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Abstract 

DEVELOPMENT OF A CONTINUUM DAMAGE CONSTITUTIVE 

MODEL AND SIMULATION FOR BRITTLE MATERIALS IN 

SPACE INFRASTRUCTURE APPLICATION 

 

Luis Eduardo Deganis 
 

A dissertation submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

 

The Department of Mechanical and Aerospace Engineering 

The University of Alabama in Huntsville 

May 2024 

 

  

The purpose of this work is to develop a continuum damage constitutive material 

model and apply it to structural response characterization of brittle materials for in-situ 

construction of space infrastructure. This research improves and expands the utility of the 

physics-based dominant crack algorithm (DCA) model in order to account for very low-

strain rate phenomena in plain concrete structures. The DCA model is strain-rate dependent 

and has been effectively utilized for highly dynamic phenomena. The model has a strong 

basis in micromechanics and is able to capture the strain-softening response of brittle 

materials.  The newly developed constitutive model can be easily implemented into a finite 

element analysis (FEA) platform to predict structural response. Simulation results show 

good correlation to plain concrete experimental data throughout the material response, 

including the full softening phase at quasi-static load conditions, and demonstrate the 

applicability of the model for the intended use. Plain concrete represents a comparable 

terrestrial construction material and serves as a good proxy to examine the validity of the 
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model. Current research will benefit a growing research field of space habitat construction 

techniques with in-situ materials through additive manufacturing. The full characterization 

of material behavior is of vital importance for the structural integrity assessment of habitats 

and infrastructure that will assure human survival under very challenging environments, 

isolated in space and time from Earth.  
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Chapter 1. Introduction 

1.1 Background 

Humanity may be on the verge of the interplanetary colonization era in this century. 

It is believed that in the next few decades, temporary and permanent human colonies could 

inhabit Earth’s moon and Mars [30]. These colonies will require appropriate habitat 

arrangements to assure their survival. These habitats will not only provide an air rich 

pressurized environment that would allow them to breath and possibly farm, but they will 

also provide shielding from meteorites and outer space radiation [1].  

The use of concrete on Earth has proven effective and efficient for infrastructure 

development. A similar approach is being considered for extraterrestrial applications while 

taking advantage of in-situ materials such as Martian soil or regolith. This is due to the 

incredible technical challenges and costs associated [7] with interplanetary transportation 

of Earth’s building materials. This technology is referred to as in-situ resource utilization 

(ISRU) 

On the other hand, the utilization of in-situ materials from such remote locations 

comes with its own set of challenges such as: 

• Full understanding of their composition 

• Full understanding of the environment where they will be utilized [2] 

• Accurate prediction of their behavior 
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• Technological maturity and reliability of novel infrastructure construction 

techniques needed 

• Energetic requirements and availability that would allow for in-situ 

developments of structural components 

 

Although further exploration of each of these challenges is presented in the 

following sections, the main focus of this work is the prediction of structural response of 

future infrastructure. This work proposes a strain rate dependent damage model for brittle 

materials that would serve that purpose and could be tuned to reflect in-situ material 

composition as needed. 

1.2 Mars Environmental Conditions 

Mars is the fourth planet from the Sun, and has two small moons: Phobos and 

Deimos which most scientists believe are captured asteroids. The average distance from 

Earth is 225 million km and it is the most accessible planet from Earth. It has caused 

fascination for decades, with research probes being launched since 1960. Aside from Earth,  

Mars is the most studied planet. 

Since the rotation period of Mars and the tilt of the rotational axis relative to the 

ecliptic plane are similar to Earth, its days and seasons are comparable to those of Earth 

[8]. This characteristic combined with Mars’ topography and landforms have driven 

exploration efforts and even plans for Martian colonization. 

Other conditions are very different from Earth. Mars has a thin atmosphere that is 

95% carbon dioxide; and gravity is about 38% of that on Earth.  
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The distance between Mars and the Sun is around 1.5 times the distance between 

the Sun and Earth; which creates conditions where the average temperature on the surface 

of Mars is -63 °C with a maximum daily temperature difference of 60 °C [9] 

Due to its thin atmosphere, harsh conditions such as galactic cosmic radiation 

(GCR) and micrometeorites, impacts are of concern. Mars also features dust storms and 

strong winds of up to 30 m/s (100 ft./s). Lastly, Mars also experiences marsquakes. 

Studies in the past decades have demonstrated the existence of water on Mars and 

observations have revealed numerous channel morphologies and traces of river erosion on 

Mars’ surface [20] 

In 2002, Odyssey, launched by the U.S. in 2001, firstly discovered that there could 

be ice in the near-surface layers of Mars. In 2004, ESA announced that the “Mars Express” 

probe had discovered frozen water in the south pole of Mars. 

As can be expected, the environmental conditions presented in this section present 

challenges (and also opportunities) for future Mars habitat design.  
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Figure 1.1 Billions of years ago a river flowed across this scene in Mawrth Vallis (Credits: NASA/JPL-

Caltech/University of Arizona). 

 

 

Table 1.1 Comparison of Earth and Martian physical parameters [3]. 

Property Earth Mars 

Surface area [km2] 510.1 × 106 144.9 × 106 

Radius [km] 6371 3395 

Gravity at Equator [m/s2] 9.78 3.72 

Escape velocity at Equator [km/s] 11.2 5.02 

Surface temperature range [ºC] - 89 to +58 - 143 to +35 

Magnetic vector field [A/m] 24 – 56 0 

Surface atm pressure [kPa] 101.3 0.4 – 0.87 

Day length [Earth days] 1.00 1.02 

Sidereal Rotation Time [hr] 23.9345  24.6229 
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Table 1.2 Comparison of Earth and Martian physical parameters [2][3]. 

Major atmospheric 

compositions 
Earth (%) Mars (%) 

CO2 Minor 95.1 

N2 78.08 2.59 

Ar Minor 1.94 

O2 20.95 0.16 

CO Minor 0.06 

 

1.3 Martian Landforms and Geology 

Kamps et al. (2020) [22] developed a Martian surface global map utilizing compact 

reconnaissance imaging spectrometer (CRISM) multispectral mapping mode data through 

clusters method [2]. Figure 1.2 shows the Martian surface as primarily composed of a dust 

covered region and southern highlands. The main landforms include plains, basins, 

volcanos, mountains and canyons. Putzig and Mellon (2007) [23] utilized an improved 

thermal model and discovered duricrusts distributed in mid-latitudes and dust-covered 

rock, soils with shallow ice distributed in polar regions.  

Odyssey discovered that basalt is predominant on the surface of Mars, some of 

which are rich in olivine [24]. The Mars rover InSight detected Mars is a seismically active 

planet, but observed marsquakes of magnitude less than 4 mW [25]. 
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Figure 1.2 Global maps presenting the global surface types based on hierarchical clustering analysis [22]. 

 

1.4 Martian Soil (Regolith) 

Mars’ “soil” consists of surficial unconsolidated fine mineral material and it is 

usually appropriately defined as regolith, as it is devoid of living matter and very similar 

to the underlying parent rock [10] (other terms such as aeolian or sediment are also used). 

On the other hand, regolith is an in-situ natural resource that could pave the way for habitat 

construction on the surface of Mars.  

Compounds containing sulfur and calcium elements are widely distributed in 

Martian surface sediments. The table below lists the main composition of Martian soil, 



7 

 

including suspected magnesium carbonate and amorphous silica. In addition, glassy 

material or impact glass has also been discovered on Martian soil [20]. 

To date, no Martian soil samples have returned to Earth, however it has been 

researched remotely with the assistance of rovers and orbiters. 

 

Table 1.3 Composition of selected Martian soil [11][20][2][3]. 

Element/ 

Compound 

Viking 1 

(Clark 

et al. 

1982) 

Spirit 

-Gusev 

Crater 

(Gellert 

et al. 2004) 

Opportunity – 

Meridiani 

Planum 

(Rieder et al. 

2004) 

Pathfinder – 

Ares Vallis 

(Rieder et al. 

1997) 

SiO2 44 45.8 37.8 - 46.3 62 

TiO2 0.62 0.81 0.7 - 1.3 0.7 

Al2O3 7.3 10 7.2 - 9.4 10.6 

FeO 17.5 15.8 19 - 33.4 12 

MgO 6 9.3 6.4 - 7.4 2 

CaO 5.7 6.1 5.15 - 7.52 7.3 

Na2O – 3.3 1.4 - 1.8 2.6 

K2O < 0.5 0.41 0.37 - 0.49 0.7 

SO3 6.7 5.82 4.52 - 7.29 0 

Cl 0.8 0.53 0.33 - 0.47 0.2 
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Figure 1.3 Mars surface featuring a layered block with some resistant fin features located on Gediz Vallis 

ridge - Sol 3948 (Credits: NASA/JPL-Caltech). 

 

Rogers and Christensen [27] categorized the rocks on the surface of Mars into 4 

categories: lime-ash basalt rich in high silica glass, pyroxene basalt containing olivine, 

lime-ash basalt containing olivine and lime-ash basalt using TES [2]. 

Basalt is a common rock on the surface of Mars and it is formed from the cooling 

of lava rich in magnesium and iron. Basalt could be widely applied in infrastructure 

development but requires further characterization to better understand its utility in the 

Martian environment [2]. 

Volcanic ash rich in iron is also very prevalent on Mars’ surface. It actually gives 

Mars its characteristic red color as large amount of volcanic ash covered the surface of the 
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planet in ancient times, and turned red after oxidation. It could be used as a mixing material 

for cement and an admixture for concrete after grinding. Cement made with volcanic ash 

is called Pozzolan cement and has relatively small specific gravity compared with Portland 

cement, lower hydration heat, better corrosion resistance but greater water requirement and 

shrinkage; and worse frost resistance. It is then well suited for underground projects in 

humid environments; away from high temperature variation and dry environments [2]. 

1.5 Martian Soil Simulants 

To mitigate the risk of developing infrastructure through ISRU, researchers have 

been developing “proxies” or simulated Martian soil (simulants), based on data recovered 

from multiple unmanned exploratory missions.  

 

Table 1.4 Mars Soil Simulants [21][3]. 

Property replicated Current Simulants 

Chemical/Mineralogical JEZ-1, JMSS-1, MGS-1, MMS-1 and -2, Y-Mars 

Physical/geotechnical ES-X; KMS-1; MMS Mojave Mars Simulant; UC Mars1; M90 

Spectral JSC Mars-1 and -1A 

Magnetic Salten Skov 1 
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Figure 1.4  Orbitec (2014) Mars Soil Simulant JSC MARS-1A. 

 

There are mainly two processes to synthesize simulated Martian soil. The whole-

rock simulation method identifies and utilizes rocks with similar mineral and chemical 

composition to source soil. On the other hand, the single mineral simulation method 

identifies source minerals as the raw materials based on the composition of the source soil. 

The raw materials are then dried, crushed and screened into different sizes; and then mixed 

to reflect the source soil composition [2].  

1.6 Martian Concrete 

The possibility of developing and utilizing concrete in Mars will depend on the in-

situ material available (including water), the production methods employed and their 

synthesis energy requirements. Methods for processing and curing concrete are being 
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researched and proposed for the low-temperature, low-gravity, low-pressure conditions on 

Mars. 

Martian concrete was first proposed in 1996 by McKay et al. [26], who postulated 

that it would be easier to obtain raw materials for concrete on Mars than on the Moon.  

At a basic level, concrete is composed of a binder agent and an aggregate. As 

previously discussed, Martian soil can be used as aggregate. Most binders also need water 

to form concrete. Water can be condensed or recovered from Mars’ ice if necessary, 

although being such a scarce resource, it is not preferable.  Cement is an effective binder 

solution and is commonly used on Earth. The materials required to produce Martian cement 

have also been identified in the Martian soil [26]. 

1.6.1 Martian Binders 

NASA started investigating several types of binders in 2006 including sulfur and 

polymer, and mixed them with regolith in space for additive construction applications [28] 

that would be suitable for construction under Martian atmospheric pressure and 

temperature range. As covered before, crushed basalt could be utilized as aggregate. 

Reches [29] examined potential applicable binders existing on Mars such as plaster of Paris 

(PoP), ordinary Portland cement (OPC), alkali-activated cement (AAC), geopolymer 

cement (GC), Mg- and Si-based binder (MSBB), elemental sulfur (ES), and water (by 

freezing). Those are shown in Figure 1.5 with FA and CA identifying fine aggregate and 

coarse aggregate respectively. 
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Figure 1.5  Terrestrial concrete formulations with potential applicability on Mars [29]. 

