Its Reconstruction d,
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time{sec)
Figure 8.10 Fixed Gain Sliding Mode Injection Terms v, ,v,,v,

time(sec)
Figure 8.11 Adaptive Sliding Mode Injection Terms v, ,v,,0;
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Remark 8.3 The output stabilization plots under both the fixed and adaptive gain
observers look the same here, since the attack reconstruction fixed gain filter eq. (8.16)
includes a LPF inherently and it behaves like a damper that mitigates the rippling in the
attack estimation that may be generated by a large sliding gain. Note that the main

advantage of the adaptive SMO is in self-tuning.

8.4.2 Reconstruction of Attacks and Estimation of States: the Number of Sensors

is Greater than the Number of Potential Attacks

The application of two approaches proposed in Chapter 5 are tested for attack
reconstruction on the mathematical model of US WECC power system eq. (8.10) under
attack here.
8.4.2.1 Sliding Mode Observer with Dynamic Extension of Injection Term

The fixed and adaptive gain SMOs with filtering feature proposed in Chapter 5 is
applied for attack reconstruction on the attacked WECC (8.10).The Simulation setup for
designing the SMO in this section is as follows:

(a) There are three sensors that measure the generator speed deviation from
synchronicity of three generators of WECC and two attacks that corrupt the second and
third sensors as

V=@, Y,=w,+d yy=wy+d,

@, ?

d, =-w,+2sin(0.57t), d, =-w;+cos(0.57t)+sin(nt)

(8.26)

(b) The matrices B,,B,,C,D ineq. (8.1) are given as follows for this study.

@?
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0 0 000 <1 0 -0 0 0
B,=0,,,B,=1 0|,c={0 0 0 0 1 0|,p=|1 0 (8.27)
0 1 00 0 0 01 0 1
Consider egs. (8.5), (5.4) and (5.5), x, R’ and x, eR’ are defined
Xy :[51 0, é‘z]r sX 5 =[w1 @, a),z]r (8.28)

Substitute (8.27) in (8.5) and (8.6), then it is clear that 4,, in eq. (5.4) is not Hurwitz and
it is needed to define a matrix L e R™ as disused in eq. (5.6). If L =1, , is selected,
then the new variables ¥, e R® and ¥, € R’ in egs. (5.10) are defined as follows
X, =0+0, X;=0 (8.29)
and according to egs. (5.13), (5.14), eq. (8.29) can be rewritten as
5=[6+e S+e S+a), T=a, T,=[0, o (8.30)

(c) The matrices 43, e R, A3, e R* are selected as

1.9
A5 =1, A;:[O _J (8.31)

Finally, attacks are reconstructed/estimated according to eq. (5.25) which is
d =G"(s)u,

where G*(s) e R* is given by

(8.32)

G *(s)=|:G1|(S) Glz(s):l

G; (s) ng(s)

where
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. s°—67.67s* —145.6s* —90.81s% —10.94s +0.2193

G (s)= 3 5 2 3 2 )
5%+98.19s° +2185s* +2775s> +526.65> +22.295 +0.2193
G (s) = 0.7783s* +24.67s> +30.43s% +3.281s
= 5% +98.19s° +2185s % +2775s° +526.65> +22.29s +0.2193° (8.33)
. 0.3663s* +24.09s> +30.36s % + 6.089s
Gz1(S)= 5

5% +98.19s5° +2185s* +2775s> +526.65 % +22.29s +0.2193
—s°—-34.56s*-102.55% —83.9352 —13.64s5 —0.2193
s +98.19s° +2185s* +2775s> +526.65* +22.29s +0.2193

Gz*z(s) =

8.4.2.1.1 Simulation Results

Simulation results shown in Figures 8.12 and 8.13 illustrate that sensor attacks
d,.d, areaccurately estimated by d A .d o - The attack observation is done by both the

fixed and adaptive gain SMO. Their injection terms are illustrated in Figure 8.14. As it is
shown, the gain of SMO injection term changes when it is needed.

