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Abstract 

 

A NEW, INTUITIVE METHOD FOR THE DESIGN AND ANALYSIS OF 

MULTI-PASS CAVITIES 

 

Adam S Mansor 
 

A dissertation submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

 

Optical Science and Engineering Program 

The University of Alabama in Huntsville 

May 2024 

 

               This dissertation develops a new analytical approach for designing and analyzing multi-

pass cavities like the Herriott cell by employing the graphical yӯ diagram approach. The new 

technique can be deployed in spectroscopy absorption detection, femtoseconds laser cavities, or 

any off -axis spherical mirror interferometers applications. Such a system can be uniquely designed 

and evaluated by entering a few parameters that define the required physics for the cell, the 

packaging size limits for the system and the probe beam size, plus two user selected parameters. 

The existing design method, developed by Herriott, is discussed and then the yӯ diagram method 

is presented and applied, showing several design solutions that meet the spectroscopic absorption 

system requirements. The adaptability of the yӯ diagram approach is then shown, presenting 

several design solutions with mirrors of arbitrary curvatures and a new approach of rapid 

calculations of 3rd order astigmatism, the dominant aberration in these systems. This dissertation 

also employs the yӯ diagram of Gaussian beams to illustrate detailed design parameters of a gas 

spectrometer sensor and develops an enhanced Gaussian beam decomposition technique that could 

be used for physical optics and diffraction analysis for this system or any other optical system.  
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Chapter 1.  Introduction 

 

            This research was initially conceived to provide an intuitive and rapid approach for the 

design and analysis of multi- pass cavities such as a Herriott cell. A Herriott cell is a two concave 

mirrors optical system where the optical path bounces back and forth multiple times between the 

two mirrors before exiting the cell. These have been used as resonant cells for interferometer or 

laser cavities [1] and, more commonly now, in spectroscopy as a method of providing a long path 

length in a short optical package [2]. The design of these systems has been based on a method first 

published by J. R. Pierce [3], which is a paraxial based method for electron beam systems. Once 

designed, analyzing and adjusting these systems can be readily performed using geometrical optics 

approaches, however, the beams propagating through them are generally small beams, sometimes 

small gaussian laser beams. The geometrical analysis is therefore incomplete, especially when one 

desires to analyze the beam after arbitrary numbers of reflections through the cavity. Thus, this 

dissertation research effort not only will provide a better means of designing, understanding and 

analyzing the performance of these systems, but also will provide a rapid way for designing multi-

pass cavities (MPC) with different radii of curvatures. Additionally, a modified physical optics 

approach is being developed that can be used for the intracavity beam analysis of Herriott cells, 

for any optical system or for any optical beam propagation calculations. Lastly, a novel approach 

to calculate the third order aberrations of Astigmatism, the dominant aberration in these cells, is 

provided.  



  

2 
 

              Methods for the design and analysis of optical systems have undergone huge advances 

over the centuries[4] [5] [6] [7] [8]. From an analytical perspective, these advances include the 

development of paraxial optics, then aberration theories such as Seidel’s 3rd order methods and 

then integrating advances in the understanding and derivations of physical optics methods which 

enabled computation of the true diffraction-based performance of these systems as well as 

understanding of fundamental light propagation. As digital computers advanced, this enabled real 

ray tracing of effectively limitless numbers of rays and calculation of highly complex diffraction 

problems.  Today, lens design and analysis programs on standard computers are able to trace 100’s 

of millions of ray-surfaces per second and compute and display 2048x2048 FFT-based 

monochromatic diffraction patterns, point spread functions, in a few seconds. 

However, there are still challenges at the most basic level for optical design and analysis, including 

setting up the initial optical design (first order design). One method for simplifying the process of 

designing the optical system was presented by Delano [9], the yȳ diagram, which enables a highly 

graphical and intuitive means for laying out the optical design based on paraxial optics. This 

method was extended to enable the tracing of gaussian beams throughout an optical system, thus 

coupling the method to physical optics calculations. 

            For physical optics modeling, Huygens-Fresnel and Fraunhofer methods of propagation 

calculation using numerical Fourier transform methods are applied extensively in physical optics 

modeling of many situations including coronagraph analysis, laser beam propagation, digital 

holography, interferometry and modeling of the diffraction patterns of many optical components 

and systems [10] [11] [12]. Most software simulation packages use these fast Fourier transform 

(FFT)-based methods to model the physical optics including interference and diffraction. 

Employing these diffraction algorithm calculations can dramatically increase the computation time 
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for different applications. For example, optimizing or tolerancing of an optical system using 

modulation transfer function (MTF) or encircled energy criteria can be 1000x slower than ray 

tracing calculations. However, this method is often the approach of choice since it applies to a 

broad range of propagation scenarios and is relatively straightforward, although, it has constraints 

for calculating the sampling regimes correctly which, if not followed, could lead to erroneous 

artifacts and when followed can require intractably large and long calculations.  Another common 

challenge is calculating long-range large beam propagation by using FFT based methods. The 

constraints of sampling can conflict with reasonable execution times of the algorithm; avoiding 

computational aliasing can require prohibitively massive data arrays which limit the processing to 

large, specialized computer systems. 

         An alternative method to FFT-based diffraction calculations is Gaussian beamlet 

decomposition (GBD) [8] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]. Waves, truncated 

by any aperture, are represented by a set of Gaussian beamlets with appropriate amplitude, radii 

beam waist and constant phase, which can then be linearly added at any plane of interest. There 

are, of course, parameters that impact the accuracy of the model. Since a field is being represented 

by an array of Gaussian beamlets, there can be undesired ripples in the fit and edge rounding at 

what should be sharp cutoffs. How much the adjacent Gaussian beamlets overlap and the total 

number of Gaussian beamlets employed drive these errors.  

          The research dissertation will couple some of these elements to provide a simple and 

graphically intuitive method for designing and analyzing multi-pass cavity cells.  In this research 

dissertation, these individual components will be described more fully and then their proposed 

coupling will be discussed.
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          Chapter 2 will present the necessary details and our nomenclature for Gaussian beams, the 

yȳ techniques for paraxial and complex ray tracing of Gaussian beam optics [23] [24]. Chapter 3 

will present the Gaussian Beam decomposition (GBD) method and current FFT-based approaches 

for calculating beam propagation focusing on the diffraction of a square aperture as it contains two 

conflicting challenges: a smooth field amplitude and a sharp edge. In this Chapter 4 we have 

developed a modification of GBD or hybrid Gaussian beam decomposition (HGBD) and 

comparison of GBD and HGBD is also presented. The HGBD method with results that show its 

effectiveness. Chapter 5 is a detailed discussion of the Herriott cell background, including the 

current method of design that is employed to the Orion space capsule. The research dissertation 

author and Dr. Patrick Reardon were involved in the analysis, redesign, fabrication and testing of 

a Herriott cell-based multi-Pass Cavity (MPC) system for measuring the O2, CO2 and H2O levels 

aboard the Orion space capsule [25] [26] [27] [28] [29]. The design provided to the authors was 

created following the methods published by Pierce and extended by Herriott [1] [3].  

          The Chapter 6 then goes through the process of we’ve initially developed to find a method 

by which one can design a Herriott cell in the yȳ diagram framework, for gut ray, collimated input 

beam and different radii of curvatures. Chapter 7 presents a novel approach for numerical 

calculation of dominate 3rd order aberration in MPC “Astigmatism”. Finally, Chapter 8 discusses 

the future work.  
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Chapter 2. 

 

2.1  Gaussian Beam Theory 

 

         Gaussian beams have long been used and defined in optics as they are the fundamental mode 

of a cylindrical laser cavity [30] and they are one of the special case of functions that do not alter 

their amplitude profile as they propagate, although their phase does change. As Gaussian beams 

propagate, diffraction causes the Gaussian beamlets to broaden and diverge. The properties of a 

Gaussian beam field are listed below [31]. Equation 2.1 and 2.2 are the field and intensity of a 

single Gaussian beam. Equations 2.3 and 2.4 are the beam semi-diameter and field radius of 

curvature, while Equations 2.5 and 2.6 define the Rayleigh range and divergence angle, parameters 

used primarily to simplify the previous equations. 

     

Figure 2.1   Laser Gaussian beam layout [31]. 
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U2(x,y;Z) = A 
ω0

𝑊(𝑍)
𝑒−𝑖[(𝐾𝑍−𝑡𝑎𝑛−1 (

𝑍

𝑍𝑅
)]𝑒𝑖𝑘(𝑥2+𝑦2)/2𝑅(𝑍)   𝑒−(𝑥2+𝑦2  )/𝑊(𝑍)

 
      ,   (2.1) 

                             I(x,y;Z) =    | U2(x,y;Z)|2 ,                                                  (2.2) 

                         W (Z) = ω0√1 +
𝑍2

𝑍𝑅2
 ,                                                         (2.3) 

                         R (Z) =Z+
𝑍𝑅2

𝑍
 ,                                                                     (2.4) 

                            ZR=
𝜋ω02

𝜆
  ,                                                                         (2.5) 

                           Θ=
𝜆

𝜋ω0
 .                                                                              (2.6) 

 

We denote Z, k, 𝑡𝑎𝑛−1 (
𝑍

𝑍𝑅
) and A as the axial propagation distance from the beam waist, the 

wave number, the Gouy phase and the electric field amplitude respectively. From the paraxial 

wave solution, there is one restriction [31] on ω0, namely ω0 > λ. 

2.2  The yȳ Techniques of Paraxial Optics 

 

          The yȳ diagram is a representation of geometrical paraxial optics, developed by Delano [9]. 

It proceeds by plotting the paraxial chief and marginal ray heights at each surface as they are 

sequentially encountered through the optical system. The marginal ray passes through the center 

of the object and its images, where y=0 and it clips the edge of the stop and the stop’s images. The 

paraxial chief ray starts at the edge of the object and passes through the center of the stop where ȳ 

=0 and the stop’s images. A simple yȳ diagram layout for single lens is illustrated in Fig2.2 a yȳ 

diagram requires the LaGrange Invariant of the system to be properly scaled.  



  

7 
 

 

 
Figure 2.2 yȳ Diagram of a simple optical System for gut ray [24]. 

 

2.3   Paraxial yȳ Diagram Characterizations  

 

           The yȳ diagram requires scaling factor or LaGrange invariant (Lg) to keep the linearity of 

paraxial optics calculation between the heights and angles. In case of positive geometrical optical 

power, (Φ) such as concave mirrors, convex lenses the yȳ segment bends toward the origin, but, 

for negative geometrical optical power such as convex mirrors and concave lenses the yȳ segment 

bends away from the original. Alternately, flat optics such as plano mirrors reflect the yȳ segment 

without any bending. Collimated input ray or infinite conjugate input yȳ diagram is presented by 

parallel segment to ȳ axis, where (ȳ, y) = (0, y) as illustrated in Fig2.3, consequently, skew input 

ray or finite conjugate input yȳ diagram is presented as by-passing segment to ȳ axis, where 

 (ȳ, y) =(ȳ, 0) as illustrated in Fig2.2. 

        The yȳ LaGrange invariant typically has positive sign when moving clockwise around the 

origin and negative sign when moving counterclockwise. The distance between two points is 
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related to the area swept out by a vector whose base is at the origin, from each sequential optical 

element. All real and virtual images and pupil can be specified by y and ȳ axis crossing. Some 

properties of the yȳ techniques of paraxial optics are listed in table 2.1.     

 

Figure 2.3 yȳ Diagram of a simple positive and negative optical system for collimated ray [32]. 

Table 2.1 The paraxial properties of an optical system represented by the yȳ diagram. 

 

Properties          Brief description  

Lg= 𝑦𝑛ū − ӯ𝑛𝑢         LaGrange invariant or the scaling factor 

t1= 
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
]     Axial distance between locations represented by two points in the 

yȳ diagram  

Φ= 
1

  𝐿𝑔 
 [

𝑢0 ū0 

𝑢1 ū1
]                          Optical power at a bend on the yȳ diagram 

Ū= 
ȳ𝑖+1−ȳ𝑖

𝑡1
                       Chief ray angle after element 1 with the optical surface 

U=
𝑦𝑖+1−𝑦𝑖

𝑡1
                        Marginal ray angle after element 1 with the optical surface  

Ū= 
𝐿𝑔

ȳ𝑛
                                    Chief ray angle when y =0  

U= 
−𝐿𝑔

𝑦𝑛
                        Marginal ray angle when ȳ =0  
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2.4  The yȳ Techniques of Gaussian Beam (Complex Ray Tracing) 

 

        Kessler and Shack first presented the yȳ method of laser beam propagation [24].A simple 

explanation for their development is to consider that two rays can represent a Gaussian beam, as 

divergence ray and a waist ray, as shown in Fig .2.4. 

                          

Figure 2.4 Layout of complex ray tracing for Gaussian laser beam propagation. 

 

        The blue line represents the divergence ray of the propagating Gaussian beam. The red line 

is a waist ray, a height ω0 from the optical axis. In the yȳ method, the green line represents these 

two rays, with ȳ associated with the divergence ray and y associated with the waist ray-for this 

particular state. These rays are then traced just as paraxial rays. The beam waist size ω0 is defined 

by the smallest distance from the traced line to the yȳ diagram origin, Or the beam waist is located 

where the line is tangent to a circle centered on the origin and its size is the radius of the circle. 

The properties of the complex ray tracing technique of Gaussian beam are tabulated in table 2.2.  
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Table 2.2 The properties of the complex ray tracing of Gaussian beam. 

Properties          Brief description  

Lg= 
𝜆

𝜋
                                     LaGrange invariant or the complex ray tracing 

scaling factor 

t1= 
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
]     Distance between 2 points in the complex ray 

tracing 

W=√ȳ2 + 𝑦2                                    Beam semi-diameter 

Ū= 
ȳ2−ȳ1

𝑡1
                       Chief ray angle with the optical surface 

U=
𝑦2−𝑦1

𝑡1
                        Marginal ray angle with the optical surface 

R= 
−(𝑦^2+ӯ^2)

(𝑦𝑢+ӯū)
                                      Radius of curvature of Gaussian beam 

Z0=
𝜋𝑦02

𝜆
 = 

𝑦02

𝐿
                                           Rayleigh range (only for lines of y = a) 

 

 

Θ= 
𝜆

𝜋𝑦0
= 

𝐿

𝑦0
                                                 Divergence angle. 
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Chapter 3. 

 

3.1  Simulation of Diffraction Using the Huygens-Fresnel Technique 

 

        Huygens posited that a wavefront could be represented as a large number of point sources, 

properly phased, where each of these point sources acts as a secondary emitter of spherical 

wavefronts [33] [34].  As the wavefronts pass through an aperture, some of the wavefront is 

clipped, bounding the set of point sources and changing the shape of the wavefront in the vicinity 

of and beyond the aperture edge. Interference effects are seen in the regions where overlap between 

the spherical wavelets occurs resulting in constructive or destructive interference. 

     For several decades, numerical Huygens-Fresnel diffraction propagation methods have been 

used extensively in research and industry for simulating beam propagation in many applications. 

The digital version of Fresnel equations is based on the fast Fourier transform (FFT), assuming 

monochromatic light. Fresnel propagation regimes and criteria can be expressed by a 2D source 

area U1(ξ, η) and 2D observation area U2 (x, y), on parallel planes and arbitrary propagation 

distance r12 as shown in Figure 3.1  [12]  [34]. 