 

PoP is a binder typically made from the calcining of gypsum. When mixed with 

water, it sets and hardens back into solid gypsum. The preparation of PoP with bassanite is 

of particular interest as it does not require calcining and the availability of bassanite 

reserves in Mars [29]. The extensive history of terrestrial applications, low energy 

requirements and fast set/harden are clear advantages for Martian utilization.  

Ordinary Portland cement (OPC) and Alkali-activated cement are not preferred due 

to the scarcity of required raw materials; and high energy requirement of OPC. 

Geopolymer cement (GC) is being considered as an alternative for OPC for 

terrestrial applications. It is made by the combining soluble Alumino-silicate phase (ASPs 

- e.g., fly ash, GGBFS, or calcined clays) with an aqueous solution of alkali silicate 

(reaction of silica or an ASP with NaOH or KOH) [29]. GC is very energy efficient as it 

may require little to no calcining. From a resource stand point, it does not need Ca.  
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Mg- and Si-based binders (MSBB) are being researched and developed specifically 

for Mars application and would be synthesized by the reaction of Mg-based olivine (widely 

available in Mars) with water; although currently is fairly energy intensive.  

Elemental Sulfur (ES) is being considered as a binder option [29] for Martian 

concrete and could be produced from sulfate minerals, which are common on the Martian 

surface. Furthermore, it features good mechanical and chemical properties (terrestrial 

applications) and does not require water for mixing and casting, which makes it more 

preferable. Nevertheless, synthesizing elemental sulfur would be a challenge due to 

energetic demands. The viability of this binder is dependent on finding sulfur reserves on 

Mars.  

Lastly, water could be used as a binder (with or without aggregates) by casting 

liquid water and allowing it to freeze solid under the extremely cold Mars conditions. This 

would be effective for locations where elements are expected to be permanently frozen 

(e.g., subterranean or near-polar construction) [29]. 

1.6.2 Martian Aggregates 

As previously discussed throughout this document, Martian regolith is a good 

candidate for a natural aggregate. It is available in a variety of sizes, and could fulfill the 

need for fine and coarse aggregates. The mechanical properties of regolith are known to be 

suitable, and a simulant of it has been successfully used on Earth for the manufacture of 

concrete [29]. On the other hand, in-situ use of the aggregate may be influenced by salts in 

the regolith that could affect the reactivity of the binder. The impact is difficult to predict 

so aggregates with negligible salt content would be preferred. 
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1.7 Structural Design Loads Considerations 

Habitats and infrastructure in Mars will bare similarities with Earth construction, 

but will have to respond to specific demands driven by the extraterrestrial environment. 

Martian habitat design will have to consider the low gravity environment where the 

structures will operate, and how that affects static loads driven by gravity. Since structural 

members would be ~2/3 lighter that on Earth, it presents an opportunity to use 

comparatively lower strength concrete and/or fewer structural elements. On the other hand, 

human habitats would need to be pressurized to counteract the thin atmosphere and create 

a livable environment. This quasi-static load would create a pressure differential (~ 1 atm) 

and a more critical load condition for a brittle or quasi-brittle concrete structure in tension 

and bending. Partially or totally burying the structures may help alleviate this concern, at 

least for some structural members [29], but may not be the preferable solution for long term 

human habitation due to psychological impact of living underground. 

Apart from static loads, transient loads such as wind and seismic loads are present 

in Mars, although they are probably not as critical as on Earth. The high probability of 

micrometeorite impacts due to the thin atmosphere is a concern though, and should be 

taken into consideration when designing infrastructure. Covering structure with regolith 

may be a possible remediation of the high velocity impact risk [29]. 

Another consideration is thermal loading and material stability from the extreme 

cold conditions and temperature fluctuations (low-strain rate loads). This is especially 

relevant with a thermally conductive material such as concrete; and insulation would be 

required. As before, burying the structures could be solution. 
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Figure 1.6  Concrete Martian habitats and design requirements [29]. 

 

 On the other hand, companies such as AI Space factory are concerned with the 

phycological demands of a Mars mission and the possible detrimental effects of living in a 

low-lying dome or confined, half-buried structure. Instead, they propose a bright, multi-

level, corridor-free habitat that stands upright on the surface of Mars. The construction is 

a vertically oriented cylinder (4-story habitat) made of poly lactic acid (PLA) bio-polymer 

reinforced with basalt fiber. The design features a decoupled double shell structure that 

allows for thermal expansion and contraction of the external shell without affecting the 

internal shell (and living quarters) [55]. The 3D printed external shell is also the structural 

member that resists the internal pressure load. 
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Figure 1.7  MARSHA, AI Space Factory. 

 

Lastly, cosmic and solar radiation is of great concern due to the lack of a 

magnetosphere and thin atmosphere. Although not directly a strength requirement on the 

structural design, proper shielding will depend on material selection and also shielding 

method selected (and how that itself loads the structure, for example by utilizing a thick 

layer of regolith). 

1.8 Possible Construction Approach–Additive Manufacturing 

Additive manufacturing (AM) is the technology with most promise for 

extraterrestrial infrastructure development. Since its first invention in 1970s, it has 

benefited from significant research efforts that has allowed it to mature, especially during 
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the last decades. AM or 3D printed components are now found in many industries, 

including automotive, aerospace and civil construction. 

The technology will have to adapt to the extreme environmental conditions on the 

surface of the Mars, such as ultra-high vacuum, low gravity, freezing temperatures and 

large temperature difference, and high radiation. In 2014, NASA and Made In Space Inc. 

(MIS), a US-based company specializing in the development of three-dimensional printers 

for use in microgravity environments, cooperated to achieve the world’s first space 3D 

printing [2] 

ISRU technology will constrain material selection and their properties will 

determine the manufacturing methods' feasibility, such as the printability, pumpability, 

buildability, and open time of the regolith materials [3]. 

1.9 Motivation  

As mentioned before in this document, ISRU technologies necessitate a good 

understanding of the structural materials behavior. Then, a physics-based constitutive 

model for brittle materials is imperative for effective construction of space infrastructure 

through additive manufacturing. The material can take the form of Martian or Lunar 

concrete; while Terrestrial concrete can be used as a proxy to validate the model’s 

effectiveness. 

ISRU technologies is a fertile research topic, and this work could impact current 

efforts by The National Aeronautics and Space Administration (NASA), European Space 

Agency (ESA) and others that are exploring extraterrestrial infrastructure construction such 

as: 
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• Moon-to Mars Planetary Autonomous Construction Technologies (MMPACT): 

Develop infrastructure on the lunar surface using lunar regolith-based materials. 

• ESA Moon Village: Develop and test methods based on new technologies, such 

as additive manufacturing, that could potentially make use of locally available 

resources. 

• MARSHA, AI Space Factory: Mars habitat design through in-situ resource 

utilization (ISRU) technologies and additive manufacturing. 

This research can also have an impact on Earth applications, such as construction 

of habitats and infrastructure through additive manufacturing or formed concrete. 

1.10 Objectives 

This work aims to: 

• Develop a brittle/quasi-brittle damage constitutive model. 

• Implement the constitutive model into a structure. 

• Conduct structural analysis and validate model predictions with experimental 

data. 

• Benefit design of structural health monitoring (SHM) scheme for brittle 

material structures. 

1.11 Approach and Scope of Present Work  

To achieve the proposed objectives, the work presented herein follows the 

approach: 

• Improve Dominant Crack Algorithm (DCA) model for brittle materials 
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  This is done by improving the Dominant Crack Algorithm (DCA) model and 

expanding its use to quasi-brittle materials under very low strain rates. DCA is a physics-

based micromechanics damage model that is adaptable to different brittle materials but has 

never been proven effective or validated for quasi-brittle materials under quasi-static loads. 

The utilization of DCA is convenient for many reasons, such as efficient integration into 

Finite Element Models (FEM), physics-based structural predictions that don’t require 

successive tunning/corrections and an implicit algorithm that does not require many steps 

for very low strain rate phenomena. A detailed literature review on brittle material 

modeling is discussed in Chapter 2. 

• Integrate improved model into FEA platform 

This is accomplished by integrating the improved damage model into a Finite 

Element Analysis (FEA) platform that leads to predictive analysis. In this work, this is 

done by developing a 1-D FEM (2 rod elements) in MATLAB. The framework of this 

approach is based on the seminal work by H.L. Schreyer and Z. Chen, 1986 [43]. The 

constitutive model is reduced to a one-dimensional form for this purpose. The equations of 

motion are resolved through the Newmark- integration method.  

• Characterize structural responses and conduct validation using experimental 

data 

  The FEM is run with material variables that correspond to plain concete and 

boundary conditions based on pioneering work by V.S Gapalaratnam and S.P. Shah, 1985 

[44]. The predicted results and experimental data are then used to validate the model for 

quasi-static loading conditions.  
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• Collect physical insights to propose structural health monitoring (SHM) scheme 

for brittle material structures 

In our previous effort, we proposed a damage detection approach by examining 

elastic wave speeds in a brittle material, which are sensitive to changes in the mean size of 

distributed microcracks [42]. In other words, measuring the wave speed in the material 

provides a practical means to infer the damage accrual and consequently its structural 

health. The current effort will allow us to collect physical insights from the structural 

responses of brittle materials in order to design an innovative SHM scheme by exploring 

structural response data.  

1.12 Organization 

Chapter 1 presents background information that includes motivation for current 

research, exploration of Mars environment, in-situ source material availability and current 

state of infrastructure development technologies. Chapter 2 provides a discussion on brittle 

and quasi-brittle materials, including plain concrete and strain-softening response that are 

foundational to the proper understanding of the constitutive model behavior. It also 

contains a literature review on relevant material models. Chapter 3 is a review of the DCA 

model from Zuo et al., 2006, its applicability to the current research effort, advantages and 

limitations. Chapter 4 introduces the new proposed constitutive material DCA_MSD, 

based on DCA and describes its structural implementation. Chapter 5 presents the results 

of the structural analysis of a finite element model that contains the new constitutive model, 

and its correlation to experimental data based on three (3) data sets. Finally, Chapter 6 

covers conclusions from this research and future work. 
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Chapter 2. Brittle and Quasi-Brittle Materials 

2.1 Brief Historical Perspective 

Brittle materials are all around us and have been at the service of humanity for 

millennia. We interact with them daily, ceramics in our dishware and decorations, glass in 

our windows and cellphones, concrete in our infrastructure, rocks in our jewelry, polymers 

in every plastic object, silicon in our microchips; and too many more uses to count. 

Ceramics is one of the most ancient industries and started once humans discovered 

that clay could be found in abundance and formed into objects by first mixing with water 

and then firing. Archeologists have uncovered human-made ceramics that date back as 

early as 28,000 years BC, during the late Paleolithic period in a small prehistoric settlement 

near Brno, in the Czech Republic [32]. Xiaohong Wu and colleagues [31] discovered 

ceramic pottery dating back 20,000 years in the Xianrendong Cave, Jiangxi Province, 

China. 

It is believed that ancient glass manufacture was closely related to pottery making, 

which flourished in Upper Egypt about 8,000 BC. While firing pottery artifacts, the sand 

in calcium oxide (CaO) combined with soda and was heated by the pottery kiln. This may 

have resulted in a colored glaze on the ceramic pot. Experts believe that it was not until 

1,500 BC that glass was produced independently of ceramics and fashioned into separate 

items [32]. 
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Concrete has existed in varying forms for thousands of years too. A concrete floor 

was discovered in a hut in Israel, dated around 7,000 BC. The concrete was made by 

burning limestone to produce quicklime, was then then mixed with water and stone and 

left to set. Knowledge of this lime-based material spread through Egypt and Ancient 

Greece and was adopted by the Romans around 300 BC. The word “concrete” comes from 

the Latin ‘concretus’, that means “grown together or compounded” [33] 

2.2 Brittle and Quasi-Brittle Material Characteristics 

In general terms, brittle materials contain a multitude of microcracks that grow and 

coalesce under load until failure. Also, they have good compressive strength but relatively 

poor tensile strength (hence the need to steel rebars in reinforced concrete). 

Pure brittle materials fracture without plastic deformation and fairly rapidly; and 

they absorb relatively low amounts of energy prior to failure. Typically, there will be an 

audible snap sound when the brittle material breaks. Quasi-brittle materials allow for 

relatively more energy absorption and inelastic behavior before fracture. In this 

‘intermediate” category of fracture, the fracture front is surrounded by a large fracture-

process zone (FPZ) in which progressive distributed microcracking or other damage 

occurs. Quasi-brittle structures cannot be represented by Linear Elastic Fracture Mechanics 

(LEFM), and nonlinear fracture mechanics framework is needed. 

Brittle or quasi-brittle fracture of engineering materials is an active research field, 

that involves different aspects of the mechanics and physics of fracture. Materials include 

metal alloys, polymers, composites, rocks, and ceramics. Concrete is a classical example 

of quasi-brittle materials. 
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Figure 2.1  Plain Concrete Fracture in Tension [40]. 