Figures 9.15-9.17 compare the corrupted measurements with cleaned up
measurements from reconstructed attacks and measurements when there is no attack. These
comparisons clearly show the importance of attack reconstruction and compensation. The

presented simulation results are given by applying fixed gain SMO.
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Figure 8.12 Comparing Sensor Attack d, with Its Reconstruction
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Figure 8.14 Fixed and Adaptive Gain Sliding Mode Injection Terms v ,v,
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Figure 8.15 Comparing y, without Attack with Corrupted y, and Compensated y,
after being Attacked
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Figure 8.17 Comparing y, without Attack with Corrupted y,, and Compensated y,
After Being Attacked
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8.4.2.2 Line-by-Line Super Twisting Sliding Mode Observer
In this section, we investigate the WECC power system eq. (8.10) when we have more
sensors rather than plant attacks, i.e. there are 6 sensor measurements and 3 plant attacks.

The matrices B and D in eq. (8.1) are defined in such a way that plant attack 4, and

sensor attack d, can be written separately as follows

I 0 s| [ o -1 o]s] [o 0
0 M, == R, E, R} ||o|+|1]|d @)+ P,
0 0 0 _Rléjg 0 R16:1 0 0 F, (8.34)

0
0
0
O M
0 C,||e] |D,]"”

&

where
012011
C,=1,, C,=I,, D;=0,,, D,eR*=|1 0 0 2 1 0 (8.35)
001010

The novel adaptive STW observer discussed in section 5.2.3 is used to estimate the states

of WECC power system eq. (8.34) under attack, and reconstruct the state attack d_. Then,

having 3 corrupted sensors and 6 potential sensor attacks, the SR algorithm is used to

reconstruct the sparse sensor attack d, in (8.34). Finally, the estimate of attack will be

used to clean the sensors and system.
The WECC power system eq. (8.34) can be rewritten as

4 | +Bd_(t)
. -1
W M;(—R;g+R:,(R,"f,) R,‘{g)a—Mg"Eng ‘

(AR MENEE

P

(8.36)
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o J . (8.37)

Remark 8.4: It can be verified that D, satisfies RIP condition defined in eq. (3.3).

A suitable choice of C, and y, are

c,17ltooo0o0 o0 2

cAal 1000100 H(y=7,)

C 010000

c,=|.% |= e (8.38)

C,A| [0 0001 0 1(y,-7,)

c,|loo1 000 Vs

Ca| 0000 0 1] L u(ys-7,)]

It is easy to verify that

5&1520’ _mAEiO
C,,B=0, C,AB=+0 (8.39)
_a‘sB_ =0, _53A§ #0

where Cj, isthe i” row of matrix C,.

Also, it is easy to check that rank (C,B) = rank (B).

The states 5, @& and plant attacks d_(¢) in eq. (8.36) are reconstructed as described

in section 5.2 by using STW observer. The estimated @ is used in eq. (8.36) to get

y,~o=Dd, (). (8.40)

The SR algorithm described in Section 3.1 can then be applied to reconstruct the sparse

d,(t) in WECC power system eq. (8.36), where only one out of six potential attacks

d, -, isnon-zero.
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Consider the following attacks which affect the states and the sensors of WECC power

system eq. (8.36) starting at ¢ =10sec

x1 Sln(05t)
d, =|d_, |=1¢ -10).| 1(¢)-1@ —4) +1¢ —8.5) -1(t —13)+1(t —17.5) (8.41)
d,, cos(?)+0.5sin(3¢)
d,@)=1 —10).[0 0 0 O sin(?) O]T . (8.42)

Note that the generator rotor angles 6, i =1,2,3 are supposed to converge to the

constant values, while the generator speed deviations from synchronicity
o, -0 i =1,2,3 in the case of nominal performance (without attack).
8.4.2.1.2 Simulation Results The MATLAB software is used to simulate the system.

The simulated plant attacks d, ,d, ,d, are accurately recovered in finite time and are

shown in Figures 8.18 — 8.20.

2 T T T T
4 —dx1
— —==dzrl 7
X 0 ) :
4 N\ Y
1 NS
_2 1 1 1 1 1
0 5 10 15 20 25 30
Time(sec)

A

Figure 8.18 Plant Attack d, Compare with Its Reconstruction d

X

—dx2

Bl P
0 -4

dx2

_2 1 1 1 1 i
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Figure 8.19 Plant Attack o, Compare with Its Reconstruction d
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dx3
o
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A