 

Figure 3.1 Sommerfeld geometry for normal incident collimated source and Observation planes  [12] [35]. 
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The Fresnel diffraction expression as shown in Eq. (3.1), can also be expressed as Eq. (3.2)  [12] 

[34][37], 

𝑈2(𝑥, 𝑦) =
𝑒𝑗𝑘𝑍

𝑗𝜆𝑍
∬ 𝑈1(ξ, 𝜂) 𝑒𝑥𝑝 {𝑗

𝑘

2Z
[(𝑥 − ξ)2  (𝑦 − 𝜂)2  ]} 𝑑ξ𝑑𝜂                                         (3.1) 

 

𝑈2(𝑥, 𝑦) =
𝑒𝑗𝑘𝑍

𝑗𝜆𝑍
∬ 𝑈1(ξ, 𝜂)ℎ(𝑥 − ξ , 𝑦 − 𝜂) 𝑑ξ𝑑𝜂                                                                   (3.2) 

where the impulse response (IMP) is shown in Eq. (9), 

 

ℎ(x, y) = 
𝑒𝑗𝑘𝑍

𝑗𝜆𝑍
𝑒𝑥𝑝 [𝑗

𝑘

2𝑍
(𝑥2 + 𝑦2)] .                                                                                          (3.3) 

 

The transfer function (TSF) is shown in Eq. (10): 
 

H(x, y) = 𝑒𝑗𝑘𝑍𝑒𝑥𝑝[ − j𝜋λZ(fx 2 + fy 2)] .                                                                                 (3.4) 

 
There are two ways to interpret Eq. (3.1), employing Eq. (3.1) or (3.4), yielding Eqn. (3.1) or 

(3.1): 
                                   

U2 (x, y) = ℱ-1{ℱ{U1(x, y)}ℱ{ℎ (𝑥, 𝑦)}},                                                                                 (3.5) 

 

U2 (x, y) = ℱ-1{ℱ{U1(x, y)}𝐻(𝑓𝑥, 𝑓𝑦)},                                                                                  (3.6) 

where  ℱ and ℱ-1
 are the Fourier transform and inverse Fourier transform respectively. 

Despite the fact that Eqns. (3.5) and (3.5) are an identical solution for Eq. (3.1), different sampling 

values when computing these numerically can lead to conflicting and erroneous results. For 

relatively short propagation distances, or small λ, the TSF method is generally employed, whereas 

for relatively long propagation distances, or large λ, the IMP method is generally employed [12]  

[35] .  Regardless, there are rigid sampling criteria for both IMP and TSF based solutions. Given a 

two-dimensional function with uniform square sampling, 

                                               g(x, y) = g (mΔx, nΔy),                                                                          (3.7) 
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where Δx and Δy are the sampling interval in the x and y directions respectively m and n are 

integer-valued indices. Letting Δx=Δy, the chirp function, TSF in Eq. (3.4) is sufficiently sampled 

by Δx ≥ λ Z/Lx  where Lx is the size of the data array which encompasses the aperture including a 

surrounding zero band. Similarly, the chirp IMP function in Eq. (3.3) is sufficiently sampled when 

Δx ⩽ λ Z/Lx .  These two expressions, which consider aliasing of the chirp function in the spatial 

and frequency domains respectively  [12] [33], are clearly in opposition. The critical sample 

criteria should therefore work for both the TSF and IMP-based calculations when Δx= λ Z/Lx  [35]  

[36].  

3.2   Gaussian Beam Decomposition Method  

 

        Any field distribution can be represented as a set of uniformly arrayed Gaussian beamlets. 

For a simple example, we choose a square aperture illuminated with a normally incident plane 

wave, a flat top beam profile with uniform amplitude and initial constant phase. This example 

contains the requirements of a smooth field amplitude as well as a sharp field edge, both of which 

can be quantified. As it has a flat phase field, the beamlets will all have their waists at the aperture 

plane. To obtain a flat top-hat amplitude profile with minimum ripples, the adjacent Gaussian 

beamlets must sufficiently overlap. We denote overlap factor (OF) as the ratio of the beam 

diameter, D = 2ω0 at 1∕e2 irradiance to the adjacent beamlet center separation [15] [16] [17] [18] 

[19] [20] [21] [22] CS, by OF=
𝐷

 Cs
. For a square aperture, there are a few restrictions; the number of 

Gaussian beamlets required along two dimensions (2D) to fill the square aperture is 

NG=
𝐿𝑠∗𝑂𝐹

𝐷
,where Ls is the square aperture length. Although there is no exact value for minimum 

waist size, a reasonable value for the Gaussian beam decomposition (GBD) approach is ω0 ≥3 λ 
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[17] and this criterion [33] will not conflict with Gaussian beam solution of paraxial wave equation 

restrictions as mentioned in Sec.2.1.  

When OF = 1.00, there will be substantial irradiance variation (ripples) in the GBD representation. 

On the other hand, OF=2.00 yields a decrease in the steepness of the edge roll-off. To balance 

these two limitations OF ≈1.50 could be used. 

The discrepancies among overlapping factors 1.00, 1.50 and 2.00 respectively at the plane of 

decomposition (Z=0) are shown in Figure 3.2 [15] [17]. We simulated a square aperture of 

dimensions Lsx=Lsy = LS=20mm. The simulation uses NG = 11, so 11x11 beamlets in the arrays 

and  

λ= 0.5*10-6 m. The separation between two adjacent beamlets is 1.82 mm which leads to ω0 = 

0.91mm, 1.36mm and 1.82mm respectively.  

 

Figure 3.2 Column (a) normalized 3D irradiance at Z=0 showing ripples and roll off slope, column (b) normalized 

field magnitude cross section at Z=0 and column (c) 1/e2 map radii of 11x11 beamlets [15] [17]. 
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Chapter 4. 

 

4.1   Modeling the Diffraction Pattern of Square Aperture by Overlap Factor 1.5 and FFT 

Using the IMP and TSF 

 

 

        We will demonstrate and compare the diffraction patterns for a square aperture because we 

know, analytically, the diffraction pattern for it with long propagation distances, the Fraunhofer 

regime and near field Fresnel distances have been well documented. We shall employ different 

beamlet numbers, NG and beamlet sizes, ω0 and OF=1.5. The decomposition into Gaussian beamlet 

propagation is a fast and simple technique. The GBD methodology can simulate the diffraction 

pattern at any propagation plane location; far field or near field, at any propagation distance and 

at any spatial resolution in the output plane. However, one must trade top hat smoothness for edge 

roll off. The constraints and limitations of the FFT methodology are well known and were briefly 

discussed.  

               The first example is near field propagation.  For simplicity, we used the critical sample 

criteria Δx= λZ/Lx and λ=0.5*10-6 m to satisfy the IMP and TSF [12]critical sampling rate 

simultaneously with square aperture length= 102 mm and propagation distance Z= 2000 m 

employing a grid of X x X data points. We chose 77x77 beamlets and OF = 1.5 for the GBD 

method. We have not investigated methods of making the code more efficient, so using 5929 

beamlets will slow down the algorithm time, but at this stage, we are focusing on the accuracy of 
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these calculations, not the speed. For the FFT-based approach, MATLAB code based on Ref. [12] 

was written. We also created MATLAB code for the GBD method.  

The second example is far field propagation. We modeled a smaller square aperture with length 

size =20mm, again propagating Z= 2000 m. For this calculation, 15x15 beamlets for used for GBD 

and the sampling rate for TSF and IMP were unchanged.  

 

Figure 4.1 (a) comparison of irradiance, magnitude and phase among TSF, IMP and GBD for 102x102 (mm) square 

aperture with 77X77 beamlets and row (b) a base-10 logarithmic scale on the irradiance and magnitude of TSF, IMP 

and GBD respectively for 102x102 (mm) square aperture with 77X77 beamlets.  
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Figure 4.2 (a) comparison of irradiance, magnitude and phase among TSF, IMP and GBD, respectively for 20x20 

mm square aperture with 15X15 beamlets and row (b) a base-10 logarithmic scale on the irradiance and magnitude 

of TSF, IMP and GBD respectively for 20x20 mm square aperture with 15X15 beamlets.  

 

         The results in Figs.4.1 are from the near field diffraction example and Figs.4.2 are for far 

field Fraunhofer diffraction pattern. It is apparent that both results match well, with some 

indications of the edge smoothing from the GBD primarily evident in the far field calculations.  

We note that the zeroes of the functions overlap precisely, matching the simple far-field result 

from a square aperture with uniform amplitude as given by Eqn. 4.1 [12] [35] [36].  

        Note that the width of the central lobe for the far field pattern is Eqn.4.2 [12] [35] [36] which 

matches the results. Note also that the TSF, IMP and GBD using OF=1.5 results are almost 
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identical with slight difference in amplitude for lobes number 3,4 and 5.  By increasing the number 

of beamlets, NG, while keeping OF constant, the smoothness of the top hat remains and, because 

ω0 is decreasing, the edge steepness increases.  Thus, the second lobe irradiance goes from ≈1.75X 

factor error with 15x15 beamlets, to less than a 5% error at the 5th lobe using 77x77 beamlets: 

                           U(ξ, 𝜂)= rect (
ξ

Ls
)  rect (

𝜂

Ls
).                                                                       (4.1)                                                                                                    

Again, the constant Ls   is the widths of the square aperture in ξ and 𝜂 directions: 

                            x_0= 
λ Z

Ls
 = 0.05 m.                                                                                    (4.2)                                                                                                                                                  

Thus, equation 4.3 defines complete results for computing the diffraction from a square aperture 

illuminated by a plane wave using the GBD method. Equation 4.3 for the square aperture is a 

simple double summation over the Gaussian beamlets, computed for any (x,y;Z) position in the 

diffracted field using well known Gaussian beam equations:  

U2(x, y; Z) =
ω0

w1
 exp(ikz)exp(−i𝑡𝑎𝑛−1 (

Z

zr
)) ∗

∑ [ ∑ exp(   
−((X−𝛥𝑥(m))

2
+(Y−𝛥𝑦(n))

2

(W(Z))2 )
𝛥𝑦(n) 
−𝛥𝑦(n)   exp (

ik((X−𝛥𝑥(m))
2

+(Y−𝛥𝑦(n))
2

)

(2R(Z))
)]

  𝛥𝑥(m)  
−𝛥𝑥(m) ,       (4.3) 

 
where 𝛥𝑥(m) = 𝛥𝑦(n) are beam center locations determined once Cs is defined and W(Z), R(Z) 

and the Gouy phase values were defined in table 2.4. This equation can be manipulated for any 

aperture such as circle, or tringle aperture by changing the Gaussian beamlet locations, or for a 

non-planar wavefront by appropriately addressing the initial Gaussian beamlet curvature and 

phase. 
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 4.2  Hybrid Overlap Factor Configuration 

 

 

        We now discuss how to improve the accuracy of the GBD fit for the square aperture to both 

minimize the ripple in the top hat region and increase the steepness of the edge.  Increasing the 

overlap factor decreases ripple and decreases the steepness of the edge, whereas, decreasing the 

overlap factor will lead to increased ripple and an increase the steepness of the edge. One could 

increase the number of beamlets at constant OF which would make the edges steeper due to the 

gaussian beamlets being narrower, but at the cost of increasing the number of computations.  What 

we propose instead is to mix different beam waists in the decomposition: broad gaussians where 

the field is slowly varying at the center of the aperture and narrow gaussians where the field is 

rapidly varying at the edges.  Thus, one can achieve reduced ripple and sharper edges while using 

far less beamlets than if one had used the smaller beamlets throughout. Values of OF=2 can be 

used for all beamlets, ensuring a smooth fit. Alternatively, OF selection can be an adjustable 

parameter. Any field can be decomposed to GBD or hybrid Gaussian beam decomposition 

(HGBD).   

We again simulate the 20 mm aperture with λ= 0.5*10-6 m.  The central 7x7 beamlets were set to 

OF=2 and defined for a 15mm square, yielding ω0 =CS=2.143 mm. The edge beamlets are also set 

to OF=2 and we arbitrarily set terms so that ω0 =CS=1.25 mm and then added them with the 

appropriate amplitude to yield a uniform field amplitude, accounting for both the average 

amplitude vs OF and the remaining residual field amplitude needed after the central beamlets were 

summed. 

              One feature in using the hybrid beamlets configuration is that amplitudes of the 

summation of beamlets are driven by OF, so maintaining the same OF simplifies the summation. 

However, the boundary between the large and small beamlets creates an asymmetric summation 
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feature, a ridge, in the field distribution. This was solved by fitting a third set of Gaussian beamlets, 

of another size, which effectively removed the ridge. We used a third Gaussian beamlets of ω0=1.9 

mm.  Figures.5 shows the normalized 3D irradiance, 2D normalized field magnitude and 1/e2 map 

radii of HGBD for the 20mm square aperture.  

 

Figure 4.3 (a) normalized 3D field irradiance at Z=0 showing ripples and roll off slope, column (b) normalized 

field magnitude cross section at Z=0 and column (c) 1/e2 map radii of 11x11 beamlets. 

 

            We compared the diffraction pattern at near and far field between the GBD and HGBD 

models in Figs.4.4 and4.5.  All models employed OF = 2, but for the two different GBD models, 

we matched the largest and smallest beamlet sizes used in the HGBD model, equivalent to NG = 

9 and NG =17 for the 20mm square aperture.  The Z=50 m near field propagation for these two 

GBD models and the HGBD are shown in Figure  4.4. It is clear that the NG=9 GBD model does 

not effectively capture the expected modulation at the center of the pattern which leads to 

artifact, whereas the HGBD and NG=17 GBD models closely match and show the expected 
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modulations.  A similar result is shown for the far field calculations in Figure  4.5, where it is 

apparent that the HGBD and NG =17 GBD are a close match.  Thus, the HGBD model, which 

employs 181 gaussian beamlets achieves the same resolution as the GBD model that employs 

289 beamlets, implying a potential reduction in calculations of 37% once the decomposition is 

completed.          

                                                                         

Figure 4.4 (a) comparison of irradiance between HGB, GBD17x17 and GBD 9X9 respectively for 20x20 mm near 

field square aperture (b) comparison of magnitude, between HGBD and GBD17X17, GBD 9X9 respectively for 

20x20 mm near field square.       

 

 

               



  

22 
 

                            

 
Figure 4.5 (a) comparison of irradiance between HGB, GBD17x17 and GBD 9X9 respectively for 20x20 mm far 

field square aperture (b) comparison of magnitude, between HGBD and GBD17X17, GBD 9X9 respectively for 

20x20 mm far field square.  
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    Chapter 5. 

         

5.1   Introduction   

 

                 In this chapter, we present Herriot’s approach to design off-axis multi-pass cavities 

(HCMPC) with numerical examples. We were involved in the analysis, redesign, fabrication and 

testing of a HCMPC spectrometer [25] [26] [27] [28] [29] for measuring the O2, CO2 and H2O 

levels aboard the Orion space capsule. The design provided to us was created following the 

methods described by Herriott [1]. We found that Herriott’s design approach, though sufficient, 

obscured how one would design a system from the first principles. In this Chapter firstly, we 

present a detailed overview and analysis of the original design method developed by Pierce [3] 

and Herriott. Secondly, we use Zemax to analyze the HCMPC’s. Thirdly, we show the process 

for converting the HCMPC gut ray trace to HCMPC a paraxial model collimated ray. Lastly, we 

show step-by-step of using HCMPC displacement value as yȳ diagram values. In the following 

chapters we will present a step-by-step for an innovative yȳ diagram approach for designing an 

absorbance spectrometer MPC, with several examples.  