 

Brittle failure occurs under static, dynamic, thermal and cyclic (fatigue) loading 

conditions. The material damage process is usually very complex as it involves combined 

effects of load (type and application), size and geometry of the component, temperature, 

and environment. Understanding the phenomena tied to the energy dissipation in various 

forms and the identification of microscopic properties and their interactions with 

macroscopic variables are very challenging topics.  

2.3 Fracture Mechanics Discussion 

The intention of the section is to introduce fundamental concepts that aid the 

discussion put forward later in this document and not to provide a comprehensive coverage 

of fracture mechanics, which would be a dissertation or book by itself. 
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 In its most basic form, fracture mechanics is a specialty within solid mechanics 

where the presence of a crack is assumed, and the quantitative relations between the crack 

length, the material’s inherent resistance to crack growth, and the stress at which the crack 

propagates at high speed to cause structural failure [35]. 

 From a historical perspective, fracture mechanics originated within linear elastic 

assumptions, or Linear Elastic Fracture Mechanics (LEFM). Its genesis would not have 

been possible without the pioneering work of Ernst Gustav Kirsch's in the development of 

a linear elastic solution for stresses around a hole in an infinite plate [37]; and the invention 

of the stress concentration factor at the end of the 19th century.   

 

Figure 2.2  Uniaxial Tension - Kirsch's Solution (1898) [36]. 

 

At the hole, r = a, and the radial and shear stresses are zero, 𝜎𝑟𝑟 = 𝜏𝑟𝜃 = 0  while 

the hoop stress is maximum for 𝜃 = ±90°  or  𝜎𝜃𝜃 = 3 𝜎∞; and the ratio is called the Stress 

Concentration Factor (𝐾𝑡 = 3); and widely used in multiple industries. Of note is the that 

the stress at the is independent of the size of the hole itself. This is due to the fact that the 

plate is infinitely large, so the hole's size is inconsequential relative to the plate [35].  
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It will be obvious to the observer that cracks are not circular or spherical, so this 

foundational work was modified and expanded by Charles E. Inglis in 1913. He determined 

the analytical linear elastic solution for the stress field surrounding an ellipse, that at the 

limit, can be applied to an ellipse flattened to form a crack. 

 

   

 

 

  or in a more suitable form; 

 

 

 

 

Figure 2.3  Stresses at Elliptical Holes - Inglis's Solution (1913) [36]. 

 

Where ρ is the radius of curvature at the tip of an ellipse and is related to its length and 

width by  𝜌 =  
𝑏2

𝑎
 . 

Inglis's solution provided two monumental contributions. Firstly, when the radius 

of curvature at the tip goes to zero (such as in a crack), the max stress at crack tips are 

predicted to be infinite, even under minimal load. This is not realistic, as no material can 

withstand infinite stress without experiencing yielding and failure, but it is a tenet of Linear 

Elastic Fracture Mechanics theory. Secondly, the stress at the tip is proportional to the 
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square root of the ellipse's width (a) which is markedly different from the stress state at a 

circular whole (independent of the hole's size). 

Although the solution proved controversial and not representative of physical 

phenomena, it was fundamental in furthering the understanding of crack behavior and 

became a steppingstone for Griffith’s energy-based failure criterion. 

Alan Arnold Griffith's developed his seminal work on an energy-based analysis of 

cracks in 1920 [39]. It is widely considered to be the birth of fracture mechanics. Inspired 

by Inglis’ solution and fully aware of its limitation, he proposed an energy-based approach 

that bypassed the infinite stress prediction while still making good use of the linear elastic 

approach. Griffith’s approach compared the work required to break atomic bonds to the 

strain energy released as a crack grows. In short, to break an atomic bond, an amount of 

work equal to the bond energy must be performed on the system [35]. 

If we consider the strain energy density, U’ (strain energy per unit volume) of a 

linear elastic material under uniaxial tension as: 

 

𝑈′ =
𝜎2

2𝐸
     (2.1) 

 

 

and we consider the Strain Energy Release as the crack grows as  

 

𝑈 =
𝜎2

2𝐸
 𝑉.     (2.2) 
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Griffith’s innovation was to compute the strain energy release associated with crack growth  

for an infinite plate in uniaxial tension; same as Inglis had done a few years before. Griffith 

used Ingils' case of a flattened ellipse to form a crack and integrated the stress and strain 

fields to obtain the strain energy as a function of crack length [35]. He obtained the 

following result for one-half of the infinite plate: 

 

𝑈 =
𝜎2

2𝐸
 𝑉 −  

𝜎2

2𝐸
 𝐵 𝜋 𝑎2,    (2.3) 

 

which is the baseline value (for zero crack length) and a term that progressively reduces 

the total value with crack growth (quadratic relationship).  

If we also consider a crack growing in a solid to a length “a”, that has broken several 

atomic bonds along the way, each requiring a certain amount of work to overcome the 

atomic bond energy. The total energy (work) can be expressed as 

 

𝐸𝑏𝑜𝑛𝑑 = 2γ𝑠𝑎 𝐵,     (2.4) 

 

where γ𝑠 represents the energy required to break atomic bonds per unit surface area created 

by the crack; 𝑎 𝐵 is the surface area where 𝑎 is the crack length and  𝐵 is the part thickness, 

and two (2) is needed to account for both free surfaces of the crack.  

Then, combining both expressions, the total energy of the system is: 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 2γ𝑠𝑎 𝐵 +  
𝜎2

2𝐸
 𝑉 −  

𝜎2

2𝐸
 𝐵 𝜋 𝑎2.   (2.5) 
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Consequently, for small crack lengths the crack grows in a stable manner, increasing the 

total energy and requiring energy input for growth. Nevertheless, at longer crack lengths, 

further growth leads to a decrease in total energy and the crack can grow in an unstable 

matter until fracture, without any additional external input. We find this threshold by 

differentiating the total energy with respect to the crack length and equating it to zero, 

 

𝜎𝑓 = √
2γ𝑠𝐸

𝜋𝑎
=  √

𝒢𝑐𝐸

𝜋𝑎
 ,     (2.6) 

 

where 𝒢𝑐  is the Griffith Critical Energy Release Rate. Additionally, it is also convenient 

to resolve for 𝒢𝑐 to introduce the Stress Intensity Factor (𝐾𝑐), as done by Irwin in 1957, 

 

𝐾𝑐 =  𝜎𝑓  √𝜋𝑎     (2.7) 

 

𝒢𝑐 =
𝐾𝑐

2

𝐸
 ,     (2.8) 

2.4 Strain Softening 

Strain softening is the increase in compliance under increased strain that results in 

reduction of stress. This phenomenon is seen in brittle and quasi-brittle materials, such as 

concrete, rocks, soil, ceramics and fiber composites. Strain softening occurs in tension, 

compression and shear. The materials’ brittleness and heterogeneity are considered the 

causes of strain-softening. The phenomenon’s mechanism consists of progressive damage 

accrual, such as dispersed microcracking, void formation or loss of interparticle contacts 

[48].  
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It has been demonstrated that the phenomenon frequently affects finite-size regions 

of the material, depending on material type [48]. This indicates that strain softening could 

be modeled through Continuum Damage Mechanics (CDM), where an averaging approach 

could be employed and micromechanical damage effects are smeared over the softening 

region.  

 

 

Figure 2.4  Strain Softening Response of Concrete in Tension [44]. 

 

 

2.5 Plain Concrete 

Concrete has been the most widely used material for terrestrial infrastructure 

development for centuries. Plain concrete, also known as plain cement concrete or PCC, is 

a quasi-brittle material, with high compressive strength and relatively low tensile strength 

and strain capability. Plain concrete implies that no reinforcement is incorporated into the 
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construction, that would increase its structural capability, especially in tension. The main 

constituents are cement, aggregates and water. These types of concrete are mainly used in 

pavement, floors and building components where high tensile strength is not required.  

2.6 Material Models Review  

Brittle material’s response can be studied from two fronts, using a fracture 

mechanics approach or using a continuum damage mechanics approach.  

Fracture mechanics (FM), which came of age during World War II, studies the 

fracture phenomenon by assuming presence of a single one macroscopic crack (or at most 

a small number of discrete cracks) and treating it at a macro-continuum level. In this 

framework, the crack has a well-defined geometry and the surrounding material 

microstructure is generally ignored, as well as the interaction between the various local 

microdefects. This approach has yielded many useful results in the analysis of ductile 

materials and structures. However, its applicability in brittle materials where the damage 

is the result of a large amount of microcracks, has been limited [50]. 

On the other hand, Continuum Damage Mechanics (CDM) accounts for defects by 

using a homogenization concept to describe their growth macroscopically. This allows the 

study of the response of microdefects while remaining in the framework of continuum 

mechanics (CM) [50]. Several continuum damage models have been developed to describe 

the dynamic response of brittle materials and are currently in use. Their approaches range 

from the primarily phenomenological models to the more accurate micromechanics-based 

models. The latter often lead to tensorial description of the material responses [13]. In 

phenomenological models the damage rate equations are postulated from irreversible 

thermodynamic potentials or using empirical results. The micromechanical models 
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normally consider a single crack under stress at the microscopic level and then use 

statistical arguments to study the macroscopic response [13]. An example of the 

phenomenological approach would be that of Lemaitre and Chaboche, 1990 [50] and more 

recently Chen and Bu (2016) [52]. Among the micromechanical models, the works of 

Dienes and coworkers (Dienes, 1978, 1996; Dienes and Margolin, 1980; Dienes et al., 

2006),  Addessio and Johnson, 1990; Lewis and Schreyer, 1996 are of particular interest 

for this work [13-18]. More recently, Zuo et al. (2006) developed the Dominant Crack 

Algorithm (DCA) [13], a micromechanical, rate-dependent model for brittle materials 

under cyclic loading. Very recently, Yao, Xia and Liu (2018) [52] utilized DCA to 

investigate the influence of thermal damage on the dynamic tensile strength of two mortars. 

The Particle Swarm Optimization (PSO) method was utilized to obtain optimized values 

of DCA model parameters. Their work demonstrated adequate correlation up to maximum 

tensile stress, but did not show full characterization of the strain-softening response.  

Although DCA proves robust for low compressive strains, it is inadequate for high 

velocity impact when the presence of shockwaves becomes relevant. Deganis L. (the 

author) and Zuo Q. H. improved DCA in 2011 [53], by incorporating porosity and a 

nonlinear equation of state (EOS). The new model (DCA_NEOS) accounts for shockwaves 

in the material and broadened the range of the original model to describe the material 

response during high velocity impact and spall events. 

Zuo, Disilvestro and Richter, 2010 [54] also improved DCA by incorporating 

plastic deformation of the material, where plasticity is considered through additive 

decomposition of the total strain rate. This approach was utilized for concrete pavement 

analysis, under cyclic loading, but no correlation was performed [47]. 
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The implementation of an improved constitutive model based on DCA is 

advantageous for many reasons, such as efficient integration into Finite Element Models 

(FEM), physics-based structural predictions that don’t require successive 

tunning/corrections and an implicit algorithm that does not require many steps for very low 

strain rate phenomena. Furthermore, DCA is currently being used for high strain rate 

phenomena of pure brittle materials such as impact and explosions, and has already been 

proved effective under those highly dynamic conditions [13] [19] [49]. This renders DCA 

as a flexible model that can represent various brittle materials and loading conditions 

(quasi-static and dynamic events). This is particularly useful when researching 

extraterrestrial in-situ materials and usage environments.
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Chapter 3. Dominant Crack Algorithm Damage Model Development  

3.1 Introduction 

Damage of a material refers to the reduction in the stiffness of the material caused 

by the nucleation, growth and coalescence of defects (microcracks or cavities). Continuum 

damage mechanics (CDM) is a modeling approach in which damage is incorporated as a 

feature of the constitutive equation for the material; often damage is considered as a state 

variable (it can be scalar, vector, or tensor) whose evolution is postulated as a part of model 

assumption. Continuum damage mechanics (CDM) has proved to be a useful analysis tool 

to study the behavior of engineering materials undergoing several types of damage 

including fatigue, ductile damage, and brittle damage.  

A basic requirement in applying the CDM framework is the existence of a large 

number of small defects in the representative volume element (RVE). This condition allows 

for the statistical homogenization simplification.  

The damage evolution in a ceramic starts by increasing the compliance early in the 

loading process affecting the elastic response and causing a behavior similar to ductility 

for an elastic-plastic material. A saturation effect of the number of defects per unit volume 

is usually experienced in brittle materials.  

The damage evolution then slows down only to rapidly increase at the end when 

the damage accumulation is enough to cause complete failure of the material [12] 
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The following chapter reviews the DCA model to provide an overall understanding 

of the model, its advantages and limitations. 