Figure 8.20 Plant Attack 4, Compare with Its Reconstruction d

The reconstructed sensor attacks are shown in Figure 8.21.
The estimates a;_r and d , are used by the feedback control to compensate the state

attacks, and to clean up the corrupted measurements respectfully. The results are depicted
in Figures 8.22 and 8.23 where the WECC power system sensor measurements under

attacks are compared to the sensor measurements without attacks, and the cleaned up sensor

measurements.
0 0
= dyl = dy2
> -0.05 ———dl SN -0.05 — — —dy2
o & =
-0.1 -0.1
0 10 20 30 0 10 20 30
0.5 = 0.2
dy3
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© 0 o N A *
%‘ r % dy4
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dy5 E
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Figure 8.21 Sensor Attack d, Reconstruction
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Figure 8.22 Corrupted WECC Power System Sensor Measurements y,v,,», Compared
with the Compensated Measurements and to the Measurements without Attacks
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Figure 8.23 Corrupted WECC Power System Sensor Measurements y,,ys,», Compared
with the Compensated Measurements and to the Measurements without Attacks
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843 Reconstruction of Attacks: the Number of Potential Attacks is Greater

Than the Number of Sensors

In this study, the WECC power system eq. (8.1), is considered as a nonlinear electrical
power system.
8.4.3.1 Sparse recovery Algorithm

It is assumed that the plant and the sensors are under attack, i.e. in the WECC power

system eq. (8.1), is under attack signal o =[le . A ]T eR'™ that corrupts the

g )
measurements y :[ }e R®, where d, eR", and d, eR® are the attacks of the plant

@

and sensors respectively. Next, d,,d, are further decoupled

)
dl (3x1) d )
d =|d°. |.d :[ 5 ‘3*”} (8.43)
1 1 (3x1) |*%2 d.e ’
dﬁ 2 (3%1)

1 (6x1)
where d,°, d\”, d,’ areattackson &8,@,0,and d?, d,” are attacks on measurements

of & and ® respectively. Note that in this case study:

Zl z
(a) z { ‘”'}eR", 5:[_}11%'2, €=l sl (8.44)
X

& 23,(
(b) The matrices B and D inthe WECC power system eq. (8.1) are defined as

B, eR™ =[I,, 0]

B,eR™ =[0,, I,, 0,,]

B,eR"™=[04¢ I¢o Ogl

Dy eR*™=]0,,, I, 0] (8.45)
D, eR™ =[0y,s ' 14,]
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The model of WECC power system eq. (8.1) with a LPF as it is written in eq. (6.4) can be

presented as

1, 1 b e
T T —D5 0
. T
10 -1 0 1 : 0
= f U |é+|=D, |d + 0
0 0 0 1 L] pf po-l -l
-M_P° P’ P +M_P
3 5 PRI P B e desfin Lo ¢t
0 0 Mg (_Pg.g +PgJ (P”) P/yg) _Mg Eg B,, L Poy
L (0‘; ’ Ve o ) _
W= [16><6 06x6]5
T T
Considering v =[y, ,] where v, =z, ., v, =z, ,then

z, =%(—z1 +5+d7), 2, :%(—z2 +o+dy).

(8.46)

(8.47)

In order to verify if the eq. (8.47) satisfies the RIP condition in Definition 3.1, eq. (3.2)

or (3.3), model eq. (8.47) is rewritten in a format of eq. (6.10) as

11 1
AN i 05 O3s Os [;)I s Osg
T T _

T T

Co1 i 4. 1
Z,t—z,——w 05 055 0Oy 0Oy (;lexs

F(&) =

(8.48)

Apparently, F(&) in (8.48) doesn't satisfy the RIP condition eq. (3.3), therefore another

differentiation of Z,,Z, is required:

£ =—(2+84df), £,=—(~Z;+ordy)

Taking into account the output filter dynamics eq. (6.3), and bearing in mind that

S=w+Bd =(t7,+z,-d})+Bd

and
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@=,0+@,0+ P, +B,d() 851)
=@y (12, +2,~d] )+ @y (t2,+2, =d] )+ Po +Bod t) '
where
B,d(t)=M;'d? ~M;'P’, (P} d} (8.52)
then, eq. (8.49) is rewritten as
/ =Fd (8.53)
where
Y
Z| =By =L s=—Zy
Z = : 17 4 1 1 (8.54)
Zy4=Z,=QnZ = QyZ |~ PpZ, ——PpZ, ——PF,,
T T T T
1 0 6 .. —Dih g
~ T T y 2
Fe (8.55)