5.2    Herriott Cell Background and Design Analysis   

 

         The fundamental Herriott cell consists of a pair of identical positive powered (concave) 

mirrors designed to provide a repeating optical path for an optical beam inserted into the cell.  
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Pierce [3] has described and derived a paraxial solution in terms of a series of equally spaced 

positive lenses with the same focal lengths. In terms of ray optics, the interferometer system 

consisting of two equal and coaxial spherical mirrors is equivalent to a series of lenses. The 

analysis of a paraxial solution in periodic focusing arrays was first applied to electron beam design. 

Extension of this paraxial solution applied to the optical realm was accomplished by Herriot et al. 

in 1964. Although Herriott’s original work was proposed for additional resonances for off-axis 

interferometer [1][3], it was not until recently applied to variety of applications such as tunable 

diode laser spectroscopy with long absorption path to detect gas molecules and to obtain high 

energy femtosecond pulses from a compact laser cavity. Extremely long laser cavities or a long 

path spectrometer can be compressed into small sizes as shown in Figure 5.1, where the blue line 

indicates the multiple paths a single beam takes in the cell. We focus here and on the following 

chapters, on its application to laser spectroscopic using tunable sources, enabling long absorption 

paths in a short package, including NASA’s laser air monitoring spectrometer system (LAMS) for 

the Artemis III mission. LAMS’s 31 laser beam bounces resulted in a 31X reduction in overall 

system length highlighting how extremely long path spectrometers can be compressed into small 

sizes using a Herriott cell. Herriott’s derivation assumes that the two mirrors are concave of the 

same radii of curvatures, separated by a vertex distance of L and that the “exit” point overlaps the 

“injection” point. Conversely, for spectroscopic applications the injected beam can’t overlap the 

exit beam.  
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Figure 5.1 A schematic of a Herriot type multi-pass cavities MPCs [7]. 

           Round trips can be presented by the (ABCD) matrix. Imagine a ray starting in the plane of 

the left mirror and after a round trip through the MPCs, this ray will have been transferred across 

the length L, reflected by the spherical mirror of radius of curvature R2, transferred another 

length L and finally reflected by the spherical mirror of radius of curvature R1 where we will let 

R1=-R2, so it is again back in the plane of M1 and aiming towards M2 as illustrated in Fig 5.2. 

The ray matrix describing the ray transformation by round trip through the MPCs are shown in 

equations 5.1 and 5.2  [30] [31] [33] [37] by: 

Figure 5.2 A round trip through the multi-pass cavities (MPCs) [7]. 
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                               [
𝐴 𝐵
𝐶 𝐷

] = [
1 0
2

−R1
1] [

1 𝐿
0 1

] [
1 0

−2

R2
1] [

1 𝐿
0 1

],                                             (5.1)           

                                 [
𝐴 𝐵
𝐶 𝐷

] = [
1 −

2L

R2
2𝐿 −

2L

R2

2

4L

R2R1
−

2

R1
−

2L

R2
1 −

2L

R2
−

4L

R1
+

24L

R1R2

2].                                  (5.2) 

After N round trips through the MPCs, therefore, the initial ray with displacement 𝑟𝑖 and slope 

𝑟𝑖′  is transformed to the ray with displacement 𝑟𝑁 and slope 𝑟𝑁′ given by [31]  

                                 [
𝑟𝑁

𝑟𝑁′] = [
𝐴 𝐵
𝐶 𝐷

]
𝑁

[
𝑟𝑖

𝑟𝑖′
].                                                                          (5.3) 

This ray matrix has determinant equal to AD-BC=1 and defining an angle Ө by 

                               cosӨ =  
1

2
(𝐴 + 𝐷)  or cosӨ = 1 −

L

R
 .                                                              (5.4) 

               

 The ABCD matrix after N rounds can be shown as [39] 

 

                    [
𝐴 𝐵
𝐶 𝐷

]
𝑁

= [

𝐴−𝐷

2

𝑠𝑖𝑛𝑁Ө

𝑠𝑖𝑛Ө
+ 𝑐𝑜𝑠𝑁Ө 𝐵

𝑠𝑖𝑛𝑁Ө

𝑠𝑖𝑛Ө

𝑐
𝑠𝑖𝑛𝑛Ө

𝑠𝑖𝑛Ө

𝐷−𝐴

2

𝑠𝑖𝑛𝑁Ө

𝑠𝑖𝑛Ө
+ 𝑐𝑜𝑠𝑁Ө

].                                        (5.5) 

 

 

The stability of MPCs, in other words, the condition that the rays remain confined, are shown in 

Equation 5.6  [30] [31] [33] [37] : 

            0 ≤ g1g2 ≤  1     where    g1 =  1 −
L

R1
 &  g2 = 1 −

L

R2
 .                                           (5.6) 

 

Herriot noticed that Equation 5.6 can be reduced to equation 26 when R1=R2 [1] [37] 

                                        0 <   
𝐿

𝑓
< 4 .                                                                                          (5.7) 

Once again, the system can be unfolded into series of thin lenses of focal length f=|R/2|, each 

separated by a length equal to L. 
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By using well-known techniques of matrix algebra and Sylvester’s theorem, the displacements  

𝑟𝑁  coordinates 𝑥𝑛 and 𝑦𝑛are equal to [37] 

 

           𝑥𝑛 = 𝑥0 𝑐𝑜𝑠𝑁Ө + (
𝑥0(𝐴−𝐷)+2𝐵𝑥0

′

2𝑠𝑖𝑛Ө
)𝑠𝑖𝑛𝑁Ө ,                                                                         (5.8) 

            𝑦𝑛 = 𝑦0 𝑐𝑜𝑠𝑁Ө +  (
𝑦0(𝐴−𝐷)+2𝐵𝑦0

′

2𝑠𝑖𝑛Ө
)𝑠𝑖𝑛𝑁Ө.                                                                          (5.9)   

         

The corresponding relation for equal radii is [1]: 

              𝑥𝑛 = 𝑥0 𝑐𝑜𝑠𝑁Ө + √
𝐿

4𝑓−𝐿
(𝑥0 + 2𝑓𝑥0

′ )𝑠𝑖𝑛𝑁Ө ,                                                           (5.10) 

where 𝑥𝑛, 𝑥0, N, 𝑓, Ө, 𝑥0
′  are the repeated radial displacements and the input beam coordinate in 

axis direction, number of intercepts on the front and back spherical mirrors, the mirror focal length 

(f = |R|/2), the angle between successive intercepts and the slope of input beam, respectively. 

A corresponding relation holds for 𝑦𝑛 [1]: 

                𝑦𝑛 = 𝑦0 𝑐𝑜𝑠𝑁Ө + √
𝐿

4𝑓−𝐿
(𝑦0 + 2𝑓𝑦0

′ )𝑠𝑖𝑛𝑁Ө.                                                           (5.11) 

The previous equations can be simplified as [1]: 

                   𝑥𝑛 = 𝐴 sin (𝑁Ө + 𝛼)                                                                                         (5.12) 

                     𝑦𝑛 = 𝐵 sin(𝑁Ө + 𝛽),                                                                                                    (5.13) 

 

where A and B are the maximum x- and y-semi-diameters of beam bounces on the mirrors. A 

circular pattern is formed when 

                    A = B           &    𝛼 = β ±
𝜋

2
 .                                                                                          (5.14) 
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5.3   The Multi-Passes Consecutive Re-entrant Condition  

 

        The multi-pass cavities (MPCs) can be designed in such a way that the beam bounces will 

be consecutive or interlaced bounces as the beam progresses around the optical axis. It is only 

the relationship between (Ө), the number of intercepts (2ν) and the number of 2π rotation. Where 

2ν is the number of intercepts in the cavity and Ө rotates counterclockwise:  

 

                                              2νӨ = 2π.                                                                                                  (5.15)  

 

If the resonator dimensions are such that 2νӨ is equal to 2π as shown in equation 5.15, then a ray 

consecutively returns exactly to its entrance point (𝑥0, 𝑦0) = (𝑥𝑛, 𝑦𝑛) after 2ν trips through the 

cavity and continues to retrace the same ray pattern again and again. 

We can use the above finding to understand the way in which a ray is reflected back- and- forth 

between the two concave mirrors of resonator. The even numbered intersection points will be the 

point where the ray strikes the one mirror and the odd numbered points will correspond to the 

points of impact on the other mirror.  

         For instance, closed paths of this type are known to exit for a confocal resonator with a 

repetition rate of two returns or 2ν =4. This will lead to a common and important design. The 

confocal resonator, with mirrors of radii equal to the cavity length (2f=R1 = R2 = L). This MPC 

design produces the smallest possible beam diameter at the cavity mirrors for a given cavity 

length and is often used in lasers where the purity of the transverse mode pattern is important. 
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Figure 5.3 Consecutive confocal cavity and correspond (𝑥𝑛, 𝑦𝑛)  diagram plot. 

 

                                                 
Table 5.1 Consecutive Confocal cavity passes (a) (𝑥𝑛 , 𝑦𝑛)  values (b) design parameters. 

(a)                                                                                                 (b) 

 

 

 

 

 

 

 
                                              

                                                 

Another well-known MPC cavity when a cavity with a mirror separation equal to the focal length 

(L=f) and closed path of three returns or 2ν =6. 
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Figure 5.4 Consecutive focal cavity and correspond (𝑥𝑛 , 𝑦𝑛)  diagram 2µ=6 plot. 

 
Table 5.2 Consecutive focal cavity passes (a) (𝑥𝑛, 𝑦𝑛)  values (b) design parameters. 

(a)                                                                                                           (b) 

 

 

 

 

 

Another multi-passe cavity example is when 2ν =32 and L=75.55 mm that will lead to 

|R1|=|R2|=3932 mm. 
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Figure 5.5 Consecutive multi-pass cavity and correspond (𝑥𝑛 , 𝑦𝑛)diagram plot. 
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Table 5.3 Consecutive multi-pass cavity passes (a) (𝑥𝑛 , 𝑦𝑛) values (b) design parameters .   

 

                   (a) 

 

 

 

                                                  

                                                   (b) 

 

 

 

 

 

 

 
                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2ν  𝑥𝑛  𝑦𝑛 

0 -10.41400 0 
1 -10.21390 -2.031671 
2 -9.62128 -3.985265 
3 -8.65892 -5.785708 
4 -7.36381 -7.36381 
5 -5.78571 -8.658925 
6 -3.98527 -9.621281 
7 -2.03167 -10.2139 
8 0.00000 -10.414 
9 2.03167 -10.2139 
10 3.98527 -9.621281 
11 5.78571 -8.658925 
12 7.36381 -7.36381 
13 8.65892 -5.785708 
14 9.62128 -3.985265 
15 10.21390 -2.031671 
16 10.41400 -1.28E-15 
17 10.21390 2.031671 
18 9.62128 3.985265 
19 8.65892 5.785708 
20 7.36381 7.36381 
21 5.78571 8.658925 
 22 3.98527 9.621281 
23 2.03167 10.2139 
24 0.00000 10.414 
25 -2.03167 10.2139 
26 -3.98527 9.621281 
27 -5.78571 8.658925 
28 -7.36381 7.36381 
29 -8.65892 5.785708 
30 -9.62128 3.985265 
31 -10.21390 2.031671 
32 -10.41400 2.55E-15 

ν = 16 

Ө(rad)= 0.196350 

COS(Ө) 0.980785 

L= 75.552 

R= 3931.98556 
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          From equations 5.4 and 5.15 the MPC can be designed with consecutive bounces. In other 

words, if the designer specifies the numbers of passes 2ν and the cavity length L the MPC can be 

deigned, as -long-as, the stability condition is met.  A comparison among the three consecutive 

cavities explained above are shown in table 5.6.  

In the following chapter we will explain in detail how one can calculate the numbers of 

intercepts and the cavity length L for absorbance spectrometer. In this chapter we are focusing on 

Herriot approach with arbitrary number of intercepts 2µ and the cavity length L. 

     

Table 5.4 Comparison among three different cavities. 

ν 2 3 16 

Ө(rad)= 1.570796 1.0472 0.196350 

COS(Ө) 0 0.500 0.980785 

L= 75.55 75.55 75.55 

|R|= 75.5523 151.1046 3931.98556 

f= 37.776 75.552 1965.993 

f/d 0.5 1 26.02172 

d/f 2 1 0.038429 
                                    

It is only the ratio between focal length focal length and the mirror spacing and Ө which determine 

whether the MPC will have closed path or not. If the condition 0< 
L

f
  < 4 holds, a ray returns to its 

entrance point after 2µ no matter what its entrance slope, additionally, a 1:1 image magnification 

of the input spot after 2ν and inverted image after ν trips. The encircled energy does not degenerate 

as the beam bounces back and forth between the mirrors. The beam is continuously refocused by 

the concave mirrors [1] [37]. 
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5.4    The Interlaced Re-entrant Condition   

 

         The MPCs can be designed in such a way that the beam intercepts will be interlaced on a 

circle. It is only the relationship among Ө, the number of intercepts 2ν and the number of 2π 

rotation (µ). Where ν is the number of intercepts on each mirror and µ is an integer number [1] 

[40]: 

  

                                             2νӨ = 2µπ.                                                                                                (5.16) 

 

The interlaced beam intercepts equation 5.16 with odd µ and even 2ν shall be used for 

spectroscopic design for multi-passes cavity. By adjusting the odd value of  µ number, the designer 

can choose a specific output beam intercepts coordinate and certain detector location.  

By way of explanation, there are three rules for equation 5.16 namely: 

1. When ν and µ share odd common factors, the results are inappropriate solutions.  For 

example, if 2ν = 2x3 and µ is 3, a common factor of 2ν and µ is odd numbers or 3 and Ө =

π , therefore this solution can be quickly rejected.  

2. When 2ν and µ share even common factors, the results are inappropriate solutions.  For 

example, if 2ν = 2x3 and µ is 2, a common factor of 2ν and µ is even numbers or 2 and 

Ө = 120°  that will lead to 3 intercepts instead of 6 intercepts, therefore this solution can 

be quickly rejected.  

3. The confocal and focal MPC are distinctive resonators and never change the intercepts 

coordinate locations, as illustrated in Figure 5.6 and Figure 5.7. 
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Figure 5.6 Distinctive interlaced confocal cavity and correspond (𝑥𝑛 , 𝑦𝑛)  diagram plot. 

 
Table 5.5 Interlaced  Confocal passes (a) correspond (𝑥𝑛 , 𝑦𝑛)  (b) design parameters values. 

(a)                                                                            (b)                                                                                                                                    

  

 

                                                       

                                           

 

An example when a cavity with a mirror separation equal to the focal length (L=f) one has closed 

path of three returns or 2ν =6 and µ=3. 
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Figure 5.7 Distinctive interlaced focal cavity and correspond (𝑥𝑛 , 𝑦𝑛)   2ν =6 and µ=5 plot. 

 
Table 5.6 Distinctive interlaced focal passes (a) correspond (𝑥𝑛 , 𝑦𝑛)  (b) design  parameters values. 