The DCA model is a continuum damage model developed by Zuo, et al. in 2006  

[13] based on the concept of the dominant crack. This material model follows the 

micromechanical approach that considers the behavior of a single defect and studies the 

macro-mechanical response by the use of statistical arguments. Before delving completely 

in understanding the model, it is prudent to review two previous models that served as a 

guide and eventually were used as a platform for the development of DCA.  

The works by Dienes, et al. [13] led to the development of a micromechanical 

model known as Statistical Crack Mechanics (SCRAM). This model was conceived with 

the purpose of studying the dynamic deformation and fragmentation of brittle materials. 

The SCRAM model usually considers material isotropy as an initial condition, but 

anisotropy is dealt with by studying the growth of cracks with several orientations 

(typically 9, but if needed, more orientations can also been considered). 

The foundational work by Dienes, et al. was followed by Addessio and Johnson 

[14]. Based on Dienes’ theoretical framework they developed the ISOSCM model, which 

simplified SCRAM to only consider isotropic damage phenomena. Their goal was to be 

able to study the dynamic behavior of brittle materials under nearly-isotropic stress state, 

which is the case in high velocity impact of plates.  

The two main assumptions of ISOSCM are that the crack distribution remains 

isotropic during the damage evolution, and that the crack-size distribution can be 

represented by an exponential function of the crack size. Also, by averaging the strain and 

instability condition for a single crack over all crack orientations they were able to 



35 

 

formulate the macroscopic crack strains and isotropic damage surface. The latter depends 

only on the mean crack size, von Mises stress and the pressure (p), and takes two forms 

depending on the sign of the pressure. The damage surface becomes the Drucker-Prager 

granular materials’ plastic yield surface for compression (p>0), while in tension (p<0) 

approaches the Gurson surface. The Gurson surface models damage in a ductile material 

caused by the growth of voids under tensile stress.  

In the ISOSCM model, the damage variable is based on the initial number of cracks’ 

density, which is constant throughout the deformation event, and the mean crack size. 

Furthermore, the damage evolution is given by an increase in the mean crack size when the 

stress state is outside the damage surface. ISOSCM was successfully employed in impact 

modeling of ceramics and proved popular among researchers working on damage modeling 

due to its basis in micromechanics, numerical efficiency and mathematical simplicity [13]. 

This is the case for Zuo, et al., 2006, who adopted ISOSCM for their own damage model 

(DCA) development. Compared with the ISOSCM model, the new model (DCA) has some 

distinct differences. In DCA the damage surface is obtained by applying the instability 

condition to the “dominant crack” and not by averaging over all the crack orientations [14]. 

The extended Griffith instability criterion ( , , )F cn
σ n  adopted in the DCA model can be 

used for open and closed cracks with friction. The “dominant crack” represents the crack 

with the critical, or most unstable, orientation ( )c
n  under the current state of stress. To 

account for this critical crack orientation, Zuo and Dienes [15][16] determined the most 

unstable crack orientations for every possible stress state and developed a damage surface 

based on the applied stress and crack size, 0),( =cF σ .  



36 

 

 

Figure 3.1 DCA Initial Condition. 

 

Among the issues in ISOSCM that were improved in DCA are 

1) Discontinuity in the damage surface.  

2) Crack-opening strain only dependent on pressure (p) that caused 

inconsistencies.  

3) Lack of physical justification in the damage growth rate exponential 

function. 

 

The first two issues present thermodynamic inconsistencies under certain cyclic 

load paths that would allow for energy creation. The DCA model aims at solving these 

inconsistencies and provides a physical basis for its approach [13]. 

3.2 DCA Improvements 

3.2.1 Continuous Damage Surface 

In the ISOSCM model, when the pressure change signs (for example, from 

compression to tension), the damage surface transforms from the Drucker-Prager type to 
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that similar to the Gurson surface. This causes a discontinuity in the surface that leads to 

thermodynamic inconsistency [13]. 

 

 

 

Figure 3.2 Damage Surface Comparison [13]. 

 

The damage surface proposed by Zuo, et al. (2006) solves the discontinuity and 

better characterizes brittle behavior. In DCA, the material suffers damage when the crack 

with average size ( )c  becomes unstable in some orientation. This is caused by having a 

stress value higher than the critical stress for that orientation. Also, the cracks are assumed 

to be penny-shaped and either open or closed (no partial openings). 

As mentioned earlier, the Griffith instability condition is used in DCA and can be 

expressed in terms of the energy-release rate as 
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( , , )
( , , ) 1 0

2

g c
F c


 − n σ n

σ n ,      (3.1) 

 

where   is the effective surface energy of the material (hence 2  is the critical energy 

release rate) and ),,( cg nσ  is the release rate. The energy release rate takes the form: 

 

( , ) 4 (1 )
( , , )

(2 )

f c
g c

G



 

−
=

−

σ n
σ n .                                       (3.2) 

 

The stress function ),( nσf in the energy release rate depends on the state of the 

crack (open or closed). If the normal component of traction is tensile )0( n , the crack 

would be open and the function becomes [13] 
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1),( nn sf +




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


−= 


nσ ,                                          (3.3) 

 

where the shear )( ns and normal )( n stresses affect the instability criterion and are defined 

as 

σnn =n ,                    ( )22
σnnnσn −=ns .                          (3.4) 
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On the other hand, when the normal component of traction is compressive 

)0( n , the crack is closed. Applying the Coulomb friction law, the expression becomes 

[13] 

( ) )(),(
2

nnnn sHsf  ++=nσ ,                       (3.5) 

 

where the static friction coefficient )(  helps to stabilize the crack [14]. The Heaviside 

function (H) is one when the argument if positive and zero otherwise. 

For a set stress level and crack size, the energy release rate ),,( cg nσ is maximized 

at a specific critical orientation ( )c
n  where the crack becomes unstable with the lowest 

stress. The cracks that show that orientation are the dominant cracks. 

Then, for the dominant crack c
nn = , and 

 

( , ) ( , , )cF c F c n
σ σ n .                                             (3.6) 

 

The damage surface then becomes ( , ) 0F c =σ , and the material suffers damage and 

show irreversible deformation when the stress state is outside the damage surface (

( , ) 0F c σ ). Zuo and Dienes [15][16] determined the critical orientation associated to 

every stress state possible, and the minimum stress that caused instability. In other words, 

they found the damage surface for each stress state. Those stress states are  

1) Tension (Fo); 

2) Compression (Fc); 

3) Combined opening and shear (Fos); 
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4) Pure Shear (Fps). 

The forms of each damage surface are briefly discussed in the following sections. 

3.2.1.1 Pure Tension Damage Surface 1 2 3( 0)      

For this stress state, all the cracks are open and the damage surface takes the form 

of the Rankine maximum tensile criterion for brittle materials: 

 

1( , ) 1 0
( ) / 1 / 2

t

cr

F c
S c


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 − =

−
σ                                       (3.7) 
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.                                               (3.8) 

 

The critical crack has the same orientation of the maximum principal stress,  

1en =c
. 

3.2.1.2 Pure Compression Damage Surface )0( 321    

For this stress state, all the cracks are closed and the damage surface takes the form 

of the Mohr-Coulomb criterion for brittle materials, where the friction helps to stabilize the 

crack: 

 

( ) ( )2 2

1 31 1
( , , ) 1 0

2 ( )

c

cr

F c
S c

     


+ + − + −
 − =σ .                      (3.9) 
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The critical orientation depends on the friction coefficient, and the angle between 

the minimum principal stress direction )( 3e  and c
n  can be defined as 

 

( )1 2tan 1c  − + + .                                             (3.10) 

 

3.2.1.3 Combined Tension-Compression Damage Surface )0,0( 31    

For this stress state, some cracks are open and others are closed. The form of the 

damage surface then depends on the relation of magnitudes of the maximum and minimum 

principal stresses. If 0
1

3 



r  is the stress biaxiality, then the following stress states can 

be determined. 

3.2.1.3.1 Pure Tension ( (1 ) 0)r− −      

For this stress state, the damage surface takes the same form as in Section 3.2.1.1 

Pure Tension Damage Surface . The critical orientation is also the same. 

3.2.1.3.2 Combined Tensile-Shear ))1(1( −−− r  

For this stress state, the damage surface is elliptical and influenced by all three 

modes [13]: 
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The critical orientation depends on the Poisson’s ratio and the stress biaxiality, and 

the angle between the maximum principal stress )( 1e  and c
n  can be defined as 

 

𝜃𝑜 =
1

2
cos−1 {(

2

𝜈
− 1)

1+𝑟

1−𝑟
}.                                          (3.12) 

 

3.2.1.3.3 Pure Compression ( ) )1(
2

2  ++−r  

For this stress state, the damage surface takes the same form as in Section 3.2.1.2 

Pure Compression Damage Surface )0( 321   . The critical orientation is also the 

same. 

3.2.1.3.4 Pure Shear ( ) )11(
2

2 −++− r  

For this stress state )0( =n , the damage surface is hyperbolic: 

 

1 3

2
( , ) 1 0

( )

ps

cr

F c
S c

 
= − − =σ .                                        (3.13) 

 

The critical orientation depends on the stress biaxiality, and the angle between the 

maximum principal stress )( 1e  and c
n  can be defined as 

 

1tan (1/ )s r −= − .                                               (3.14) 
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3.2.2 Modified Crack Opening Strain 

To understand the concept of crack strain, let us consider a representative volume 

of the material where there are a large number of small microcracks, randomly orientated 

and distributed. Under the applied stress, some of the cracks may be opened and others 

may slide (or be locked if there is enough friction on the crack surfaces), depending on the 

orientation of the crack and the state of the stress. These "extra," discontinuous 

displacements over the crack surfaces, when homogenized over a representative volume 

element (RVE) of the material, are the crack strains, which gives rise to an increase in the 

compliance of material. For this reason, accurately modeling the crack response is of vital 

importance in the macroscopic modeling of the material. 

The crack number density would be the starting point to study this concept. 

Empirical research on this subject [13] led to an exponential relation between the crack 

number density and the crack radius: 

 


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tc

c

tc

N
tcn

nn
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n .                                      (3.15) 

 

In equation (3.15), the initial crack number density )(0 nN depends on the 

orientation of the crack, and the average crack radius ),( tc n  evolves with time while also 

depending on the orientation. The time independence of the initial crack number density 

assumes that crack nucleation is not present in this model. Addessio and Johnson [14] 

adopted this concept for the development of ISOSCM with a slight simplification. In the 

original function, the material anisotropy is dependent on the orientation for both ),( tc n  
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and )(0 nN . Since ISOSCM only considers isotropic states, that dependence can be 

overlooked resulting in a simplified version of the function: 
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 −
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This concept is well suited for materials under stress states that are quasi-

hydrostatic, like in plate impact. Based on previous works by Dienes, Addessio and 

Johnson [13] the total crack strain is defined as, 

 

( , ) ( , ) ( , )o s

c c ct t t= +σ σ σε ε ε .                                         (3.17) 

 

The total crack strain is then influenced by the opening )),(( to

c σ and shearing 

)),(( ts

c σ of the crack: 
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The Heaviside function in equation (3.19) assures that the crack opening strain only 

has an influence under tension. This form for the opening crack strain is consistent with 

crack mechanics when all three principal stresses have the same sign [13]. However, when 

this is not the case (stresses have mixed signs), the sign of the pressure does not reflect the 
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crack status (open or closed). Under such a stress state, some cracks are open and some 

closed, under the same pressure. This problem was solved by Lewis and Schreyer [17][18] 

who put forward an approximate expression. This expression uses the activated crack-

opening strain. This computationally efficient approach has its main characteristic in using 

projection operators to decouple the stress tensor and disregard the compressive stress in 

the crack opening strain: 

 

σPPPPσε
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The spherical and deviatoric projection operators are defined as ( )iiP 
3

1sp
   and   

spd
PIP −  respectively. The positive projection operator is defined as 

              

+++  QQP ,                                                  (3.21) 

 

where Q+ is a symmetric second order tensor known as the positive spectral tensor of stress 

as shown below:  

 

i

i

iiH eeQ 
=

+ 
3,1

][ .                                             (3.22) 

 

Zuo, et al. [13] adopts the same approach for DCA but with a slightly different form 

for the positive projection operator. 
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The spectral tensor can be used to define the projected stress, which renders 

 

( )σQQσPσ
++++ = .                                           (3.23) 

 

The projector operators and spectral tensor take different values depending on the 

stress state. This allows for the projected stress to discard the compressive principal 

components of stress while conserving the tensile ones [13]. 