Gao[@] @) @) @) @y @ @] e
Now, the eq. (8.53) satisfies the RIP condition eq. (3.3), therefore the SR algorithm can be
applied to eq. (8.53).
Remark 8.5 The derivatives z,Z,,Z, and Z, that appear in the entries of the
virtual measurement vector Z, are obtained using HOSM differentiators [96].
Assumption (A 8.2) The sensor attack signals d; and d are assumed to be slow

with respect to system eq. (8.56) dynamics. In other words it is assumed dz" ~0 and

d?~0.
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Assumption (A 8.3) The attacks are assumed to be not-coordinated, and only two out

of possible 18 attacks of following attack signal

doa=[(@) (@) @) @) @] .57

are assumed to happen (it is not known which ones), the other 16 unknown attacks are
assumed non-existent. These two attacks are recovered using the SR algorithm described

in Section 3.2 applied to filtered WECC power system eq. (8.53).
8.4.3.2 Simulation Results

Simulation set-up: The simulation results have been obtained via MATLAB.

Simulation experiment 1: Two constant attacks (dl"’)1 =-1, which is the second entry of

d/, and (dzw )1 =1 affected the filtered WECC power system eq. (8.46) at the time

t =0.4sec, and 7=0.01. The SR algorithm was used to recover the attacks. The results

of the simulations are shown in Figure 8.24. The simulated two non-zero attacks, which
are shown by dash line and dot line, are accurately recovered in finite time, while the
estimated values of other zero attacks, which are shown by solid lines, converge to zero in
finite time. In Figures 8.24 — 8.26, Attack1 and Attack2 are used to describe the real attack

signals and d1-d18 display the reconstructed plant and sensor attacks.
Simulation experiment 2: Two time-varying attacks, (d]'” )] =sin(7z) and
(d 4 )2 =—sin (m) affect the filtered WECC power system eq. (8.37) at the time

t =0.4sec. The simulation results are shown in Figure 8.25. The simulated two time-

varying non-zero attacks are accurately recovered in finite time, which are illustrated by

dash line and dot line, while the estimated values of other 16 zero attacks appear to
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converge to zero in finite time. The solid lines illustrate them.
Simulation experiment 3: Two non-zero attacks attaks are generated and affected the

filtered WECC power system eq. (8.37) at the time ¢ =0.4 sec, the plant attack is time
varying (dl"’ )2 =sin(7z7.‘), and sensor attack is constant (dz"’ )1 =-1. The simulation result

in Figure 8.26 shows that 2 non-zero and 16 zero attacks were accurately recovered in finite

time.
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Figure 8.24 Reconstruction of Two Constant Plant Attack and Sensor Attak in a Sparse
Attack Signal
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Reconstructed Attacks
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8.25 Reconstruction of Two Time Varying Plant Attack in a Sparse Attack Signal
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8.26 Reconstruction of Time Varying Plant Attack and Constant Sensor Attack in a
Sparse Attack Signal
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The Simulation results in Figures 8.24-8.26 show that SR algorithm can reconstruct

the time varying sparse attack signal.in finite time.

8.4.4 Reconstruction of Attacks and Estimation of States: the Number of Sensors

is Greater Than the Number of Potential Sensor Attacks

In this section, we investigate the WECC power system eq. (8.10) as a nonlinear system
when we have more sensors rather than potential sensor attacks, i.e. there are 6 sensor
measurements and 3 plant attacks. The matrices B and D ineq. (8.1) are defined in such
a way that plant attack &, and sensor attack d, can be written separately as follows
[0 -1 0] Jo 0

R, E, R} ||@|+|]|d, )+|P,
Rle,g 0 Rﬁ/ 0 0 F, (8.58)

0

0

0
= eakae
Y, 0 w| |D,|"”

o o~
. S O
Il
|

0
M,
O

where
@t 20 1,1
C,=k, C, =l,, Ds=0,., D eR*=1 00 2 10 (8.59)
001010
The WECC power system eq. (8.58) can be rewritten as
(_5} : +Bd_(t)
sdl = 0 0 6\ po =1 x
JLe M, (—Rg,g+RgJ (R,.,) R,.g)é—Mg E,0+P, e

I 1 _o' o 0
HEL o

where
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P

=M (B2 (1)) ) B = (B2, (12180
: } , (8.61)

M—]

g

C5=[]3 03]’ 5102[03 13]7 E:|:

Remark 8.6: It can be verified that D satisfies RIP condition defined in eq. (3.3).