 
(a)                                                                                  (b) 

 

2µ 𝑥𝑛 𝑦𝑛 

0 -10.414 0 

1 -5.207 -9.0188 

2 5.207 -9.0188 

3 10.414 0 

4 5.207 9.0188 

5 -5.207 9.0188 

6 -10.414 0 
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Another example when 2ν =32, µ =5 and L=75.55 mm that will lead |R1|=|R2|=169.997mm 

 

   

 

Figure 5.8 Interlaced multi-pass cavity and correspond  (𝑥𝑛 , 𝑦𝑛)  diagram plot. 
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Table 5.7  Interlaced multi-passes cavity 32 (a) corresponded (𝑥𝑛 , 𝑦𝑛) values (b) design parameters. 

                               (a) 

 

 

 

                        

 

                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 ν  𝑥𝑛 𝑦𝑛 

 0 -10.41400 0 

1 -5.78571 -8.658925 

2 3.98527 -9.621281 

 3 10.21390 -2.031671 

4 7.36381 7.36381 

5 -2.03167 10.2139 

6 -9.62128 3.985265 

7 -8.65892 -5.785708 

8 0.00000 -10.414 

9 8.65892 -5.785708 

10 9.62128 3.985265 

11 2.03167 10.2139 

12 -7.36381 7.36381 

13 -10.21390 -2.031671 

14 -3.98527 -9.621281 

15 5.78571 -8.658925 

16 10.41400 -6.38E-15 

17 5.78571 8.658925 

18 -3.98527 9.621281 

19 -10.21390 2.031671 

20 -7.36381 -7.36381 

21 2.03167 -10.2139 

22 9.62128 -3.985265 

23 8.65892 5.785708 

24 0.00000 10.414 

25 -8.65892 5.785708 

26 -9.62128 -3.985265 

27 -2.03167 -10.2139 

28 7.36381 -7.36381 

29 10.21390 2.031671 

30 3.98527 9.621281 

31 -5.78571 8.658925 

32 -10.41400 0.00000 

ν = 16 

Ө(rad)= 0.981748 

COS(Ө) 0.55557 

d= 75.552 

R= 169.9976 

(b) 
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Table 5.8 Comparison among three different interlaced cavities. 

 

 

 

 

 

 

 

5.5   Step by Step of Designing Absorbance Herriott’s MPC   

 

       We will follow the Herriot approach for designing absorbance MPC spectrometer. From 

equation 5.16 we will assume that we have 2ν =32 intercepts (or 30 bounces excluding the input 

and exit intercepts) and we choose arbitrary µ=5 that will lead to Ө =0.981735 rad. From equation 

5.4, we allocate that, the cavity length L=75.55, that leads to the mirror radii curvatures 

R1=|R2|=170 mm. For now, we also allocate the beam footprints semi-diameter 𝑥0 = r0 = 10.414  

mm. In the following chapter we will describe how one can calculate the number of intercepts 

(bounces) and the beam footprints semi-diameter (r0) that will be needed for any absorbance 

spectrometer. 

We can now proceed to design a Herriott cell spectrometer. Firstly, the beam will be injected 

through hole on the back of M1 at coordinate location (𝑥0, 𝑦0)= (10.41 ,0), in the other word, the 

beam will be injected at the back mirror semi-diameter location, but of course the mirrors will have 

extra few millimeters for mechanical semi-diameters to eliminate vignetting. Secondly, from 

ν = 2 3 16 

µ 3 5 5 

Ө(rad)= 4.7123 5.235988 0.981748 

COS(Ө) 0 0.500 0.55557 

L= 75.55 75.55 75.55 

|R|= 75.5523 151.1046 169.9976141 

f= 37.776 75.552 84.99881 

f/L 0.5 1 1.125037 

L/f 2 1 0.88886 
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equation 5.6, 5.7 we calculate the stability factors G to ensure the stability of the cavity. Thirdly, 

we calculate aimed locations on M2 (𝑥1, 𝑦1) . Fourthly, we calculate the first slope values and field 

of views for the first injected beam from  (𝑥0
′ , 𝑦0

′ ) . Lastly, from equations 5.10 and 5.11 we 

calculate the repeated displacement values respectively then plot the ray path in (𝑥𝑛, 𝑦𝑛)  as viewed 

along the Z axis from behind M1. The first order design of HCMPCs is shown in table 5.10 and 

the repeated displacement values are shown in table 5.9 respectively.  

Table 5.9 The displacement beam coordinates on front and back mirrors, respectively. 

 

 

               

 

                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

2ν 𝑥𝑛 𝑦𝑛 

1 -5.78570 -8.65892 

3 10.2138 -2.03167 

5 -2.03167 10.2138 

7 -8.65892 -5.78570 

9 8.65892 -5.78570 

11 2.03167 10.2138 

13 -10.2138 -2.03167 

15 5.78570 -8.65892 

17 5.78570 8.65892 

19 -10.2138 2.03167 

21 2.03167 -10.2138 

23 8.65892 5.78570 

25 -8.65892 5.78570 

27 -2.03167 -10.2138 

29 10.2138 2.03167 

31 -5.78570 8.658924 

2ν 𝑥𝑛 𝑦𝑛 

0 -10.414 0 

2 3.985265 -9.62128 

4 7.36381 7.36381 

6 -9.62128 3.98526 

8 -2.3E-14 -10.414 

10 9.621281 3.98526 

12 -7.36381 7.36381 

14 -3.98527 -9.62128 

16 10.414 -4.33E-14 

18 -3.98527 9.621281 

20 -7.36381 -7.36381 

22 9.621281 -3.98526 

24 6.6E-14 10.414 

26 -9.62128 -3.98526 

28 7.36381 -7.36381 

30 3.985265 9.62128 
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Table 5.10 Description of first order design of Herriot cell. 

Properties Allocated Values Calculated Values Brief Description 

µ  5  

2ν 32  Number of intercepts 

(Ө)  0.981735408 rad 2νӨ = 2µπ                                                

L 75.552 mm  Cavity length 

ROC=|R1|=|R2|  170.00 mm 𝑐𝑜𝑠Ө=1 −
L

2𝑓    
=1 −

L

R
 

G  0.555580457 0 <   
𝐿

𝑓
< 4                                                                                      

𝑥0 -10.414 mm  Input beam location 

𝑦0 0  Input beam location 

Term1  0.534503231 

√
𝐿

4𝑓 − 𝐿
 

𝑥1  -5.785814881 𝑥1 = 𝑥0cos(Ө) − 𝑦0sin(Ө) 

 

𝑦1  -8.658853398 𝑦1 = 𝑥0 sin(Ө) + 𝑦0 cos(Ө) 

 

(𝑥0
′ )  0.06125 

 

𝑥0
′ = 

𝑥1 −𝑥0

𝐿
 

 

FOV=atan (0.06125) 

(𝑦0
′ )  -0.114608 𝑦0

′ = 
𝑦1 −𝑦0

𝐿
 

FOV=atan (-0.114608) 

(𝑥𝑛)   ✓ 
𝑥𝑛 = 𝑥0 𝑐𝑜𝑠𝑁Ө + √

𝐿

4𝑓−𝐿
(𝑥0 +

2𝑓𝑥0
′ )𝑠𝑖𝑛𝑁Ө                                                

(𝑦𝑛)    ✓ 
𝑦𝑛 = 𝑦0 𝑐𝑜𝑠𝑁Ө + √

𝐿

4𝑓−𝐿
(𝑦0 +

2𝑓𝑦0
′ )𝑠𝑖𝑛𝑁Ө                                                
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Figure 5.9 Layout of front and back mirrors beam bounces. 

 

 

 
Figure 5.10 Layout of combined front and back mirrors beam bounces. 
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5.6   Using Ray Tracing Software (Zemax) to Analyze the Herriot Cell 

 

       From table 5.11 we entered the first order solution into Zemax to confirm the Herriot cell 

design such as ROC and L. For now, we use the slope values to define the field of views (FOV) 

on x and y directions respectively as shown in equations 5.17 and 5.18, but in the following 

chapters we use yȳ equation to specify the field of views:  

                                      FOV-X = atan(0.061258031) = 3.53527°                                             (5.17) 

                                  FOV-Y = atan (−0.114607409) = −6.59326°.                                     (5.18) 

 

    We use the laser beam diameter as entrance pupil diameter =2mm (EPD=2mm) at the back of 

M1 then decentered the input collimated beam by (𝑥0, 𝑦0) =  (-10.414,0). In the following 

chapters we elaborate in detail how to calculate an exact entrance pupil diameter for plane wave 

or collimate light. So, in Herriott approach you can only design the system from gut ray. The 

Zemax first-order optical properties are shown in Fig5.11(b), where LaGrange or optical invariant 

of system (LINV), entrance pupil position (ENPP), entrance pupil diameter (EPDI), exit pupil 

position (EXPP), effective focal length (EFFL) and effective focal length for single element in the 

local plan y (EFLY). The real ray displacement data, FOV and EPD values are shown in 

Fig5.11(d). The inserted first order parameters such as ROC, L, decenter value are shown in 

Fig5.11(c). 
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Figure 5.11 (a) Layout of gut ray Herriot cell design in Zemax (b) merit function (c) lens data editor(d) Zemax real 

ray tracing, FOV and EPD [7].  

 

In the design shown in Fig5.11, the real ray solution closely matches the first order Herriot cell 

displacements coordinate data (𝑥𝑛, 𝑦𝑛), but there are discrepancies among HCMPC first order, 

first order Zemax and paraxial optics Zemax, such as LaGrange invariant and EPD. These 

discrepancies come from several sources: 

1. The M1 and M2 surfaces are spherical not flat as assumed in paraxial optics, which alters 

the real ray transfer distance, the local slope of the surface and aberrations. We will discuss 

the aberration impacts in detail in the following chapters. 

2. HCMPC approach the input beam is a gut ray (object of finite conjugate), but in Zemax 

design the input beam is collimated (object of infinite conjugate object). 
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3. The HCMPC entrance pupil diameter is the mirror diameter=20.8mm, but in Zemax the 

EPD=2 mm, consequently, that will lead to deviation in LaGrange invariant for both 

designs.   

We found out that to make the HCMPC approach first order solution and first order solution for 

Zemax sufficiently identical the following procedures will be needed: 

1. Rotate HCMPC displacements values (𝑥𝑛, 𝑦𝑛)   by the slope of the first segment, as shown 

in Fig5.12 and Fig5.13  

2. Calculate a new entrance pupil diameter for rotated HCMPC design, by way explanation, 

EPD(collimated) = 2𝑦𝑛(rotated) , as shown in Fig5.14  

3. Calculate a new FOV for the rotated HCMPC design, by way explanation, the new FOV 

only in y-coordinate instead of x-coordinate and y-coordinate,  

FOV(collimated) =  √(FOV_X)2 + (FOV_Y)2 = √(3.53527)2 + (−6.59326)2 = 7.481°. 

4. Calculate the first order parameter for rotated HCMPC, such as, EPD, EFL, radius of 

curvature and LaGrange invariant. 

5. Insert the new collimated EPD and FOV into ZEMAX, without changing any other 

parameters.  

6. Compare the Zemax design with rotated HCMPC design, such as, LaGrange invariant and 

yȳ diagram, as shown in Fig5.15.  

7. After these procedures, the rotated HCMPC design and collimated input Zemax design are 

sufficiently identical results. 
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 Figure 5.12 (a) Layout of Herriot collimated input design in Zemax (b) merit function (c) lens data 

editor(d)Paraxial real ray tracing, FOV and EPD [7]. 

   

Figure 5.13 An image of  rotated gut ray real solution to be matched with the Zemax collimated design. 
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Figure 5.14 Shows the Rotation of the gut ray (green) to facilitate the collimated ray (orange). 

            

                                 

Figure 5.15 (a) The yȳ diagram of collimated input design, (b) The yȳ diagram of gut ray design  [7]. 
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In the following chapter we create a new equation to collimate input HCMPC with examples. An 

image of HCMPC programmed in Excel is shown in Appendix C. 

5.7    Using the (𝒙𝒏, 𝒚𝒏)  Values as yȳ Values to Design First Order Herriott Cell 

 

         From section 5.6 the rotated HCMPC displacement values (𝑥𝑛, 𝑦𝑛)  and collimated Zemax 

yȳ diagram are sufficiently identical results. 

Thus, we used the displacement value (𝑥𝑛, 𝑦𝑛) = (ȳ𝑛, 𝑦𝑛) and from table2.1 we use the yȳ 

characterization to calculate the first order optical parameters. The results are sufficiently identical 

results with HCMPC approach, as shown in table5.11 and table5.12.  As expected, we noticed the 

LaGrange invariant has negative sign and the explanation is the counterclockwise sense of Ө. 
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Table 5.11 Deploy the displacement (𝑥𝑛 , 𝑦𝑛) values as initial yȳ value description. 

Properties Known Values Calculated Values Brief Description 

ȳ𝑛 = 𝑥𝑛  ✓   Displacement in x direction(xn) 

y= 𝑦𝑛 ✓   Displacement in y direction(yn) 

Length (L) 75.5523 mm  Axial distance between represented by 

two points in the yȳ diagram 

Lg   

       -1.1935263 

LaGrange invariant or the scaling 

factor 

Lg= 
1

  𝑡 
 [

𝑦𝑛 ȳ𝑛 

yn+1 ȳ𝑛 + 1
]     

u  ✓  Marginal ray angle 

U=
𝑦𝑛+1−𝑦𝑛

𝑡
                        

ū  ✓  Chief ray angle 

Ū= 
ȳ𝑛+1−ȳ𝑛

𝑡
                       

Φ1  0.0117646 diopters 

 

Optical power for back mirror 

Φ1= 
1

  𝐿𝑔 
 [

𝑢𝑛 ū𝑛 

𝑢n+1 ūn+1
]                          

Φ2  -0.0117646 diopters Optical power for front mirror 

Φ2= - Φ1 

f1  85.00076 mm Focal length for back mirror 

f1= 
1

Φ1
 

f2  -85.00076 mm Focal length for front mirror 

f2= 
1

Φ2
 

R1  -170.002 mm Radius of curvature of back mirror 

R1=
−2𝑛

 Φ1
 

R2 

 

 170.002 mm Radius of curvature of front mirror 

R2= - R1 
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Table 5.12 Results of deploy the displacement values as initial yȳ values. 

 

                                 . 
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Chapter 6. 

 

6.1    The MPC yӯ Diagram Methodology Introduction   

 

         The yȳ diagram is a representation of geometrical paraxial optics, developed by Delano [9] 

then extended and employed by others to design and analyze gaussian beams propagating through 

optical systems [24][38] [39]. The yȳ diagram is a plot of the paraxial chief and marginal ray 

heights at each surface as they are sequentially encountered through the optical system, with a 

scaling factor defined by the LaGrange invariant (Lg) of the system. It can be described as 

observing a skew ray propagating through an optical system as viewed along the optical axis. With 

simple relations to connect individual and pairs of (ȳ, y) points to optical specifications, the 

designer can readily calculate ray angles, beam sizes, distances, focal lengths and principal 

locations. Additionally, simple graphical rules allow the designer to rapidly layout or evaluate 

optical conditions throughout a system, including locating and determining the sizes of all pupils 

and images, telecentric, plane wave and collimated spaces and evaluating distances, as shown in 

Chapter 2. 