The total crack strain in DCA can then be defined as 
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3.2.3 Compliance and Damage Tensors 

The total strain in a damaged material is the sum of the matrix (crack-free solid) 

strain and the crack strain: 

 

),( ccm σεεε += ,                              (3.26) 

 

where the matrix strain is a function of the compliance tensor )( mC  
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σCε mm =                           (3.27) 
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Replacing equations (3.27) and (3.24) into (3.26), the total strain can be rewritten 

as 
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Now, if the damage tensor )(cD  is defined as an increase in compliance due to 

damage or crack growth 

σDσε )(),( ccc = ,                                                (3.31) 

 

the current compliance )(cC is dependent on both the elastic effects and damage 

 

 )()( cc m DCC += ,                                               (3.32) 

 

and the total strain can be rewritten as 

 

σCσε )(),( cc = .                                                 (3.33) 
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The damage tensor would then take the form, 
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This robust form of the damage tensor allows for isotropic material response for 

pure tensile or compressive stress states, while reflecting anisotropic behavior for stress 

states where the principal stresses have mixed signs.  

The evolution of damage variable, defined as 3

0)( cNcd = , is a useful way to the 

gauge the damage in the material. This variable is mainly dependent on the mean crack 

size )(c , since the number density of cracks is a material property that remains constant. 

Then the damage in the material is governed by the growth of the mean crack size, which 

depends on the damage surface and damage evolution law. Addessio and Johnson (1990) 

[14] postulated that 𝑑(𝑐̄) = 2.0 approximately corresponds to the complete loss of load-

carrying capacity or failure of a brittle material.  

3.2.4 Modified Damage Evolution Law 

One of DCA’s main improvements over ISOSCM is its new damage evolution law. 

Addessio and Johnson [14] use a rate-dependent exponential function for the damage 

evolution when the stress state is outside the damage surface. Though the exponential 

function is plausible (it is analogous to the overstress formulation in rate-dependent 

plasticity) and yields reasonable results, it is not based on physical arguments. Zuo, et al. 

(2006) formulated the damage evolution law using the velocity of crack propagation of the 
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dominant crack [13]. This approach relates the crack growth law to the applied energy-

release rate: 

 

max

2
1

( , , )c
c c

g cσ n


= − ,                                          (3.35) 

 

where the angled bracket is the Macaulay bracket, which takes the value of the argument 

when positive and zero otherwise. 

The terminal speed for crack growth maxc depends on the state of the crack with the 

critical orientation. If the crack is open, 

 

0)(  ccc

n n σnn ,                                            (3.36) 

 

and the terminal speed becomes the Rayleigh wave speed CR. Conversely, if the crack is 

closed, i.e., 

0)( c

n n ,                                                     (3.37) 

 

then the terminal speed takes the value of the shear wave speed of the elastic material.  

Recalling the Griffith instability condition (3.1), the damage evolution law can be 

expressed in terms of the damage function:  
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It follows from equation (3.38) that the mean crack size grows when the applied 

stress state is outside the damage surface. Furthermore, the rate of damage accumulation 

(via crack growth) increases as the distance of the current stress state from the damage 

surface. 

3.3 Numerical Algorithm 

Zuo, et al. (2006) present two numerical algorithms to solve the constitutive 

equation 


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)()( ,                (3.39) 

 

where the strain rate due to crack growth has two components. One component is elastic 

and is related to the change in stress rate )( d

cε , while the other one is inelastic and is caused 

by damage in the material due to crack growth )( gr

cε . The elastic component of the strain 

rate can be defined as 

d

cme εεε  += .                                                    (3.40) 

 

When modeling the material response, the strain rate is usually the input variable 

and the stress rate is the unknown. Due to this, it is advisable to rewrite the 

expressions (3.38) and (3.39) in a more useful form as 
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where  

σDε )(
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and  
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Equations (3.41) and (3.43) can be integrated numerically using
nn ttt −= +1
as the 

time step and t= εε  as the total strain increment. DCA can perform the numerical 

integrations by means of an implicit algorithm or an explicit one. They both revise the 

material state after each time step ),( 11 ++ nn cσ , based on the initial state at the beginning of 

the step ),( nn cσ .  

The implicit approach requires iterations and is the more complex option. 

Nevertheless, its convergence proves time step independent and the results remain accurate 

for larger time steps.  Although the implicit algorithm is a more robust general approach, 

its advantages may not be as relevant for some special cases. When the time step considered 

is very small due to the nature of the phenomenon, an explicit algorithm may prove the 

most efficient approach. This is the case for high-rate events such as chemical explosions 

and high velocity impacts. Furthermore, the explicit algorithm is intrinsically simpler due 

to the fact that it that does not require iterations. The downside of using this approach is its 

instability and low accuracy when considering large time steps. This approach is the one 

followed in ISOSCM while the implicit algorithm is favored by Zuo, et al. (2006) for its 

benchmark calculations in DCA.  
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The stress at the end of the step 1+n
σ  can be determined by using the backward 

Euler method (implicit) as 
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Since the initial stress
n

σ  is carried from the previous time step and the strain 

increment ε  is fixed, the only unknown is the final mean crack size 1+nc . In the numerical 

algorithm, we first check if the step actually involves crack growth. This is done by 

checking the trial stress against the current damage surface. The trial stress state 
tr

σ  is the 

stress in the material if the step is purely elastic (i.e., it does not involve crack growth 

)( 1 nn cc =+
): 

( ) εDCσσ ++
−1

)( n

m

ntr c .                                       (3.45) 

 

When the trial and initial stresses are inside or on the damage surface 

)0),(,0),((  nnntr cFcF σσ , the step is elastic and the trial stress is the final stress. If 

not, the step suffered crack growth and the trial stress does not represent the stress state at 

the end of the step. For these cases, DCA calculates the final stress using two algorithms 

depending on the trial stress position with respect damage surface.  

If the trial stress is outside the damage surface ),0),(( ntr cF σ  the crack growth 

becomes 
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The final stress 1+n
σ  can be calculated using expression (3.44), that only requires 1+nc . 

This nonlinear system can be solved by an iterative method using the trial state as initial 

condition. The solution would also be conditioned to be outside the damage surface

)0),(( 11 ++ nn cF σ .  

 

Figure 3.3 Stress Correction Algorithm 0),( ntr cF σ . 

 

The second algorithm would cover the case when the trial stress is inside or on the 

damage surface ),0),(( ntr cF σ  but the initial state is outside )0),(( nn cF σ . This would 

imply that there is unloading during the step. In the first moment of the time step, the 
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material still suffers damage by crack growth (possibly due to inertia) until the diminishing 

stress reaches the damage surface. From the beginning of the step up to this point, the crack 

growth decelerates to an equilibrium state. From this point on, the unloading is perfectly 

elastic [13]. 

The equilibrium condition is defined by equation (3.43), and points to the complete 

deceleration of the crack growth when the stress state reaches the damage surface

)0),(( =eqeq cF σ  at tt eq  . 

By solving equations (3.41)-(3.43) for the new equilibrium sub-step 
eqt  
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And rearranging equation (5.48) to get 
eqt , we obtain 
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If expression (3.50) is used in (3.47), the eq
σ  reduces to a form only dependent on 

the crack sized at the equilibrium stress state eqc . The system can now be solved by a 

similar algorithm as the one used in equation (3.46). 

The remaining of the step does not have inelastic effects and  
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Figure 3.4 Stress Correction Algorithm 0),( ntr cF σ and 0),( nn cF σ . 

 

As previously mentioned, Addessio and Johnson adopt an explicit algorithm to 

solve the constitutive equations. This approach avoids the use of iterations and calculates 
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the state of the material at the end of the step based solely on the conditions at the beginning 

of the step. 

Then,  
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Equations (3.53) and (3.54) provide the increments necessary to define the state at 

the end of the step: 

ccc nn +=+1
                                                  (3.55) 
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3.4 DCA Model Stability and Well-posedness  

It is widely recognized that classical continuum models, without an internal length 

scale, lead to excessive mesh dependence in finite elements simulations when strain-

softening models are used, and are unable to reproduce the size effect commonly observed 

in quasi-brittle failure [56][57][58][59]. Furthermore, damage accrual tends to localize in 

the smallest band that can be captured by the spatial discretization, which is ultimately set 

by the size of a single element in the mesh [56]. This strain-softening behavior can cause 

the Initial-Boundary-Value Problem (IBVP) associated with the model to be 
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mathematically ill-posed if the model does not take strain-rate or spatially nonlocal effects 

into account [60][61]. In this case, ill-posedness implies that small differences in initial-

boundary conditions can lead to significantly different solutions (even for a finite time) and 

often results in lack of solution convergence upon mesh refinement.  

In the Dominant Crack Algorithm (DCA), the rate-dependent damage evolution 

law (Eq. 3.28) is analogous to the classical over-stress model frequently used in rate-

dependent plasticity [13]. The need for incorporating rate-dependence in plasticity models, 

especially when material response involve softening and localization, has long been 

acknowledged [62]. The rate-effects provide a length-scale needed in a well-posed 

initial/boundary value problem [13]. Kunin and Zuo, 2016 [60] investigated the stability 

and well-posedness of DCA by examining the behavior of dynamic perturbations to the 

steady-state solution of uniaxial-stress loading. For a well-posed boundary-value problem, 

the introduction of perturbations of large wave number (small wave length) due to mesh 

refinement should not cause the numerical solution to diverge (as the mesh is refined). It 

was then shown that by incorporating the strain-rate effect in DCA, perturbations of all 

wave lengths remain bounded for finite times, making the problem well-posed. The 

research also demonstrated that the corresponding rate independent model was ill-posed, 

and perturbations grow unbounded with the wave number, even for finite times [60].  
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Chapter 4. New Constitutive Model and Structural Implementation 

4.1 Introduction 

This section presents the current modeling effort. It includes the specific 

implementation of the DCA model for uniaxial loading, the incorporation of a proposed 

improvement to expand the usage of the model for very low-strain rate phenomena in 

quasi-brittle materials and finally the application in a simplified finite element model.  

The structural implementation is performed in a 1-D FEM, under uniaxial strain 

(controlled displacement). Then, it consists of: 

- Deriving constitutive model for uniaxial tensile loading; 

- Reducing the constitutive model to 1-D for to use in rod elements; 

- Constructing local and global matrices for FEM; 

- Determining model parameters for material and strain-rate of interest; 

- Solving the Equation of Motion (ODE).  

4.2 DCA for Uniaxial-Strain Loading  

Assume a uniaxial strain loading with a constant strain rate: 1 1 1( ) ( )t t= ε e e , 

where 1 0( ) 0t t =   , with 1e  representing the strain direction. The stress tensor becomes 

( )1 1 1 2 2 2 3 3( ) ( ) ( )t t t =  +  + σ e e e e e e , where 1( )t  and 2 ( )t  are, respectively, the 

axial and transverse stresses, and 1 2( ) ( ) 0t t   . This case corresponds to Case B.2 of 
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Refence [13] for which the positive projection operator becomes the identity tensor, and 

the damage tensor is isotropic and given by 

 

3

0

5 5
( )

2 2

e d spc N c





− 
= + 

− 
D P P .              (4.1) 

 

Also, substituting Eqs. (4.1) and (3.28) into Eq. (3.32) returns the compliance tensor of the 

material: 

 3 3

0 0

1 5 1 5
( )

3 2 2 2

e sp e dc N c N c
K G


 



−   
= + + +   

−   
C P P .  (4.2) 

 

The spherical and deviatoric projection operators have previously been defined as 

( )iiP 
3

1sp
   and   spd

PIP −  respectively, where sp
P  and d

P  are orthogonal. Then, 

the instantaneous elasticity tensor is: 

 

 1 ˆˆ( ) ( ) 3 ( ) 2 ( )sp dc c K c G c−= = +E C P P                           (4.3) 

 

and remains isotropic with reduced moduli, depending on the mean crack size [16] 

 

3

0

ˆ ( )
1 e

t

G
G c

N c
=

+
;  

( )( )5 1128

15 2

e

t

 




− −


−
  (4.4) 
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3

0

ˆ ( )
1 e

K
K c

N c
=

+
;  

264 1

3 1 2

e  




−


−
.        (4.5) 

 

Considering uniaxial strain loading, the stress-strain response becomes [42] 

 

( )1 2 1
ˆ2G t  − =       (4.6) 

 

 ( )1 2 1
ˆ2 3K t  + = ,      (4.7) 

and solving for 1( )t  and 2 ( )t : 

 ( ) ( )1 1( )t E c t =       (4.8)  

 

 ( ) ( ) ( )2 1t c t =        (4.9)  

 

where, for convenience, we define the uniaxial-strain modulus ( )E c  and the Lame 

constant ( )c of the damaged material as 

 

 
4 ˆˆ( )
3

E c K G +       (4.10)  

 

 ( )
2 ˆˆ
3

c K G  − ,     (4.11)  
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where K̂  and Ĝ  are calculated by Eqs. (4.4)-(4.5). Then, with a strain history input of 

1( )t , the stress can be determined, when the crack size ( )c t  is calculated.  