Suppose that the following three plant attacks

" sin(0.5¢)
d,=|d,,|=@-10) 0.5cos(0.5¢) (8.62)
d_, 0.5sin(0.5¢) + 0.5cos(0.5¢)
and the time-varying sensor attack
d, =1 -10)-[0 0 0 0.5co0s(0.5r) 0 0] (8.63)

affect system eq. (8.58) at ¢ =10 sec.

The states 5‘, @ and plant attacks d_(f) in eq. (8.62) are reconstructed by using
HOSM observer as described in section 7.2. Then, the estimated @ is used in eq. (8.58)
to get

d (). (8.64)

0"y

y,—@®=D

The SR algorithm described in Section 3.1 can be applied to reconstruct the sparse

d,(t) in WECC power system eq. (8.58), where only one out of six potential attacks
d,,....d ¢ is non-zero.

8.4.4.1 Simulation Results The MATLAB software is used to simulate the system. The

simulated plant attacks d, ,d,_.d, and sensor attack d ,...d  are accurately

recovered in finite time and are shown in Figure 8.27 and 8.28 respectively. Reconstructed
attacks are used foe cleaning the corrupted plant and measurements. Figure 8.29 and 8.30

compare corrupted measurements with compensated and without attack measurements.
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Therefore, simulation results illustrate that compensated measurements converge to the
measurements without attack in finite time. As a result, actual measurements are recovered

from corrupted ones in finit time by using the HOSM observer anf SR algorithm.

8.5 Summary

The effectiveness of the proposed algorithms in this dissertation to estimate the states
and reconstruct the attacks are tested on the WECC power network system. The Simulation
results confirm that the attacks degrade the performance of CPS under attack.

[llustrated figures imply that cleaning the measurements from the reconstructed attacks
before using them in the feedback control can elevate CPS performance close to the one

without attack.

CHAPTER 9

CONCLUSIONS AND FUTURE WORKS

9.1 Conclusions

Cyber Physical Systems (CPS) represent to the embedding of sensing, computation,
communication and control into physical systems. Exchanging data among sensors,
actuators and other networked components in common or wireless communication setting

makes it possible for attackers to find access to sensing and actuation computing platforms

120



and manipulate system measurements and control commands to severely compromise
system performance.

There is a long list of publications which have focused on keeping the system safe
from being attacked. However, how to ensure the CPS control system can continue
functioning properly if attacks occur is another serious problem.

The literature that study the resilience-increasing mechanism for CPSs are mostly
based on Game theory, Event- triggered Control, Mean Subsequence Reduced algorithms,
and Trust-based approaches. The disadvantages of these works include the specific type of
attack on the cyber layer is considered, the special structure of the CPS is investigated.

To address these challenges, SMC and HOSM control and observation algorithms are
proposed in this dissertation to estimate the states of a CPS under the sensor and state
attacks and reconstruct the attacks with arbitrary shape in finite time or asymptotically. By
cleaning the measurements and compensating the state attacks by means of feedback
control the CPS performance can remain as it was demonstrated prior to attacks.

This work has three major contributions listed as follow:

I. A novel observation algorithm based on a SR technique along with a sliding mode
differentiator is proposed for reconstructing on-line the sparse attacks on nonlinear CPS
when there are more potential attacks than sensors. The novel result of this work is
presented in [79].

II. A new approach for on-line plant attack reconstruction and state estimation of a
nonlinear CPS in finite time when the number of sensors is greater than the number of
potential sensor attacks is proposed based on HOSM observer and differentiator. The result

of this work is published in [80].
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III. A novel SMO that includes the dynamic extension of the injection term is
developed for the first time for on-line state estimation and attack reconstruction in a
linearized CPS when the number of sensors is greater or equal to the number of potential
attacks. Specifically, a novel adaptive sliding mode observation algorithm that reconstructs
the smooth bounded attacks with unknown boundaries on their amplitude and rates is
proposed. This novel dynamic filter that addresses the attack propagation dynamics is
presented in [81, 82].