               We felt that Herriott’s design approach, though sufficient, obscured how one would 

design a system from the first principles from the perspective of an optical designer. We also found 

that Herriott’s didn’t present a methodology to calculate some of critical design aspects such as 

the radial distance, r0, that defines the circle of the beam footprints. The variable r0 is equivalent 
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to Herriott’s  r0 = A =  B = √𝑥0
2 + 𝑦0

2 = √𝑥𝑛
2 + 𝑦𝑛

2 for circular beam footprint on the 

mirrors. 

From Chapter 5, we also saw that Herriott’s MPC gut ray design approach deviates from paraxial 

optics and some of the parameters of first order ray tracing software results such as entrance pupil 

diameter and LaGrange invariant.  If  we treat (𝑥𝑛, 𝑦𝑛) = (ȳ, y )   in the diagrams Figure 5.10 we 

see that every mirror is positive powered (the segments “bend” towards the coordinate origin), 

every mirror is separated by the same distance (the area swept out by a vector whose base is at the 

origin from element N to element N+1 is identical) and the radial distance of the spots from the 

mirror center is identical.  In case of Herriott’s MPC injected gut ray approach, once the LaGrange 

Invariant (Lg) is properly set to match the mirror separations and powers, note that this case the 

yȳ diagram itself does not precisely represent the Herriot’s MPC ray tracing software design.  The 

entrance pupil diameter represented by the yȳ diagram is nearly the diameter of the circle of dots, 

but the probing beam is generally far smaller. Thus, the (𝑥𝑛, 𝑦𝑛) = (ȳ, y)  diagram is essential plot 

of gut ray of the probing beam and it allows the designer to optimize and analysis the design and 

after that the designer needs to fix the data to be correlated with geometrical optics convention 

signs. And rotate the design to collimated injected beam to compute accurate values of entrance 

pupil diameter and the LaGrange Invariant, as shown in the previous chapter. In the following 

chapter, we will show how 3rd order aberration calculations can be made with this approach. 

 In this chapter, firstly we define all parameters needed to lay out any MPC absorbance 

spectrometer such as the clear aperture semi-diameter r0, number of mirrors intercepts (N), the 

angles among the bounces Өm and the Km parameter (the numbers of yȳ circular rotation (2π) 

rotation) and cavity length. Secondly, we create intuitive yȳ diagram equations that correlate with 

geometrical optics sign convention (rays propagate from left to right and ray angles are positive if 
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the ray direction is obtained by rotating about the +z axis counterclockwise) for MPC gut ray 

design instead of Herriott’s MPC Eqn.5.10 and Eqn5.11 respectively. Thirdly we create the yȳ 

diagram of collimated input of MPC for further analysis. Fourthly, we create equations of MPC of 

different radii of curvature, Lastly, the chapter will include numerous step-by-step numerical 

examples using first order yȳ approach and compared with ray tracing software (ZEMAX).   

The creation of collimated input beam yȳ diagram equations to MPC will help the designer to 

readily use the ray tracing software and obtain precise analysis of aberrations, tolerate, an accurate 

values of entrance pupil diameter and LaGrange. Using the ray tracing software is an essential tool 

to analyze, tolerate and obtain as build MPC model.  

6.2    Defining MPC Absorbance Parameters  

 

         The optical designer is presented with a set of specifications for the system.  First, the science 

of the spectroscopic task will yield a minimum path length through which the laser probe must 

pass, the overall length (OAL).  Mechanical criteria for the packaging yield the maximum length 

into which the system must fit, which yields a mirror separation, L.  This sets the minimum number 

of integer passes the probe beam must make through the cell, N ≥ OAL/L, which requires N+1 

points on the yȳ diagram, n = 0…N.  One, n=0, is for the beam entering (ȳ0, y0)and the last, n = 

N, (ȳ31, y31)  is for exiting the cavity, both of which are located at the respective mirrors.  Note 

that there may be additional packaging requirements that increase N.  For example, if the detector 

needs to be on the opposite side as the source, in our approach N must be odd and greater than 

OAL/L. And finally, our N is related to Herriott’s ν by N = 2ν–  1  for odd N and N = 2ν for even 

N. 

       In other words, the input pass (ȳ0, y0)  is for the beam entering and (ȳ31, y31) is for exiting 

the cavity, both of which are located at the respective mirrors, or the even numbered intersection 
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points will be the point where the ray strikes (intercept) the one mirror and the odd numbered 

points will correspond to the points of impact on the other mirror. In addition, that designer 

obtains a 1:1 image of the input spot at  (ȳ32, y32) and inverted image after at (ȳ16, y16) for 

concave mirrors. And the encircled energy does not degenerate as the beams bounce back and 

forth between the mirrors but is continuously refocused by the concave MPC mirrors. These 

concepts allow the designer to choose an accurate location of input beam locations and output 

beam location (detector) for any absorbance MPC design and correlate with HCMPC approach.  

         Now that N has been defined, we now note that the probe beam has some diameter, D and to 

ensure that beam footprints do not overlap, we set:  

                               2πr0 ≥ (N + 1)D  &  r0 ≥
(N+1)D

2π
 .                                                            (6.1)     

 

                                   

Given this parameter, the ring of beams does not overlap one another, which is important at the 

source and detector locations as the designer wants to avoid feedback into the source and stray 

beams onto the detector as those beams will have traveled different distances through the cell, as 

illustrated on Figure 6.1. 

                            

Figure 6.1 a) Correct size of mirror semi-diameter for absorbance spectrometer Mirror b) Undersized mirror semi-

diameter for absorbance spectrometer. 
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For an example, assume a system requires a spectroscopic path length ≥ 2282mm in a package 

75.55mm in length between the mirrors and the detector. Also assume the Laser source has a 4.8 

mm diameter beam and it must be on the opposite side of the cell from the detector.  This requires 

OAL/L= 2282/75.55 = 30.21 passes, so we select N=31, which is an odd number ensuring the 

detector and source are on opposite sides of the cell.  From equations 6.1, we find that r0 ≥ 

32*4.8/(2π) = 24.45mm so we select minimum value r0 = 25 mm.  

6.3    The yӯ Diagram Methodology of Gut Ray with Numerical Example   

 

       We choose to plot the yȳ diagram MPC in a clockwise sense to follow geometrical optics 

convention signs, so, we create gut ray MPC yȳ diagram baseline equations as shown in equations 

6.2 and 6.3, where  n=0 to N=31: 

  

                                   ȳn = −r0cos(−𝑛Өm),                                                                             (6.2)                                                                            

                                yn = −r0 sin(−𝑛Өm).                                                                             (6.3) 

       Then we define a new parameter, Km, which is related to the number of times the mirror 

intercepts circle around the cell, in other words, the number of times the yȳ diagram mirror 

intercepts circle around (2𝜋) the cell. To avoid ambiguity, we change from Herriott’s notion of µ 

to m. The parameter Km also ensures that the beams are evenly spaced on the mirrors: 

 

                                  Km =
m(2ν−1)

2ν
=

m(N)

𝑁+1
 .                                                                                (6.4) 

Then we calculate Өm between two sequence bounces as  

                                             Өm =
2𝜋Km

𝑁
=

2𝜋 m

𝑁+1
 .                                                                          (6.5) 

 

From section 6.2 and section 6.3 we have all the parameters and equation required to completely 

design gut ray yȳ diagram MPC absorbance spectrometer, which is programmed in Excel.  
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6.4    Consecutive yӯ Diagram Gut Ray Design of MPC Absorbance Spectrometer  

 

         From section 6.2 we can proceed to design the consecutive yȳ diagram for absorbance 

spectrometer application. Firstly, the beam will be injected through the back of M1 as calculated 

from section 6.2,(ȳ0, y0)  =(25,0) and calculated intercepts (passes) N=31. Secondly, from 

equation 6.4 and 6.5 the angle Өm between bounces for consecutive design can be calculated 

m=1 as:  

                                               Km =
(N)

𝑁+1
 ,                      

                                                    Өm =
2𝜋 

𝑁+1
 .                           

 

           Thirdly, from equations 6.2 and 6.3 the points on the yȳ diagram will fall on a circle of 

calculated radius r0, in other words, we can assign ȳ and y to cosine and sine functions, 

respectively, where the arguments will entail increments in angular steps. Fourthly, the radius of 

curvature, g1g2 parameter and stability, EFL, can be calculated from the yȳ diagram 

characterization (Chapter2, table 2.21). Lastly, we plotted the repeated skew ray yȳ values and as 

viewed along the Z axis from behind M1. The first order design of the consecutive yȳ diagram 

MPCs are shown in table 6.1, table 6.2 and the repeated yȳ diagram values is shown in Figure 6.2, 

Figure 6.3 respectively and an image of programmed Excel file attached on Appendix D.  
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Table 6.1  Description of First Order Consecutive gut ray yȳ Diagram MPC. 

 
Properties Allocated Values Calculated Values Brief Description 

m 1   

r0   -25mm 
r0 ≥

(N + 1)D

2π
 

Number of intercepts (N)  31 N=OAL/L 

Өm  0.196350 Өm =
2𝜋Km

𝑁
=

2𝜋 m

𝑁+1
 

ȳ0  -25 Input beam location 

ȳ0 = r0 cos (−𝑛Ө𝑚) 

𝑦0  0 Input beam location 

y0 = r0 sin (−nӨ𝑚) 

ȳn 

 

  

√ 

ȳn = r0 cos (−𝑛Ө𝑚) 

From n=0 to N=31 

𝑦𝑛  √ y0 = r0sin (−nӨ𝑚) 

From n=0 to N=31 

Length (L)  75.552 mm Cavity length 

t1= 
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
] 

Ū(rad)  0.00635 Ū= 
ȳ𝑖+1−ȳ𝑖

𝑡1
 

U(Rad)  0.064555 U=
𝑦𝑖+1−𝑦𝑖

𝑡1
 

R  3931.98556 Φ= 
1

  𝐿𝑔 
 [

𝑢0 ū0 

𝑢1 ū1
] 

L

f
 (Stability)  0.038429 0≤ 

L

f  
≤ 4 

FOV (Y-direction)  - 3.693° FOV_X=atan (U) 

FOV (X-direction)  0.364° FOV_Y=atan (Ū) 
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Figure 6.2 Consecutive gut ray yȳ diagram MPC. 
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Table 6.2 Consecutive gut ray yȳ diagram MPC. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 6.3 Consecutive gut ray yȳ diagram MPC intercepts on M1, M2. 
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6.5    Interlaced yӯ Diagram Gut Ray Design of MPC  

 

         Similarly, we follow the same producers on previous section, but we use m=5.The first order 

design of the interlaced yȳ diagram MPCs is shown in table 6.3, table6.4 and the repeated yȳ 

diagram values is shown in Figure 6.4, Figure 6.5 respectively and programmed Excel file image 

is attached in Appendix D.  

           

Figure 6.4 Interlaced gut ray yȳ diagram MPC. 
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Table 6.3 Description of first order Interlaced gut ray yȳ diagram MPC. 

Properties Allocated Values Calculated Values Brief Description 

m 5   

r0   -25mm 
r0 ≥

(N + 1)D

2π
 

Number of 

bounces(N) 

 31 N=OAL/L 

When N=31 

Length (L)  75.552 mm Cavity length 

t1= 
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
] 

Өm(rad)  0.981748 

 

Өm =
2𝜋Km

𝑁
=

2𝜋 m

𝑁+1
 

ȳ0  -25 Input beam location 

ȳ0 = r0 cos (−nӨ𝑚) 

𝑦0  0 Input beam location 

y0 = r0 sin (−nӨ𝑚) 

ȳn  √ ȳn = r0 cos (−nӨ𝑚) 

𝑦𝑛  √ y0 = r0 sin (−nӨ𝑚) 

Ū(rad)  0.147061 Ū= 
ȳ𝑖+1−ȳ𝑖

𝑡1
 

U  0.27513 U=
𝑦𝑖+1−𝑦𝑖

𝑡1
 

R  169.99761 

 

Φ= 
1

  𝐿𝑔 
 [

𝑢0 ū0 

𝑢1 ū1
] 

L

f
  (Stability)  0.88886 

 

g1=g2= 1 −
2L

R1
 

0≤ 
L

f
 ≤ 4 

FOV(Y-direction)  -15.4° FOV=atan (U) 

FOV(X-direction)  8.366° FOV=atan (Ū) 
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Table 6.4 Interlaced gut ray yȳ diagram MPC design. 

 

 

 

 

 

 

 

 

 

 

 

                   

  

Figure 6.5 Interlaced gut ray yȳ diagram MPC intercepts on M1, M2. 
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Exit Beam
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n ȳ y 

1 -13.88926 20.78674 

3 24.51963 4.877258 

5 -4.87726 -24.5196 

7 -20.78674 13.88926 

9 20.78674 13.88926 

11 4.87726 -24.5196 

13 -24.51963 4.877258 

15 13.88926 20.78674 

17 13.88926 -20.7867 

19 -24.51963 -4.87726 

21 4.87726 24.51963 

23 20.78674 -13.8893 

25 -20.78674 -13.8893 

27 -4.87726 24.51963 

29 24.51963 -4.87726 

31 -13.88926 -20.7867 

n ȳ y 

0 -25.00 0 

2 9.56709 23.09699 

4 17.67767 -17.67767 

6 -23.09699 -9.567086 

8 0.000 25.00 

10 23.09699 -9.567086 

12 -17.67767 -17.67767 

14 -9.56709 23.09699 

16 25.00000 1.53E-14 

18 -9.56709 -23.09699 

20 -17.67767 17.67767 

22 23.09699 9.567086 

24 0.000 -25.00 

26 -23.09699 9.567086 

28 17.67767 17.67767 

30 9.56709 -23.09699 
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6.6   Invalid yӯ Diagram Gut Ray Design of MPC  

 

         When N+1 and m share common factors, the results are inappropriate solutions.  These 

flawed solutions are visually obvious and, therefore, can be quickly rejected.  For example, if N = 

31 and m is even, a common factor of N+1 and m is 2.  If N = 32, then if m is a multiple of 3, the 

solution does not work.  These flawed solutions are visually obvious – the number of points plotted 

is a fraction N+1 - and, therefore, can be quickly rejected.  

The designer must avoid beams from overlapping with one another, which is important at the 

source and detector locations. Any beam returned to the laser source could lead to overheating and 

laser instability. And any other feedback into the detector will lead to an increase in the stray light 

and signal to noise ratio(S/N). Plus, these unwanted stray beams will have traveled different 

distances through the cell, contaminating the signal. 

Similarly, we use the same parameters as in the previous section, but we use m=2 and N=31. The 

first order design of invalid yȳ diagram MPCs is shown in table 6.5, table 6.6, the repeated yȳ 

diagram is shown in Figure 6.6, Figure 6.7 and programmed Excel file image is attached in 

Appendix D. respectively. 
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Table 6.5 Description of first order Interlaced gut ray yȳ diagram MPC. 

Properties Allocated Values Calculated Values Brief Description 

m 2   

r0   25mm 
r0 ≥

(N + 1)D

2π
 

Number of 

bounces(N) 

 31 N=OAL/L 

when N=31 

Өm(rad)  0.392699 Өm =
2𝜋Km

𝑁
=

2𝜋 m

𝑁+1
 

ȳ0  -25 Input beam location. 