The damage evolution expression for ( , )F cσ  under a general stress state were 

given previously by Eq. (3.38). For uniaxial-strain tension, where the three principal 

stresses are tensile, the damage surface reduces to that of the Rankine maximum tensile 

criterion for brittle materials: 

 1( , ) 1
( )cr

F c
c




= −σ ,  ( )

1
cr

G
c

c

 





−
,   (4.12)  

 

where 1  is the largest principal stress, ( )cr c  is the tensile strength of the material, 

which decreases as the mean crack size c grows.  

For uniaxial strain loading, a governing equation for ( )c t  is obtained by 

substituting Eq. (4.12) into (3.38): 

 

max

1

1
1

1 1
( )cr

c c

c





 
 
 = −
 

+ −  
 

      (4.13) 

 

and by resolving ( )1 t  in (4.8) and (4.13), 
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( )

max

1

1
1

( )
1 1

( )cr

c c
E c t

c





 
 
 

= −
 
 + −
 
 

.     (4.14) 

 

For the constant-rate loading considered, the crack size does not grow when the 

applied strain is below a limit: 

0c = ,  ( ) 0c t c= ;  for  ( )1 10 ct    

and 1c  is the strain required for crack growth initiation and is determined by 0( , ) 0F c =σ  

 

0
1

0

( )

( )

cr
c

c

E c


 = .      (4.15) 

 

For ( )1 1ct  , then ( , ) 0F c σ , and 0c  . The mean crack size ( )c t  is found by solving 

Eq. (4.14).  Due to the nonlinear and complex nature of Eq. (4.13), a numerical solution is 

employed. Considering a time step of 
1n nt t t+  − , let 

nc  be the crack size at the beginning 

of the step and ( )1 1

1 1

n nt + +  be the applied axial strain at the end of the step,  then an 

implicit integration of Eq. (36) can be written as 

 

 ( )
11

1

1 1

max 1

( )
1 0

( )

nn n
n cr

n n

cc c
f c

c t E c





++
+

+ +

 −
 − − = 

  
,    (4.16) 
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where 
1nc +
 in the nonlinear algebraic equation can be calculated by Newton iteration. A 

stand-alone MATLAB code has been written which implements the concepts presented 

above. 

4.3 DCA with Matrix Shear Damage (DCA_MSD)  

The DCA model is a continuum damage model, grounded in micro-mechanics that 

provides physics-based predictions, and can be efficiently implemented through implicit 

algorithms in finite element models. These characteristics make it very appealing for 

adoption on structural analysis, especially for materials where the material and model 

variables characterization will be very challenging, such as extraterrestrial applications.   

The DCA model has its origins on highly dynamic phenomena of pure brittle 

materials, such as impact and explosions [13] [19]. It has proved effective under those 

conditions [49]. Conversely, adequate model correlation at low strain rates of quasi-brittle 

materials has not been established.  

It will be shown later in this document that the current formulation of DCA does 

not provide adequate correlation through the softening phase of the response for plain 

concrete under tension at quasi-static loads.  

The intention of this work is to expand the utility of the DCA model for very low-

strain rate phenomena in plain concrete (Earth, Lunar or Martian concrete). A model 

improvement is then proposed to better represent the physics under very-low strain rate 

phenomena of quasi-brittle materials and improve correlation. The model improvement 

postulates a degradation of the Shear Modulus of the matrix (G ) based on the evolution of 

the mean crack size ( )c t :  
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𝐺(𝑐̅) = 𝑓(𝑐̅).     (4.17) 

 

DCA assumes the material matrix as linear isotropic and G remains constant 

throughout the deformation event. This decouples the matrix response to crack damage but 

also implies that the matrix retains shear stiffness more efficiently than the experimental 

results for very low strain rate of quasi-brittle materials seem to indicate. Additionally, the 

DCA approach may be more adequate for high strain rate phenomena, like impacts and 

explosions, when the impulsive input function fights the inertia of the material composition 

and is not able to fully transfer its impact with the matrix. This is not true for low strain 

rates, when the inertial effect is negligeable, and the input load or displacement effects 

have time to distribute its impact though every component of the material. Also, as 

discussed before, the crack number density is time independent and remains constant 

throughout the response, retaining its original value (N0). This is numerically efficient but 

implies that, not only there is no consideration for crack nucleation and coalescence, but 

also that the defects in the representative volume element (RVE) being activated by the 

stress state also remain constant. This again, may not be true for lower strain rates, and 

material that was considered intact (matrix) during higher strain rate phenomena (contained 

microcracks that were not active in the response) is now affected. In other words, the total 

damage is more pervasive than what is currently being captured by DCA.  

The current work then proposes a more coupled effect where the crack growth also 

impacts the matrix material properties through the degradation of the matrix shear modulus 

(G ), which itself affects the crack growth though its effect on 𝐾, 𝛽𝑒, 𝜎𝑐𝑟, and ultimately 
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on 𝐸. This approach suggests increased damage and the final stiffness of the system is 

reduced, matching experimental data more closely.  

Going forward, the new constitutive model based on the new hypothesis is referred 

to as “DCA with Matrix Shear Damage” or DCA_MSD for short. 

As a first approach, damage accumulation in G  is based on an exponential function 

of the crack size evolution, 

 

𝐺(𝑐̅)𝑗 = 𝐺(𝑐̅)𝑗−1 (
𝑐𝑗̅−1

𝑐𝑗̅
)

𝛼

     (4.18) 

 

and the exponential factor () takes the form shown below based on the adequate 

experimental correlation (Chapter 5) and efficient numerical implementation:  

 

𝛼 = 𝜋
𝑐𝑗̅

𝑐0̅
 .     (4.19) 

 

Consequently, the general formulation of DCA is modified as presented below. For 

clarity, a new variable will be defined as 𝐺𝐷 ≡  𝐺(𝑐̅), that denotes the new dependency of 

the shear on the crack evolution for the proposed modification. The total strain in Eq. 4.26 

becomes  

𝛆 = 𝛆𝑚(𝐺𝐷) + 𝛆𝑐(𝝈, 𝑐,̅ 𝐺𝐷),     (4.20) 

 

where the matrix is not considered undamaged any longer and, 
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𝛆𝑚(𝐺𝐷) = 𝐂𝑚(𝐺𝐷)𝛔.     (4.21) 

 

The matrix compliance is now: 

 

𝐂𝑚(𝐺𝐷) =
1

3𝐾(𝐺𝐷)
𝐏𝑠𝑝 +

1

2𝐺𝐷
𝐏𝑑,    (4.22) 

 

where the Bulk Modulus (4.29) is now defined as 

 

𝐾(𝐺𝐷) ≡
2𝐺𝐷(1+𝜈)

3(1−2𝜈)
 .      (4.23) 

 

Furthermore, the damage tensor is also affected (coupled damage), by the effect on 

𝛽𝑒. Then (4.31) now becomes 

 

𝛆𝑐(𝝈, 𝑐̅, 𝐺𝐷) = 𝐃(𝑐̅, 𝐺𝐷)𝛔,     (4.24) 

where 

𝐃(𝑐̅, 𝐺𝐷) = 𝛽𝑒(𝐺𝐷)𝑁0𝑐̅3 [
3

2−𝜐
𝐏𝑑 + 𝐏+ (𝐏𝑑 +

5

2
𝐏𝑠𝑝) 𝐏+]  (4.25) 

 

and 𝛽𝑒 is now dependent on the damaged 𝐺(𝑐̅) 

 

𝛽𝑒(𝐺𝐷) ≡ 64 𝜋
1−𝜈

15𝐺𝐷
 .    (4.26) 
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Finally, the total compliance (3.32) now features the coupled effect and is carried 

on through the calculation of stress: 

 

𝐂(𝑐,̅ 𝐺𝐷) = 𝐂𝑚(𝐺𝐷) + 𝐃(𝑐,̅ 𝐺𝐷)    (4.27) 

 

𝐄(𝒄̅, 𝐺𝐷) ≡ 𝐂(𝒄,̅ 𝐺𝐷)−𝟏 = (𝐂𝒎(𝐺𝐷) + 𝐃(𝒄,̅ 𝐺𝐷))
−𝟏

   (4.28) 

 

𝛔 = 𝐄(𝑐̅, 𝐺𝐷)𝛆.    (4.29) 

 

Regarding the damage evolution law, it retains the same format as Eq. (3.38), but 

the damage surface will be affected.  

The same approach and conditions presented for the uniaxial-strain tensile load case 

in Section 4.2 are valid for the new assumptions, then damage matrix (4.1) becomes  

 

𝐃(𝑐̅, 𝐺𝐷) = 𝛽𝑒(𝐺𝐷)𝑁0𝑐̅3 (
5−𝜈

2−𝜈
𝐏𝑑 +

5

2
𝐏𝑠𝑝)   (4.30) 

 

and the total compliance (Eq. 4.2) 

 

𝐂(𝑐,̅ 𝐺𝐷) = (
1

3𝐾(𝐺𝐷)
+

5

2
𝛽𝑒(𝐺𝐷)𝑁0𝑐̅3) 𝐏𝑠𝑝 + (

1

2𝐺𝐷
+

5−𝜈

2−𝜈
𝛽𝑒(𝐺𝐷)𝑁0𝑐̅3) 𝐏𝑑, (4.31) 

 

where Eq. (4.23) and Eq. (4.26) define 𝐾(𝑐̅) and 𝛽𝑒(𝑐̅) respectively. Finally, the 

instantaneous elasticity tensor is now: 

 



68 

 

𝐄(𝑐,̅ 𝐺𝐷) = 𝐂−1(𝑐̅, 𝐺𝐷) = 3𝐾̂(𝑐̅, 𝐺𝐷)𝐏𝑠𝑝 + 2𝐺̂(𝑐̅, 𝐺𝐷)𝐏𝑑   (4.32) 

 

and the damaged moduli (4.4), (4.5) are redefined as 

 

𝐾̂(𝑐,̅ 𝐺𝐷) =
𝐾(𝐺𝐷)

1+𝜅𝑒𝑁0𝑐̅3
     (4.33) 

 

𝐺̂(𝑐̅, 𝐺𝐷) =
𝐺𝐷

1+𝛾𝑡
𝑒𝑁0𝑐̅3

 .     (4.34) 

 

Regarding the damage evolution, the damage surface now depends on 𝐺𝐷  through 

𝜎𝑐𝑟(𝑐,̅ 𝐺𝐷) as 

𝐹(𝝈, 𝑐̅, 𝐺𝐷) =
𝜎1

𝜎𝑐𝑟(𝑐̅,𝐺𝐷)
− 1,    (4.35)  

where  

𝜎𝑐𝑟(𝑐̅, 𝐺𝐷) ≡ √
𝜋

1−𝜈

𝐺𝐷𝛾

𝑐̅
    (4.36) 

 

and (4.14) (4.15) become 

𝑐̅̇ = 𝑐̇max (1 −
1

1+〈
𝜎1

𝜎𝑐𝑟(𝑐̅,𝐺𝐷)
−1〉

)    (4.37) 

 

𝑐̅̇ = 𝑐̇max (1 −
1

1+〈
𝐸̅(𝑐,̅𝐺𝐷)𝜀1(𝑡)

𝜎𝑐𝑟(𝑐̅,𝐺𝐷)
−1〉

).    (4.38) 
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It is good to point out that 𝐸̅(𝑐̅), 𝐺𝐷 , 𝜎𝑐𝑟(𝑐̅) and 𝑐̅ are numerically calculated 

(iteratively) concurrently during the same time step in the algorithm. Also, that the matrices 

are reduced to scalar values for the one-dimensional application that follows. 

4.4 Finite Element Model Implementation 

The basis for the structural implementation approach is the seminal work by H.L. 

Schreyer and Z. Chen, “One-Dimensional Softening with Localization”, 1986 [43], where 

a unidimensional structure has two zones represented by two rod elements (FEM). One 

element accumulates damage (element 2) while the other one responds linear elastically 

(element 1). This is also a convenient framework to explore structural health monitoring 

schemes, where the damage is localized (in one element). 

 

 

Figure 4.1 Structural Implementation Scheme. 
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The following section shows the derivation of the one-dimensional elements local 

matrices – mass (𝑀)  and stiffness (𝐾); where a lump made assumption is put forward. 

Also, no damping (C ) is considered for the very low strain rate phenomena analyzed.  