The proposed methodologies in this research are applied to the WECC power network
system, whose sensors and/or states are under attack. Simulation results illustrate the
efficacy of the developed observers for state estimation and attack reconstruction in CPSs.
9.2. Future Work

As far as we know, there are limited number of works which investigate the resilient
control of nonlinear CPS. Attack reconstruction and compensation in nonlinear CPS is a
good problem to work on in the future.

False-data injection attacks can be formulated against systems with unstable modes,
and they aim to modify the system measurements to make some unstable modes
unobservable. As far as we know, there is no solution to protect a CPS against false-data
injection attack. We plan to work on in the future.

It is not always easy to compensate the attacks after finding their estimation. It can be

considered as a future work as well.
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APPENDIX A

A.1 Proof of Theorem 4.1 The observation error dynamics are obtained as

C =G2|exl +G22e_v +Gd

é, =G,e, +Ge, +Gyd +Dd —v

7 4

(A1)

For the second equation of eq. (A.1) consider a following Lyapunov function candidate

1 2
V=Bt e, (A2)
Denoting
9=Ge, +G.e, +G,d +Dd (A3)

and, taking into account the assumption (A 4.4), the derivative of the Lyapunov function

candidate eq. (A.2) is given as

B¢

14 =e;é =e, (G”exl +Ge, +Gd +Dd —U)z

om0 | oo |-do-ornb s a

(l[(/’ll_(p"'[z})) < —p“ey “ - —p\/EV 1/2

e_v
Therefore, e, — 0 in finite time at least locally. The estimation error dynamics (A.1) in
the sliding mode e, =0 (that is achieved in finite time ¢ =¢, due to eq. (A.4)) are
obtained

e, =G,e, +Gyd

Xy

. (A.S)
Ge, +Gd +Dd =v,,

Transforming eq. (A.5) by taking Laplace transform and solving for d , we obtain the

estimate d given by eq. (4.15) The theorem is proven [81].
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A.2 Proof of Proposition 4.1: Consider the e, dynamics from second equation of
eq.(A.1)
é, =Ge, +Ge, +Gd +Dd —v (A.6)
with bounded perturbation term
Gy, +G e, +G\d +Dd| <L, (A7)
at least locally with unknown L,. Firstly, we need to prove that the adaptive injection term
v in egs. (4.22) - (4.27) drives e, — 0 in finite time. The proof of the finite time
convergence e, — 0 by the adaptive injection term v in egs. (4.22) - (4.27) follows the
one of the Proposition 2 in [99, pp. 185-186]. Convergence e, — 0 in finite time yields
eq. (A.5) and then eq. (4.15). Therefore, d(¢) is reconstructed as in eq. (4.15) with the
adaptive injection term v, or O, . The proposition is proven [81].

A.3 Proof of Theorem 4.2: Taking into account egs. (4.31), (4.34), and (4.36), the

estimation error dynamics are derived as

e, =0e, +0,2, +0,¢,, +0,d
€, =0,e,, +0x¢,, +0xe,, +0,d -0, (A.8)
éyz :QslexI +Qszey1 +Q33ey2 +0,d +Dd -0,

Introduce a Lyapunov function candidate

Vo= %efleyl = %“eyl

2

(A.9)

that is applied to the second equation in eq. (A.8) in order to prove the convergence

e, ¥ 0 in finite time.

The derivative of the Lyapunov function eq. (A.9) can be computed as
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Vi=elé, =el (Oye, +0re,, +Que,, +0rd —1)) (A.10)
Denoting
o =0, +One, +Ore, +0,d (A.11)

and assuming ||(/)1 || <L,, atleastlocally, where L,, >0 isknown, we obtain

V,=e" (p-u)=e" | o —(a+Lo)r 2 |=e" o - (o + Lo, | <
le.. | (A.12)
”eyl ”("‘Pl |-(o+L0)) <=5 He.vl || =-p "
Therefore, e, —0 in finite-time 7, >0 at least locally.
Next, introduce a Lyapunov function candidate
V,= %eszeyz = %”eyz i (A.13)

that is applied to the third equation in eq. (A.8) in order to prove the convergence ¢, —0
in finite time. Denoting

@, =0y, +0ye, +0ye, +0yd +Dd (A.14)
and assuming |¢,|<L,, at least locally it is easy to show that e, —0 in finite time
1.‘:2 >0 at least locally by means of the unit vector injection term v, in eq.(4.35). The
proof is similar to the one that proves e, — 0 in finite-time by means of the unit-vector
injection term v, in eq. (4.35).