ȳ0 = r0cos (−𝑛Ө𝑚) 

𝑦0  0 Input beam location. 

y0 = r0 sin (−𝑛Ө𝑚) 

ȳn 

 

  

√ 

ȳn = r0cos (−𝑛Ө𝑚) 

From n=0 to N=31 

𝑦𝑛  √ y0 = r0sin (−𝑛Ө𝑚) 

From n=0 to N=31 

Length (L)  75.552 mm Cavity length 

t1= 
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
] 

Ū(rad)  0.025188 Ū= 
ȳ𝑖+1−ȳ𝑖

𝑡1
 

U(rad)  0.12663 U=
𝑦𝑖+1−𝑦𝑖

𝑡1
 

R  992.5320 

 

Φ= 
1

  𝐿𝑔 
 [

𝑢0 ū0 

𝑢1 ū1
] 

R=2EFL=
1

  2Φ 
 

L

f
  (Stability)  0.152241 0≤ 

L

f  
≤ 4 

FOV(Y-direction)  7.22° FOV= atan (U) 

FOV(X-direction)  1.44° FOV= atan (Ū) 
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Figure 6.6 Invalid gut ray yȳ diagram MPC. 
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Table 6.6 Invalid gut ray yȳ diagram MPC design. 

 

 

 

 

 

 

 

 

 

 

 

       

      

Figure 6.7 Invalid gut ray yȳ diagram MPC intercepts on M1, M2. 
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n  ȳ  y 
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5 9.56709 23.09699 
7 23.09699 9.567086 
9 23.09699 -9.56709 

11 9.56709 -23.097 
13 -9.56709 -23.097 
15 -23.09699 -9.56709 
17 -23.09699 9.567086 
19 -9.56709 23.09699 
21 9.56709 23.09699 
23 23.09699 9.567086 
25 23.09699 -9.56709 
27 9.56709 -23.097 
29 -9.56709 -23.097 
31 -23.09699 -9.56709 

n  ȳ  y 
     0 -25.00 0 

 2 -17.67767 17.67767 
4 0.00000 25.00 
6 17.67767 17.67767 
8 25.00000 3.06E-15 

10 17.67767 -17.67767 
12 0.000 -25.00 
14 -17.67767 -17.67767 
16 -25.00000 -6.13E-15 
18 -17.67767 17.67767 
20 0.00000 25.00 
22 17.67767 17.67767 
24 25.00000 9.19E-15 
26 17.67767 -17.67767 
28 0.00000 -25.00 
30 -17.67767 -17.67767 
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6.7    Uneven and Unstable Intercepts for yӯ Diagram Gut Ray Design of MPC 

 

          A major advantage of yȳ technique that an easy visualization of uneven, invalid, unstable 

and dysfunctional resonator. From Eqns. 6.4 and 6.5 these equations lead to an even distribution 

for the circular beam footprints, although, there are some solutions the resonator can be stabled 

but has uneven circular footprints distribution. For instance, if we allocate an arbitrary value for 

Km=4.5 and from Eqn.6.5, Өm = 52.258° and L/f=0.776, by way of explanation, if we assume 

an arbitrary number for  Km parameter or  Km=4.5. The resonator in this case is stable but has 

uneven circular distribution footprints as shown in Figure 6.8 and Figure 6.9. 

 

                          

Figure 6.8 Uneven distribution gut ray yȳ diagram MPC. 
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Figure 6.9 Invalid gut ray yȳ diagram MPC intercepts on M1, M2. 

On the other hand, if we allocate an arbitrary extreme value for Km=15.5, in other words, if we 

add an extreme constant to Km or Km=15.5. from Eqn.6.5, Өm = π  ,and L/f=4. This is an unstable 

MPC and the solution can be quickly rejected as shown in Figure 6.10. 

The unstable result from the previous example is a perfect match to our results in section 5.4 for 

HCMPC confocal interlaced case. For example, if 2ν = 2x3 and µ is 3, a [Use your notation here!] 

common factor of 2ν and µ is odd numbers or 3 and Ө = π , therefore, our yӯ diagram results will 

always be identical to HCMPC approach but our approach is rapid and intuitive for optical 

designers and the Km and  Өm equations can be manipulated for a variety of applications. 
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Figure 6.10 Unstable gut ray yȳ diagram MPC. 

 

6.8    Collimated Injected Beam yӯ Diagram Design of MPC  
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provide accurate data of gut ray Lg and EPD and we rotated the design by the angle of the slope 

to obtain accurate data. The reasons of these discrepancies are the entrance pupil diameter 

represented by ray tracing software is the diameter of injected beam and the injected beam 

generally far smaller from the yȳ diagram entrance pupil diameter. Where the yȳ diagram entrance 

pupil diameter is nearly the diameter of the circle of dots.   

         Although it’s not necessary to rotate the design and the designer can always use the gut ray 

design, more importantly, this simplifies communicating the design to the mechanical design team 

when specifying the drawings for the mirrors and the designer can use the ray tracing software for 

precision tolerances analysis and aberration result. It means the injected beam only has an y-angle 
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instead of x- field angle and y- field angle and the entry of the design into an optical design code 

is easier, to get the injected beam to be collimated space, the first segment must be parallel to the 

ȳ axis as discussed in previous Chapter.  We create collimated input equations of MPC yȳ diagram, 

a constant of π /2 + Өm /2 is added to equation 6.2 and 6.3, placing the injected beam segment at 

the top of the diagram and symmetric about the y-axis. The equations for the ȳn values are, 

therefore, 

ȳn = −r0cos (−Өm ∗ n +
π

2
+

Өm

2
)                                                                                                 (6.6) 

= −r0cos ((−Өm ∗ n +
Өm

2
) +

π

2
) ,                                                                                                 (6.7) 

where,  

     cos (𝛽 +
π

2
) = sin(−𝛽)                                                                                                     (6.8) 

= −r0sin (− (−Өm ∗ n +
Өm

2
))                                                                                                      (6.9) 

= −r0sin ((Өm ∗ n −
Өm

2
))                                                                                                            (6.10) 

ȳn  = −r0sin (Өm ∗ (n −
1

2
)),                                                                                                        (6.11)   

where n = 0 to N, 

Similarly, the equations for the yn values are, therefore, 

 yn  = −r0sin (−Өm ∗ n +
π

2
+

Өm

2
)                                                                                                (6.12) 

= −r0sin ((−Өm ∗ n +
Өm

2
) +

π

2
)                                                                                                   (6.13) 

= −r0sin ((−Өm (n −
1

2
)) +

π

2
),                                                                                                   (6.14) 

where, 

  sin (−𝛽 +
π

2
) = cos(−𝛽) = cos(𝛽)                                                                                             (6.15)                                             

yn  = −r0cos (Өm ∗ (n −
1

2
)) ,                                                           (6.16) 
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where n = 0 to N. 

Since we require the mirrors to be separated by L and scaled by Lg, we can use the simple relations 

for computing distance on the yȳ diagram to derive the Lg:  

Lg= (y0ȳ1 − ȳ0y1) ∗ (
1

𝐿
)         

  = (r0cos (−
Өm

2
) ∗ r0sin (

Өm

2
)) − (r0sin (−

Өm

2
) r0cos (

Өm

2
)

1
) ∗ (

1

𝐿
) 

  = r0
2 (cos (−

Өm

2
) ∗ sin (

Өm

2
)) − (sin (−

Өm

2
) cos (

Өm

2
)

1
) ∗ (

1

𝐿
)                                             (6.17) 

Lg = (2 r0
2sin (

Өm

2
) cos (

Өm

2
)) ∗ (

1

𝐿
)                                                                          

Lg = ( r0
2sin(Өm)) ∗ (

1

𝐿
).                                                                                                                (6.18) 

 

Using any programming software, the designer can now rapidly scan through multiple designs for 

a single set of specifications and, when further analysis with an optical design code is desired, the 

mirrors ROC, separation, location of injected beam offset on initial mirror, (x0, y0) = (ȳ0, y0) and 

the injected beam field angle, y-angle = atan (ū0) where ū is readily computed through Delano the 

yȳ diagram equations in Chapter 2.  

We follow the same procedures for gut ray yȳ diagram HCMPCs to specify the MPC parameters 

of collimated input beam. Firstly, from section 6.2 we can proceed to collimated input beam of 

the consecutive or interlaced MPC yȳ diagram, thus, the beam will be injected through the back 

of M1 at calculated r0=25 mm and calculated N=31 and cavity length L=75.55 mm. Secondly, 

from equation 6.4 and 6.5 the angle Өm between bounces for consecutive or interlaced designs 

can be calculated, m=1,2,3 and 5.  

Thirdly, from equations 6.11, 6.16 and 6.18 the points on the yȳ diagram will fall on a circle of 

radius r0 but the first two points will be collimated to optical axis.  
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Fourthly, the radius of curvature, G parameters, stability and EFL, can be calculated from the yȳ 

diagram characterization. Lastly, we plotted the repeated the skew ray yȳ values and as viewed 

along the Z axis from behind M1. We present 4 different designs example and compared with 

Zemax data for proof of concept. 

6.8.1  Collimated Input Beam Consecutive yӯ Diagram Design of MPC  

 

           In this design we use consecutive (m=1), r0 =25mm, N=31 and collimated input beam. In 

collimated approach equations 6.11, 6.16 and 6.18 will take care of geometrical optics convention 

signs, with positive Lg. 

We notice that the intercepts (0,1), (16,17) are both collimated and are, in fact, images of each 

other: they, (ȳ32, y32) and (ȳ17, y17), are inverted images of each other.  In fact, every 16th 

reflection of any mirror intercept is an inverted image. And the beam size does not significantly 

grow as the beams bounce back and forth between the mirrors but is continuously refocused by 

the concave MPC mirrors.  

 The first order design of collimated yȳ diagram MPCs is shown in Table 6.7, Table 6.8, the 

repeated yȳ diagram is shown in Figure 6.11, Figure 6.12, the ZEMAX design data are shown in 

Figure 6.13, Figure 6.14 and programmed Excel file image is attached on Appendix D. 

respectively. 
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Table 8.7 Description of first order consecutive collimated ray yȳ diagram MPC. 

Properties Allocated Values Calculated Values Brief Description 

m 1   

r0   25mm r0 ≥
(N + 1)D

2π
 

Number of 

bounces(N) 

 31 N=OAL/L 

Length (L)  75.552 mm Cavity length 

t1 =
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
] 

Өm(rad)  0.19634954 Өm =
2𝜋 m

𝑁+1
 

ȳ0  -2.45043 
ȳn  = r0sin (Өm ∗ (n −

1

2
)) 

𝑦0  24.87962 
yn  = r0cos (Өm ∗ (n −

1

2
)) 

EPD  50 mm EPD=2 ∗ 𝑦
1
 

𝐿𝑔  1.63874 
Lg = (2 r0

2sin (
Өm

2
) cos (

Өm

2
))

∗ (
1

𝐿
) 

Ū(rad)  0.064867 Ū =  
ȳ𝑖 + 1 − ȳ𝑖

𝑡1
 

U(rad)  0 U =
𝑦𝑖 + 1 − 𝑦𝑖

𝑡1
 

R  3931.98556 R=2EFL=
1

  2Φ 
 

L

f
  (Stability)  0.038429 0≤ 

L

f  
≤ 4

 

FOV(X-direction)  3.711425° FOV=atan (Ū) 
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Figure 6.11 Consecutive collimated input yȳ diagram MPC. 
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Table 6.8 Consecutive collimated Input yȳ Diagram MPC intercepts M1, M2 data. 

 

 

 

 

 

 

 

 

 

 

 

                 

    

 

Figure 6.12 Consecutive collimated Input yȳ Diagram MPC intercepts M1, M2 plot. 
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14 11.78492 -22.04803 

16 2.45043 -24.87962 

18 -7.25712 -23.92351 

20 -15.85983 -19.32526 

22 -22.04803 -11.78492 

24 -24.87962 -2.45043 

26 -23.92351 7.25712 

28 -19.32526 15.85983 

30 -11.78492 22.04803 

N ȳ y 

1 2.45043 24.87962 

3 11.78492 22.04803 

5 19.32526 15.85983 

7 23.92351 23.92351 

9 24.87962 24.87962 

11 22.04803 22.04803 

13 15.85983 15.85983 

15 7.25712 7.25712 

17 -2.45043 -2.45043 

19 -11.78492 -11.78492 

21 -19.32526 -19.32526 

23 -23.92351 -23.92351 

25 -24.87962 -24.87962 

27 -22.04803 -22.04803 

29 -15.85983 -15.85983 

31 -7.25712 -7.25712 
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Figure 6.13 Consecutive collimated input ray tracing simulation [7]. 

 

Figure 6.14 An image of  consecutive collimated input ray tracing simulation data [7]. 
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6.8.2 Collimated Input Beam Interlaced yӯ Diagram Design of MPC  

 

          Similarly, in this design we use interlaced design where (m=3), r0 =25mm, N=31and 

collimated input beam. In collimated approach equations 6.11, 6.16 and 6.18 will take care of 

geometrical optics convention signs. The first order design of collimated yȳ diagram MPCs is 

shown in Table 6.9, Table 6.10, the repeated yȳ diagram values is shown in Figure 6.15, Figure 

6.16, the ZEMAX design data are shown in Figure 6.17, Figure 6.18 respectively. 

              

Figure 6.15 Interlace collimated input yȳ diagram MPC. 
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Table 6.9 Description of first order interlaced collimated ray yȳ diagram MPC. 

 
                      

Properties Allocated Values Calculated Values Brief Description 

m 3   

r0   25mm r0 ≥
(N + 1)D

2π
 

Number of 

bounces(N) 

 31 N=OAL/L 

Length (L)  75.552 mm Cavity length 

t1 =
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
]     

Өm(rad)  0.58904862 
 

Өm =
2𝜋 m

𝑁+1
                                  

ȳ0   -7.25712 
ȳn  = r0sin (Өm ∗ (n −

1

2
)) 

𝑦0  23.92351 yn  = r0cos (Өm ∗ (n −
1

2
))                                                                   

                  EPD                50 mm EPD=2 ∗ 𝑦1 

𝐿𝑔  4.5959 Lg = (2 r0
2sin (

Өm

2
) cos (

Өm

2
)) ∗ (

1

𝐿
) 

Ū(rad)  0.192109 
Ū =  

ȳ𝑖 + 1 − ȳ𝑖

𝑡1
 

U(rad)  0 

 
U =

𝑦𝑖 + 1 − 𝑦𝑖

𝑡1
 

R  448.299 
 

Φ =  
1

  𝐿𝑔 
 [

𝑢0 ū0 
𝑢1 ū1

]    

                  R=2EFL=
1

  2Φ 
 

L

f
  (Stability)  0.337061 g

1
=g2=

 
1 −

2L

R1     

  
0≤ 

L

f  
≤ 4             

                
 

FOV(X-direction)  10.87456° FOV=atan (Ū) 
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Table 6.10 Interlace collimated input yȳ diagram MPC design. 