Later, the local matrices are assembled into global form to form the second-order ordinary 

differential equations of structural dynamics:  

 

𝑀𝑢̈ + 𝐾𝑢 = 𝑝(𝑡).    (4.39) 

 

And lastly, the Newmark- method is used to solve the ODE and implemented in 

MATLAB. 

4.4.1 Local Matrices 

Then, the local stiffness are: 

𝐾1 = [
𝑘1 −𝑘1

−𝑘1 𝑘1
]   𝐾2 = [

𝑘2(𝑡) −𝑘2(𝑡)
−𝑘2(𝑡) 𝑘2(𝑡)

], (4.40a,b) 

where 

𝑘1 =
𝐴1 𝐸1

ℎ1
    𝑘2 (𝑡) =

𝐴2 𝐸2(𝑡)

ℎ2
  (4.41a,b) 

and,      

𝐾 = 𝐾1 + 𝐾2.     (4.42) 

The local mass matrices are: 

𝑀1 = [
𝑚1 0
0 𝑚1

]  𝑀2 = [
𝑚2 0
0 𝑚2

],   (4.43a,b) 

where 
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𝑚1 =
𝜌1 𝐴1 𝐿1

2
    𝑚2 =

𝜌2 𝐴2 𝐿2

2
   (4.44a,b) 

and, 

𝑀 = 𝑀1 + 𝑀2.    (4.45) 

 

4.4.2 Global Matrices 

Assembling the local matrices into global form to resolve (4.46) 

 

𝑀𝑢̈ + 𝐾𝑢 = 𝑃(𝑡) 

 

[
𝑚1 0 0
0 𝑚1 + 𝑚2 0
0 0 𝑚2

] [

0
𝑢̈2(𝑡)
𝑢̈3(𝑡)

] + [

𝑘1 −𝑘1 0
−𝑘1 𝑘1 + 𝑘2(𝑡) −𝑘2(𝑡)

0 −𝑘2(𝑡) 𝑘2(𝑡)
] [

0
𝑢2(𝑡)
𝑑𝑥(𝑡)

] = [
𝑟1(𝑡)

0
𝑝(𝑡)

] (4.47) 

 

Taking into account the boundary conditions 𝑢̈1(𝑡) = 𝑢1(𝑡)=0 , then 

𝑢̈2(𝑡) & 𝑢2(𝑡) are the unknowns and  𝑢̈2(𝑡) can be derived based on 𝑢2(𝑡) and dx(t): 

  

𝑢̈2(𝑡) = 𝑢2(𝑡)
(𝑘1+𝑘2(𝑡))

(𝑚1+𝑚2)
+

𝑘2(𝑡) 𝑑𝑥(𝑡)

(𝑚1+𝑚2)
 .   (4.48) 

 

4.4.3 Solving the ODE 

 Equation (4.47) can be solved numerically by using the Newmark- integration 

method: 

𝑢𝑛+1= 𝑢𝑛+ 𝑢̇𝑛 𝑑𝑡 +
𝑑𝑡2

2
 ((1 − 2𝛽)𝑢̈𝑛 + 2𝛽𝑢̈𝑛+1)   (4.49) 
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𝑢̇𝑛+1=𝑢̇𝑛 + 𝑑𝑡 ((1 − 𝛾) 𝑢̈𝑛 + 𝛾 𝑢̈𝑛+1).    (4.50) 

 

Then, by using the previous step’s stiffness value (E2); the solution to the 

displacement (𝑢2𝑛+1) and velocity of node 2 (𝑢̇2𝑛+1) is found as: 

 

𝑢2𝑛+1 =
𝑢2𝑛(1−𝑎1(𝑘1+𝑘2𝑛))+𝑢̇2𝑛𝑑𝑡+𝑎1 𝑘2𝑛 𝑑𝑥𝑛+𝑎0 𝑘2𝑛+1 𝑑𝑥𝑛+1

1+𝑎0(𝑘1+𝑘2𝑛+1 )
   (4.51) 

 

𝑢̇2𝑛+1=𝑢̇2𝑛 + 𝑎2(𝑘2𝑛 𝑑𝑥𝑛 − 𝑢2𝑛(𝑘1 + 𝑘2𝑛)) + 

+𝑎3 (𝑘2𝑛+1 𝑑𝑥𝑛+1 − 𝑢2𝑛+1(𝑘1 + 𝑘2𝑛+1),   (4.52) 

 

where 𝑎0, 𝑎1, 𝑎2 & 𝑎3 are defined for clarity below, where 𝑀 = 𝑚1 + 𝑚2; 

 

𝑎0 =
𝛽𝑑𝑡2

𝑀
 ;  𝑎1 =

(1−2𝛽)𝑑𝑡2

2𝑀
; 𝑎2 =

(1−𝛾)𝑑𝑡

𝑀
; 𝑎3 =

𝛾𝑑𝑡

𝑀
  (4.53a,b,c,d) 

 

and 𝛾 =
1

2
 , 𝛽 =

1

4
  are Newmark parameters. 

4.4.4 Model Assumptions for Main Correlation Effort 

The model assumptions are intended to match the experimental conditions that will 

be used to validate the model. These are based on the seminal work by V.S Gapalaratnam 

and S.P. Shah, Softening response of Plain Concrete in Direct Tension, 1985. The cross-

section of the model is the same as the test coupon on Ref. [44] and the total model’s length 

(comprised of 2 elements) is the same of the gage length 3.23” used in the experiment.  



73 

 

The plain concrete material properties relevant to model variables were found to be 

inconsistent throughout the available literature [47]. Then, this work recovered critical 

model variables from available experimental results [44] and derived the rest of the 

necessary model variables. The monotonic tensile displacement on node 3 is considered 

for quasi-static phenomena as 1.0x10-6 m/s 

Then, the model variables used are: 

– Density [kg/m3]     = 2,300  

– Initial Matrix Shear Modulus [Pa]  G0 = 1.57x1010  

– Poisson’s ratio      = 0.2   

– [Initial crack size [m]    𝑐0̅ = 4.3x10-5 

– Crack number density [m-3]   N0 = 4.4x1010  

– Surface energy [J/m2]    𝛾 = 0.01   

– Time Step [s]     dt=0.115
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Chapter 5. Results 

5.1 Introduction 

This chapter presents the correlation of this modeling effort to experimental data. 

The main correlation effort (Section 5.3) is based on Ref. [44], Figure 6(a); curves 1 and 

2, for the monotonic test on notched specimen with optical crack width monitored (MON) 

and monotonic test on unnotched specimen (MU) respectively. First, the correlation to the 

original DCA model with the assumptions from Section 4.4.4 is presented, that drove the 

need for an improvement. Then, the correlation of DCA_MSD model is shown, while also 

comparing the results to DCA behavior to discuss the differences in the physics of both 

models. 

Additional correlation cases (2) are shown at the end of the chapter (Section 5.4) 

based on experimental data from Ref. [63] to demonstrate the applicability of the 

constitutive model and structural implementation scheme for different concrete mixes and 

coupon sizes.  

It is good to point out that the results discussions in this work refer to displacement 

and not strain (which is more conventional) to make a direct and clear comparison to 

experimental data, which cite displacement and not strain. On that point, the final 

experimental displacement is 5.75x10-5 m, which is input in the model, and the prescribed 

loading condition is a linear ramp displacement at very low rate of 1.0x10-6 m/s. 
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As a clarification, the approach of having only one element of the two with the 

damage model is adequate for this analysis and the representation of the physics. The 

softening manifests in one element first, the one that reaches cr first (Elm. 2, in this case), 

and then continues a focused softening process on that element. This in itself 

relieves/unloads the other element (Elm. 1), as node 2 becomes less reactive to the “pull” 

from the prescribed displacement (on node 3); which reduces the stress state on that 

element (unloads). This is not due to an increase in compliance, as is happening on Elm. 2, 

but to the reduction of strain caused by the elastic rebound of Elm.1, since E1 remains 

constant.  

Based on that reasoning, the bulk of the results that are shown is on Element 2 (Elm. 

2) that features the damage material model. Element 1 results are linear elastic throughout 

by design. 

5.2 DCA Results and Explanation of Behavior (Stress-Displacement) 

From the stress-free state (A), the material is loaded in tension through prescribed 

displacement to 5.75x10-5 m (E) or 6.97x10-4 strain at 1.0x10-6 m/s displacement rate or 

1.21x10-5 strain rate. The total event takes 57.5 seconds in the modeling and is considered 

quasi-static. The bold letters in this paragraph serve as markers for the plots below. 

The DCA Model shows adequate correlation up to the peak stress value and start 

of the softening phase (A-B-C’-D’), but the model diverges for the rest of the softening 

phase (D’-E’). Consequently, the model captures the most important physics from a 

structural analysis concern but does not fully characterize the response. The model still 
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does not feature enough compliance during the softening phase, or in other words, the 

stiffness degradation due to damage is not enough to reflect the experimental response. 

The stress evolution from A to B marks the linear response of the material. In this 

area, the crack size remains constant and equal to the initial value. In other words, there is 

no crack growth for this period and DCA calculates the response using a slightly damaged 

modulus that takes into account the initial crack size 𝑐0̅ = 4.3x10-5.  

Point B marks the instant when the stress state first reaches the damage surface and 

the beginning of crack growth. The damage surface progressively contracts with increased 

strain. The damage and rate of crack growth are not enough at this time to revert the stress 

rate and the response remains strain hardening until point C is reached. This is primarily 

due to the small size of the cracks. 
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Figure 5.1 DCA Correlation to Experimental Data [44] and Comparison. 

 

After this peak, the strain rate due to crack growth reaches and surpasses the total 

strain rate ε  giving way to a rapid softening period (C-D’). This segment still shows good 

agreement with experimental data in Ref. [44].  

Beyond point D’, the cracks continue to grow, but at a slower rate. During this 

segment (D’-E’), the increased compliance reduces the stress state in the material, and with 

that, the rate of crack growth. It can also be seen in the plot below, that although the 

material has reduced stiffness due to damage (D’-E’), the damage accumulation is not 

A 

B 

D’ 

E’ 

C 
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enough to match the experimental data. In other words, the residual instantaneous elastic 

modulus is too high, and the material is still too reactive (still) to the strain. 

5.3 DCA_MSD Results  

5.3.1 Stress-Displacement 

The DCA_MSD model also correlates well through the linear elastic phase (A-B), 

peak stress (C) and initiation of the softening phase (C-D’). Both models respond 

similarly up to a displacement of ~0.0103 mm (D’). 
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Figure 5.2 DCA & DCA_MSD Correlation to Experimental Data [44] and Comparison. 

 

After this elongation, the physics of the softening phase is much different for 

DCA_MSD. The coupled interaction between the reduction in Shear Modulus of the matrix  

𝐺(𝑐̅)  and crack growth c becomes relevant. It is noticeable that the “rapid softening” phase 

where there is a large increase in compliance right after the peak stress is much longer (C-

D), which ultimately allows for a correlation error reduction of 387%, from 1.37 MPa to 

0.09 MPa at total elongation.  

This is a significant improvement to the model and signifies new physics.  
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5.3.2 Crack Growth 

Crack growth and final crack size are affected by the new physics. Damage is now 

coupled (compounded) and the material does not necessitate “as large” crack size to accrue 

the same damage. 

 

 

Figure 5.3 DCA & DCA_MSD Crack Growth. 

 

Crack growth also slows down in the improved model based on the further damaged 

E and G  that reduces the stress around the crack. A different way to see this phenomenon 

Detail on next 
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is that the total damage is more sensitive to crack growth. Where in DCA a crack reaches 

~5x the original size at the end of the model run (D’), DCA_MSD features 2.15x the 

original crack size, a reduction of ~57%, and with significantly increased compliance (D). 

  

 

Figure 5.4 DCA & DCA_MSD Crack Growth Initiation. 

 

The increased compliance of DCA_MSD is also seen at the start of crack growth 

too at ~0.0095 mm (B); where the crack growth requires more displacement to occur (softer 

curve).  

B A 
C 
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5.3.3 Instantaneous Elasticity Modulus 

Degradation of E  starts with crack growth at ~0.0095 mm. Both models respond 

similarly up to a displacement of ~0.01 mm. The degradation of the stiffness is now 

compounded with the Shear Modulus G damage which accelerates the total damage and 

concludes in a further decreased Elasticity Modulus. 

 

 

Figure 5.5 DCA & DCA_MSD Inst. Elasticity Modulus. 
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The final reduction on E is ~76% compared with DCA and ~99% compared to the 

linear elastic phase (A-B).  

5.3.4 Nodes Displacement (Elements’ Elongation) 

The plots below denote the elongation of both elements. The bifurcation shown 

represents when the damage accumulation is sufficient to diverge enough from the linear 

elastic response, right around peak stress (C). 