Then, the estimation error dynamics eq. (A.8) in the sliding mode e, =e, =0 (thatis

achieved in finite time 7, = max (fl,l ,t~,,2 ) >0 at least locally) are reduced to
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éx, :Qnexl +0,d
0 =Q21€xl +0,d —~ 0 (A.15)
0=0,e, +0,d +Dd —v,,

where v, and v, are the equivalent injection signals.

Transforming eq. (A.15) using Laplace, and excluding e, we obtain

|:Q21 (SI _Qn)_lQ14+Qz4:|d = UVly

(A.16)
|:Q31 (SI _Qn)_] 01, +0y +D15:|d = Uy

d
Finally, after algebraic transformations, the attack d = |:dl } , d eR¥, d,eR"™" that

2

~

s b
satisfies eq.(A.16) is estimated by d =|: 1

~

2

} as in eq. (4.37). Theorem 4.2 is proven [81].

A.4 Proof of Theorem 5.1

To develop a theory for selecting the gains to enforce sliding, consider the signals e,

and ¢ as defined in eq. (5.24) together with the dynamics

. A, 0 Mz BP
e—”:[_ll S:le—“__|:—12b —1 2_1:|D2d (A17)
A21a Azz A22b _leDz

then the transfer function matrix G¢(s) mapping d > ¢ given by eq. (A.17) and eq.

(5.24) is asymptotically stable since both 4, ., and A4, are Hurwitz. Additionally, since it

is assumed that attacks are bounded,

d (t )|| <k, , for any initial condition e,,(0) at time
t =0, there exists a gain m, such that

l¢@)]| < mok, (A.18)

forall ¢>t,, where ¢ is finite reaching time.
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The gain m, will now be employed in the modulation gain definition: specifically, chose

the modulation gain in eq. (5.18) according to

p=mk, +|D,||, (A.19)

Define the Lyapunov function candidate V' = “e Il and the output estimation

}2 yz

error e, =y, —Zy, then it is easy to verify from egs. (5.21) and (5.22) that
Sy Ay, |8~ {2~ Bl )Dd +43e, +Dyd +0 (A.20)
Replace ¢ defined in eq. (5.24), in eq. (A.20), then it is simplified to
¢, =Aje, +@+Dyd +v (A21)

Since A is symmetric negative definite, for all 7 ¢,

<l
Yo

where ||¢] <m,k, . Thus by choice of p in eq. (A.19) it follows

elé, <e’ p+el Dd—(p+n)e,, (¢+IDslld|-(p+m))  (A22)

V =elé,, <-nle,,|=-n2"” (A23)
and a sliding motion is guaranteed in finite time.
On the sliding surface e, =y, -z, = =0, it follows from eq. (5.21) that é,, =—D,d and

After the system collapse during the sliding motion e, =¢, =0, it is obtained from the
last row of eq. (5.22) that
0=,y Ay B4 ~B,D;'\Dd +Dyd +v,, (A.24)

where v, is the equivalent injection necessary to induce sliding mode. Defining
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d =-D.d follows that egs. (A.17) and (A.24) can be written as

s —ByD;' || |+] 0 |v (A.25)

where the last equation in eq. (A.25) comes from rearranging eq. (A.24). Also by definition

€
d=[0 -D;']le, (A.26)
o |d
(]

~

Therefore during the sliding motion, the signal v and d are connected via the transfer
function d =G"(s)v,, which is defined in egs. (5.25) - (5.28). If 4" in eq. (5.19) is
Hurwitz then G"(s) represents a stable low pass filter. Although d is unknown, from
eq. (5.25), it can be recovered from filtering the discontinuous injection v throughG(s).

A.S5 Proof of Proposition 5.1:

Consider the Lyapunov function as

1 %0,
V - _O-" + B A.27
> 27 (A.27)
where ¥ >0, o isdefined in eq. (5.35), and
o) = (q](, /a) — () (A.28)

Then the proof of the finite time convergence e, —0 in eq. (5.23) by the adaptive

injection term o» in (5.33)-(5.38) follows the one of the Proposition 2 in [99], pp. 185-

186]. Therefore, d (¢)is reconstructed as in (5.31) with the adaptive injection term v,, in

eq. (5.33). The proposition is proven [82].
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