 
 

 

 

 

 

 

 

 

 

  

Figure 6.16 Interlace Collimated input yȳ diagram MPC intercepts M1, M2. 
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3 24.87962 2.45043 

5 11.78492 -22.04803 

7 -15.85983 -19.32526 

9 -23.92351 7.25712 

11 -2.45043 24.87962 

13 22.04803 11.78492 

15 19.32526 -15.85983 

17 -7.25712 -23.92351 

19 -24.87962 -2.45043 

21 -11.78492 22.04803 

23 15.85983 19.32526 

25 23.92351 -7.25712 

27 2.45043 -24.87962 

29 -22.04803 -11.78492 

31 -19.32526 15.85983 
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Figure 6.17 Interlace Collimated input ray tracing simulation [7]. 

 

Figure 6.18 An image of  interlaced collimated input ray tracing simulation data [7]. 
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6.8.3   Collimated Input Beam Invalid yӯ Diagram Design of MPC  

 

           Similarly, when m=2 this is invalid solution. Because of when N = 31 and m is even, a 

common factor of N+1 and m is 2. The first order design of collimated invalid yȳ diagram MPCs 

is shown in table 6.11, table 6.12, the repeated yȳ diagram values are shown in Fig 6.19, Figure 

6.20, the ZEMAX design data are shown in Figure 6.21, Figure 6.22 and programmed Excel file 

is attached in Appendix D., respectively. 

Table 6.11 Description of first order invalid collimated ray yȳ diagram MPC. 

Properties Allocated Values Calculated Values Brief Description 

m 2   

r0   25mm 
r0 ≥

(N + 1)D

2π
 

Number of bounces(N)  31 N=OAL/L 

Length (L)  75.552 mm Cavity length 

t1 =
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
]     

Өm(rad)  0.39269 Өm =
2𝜋 m

𝑁+1
                                  

ȳ0   -4.87726 
 ȳn  = r0sin (Өm ∗ (n −

1

2
)) 

𝑦0  24.51963 
 

yn  = r0cos (Өm ∗ (n −
1

2
))                                                                   

                  EPD                50 mm EPD=2 ∗ 𝑦1 

𝐿𝑔  3.16572 Lg 

= (2 r0
2sin (

Өm

2
) cos (

Өm

2
))

∗ (
1

𝐿
) 

Ū(rad)  0.129110 
 Ū =  

ȳ𝑖 + 1 − ȳ𝑖

𝑡1
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U(rad)  0 
U =

𝑦𝑖 + 1 − 𝑦𝑖

𝑡1
 

R  992.532 
 

Φ =  
1

  𝐿𝑔 
 [

𝑢0 ū0 
𝑢1 ū1

]    

                  R=2EFL=
1

  2Φ 
 

L

f
  (Stability)  0.152241 

 
g

1
=g2=

 
1 −

2L

R1     

  
0≤ 

L

f  
≤ 4             

                
 

FOV(X-direction)  7.356759° FOV=atan (Ū) 

 

 

  

Figure 6.19 Invalid collimated input yȳ diagram MPC. 
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Table 6.12 Invalid collimated interlaced yȳ diagram MPC design. 

 

 

 

 

 

 

 

 

 

 

 

N ȳ y 
0 -4.87726 24.51963 
2 13.88926 20.78674 
4 24.51963 4.87726 
6 20.78674 -13.88926 
8 4.87726 -24.51963 
10 -13.88926 -20.78674 
12 -24.51963 -4.87726 
14 -20.78674 13.88926 
16 -4.87726 24.51963 
18 13.88926 20.78674 
20 24.51963 4.87726 
22 20.78674 -13.88926 
24 4.87726 -24.51963 
26 -13.88926 -20.78674 
28 -24.51963 -4.87726 
30 -20.78674 13.88926 

N ȳ y 
1 4.87726 24.51963 
3 20.78674 13.88926 
5 24.51963 -4.87726 
7 13.88926 -20.78674 
9 -4.87726 -24.51963 

11 -20.78674 -13.88926 
13 -24.51963 4.87726 
15 -13.88926 20.78674 
17 4.87726 24.51963 
19 20.78674 13.88926 
21 24.51963 -4.87726 
23 13.88926 -20.78674 
25 -4.87726 -24.51963 
27 -20.78674 -13.88926 
29 -24.51963 4.87726 
31 -13.88926 20.78674 
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Figure 6.20  Invalid collimated input yȳ diagram MPC intercepts M1, M2. 

 

 

Figure 6.21 Invalid Collimated input ray tracing simulation [7]. 
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Figure 6.22 An image of  invalid collimated input ray tracing simulation data [7]. 

 

              We compare the resulting designs data tabulated in Table6.7.3.3. First, we note that the 

mirror radius decreases with increasing m, where |R| is inversely dependent on m.  Next, we see 

that, for m = 2, the design produces 16 bounces beams that hit the exit position twice, so the 

solution is not functional: N is odd and m is even.  Finally, the injection and detection points are 

always m footprints apart. 

 

Table 6.13 Four different solutions of collimated MPCs using the yȳ diagram. 

 

 

 

 

 

 

m Өm ROC  Source x-angle(deg) 

1 11.25° 3931.986 3.71 

2 22.5° 992.532  7.357 

3 33.75° 448.299 10.87 

5 56.25° 169.98 17.33 
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6.9   Designing a MPC with Two Different Mirror Radii of Curvatures 

 

        The advantage of the yȳ diagram method is the graphical interpretations one can employ to 

set up new design approaches.  For example, one can quickly modify the design by changing the 

value of r0 for every other mirror intercept. This also requires a change in the calculation for the 

Lg since the initial two data points are no longer in collimated space, so we modified  in Eqns.6.17 

and 6.18 to: 

                               Lg = (2 r01r02 sin (
Өm

2
) cos ( 

Өm

2
)) ∗ (

1

𝐿
)       

                                      Lg = ( r01r02 sin(Өm)) ∗ (
1

𝐿
)                                                                     (6.19) 

For this design, we did not force the injected beam to be in collimated space in the yȳ diagram, so 

one must input both an x- and y-field angle when entering it into a lens design program where 

                                                        y-angle = atan(u0)                                                                      (6.20) 

                                                       x-angle = atan(ū0).                                                                     (6.21) 

We will present three different cases design for MPC with two different radii of curvatures:  

Concave, concave mirrors, concave convex mirrors and plano concave mirrors. 

6.9.1 Concave-Concave yӯ Diagram Design with Different Radii of Curvatures of MPC 

Design  

 

        Similarly, in this design we use interlaced design where (m=5), ,N=31 but off axes input 

beam and r01 = 25, r02 = 21.25. The equations 6.11 and 6.16 will take care of geometrical optics 

convention signs. We noticed that, from Figure 6.8.1.1 the design has two circles of  two semi- 

diameters of M1 beam intercepts r01  = √ȳ𝑒𝑣𝑒𝑛
2 + 𝑦𝑒𝑣𝑒𝑛

2  and M2 beam intercepts r02  =

√ȳ𝑜𝑑𝑑
2 + 𝑦𝑜𝑑𝑑

2 as expected. The ray tracing also has very similar result, but the yȳ diagram 

slightly different because of the diagonal field of view and the right-hand rules.  The first order 
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design of concave-concave yȳ diagram MPCs is shown in table 6.14, table 6.15, the repeated yȳ 

diagram values is shown in Figure 6.23, Figure 6.24, the ZEMAX design data are shown in Figure 

6.25, Figure 6.26, programmed Excel file is attached on Appendix D. respectively. 

 

     
 

Figure 6.23 Concave-concave interlace yȳ diagram MPC plot. 
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Table 6.14 Description of first order interlaced concave-concave yȳ diagram MPC. 

Properties Allocated Values Calculated Values Brief Description 

m 5   

r01  25mm   

r02  21.25   

Number of bounces(N)  31 N=OAL/L 

Length (L)  75.552 mm Cavity length 

t1 =
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
]     

Өm(rad)  0.981748 
 

Өm =
2𝜋 m

𝑁+1
                                  

ȳ0, ȳ1  -11.7849, 10.01784 
ȳn  = rnsin (Өm ∗ (n −

1

2
)) 

𝑦0, 𝑦1  22.04803, 
18.74083 

yn  = rncos (Өm ∗ (n −
1

2
))                                                                   

                  EPD                40 EPD=2 ∗ 𝑦0 

𝐿𝑔  5.8465 
Lg = (2 r0

2sin (
Өm

2
) cos (

Өm

2
))

∗ (
1

𝐿
) 

Ū(rad)  0.289 
Ū =  

ȳ𝑖 + 1 − ȳ𝑖

𝑡1
 

U(rad)  -0.044 
 

U =
𝑦𝑖 + 1 − 𝑦𝑖

𝑡1
 

|R1|  143.1443 
(concave) 

                  R=2EFL=
1

  2Φ1 
 

|R2|  218.09 
(Concave) 

Φ2 =  
1

  𝐿𝑔 
 [

𝑢1 ū1 
𝑢2 ū2

]    

            

g1g2  (Stability)  0.30866 0 ≤ g1g2 ≤  1                             
     

FOV(X-direction)  16.096541° 
 

FOV=atan (Ū) 

FOV(Y-direction)  -2.506458 FOV=atan (U) 
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Table 6.15 Concave-concave interlaced yȳ diagram MPC design data. 

 

 

 

 

 

 

 

 

 

 

 

                                                             

Figure 6.24 Interlace concave-concave yȳ diagram MPC intercepts M1, M2. 
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N ȳ y 

0 -11.7849 22.04803 

 2 24.87962 2.450429 

4 -7.25712 -23.9235 

6 -19.3253 15.85983 

8 22.04803 11.78492 

10 2.450429 -24.8796 

12 -23.9235 7.257117 

14 15.85983 19.32526 

16 11.78492 -22.048 

18 -24.8796 -2.45043 

20 7.257117 23.92351 

22 19.32526 -15.8598 

24 -22.048 -11.7849 

26 -2.45043 24.87962 

28 23.92351 -7.25712 

30 -15.8598 -19.3253 

N ȳ y 

1 10.01718 18.74083 

3 13.48086 -16.4265 

5 -20.335 -6.16855 

7 2.082864 21.14768 

9 18.74083 -10.0172 

11 -16.4265 -13.4809 

13 -6.16855 20.33498 

15 21.14768 -2.08286 

17 -10.0172 -18.7408 

19 -13.4809 16.42647 

21 20.33498 6.168549 

23 -2.08286 -21.1477 

25 -18.7408 10.01718 

27 16.42647 13.48086 

29 6.168549 -20.335 

31 -21.1477 2.082864 
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Figure 6.25 Concave-concave ray tracing simulation [7]. 

                       

Figure 6.26 An image of concave-concave ray tracing simulation data [7]. 
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6.9.2   Concave-Plano yӯ Diagram Design with Different Radii of Curvatures of MPC 

Design  

 

          Similarly, in this design we use interlaced design where (m=5), ,N=31 but off axes input 

beam, concave-plano mirrors and r01 = 25, r02 = 13.89. The equations 48 and 53 will take care 

of geometrical optics convention signs. We noticed from Figure 6.8.2.1 that, the concave-plano  

design only shows bending for the powered mirror and  similarly there are two circles present M1 

beam intercepts r01  = √ȳ𝑒𝑣𝑒𝑛
2 + 𝑦𝑒𝑣𝑒𝑛

2  and M2 beam intercepts r02  = √ȳ𝑜𝑑𝑑
2 + 𝑦𝑜𝑑𝑑

2 as 

expected. The first order design of concave-concave yȳ diagram MPCs is shown in table 6.16, 

table 6.17, the repeated yȳ diagram values are shown in Figure 6.27, Figure 6.28, the ZEMAX 

design data are shown in Figure  6.29, Figure 6.30 and an image of programmed Excel file is 

attached in Appendix D. respectively.  
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Table 6.16  Description of first order interlaced concave-plano yȳ diagram MPC. 

 
Properties Allocated Values Calculated Values Brief Description 

m 5   

r01  25   

r02  13.89   

Number of bounces(N)  31 N=OAL/L 

Length (L)  75.552 mm Cavity length 

t1 =
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
]     

Өm(rad)  0.981748 
 

Өm =
2𝜋 m

𝑁+1
                                  

ȳ0, ȳ1  -11.7849, 6.5477 
ȳn  = rnsin (Өm ∗ (n −

1

2
)) 

𝑦0, 𝑦0   22.04803, 12.24989 yn  = rncos (Өm ∗ (n −
1

2
))                                                                   

                  EPD                27.78 EPD=2 ∗ √ȳ2 + y2 

𝐿𝑔  3.81577 
Lg = (2 r0

2sin (
Өm

2
) cos (

Өm

2
))

∗ (
1

𝐿
) 

Ū(rad)  0.243 
 Ū =  

ȳ𝑖 + 1 − ȳ𝑖

𝑡1
 

U(rad)  -0.130 
U =

𝑦𝑖 + 1 − 𝑦𝑖

𝑡1
 

R1  Plano                   R=2EFL=
1

  2Φ1 
 

|R2|  109.86 
(Concave) 

Φ2 =  
1

  𝐿𝑔 
 [

𝑢1 ū1 
𝑢2 ū2

]    

 

g1g2  (Stability)  0.3086 0 ≤ g1g2 ≤  1                              

FOV(X-direction)  13.63915° 
 

FOV=atan (Ū) 

FOV(Y-direction)  -7.3893° FOV=atan (U) 
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Figure 6.27 Concave-concave interlace yȳ diagram MPC plot. 

 
Table 6.17 Concave-plano interlaced yȳ diagram MPC design. 

 

 

 

 

 

 

 

 

 

 

 

N ȳ y 
1 6.547701 12.24989 
3 8.811723 -10.7371 
5 -13.2919 -4.03205 
7 1.361458 13.82312 
9 12.24989 -6.5477 
11 -10.7371 -8.81172 
13 -4.03205 13.2919 
15 13.82312 -1.36146 
17 -6.5477 -12.2499 
19 -8.81172 10.73712 
21 13.2919 4.032054 
23 -1.36146 -13.8231 
25 -12.2499 6.547701 
27 10.73712 8.811723 
29 4.032054 -13.2919 
31 -13.8231 1.361458 

N ȳ y 

0 -11.7849184 22.04803 

2 24.87961817 2.450429 

4 -7.257116931 -23.9235 

6 -19.32526133 15.85983 

8 22.04803161 11.78492 

10 2.450428508 -24.8796 

12 -23.92350839 7.257117 

14 15.8598321 19.32526 

16 11.78491842 -22.048 

18 -24.87961817 -2.45043 

20 7.257116931 23.92351 

22 19.32526133 -15.8598 

24 -22.04803161 -11.7849 

26 -2.450428508 24.87962 

28 23.92350839 -7.25712 

30 -15.8598321 -19.3253 

y 
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Figure 6.28 Interlace concave-plano yȳ diagram MPC intercepts M1, M2. 

 

 

Figure 6.29 Concave-plano ray tracing simulation [7]. 
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Figure 6.30 An image of concave-Plano ray tracing simulation data [7]. 