Elm. 2 (Node 2-Node 3) contains the damage function and shows significant 

elongation, 26 times that of Elm. 1 (Node 2) under the prescribed displacement (E). 

Furthermore, the plots below show the rebound displacement of Node 2 (displacement 

changes direction) due to unloading from strain softening being experienced in Elm. 2 (C-

D-E & C-D’-E’). 

Increased compliance of Elm.  2 on DCA_MSD releases node 2 (C-D) longer than 

the original DCA model (C-D’) which results in Elm. 1 reaching a shorter elongation 

(larger rebound) and Elm#2 compensating with larger elongation, since the model is 

displacement controlled (total elongation is prescribed). 
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Figure 5.6 DCA & DCA_MSD Nodes Displacement. 
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Figure 5.7 DCA & DCA_MSD Nodes Displacement. 

 

Increased compliance from the start of damage accrual causes slower node 

displacement initially for DCA_MSD (C). Nevertheless, total damage on DCA_MSD then 

accelerates and overtakes DCA at ~0.0103 mm total displacement (D’); where both models 

start to significantly diverge. 

5.3.5 Node 2 Acceleration 

As discussed before, DCA_MSD total damage then overtakes DCA at ~0.0103 mm 

total displacement (D’). The increased compliance of Elm. 2 releases node 2 for longer (C-
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D’) than the original DCA model (C-D’). Consequently, Node 2 deceleration phase for 

DCA_MSD is also longer (C-D). This causes the final acceleration (E) to be also lower 

(less reactive) and reduces ~76% from DCA values (E’). 

 

 

Figure 5.8 DCA & DCA_MSD Node 2 Acceleration. 

 

5.3.6 Matrix Shear Modulus Degradation 

This plot shows the Shear Modulus of the matrix damage accumulation 

progression, that is not present in the original DCA model (where it remains constant). The 
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matrix Shear remains constant through the linear elastic response phase (and same value 

as DCA, A-B). The degradation of G starts with the initiation of crack growth at ~0.0095 

mm, the same time as E.  

 

 

Figure 5.9 DCA & DCA_MSD Matrix Shear Modulus. 

 

By the end of the deformation (E), the Shear Modulus of Elm. 2 is degraded ~97% 

in comparison to the initial value. This effect is the most significant feature of the proposed 

model; and causes the most relevant impact on the improved correlation to experimental 

data. 
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5.3.7 Exponential Factor Study 

It is good to point out that the new damage accrual on Matrix Shear arose from the 

discovery that tying G degradation to E was effective and physically relevant. Although 

that approach provided good correlation with experimental data, it also featured 

inconsistent physics for crack growth behavior; and was not implementable in the implicit 

algorithm. Considering the shear degradation solely dependent on crack growth solved 

these shortcomings, allowed for concurrent calculations in the implicit algorithm routine 

(same time step) and was consequently selected as the approach going forward.  

Furthermore, an exponential relation was selected for simplicity and efficacy.  
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Figure 5.10 Exponential Factor Study.  

 

Several values for the exponential term were considered in sensitivity studies. The 

exponential term based on the rate of the instantaneous crack compared to the initial crack 

was ultimately selected since it allows for increased influence at higher strain; and showed 

good correlation to experimental results [44]. 
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Figure 5.11 Selected Exponential Factor. 

 

5.4 Additional Correlation Cases 

In order to demonstrate the robustness and applicability of the new constitutive 

model DCA_MSD and structural implementation scheme, an additional correlation effort 

to experimental data was conducted. The experimental data for the two additional cases 

evaluated in this section are based on Hordijk, 1991  [63]. 

 

𝛼 = 𝜋
𝑐𝑗̅

𝑐0̅
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5.4.1 Specimen Type A 

This section evaluates the correlation to Hordijk, 1991, Specimen Type A, from 

figure 5.6(a) in reference [63]. The coupon size for this case is 250×60×50 mm3 with a 

symmetric notch of 5 mm and a gage length of 35 mm. The surface area used to calculate 

the stress is 50×50 mm2. The test specimen was constructed from lightweight concrete 

(LC) as per reference [63] Appendix A. The tests were displacement controlled, uniaxial 

monotonic tensile and cyclic. The final displacement was 0.1 mm. 

The model variables used for this case are: 

– Density [kg/m3]     = 1,829  

– Initial Matrix Shear Modulus [Pa]  G0 = 1.2x1010  

– Poisson’s ratio      = 0.2   

– [Initial crack size [m]    𝑐0̅ = 4.8x10-5 

– Crack number density [m-3]   N0 = 1.2x1011  

– Surface energy [J/m2]    𝛾 = 0.01   

– Time Step [s]     dt = 0.2 
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Figure 5.12  DCA & DCA_MSD Correlation to Experimental Data [63] and Comparison–

Specimen Type A. 

 

As with the main correlation effort in Section 5.3, DCA shows adequate correlation 

for the linear elastic portion, peak stress and start of softening phase. The DCA_MSD 

model features good correlation overall, and a marked improvement from DCA results, as 

previously seen in the main correlation effort from Section 3.5. Although it is not as well 

correlated as before (with Gapalaratnam & Shah data), especially during the accelerated 

softening right after peak stress, Hordjik noted that the “descending branch displayed 

irregularities”, which were most notable on the LC samples that are being considered in 



93 

 

this effort. The irregularities are assumed to be due to  testing difficulties, rotation of the 

specimens and asymmetrical crack growth. “Cleaner” experimental data may feature 

improved correlation. 

5.4.2 Specimen Type D 

This section evaluates the correlation to Hordijk, 1991, Specimen Type D, from 

figure 5.6(d) in reference [63]. The coupon size for this case is 250×50×40 mm3 with a 

symmetric notch of 5 mm and a gage length of 35 mm. The surface area used to calculate 

the stress is 40×40 mm2. The test specimen was constructed from lightweight concrete 

(LC) as per reference [63] Appendix A. The tests were displacement controlled, uniaxial 

monotonic tensile and cyclic. The final displacement was 0.1 mm. 

Then, the model variables used for this case are: 

– Density [kg/m3]     = 1,829  

– Initial Matrix Shear Modulus [Pa]  G0 = 1.48x1010  

– Poisson’s ratio      = 0.2   

– [Initial crack size [m]    𝑐0̅ = 4.5x10-5 

– Crack number density [m-3]   N0 = 2.15x1011  

– Surface energy [J/m2]    𝛾 = 0.01   

– Time Step [s]     dt = 0.2 
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Figure 5.13  DCA & DCA_MSD Correlation to Experimental Data [63] and Comparison–

Specimen Type D. 

 

As with the main correlation effort in Section 5.3, DCA shows adequate correlation 

for the linear elastic portion, peak stress and start of softening phase. The DCA_MSD 

model features good correlation overall, especially for the accelerated softening phase, 

right after the peak stress, and a marked improvement from DCA results. Although it is not 

as well correlated as before (with Gapalaratnam & Shah data) for the final phase of the 

softening, Hordjik noted that the “descending branch displayed irregularities”, which were 

most notable on the LC samples that are being considered in this effort. The irregularities 
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are assumed to be due to testing difficulties, rotation of the specimens and asymmetrical 

crack growth. “Cleaner” experimental data may feature improved correlation. 
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Chapter 6. Conclusions and Future Work 

6.1. Conclusions 

Through this research, a constitutive model named DCA_MSD was developed. 

This model improves the original DCA model from Zuo et al. 2006 through a coupled 

damage assumption that incorporates damage in the Matrix Shear Modulus, which is 

considered directly dependent on crack growth. This allowed for the new damaged Matrix 

Shear Modulus to be incorporated into an implicit algorithm and calculated concurrently 

with the average instantaneous crack size, Elasticity Modulus and Tensile Strength of the 

Material. The predicted structural responses match well with experimental data. Key 

findings are summarized below:  

• A new brittle damage constitutive model was developed. 

This was accomplished by the incorporation of the new coupled damage 

assumption. An exponential relationship for the new damage variable was deemed to 

provide adequate physical representation of the damage evolution and was numerically 

efficient.  

• The constitutive model was implemented into a structure. 

The DCA model and the new material model DCA_MSD were reduced to 1-D form 

and subsequently implemented into a structure in order to validate the response with 

experimental data. This was done by developing a finite element model (FEM) in 

MATLAB. The FEM represented a rod and was composed of 2 elements (and 3 nodes), 
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one that contained the damage material model and the other assumed linear elastic 

characteristics. That approach was reflected in the local stiffness and mass matrices, which 

were then converted into global matrices to form the equation of motion. The equation of 

motion was later resolved through a numerical scheme based on the Newmark- 

integration method.  

• Structural analysis and model validation with experimental data were 

conducted. 

The damage model variables were derived for plain concrete at very low strain rate 

and incorporated into the models. Boundary conditions for the FEM were made to match 

the experimental results that would be used for correlation [44] [63]. A quasi-static ramped 

monotonic prescribed displacement was applied at one end of the rod (node 3), while the 

other end was fixed (node 1). 

The two finite element models, one containing DCA and another one with 

DCA_MSD were run on MATLAB for the boundary conditions selected [44] [63].  

For the main correlation effort (Section 5.3) the model containing the original DCA 

scheme featured adequate correlation for the most significant structural analysis 

characteristics of the response, up until right after peak stress and initiation of the softening 

phase. Nevertheless, DCA did not render good correlation throughout the full softening 

phase, rapidly diverging after the initiation of softening and retaining significant residual 

stiffness compared to experimental results.  

On the other hand, the improved model DCA_MSD captured the full strain-

softening phase. DCA_MSD model features good correlation to experimental data 

throughout the material response at quasi-static load conditions.  
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The proposed improvement, incorporating damage based on crack growth in the 

Matrix Shear Modulus (DCA_MSD) and also account for coupled damage, showed to 

further increase material compliance during the softening phase of the response; which was 

an issue to improve on DCA. This is the first time that good correlation was demonstrated 

for the full loading cycle for a model derived from DCA at very low strain rate.  

For the main correlation effort (Section 5.3) the stress-displacement correlation 

error was reduced ~387%, from 1.37 MPa to 0.09 at the end of the softening phase. The 

compliance increase was driven by the degradation of G  by 97% and E  by 99% compared 

to initial (linear elastic phase) values. The physics that drive crack growth is significantly 

changed, showing growth slowdown and a final average crack size that is significantly 

smaller, a ~57% reduction from DCA. 

An additional correlation study in Section 5.4 showed similar results and 

conclusions for different concrete mixture and sample sizes [63]; demonstrating the 

applicability of the new constitutive model and structural implementation scheme.  

• The design of structural health monitoring (SHM) scheme for brittle material 

structures was benefited by this research. 

As discussed previously, elastic wave speeds in brittle materials are sensitive to 

changes in the mean size of distributed microcracks [42]. Then, measuring the wave speed 

in a material provides a practical means to determine the health state of a structural 

component made of such material.  

The newly developed constitutive material model, as implemented and validated in 

the structural component herein, provides the required relationship between mean crack 

size, damage state and elastic wave speed needed to design a SHM scheme. This was first 
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achieved in this work by capturing the full response of the material, including elastic phase, 

maximum stress and strain softening phase up to failure, and featuring good correlation to 

experimental data throughout.  

6.2. Recommendations for Future Research 

Several steps could be taken to further the presented work. Next steps would 

include the construction of a comprehensive database of candidate extraterrestrial concrete 

materials to be used in additive manufacturing under Martian or Lunar environmental 

conditions. As discussed in Chapter 1, a more definite understanding of raw in-situ 

materials and feasible processes to synthesize concrete is needed. The database can then 

be verified by Martian and Lunar samples from future missions. In the meantime, the 

utilization of proxy materials and processes, such as soil simulants and in-orbit 3D printing 

will help further verify the model.  

On that point, a more comprehensive modeling effort for different concrete mixes 

and mortars under other loading conditions, stress states and sample sizes can further 

validate the modeling approach and constitutive model.  

Ultimately, the harsh and remote locations where the habitats and infrastructure 

will reside makes structure health monitoring an imperative for the safety crew that will 

depend on them. Visual inspection may be too risky or even impossible. Also, it is being 

considered that robotic and automated habitat construction will precede colonization, so 

remote monitoring (from Earth) of structural integrity of habitats is desired. To this end, it 

has been demonstrated in [42] that elastic wave speeds of a brittle material prove sensitive 

to changes in the mean size of distributed microcracks in the material. In other words, this 
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framework provides a practical means to deduce the size of cracks, or damage state, of the 

material by measuring its wave speeds.  

Then, by further collecting physical insights from the simulation results of the 

proposed constitutive model, while assuming the availability of a comprehensive database 

of in-situ concretes (with known baseline wave speeds measured in intact material) and 

sophisticated signal processing techniques, a new structural health monitoring (SHM) 

scheme can be put forward. 
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