 

6.9.3    Concave-convex yӯ Diagram Design with different Radii of Curvatures of MPC 

Design  

 

             Similarly, in this design we use interlaced design where (m=5), ,N=31 but off axes input 

beam, concave-convex and r01 = 25 𝑚𝑚, r02 = 7.58 𝑚𝑚. The equations 48 and 53 will take care 

of geometrical optics convention signs. We noticed from Figure 6.8.3.1 that the concave-convex 

solution, the segments alternately bend towards and away from the origin indicating the positive 

and negative powered mirror. We also noticed from Figure 6.8.3.1 that the design has two circles 

present M1 beam intercepts r01  = √ȳ𝑒𝑣𝑒𝑛
2 + 𝑦𝑒𝑣𝑒𝑛

2  and M2 beam intercepts r02  =

√ȳ𝑜𝑑𝑑
2 + 𝑦𝑒𝑣𝑒𝑛𝑜𝑑𝑑

2 as expected.  The first order design of concave-convex yȳ diagram MPCs is 

shown in table 6.18, table 6.19, the repeated yȳ diagram values are shown in 

Figure6.31,Figure6.32, the ZEMAX design data are shown in Figure 6.33, Figure 6.34 and an 

image of programmed Excel file is attached on Appendix D.  respectively. 
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Table 6.18 Description of first order interlaced concave-plano yȳ diagram MPC. 

 
Properties Allocated Values Calculated Values Brief Description 

m 5   

r01  25   

r02  7.58   

Number of bounces(N)  31 N=OAL/L 

Length (L)  75.552 mm Cavity length 

t1 =
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
]     

Өm(rad)  0.981748 
 

Өm =
2𝜋 m

𝑁+1
                                  

ȳ0, ȳ1  -11.7849, 3.5731 
ȳn  = rnsin (Өm ∗ (n −

1

2
)) 

𝑦0, 𝑦0   22.04803, 6.68496 yn  = rncos (Өm ∗ (n −
1

2
))                                                                   

                  EPD                15.16 EPD=2 ∗ √ȳ2 + y2 

𝐿𝑔  2.085497 Lg 

= (2 r0
2sin (

Өm

2
) cos (

Өm

2
))

∗ (
1

𝐿
) 

Ū(rad)  0.203 
 Ū =  

ȳ𝑖 + 1 − ȳ𝑖

𝑡1
 

U(rad)  -0.203 
U =

𝑦𝑖 + 1 − 𝑦𝑖

𝑡1
 

|R1|   90.85259 
 

Φ1 =  
1

  𝐿𝑔 
 [

𝑢0 ū0 
𝑢1 ū1

]    

|R2|  90.773 
 

Φ2 =  
1

  𝐿𝑔 
 [

𝑢1 ū1 
𝑢2 ū2

]    

g1g2  (Stability)  0.3086 0 ≤ g1g2 ≤  1                              

FOV(X-direction)  11.49044° FOV=atan (Ū) 

FOV(Y-direction)  -11.49405° FOV=atan (U) 
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Figure 6.31Concave-convex ray tracing simulation. 
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Table 6.19 Concave-convex interlaced yȳ diagram MPC design. 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 6.32 Interlace concave-convex yȳ diagram MPC intercepts M1, M2. 
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N ȳ y 
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4 -7.2571169 -23.9235 
6 -19.325261 15.85983 
8 22.048031 11.78492 

10 2.4504285 -24.8796 
12 -23.923508 7.257117 
14 15.8598321 19.32526 
16 11.7849184 -22.048 
18 -24.87961 -2.45043 
20 7.2571161 23.92351 
22 19.32526 -15.8598 
24 -22.04803 -11.7849 
26 -2.450428 24.87962 
28 23.92350 -7.25712 
30 -15.8598 -19.3253 

N ȳ y 
1 3.573187 6.684963 
3 4.808701 -5.85942 
5 -7.25361 -2.20036 
7 0.74297 7.5435 
9 6.684963 -3.57319 

11 -5.85942 -4.8087 
13 -2.20036 7.253608 
15 7.5435 -0.74297 
17 -3.57319 -6.68496 
19 -4.8087 5.859419 
21 7.253608 2.200358 
23 -0.74297 -7.5435 
25 -6.68496 3.573187 
27 5.859419 4.808701 
29 2.200358 -7.25361 
31 -7.5435 0.74297 
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Figure 6.33 Concave-convex ray tracing simulation [7]. 

                 

                                                      

Figure 6.34 An image of concave-convex ray tracing simulation data [7]. 

Finally, we compared the previous section designs, in the other words, same system requirements; 

the cavity length and number of intercepts, but we manipulated the r01& r02 and m = 5. That led 

to concave-concave, concave-convex and concave-plano cases, with different FOVs. 
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Table 6.20 Four different designs of gut ray MPCs including ROCs and FOVs using the yȳ diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m Өm R1 R2       r02 r01 x-angle y-angle 

3 33.75° 

257.6 

(Concave) 

3459.62 

(Concave) 25 21.25 10.08° -2.72° 

5 56.25° 

218.09 

(Concave) 

143.14 

(Concave) 25 21.25 16.1° -2.51° 

5 56.25° 

90.86 

(Convex) 

90.86 

(Concave) 25 7.58 11.49° -11.49° 

5 56.25° 

109.28 

(Concave) 

Infinity 

(Plano)  25 13.89 13.64° -7.39° 
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Chapter 7. 

 

7.1     MPC off-Axis Astigmatism Aberration Background 

          The off-axis incidence input beam inside the MPC will lead to Astigmatism. By checking 

the Zemax design spot diagram, wavefront map and wavefront function for the design in 

section.5.6 as shown in Figure 7.1, it is obvious that the most dominant aberration in the system is 

Astigmatism.  
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Figure 7.1 a) Spot diagram b) Wavefront function c) Wavefront map of Zemax design in section 5.6 [7]. 
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In this section, we present Astigmatism aberration background and in the following sections, we 

demonstrate a novel approach of numerical calculation of Astigmatism Zernike fringe 

polynomials: terms Z5 and Z6 for an MPC.  

                 Astigmatism is seen as a different focus position along the chief ray for tangential (y-

direction) and sagittal (x-direction) respectively. Astigmatism occurs because the two orthogonal 

directions experience different geometrical optical power (Φ) as shown in Figure 7.2.       

 

Figure 7.2 Astigmatism 3-D plot and corresponding spot diagram [6] [40] [41]. 

From Chapters 5 and 6, we demonstrated that the optical power for concave mirror is [6][32]: 

                                                  | Φ | = |
2

 R
| = |

1

 EFL
| = 2C.       (7.1) 
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Coddington’s extended and modified equation 7.1 explicitly includes the off-axis angle. Oblique 

or slanted power (ΦOB) is added for each single reflection [6][32][40] [41]: 

                                                 |ΦOB| = |2Ccos(Ū)|.                                                              (7.2)                                                           

The reason these power differences occur between on-axis and off-axis object points is that the 

ray experience different effective surface curvature as the field increases. Coddington present 

two equations for tangential power Φt and sagittal Φs as shown in equations 7.3 and 7.4 [6]: 

                                                             | Φt | = |
ΦOB

 cos2 (Ū)
|                                                                 (7.3) 

                                                                       |Φs| = |ΦOB|.                                                                 (7.4) 

Thus, we see that the Astigmatism is dependent quadratically on the chief ray angle. 

 

7.2     Off-Axis MPC Seidel and Zernike Polynomials Astigmatism Aberration Background 

 

           Seidel polynomials are used to describe aberration for rotationally symmetric optical 

systems. We briefly discussed in Chapters 5, 6 that the advantage of using a symmetric, or 

collimated yȳ diagram is calculating an accurate aberration value. In the following section we 

use a collimated incident beam yȳ diagram to calculate an accurate value for Seidel Astigmatism 

value, then we decompose the result in x-direction and y-direction to obtain Zernike fringe 

polynomials: termsZ5 and Z6. 

  

Seidel introduced Astigmatism wavefront coefficient (W222):  

                          W222 = (
Sm

2𝜆
),                                                                                                (7.5) 

 

where Seidel coefficient (Sm) equal to [6]: 
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      Sm =  − ∑ 𝐵s2 ∗ (𝑢𝑁+1 − 𝑢𝑁) ∗ 𝑦𝑁
 0 .                                                                    (7.6) 

And the chief ray incidence angle (𝐵s2) equal to: 

 

                               Bs = 𝑛(𝑟𝑒𝑓𝑟𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑒𝑥)(ū + ȳc)                                                                          (7.7)                                                                            

                                 where, 𝑛(𝑟𝑒𝑓𝑟𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑒𝑥) = 1 for air. 

                                 

 

Figure 7.3 Astigmatism 3-D plot using Seidel W222 for circular exit pupil aperture [12]. 

 

               Zernike’s polynomials are orthonormal polynomials on a unit circle that are often used 

in optics as their forms tend to match common aberration terms (Seidel) and most optics have 

circular apertures. They are used to describe wavefronts from symmetric and non-symmetric 

optical systems. Calculating the Zernike coefficients using the Fringe (also called the "University 

of Arizona") polynomials is a common approach in optical design, fabrication and testing. As built 
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optical design performance can be obtained by inserting the measured 37 Zernike coefficients from 

an interferometer into a Zemax design model. The Zernike’s coefficients of Astigmatism for x-

direction (Z5) and y-direction (Z6) in units of waves as shown equations 7.9, to 7.10: 

 

                                                  Z5 = ∑ ( ⍴2 COS(2Φz))𝑁
 0                          (7.9)   

                                                  Z6 = ∑ (  ⍴2 sin(2Φz))𝑁
 0 ,                          (7.10) 

 

 

where Φz , ⍴  are the polar coordinates describing the wavefront, measured counterclockwise from 

the local x axis and the radial coordinate normalized. 

7.3   Off-Axis MPC Astigmatism Aberration using yӯ Diagram Calculation 

 

        We can now employ our novel approach yȳ diagram to calculate the sagittal (Z5) and 

tangential(Z6) Zernike’s coefficients through the MPC. Zernike’s (Φz) rotation angle rotates in 

counterclockwise; thus, we follow Zernike’s sign conventions. The approach is as follows.  We 

note that the gut ray of the injected collimated laser beam (a skew ray) intercepts the mirror at a 

compound angle – both in x and y.  Seidel calculations are made assuming the field of view is in 

one plane, typically the y-z plane.  Reflections of all rays are in a single plane with the local normal 

of the reflecting surface, so we will replace the standard y-z plane angle of incidence with the 

compound angle of incidence: replacing Seidel’s B with  √A2 + B2
.  This takes care of the Seidel 

chief ray.  To determine the marginal ray values needed for our calculation, we simply scale down 

the current collimated input marginal ray values to gut ray values, in other words, we calculate 

normalization factor (α) . Then, we need to account for the fact that the compound angle of 

incidence is rotating by Өm   every reflection.  So, unlike typical Seidel calculations where we add 

up the contribution from every surface, we decompose the calculated Seidel into an X and Y 
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components – Z5 and Z6. It is these values that can then be summed up for all the surfaces and 

then combined to get a “total Astigmatism.”   

We first review the original design from Chapter 5 with identical concave mirrors.  

 To adapt the off-axis MPC to Seidel’s equations the following procedures will be needed it: 

1. Use the yȳ diagram with the collimated input or rotate the yȳ diagram to make in collimated 

input form; (ūr, 𝑢𝑟). 

2. Calculate the gut ray incidence angle in x-direction and y-direction (Ar, Br) for rotated 

field of views,    Ar = 𝑢𝑟 + yr/R &  Br = ū𝑟 + ȳr/R. 

3. Calculate the magnitude of incidence angles to obtain symmetric incidence angle, 

 𝐵 = √Ar2 + Br2    &  B2 = Ar2 + Br2. 

4. Calculate the normalization factor for the gut ray entrance pupil diameter (EPDg) and 

collimated ray entrance pupil diameter (EPDr ) α = EPDg/EPDr. 

5. Calculate normalized Sm(symmetric) = α2𝐵2 ∗ (𝑢𝑟𝑁+1 − 𝑢𝑟𝑁) ∗ 𝑦𝑟 

6. Calculate new W222(symmetric) = (
Sm(symmetric) 

2𝜆
) . 

7. Decompose the W222(symmetric) to cosine and sine functions,  

       𝑍5 = W222(symmetric) ∗
COS(2∗Өm∗N)

2
& 𝑍6 = W222(symmetric) ∗

SIN(2∗Өm∗N)

2
                                              

We recap the created new equations for Z5, Z6 decomposition for MPC from Eqn.7.11 to eqn.7.18 

to avoid ambiguity:  

                                W222(symmetric) = (
Sm(symmetric)

2𝜆
)                                                          (7.11) 

                              Sm(symmetric) =  − ∑   α2 ∗   B2 ∗ (𝑢𝑟𝑁+1 − 𝑢𝑟𝑁) ∗ 𝑦𝑟𝑁
 0                             (7.12) 

                                 Ar = 𝑢𝑟 + yr/R                                                                                                   (7.13) 

                                 Br = ū𝑟 + ȳr/R                                                                                          (7.14) 
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 B2 = Ar2 + Br2                                                                                               (7.15) 

                               α =
EPDg

 EPDr
=

XPDg

 XPDr
                                                                                               (7.16) 

                              𝑍5 = ∑ W222(symmetric) ∗
COS(2∗Өm∗N)

2
𝑁
 0                                                                          (7.17) 

                             𝑍6 = ∑ W222(symmetric) ∗
SIN(2∗Өm∗N)

2
𝑁
 0  

.                                                  (7.18) 

 

 The step-by-step Z5 and Z6 calculation diagram is shown in Figure 7.4,and Table 7.2.  The first 

order data are shown in Table 7.1  

 

Figure 7.4 Column (a) Rotated Field of view (b) symmetric field of view magnitude (c) decomposition of W222. 
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Table 7.1 Description of first order step-by-step Zernike’s coefficient calculation for the first   bounce on M2. 

Properties Allocated Values Calculated Values Brief Description 

m 5   

r0   10.414  

Number of bounces(N)  31 N=OAL/L 

Length (L)  75.552 mm Cavity length 

t1 =
1

  𝐿𝑔 
 [

𝑦0 ȳ0 

y1 ȳ1
]     

Өm(rad) 

First Intercept 

 0.981748 
 

Өc = N ∗ Өm 

Өm =
2𝜋 m

𝑁+1
   

n=0 to N=31                                

ȳ0  10.414           ȳn = r0cos(𝑛Өm)                                 

 

𝑦0   0 
 

yn = r0 sin(𝑛Өm)                                

                  α     0.108 

 
EPDg

 EPDr
=

XPDg

 XPDr
 

               Ūr1(rad) 

        First Intercept 

         -0.129953558 
 

Ū1 =  
ȳ1 − ȳ0

𝑡1
 

n=0 to N=31 

Ur1(rad) 

First Intercept 

 2.35117E-17 
 

 U1 =
y1−y0

𝑡1
 

n=0 to N=31 

|C|  

First Intercept 

 0.005882436 
(Concave) 

Φ1 =  
1

  𝐿𝑔 
 [

𝑢0 ū0 
𝑢1 ū1

]    

                  R=2EFL= 
1

  C 
 

n=0 to N=31 

Ar1(rad) 

First Intercept 

 -0.05403 
 

         Ar = 𝑢𝑟 + yr/R         

          

                n=0 to N=31              

Br1(rad) 

First Intercept 

 0.101075943 
 

Bs = 𝑛(ū + ȳc)     

  n=0 to N=31                          
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AOI (B2) 

Angle of incident 

 0.01313 
 
 

 

 B2 = Ar2 + Br2 

n=0 to N=31 

Sm1(symmetric)  -0.000154 
 

Sm(symmetric)

=  − ∑  α2 ∗   B2

𝑁

 0

∗ (𝑢𝑟𝑁+1 − 𝑢𝑟𝑁) ∗ 𝑦𝑟 

n=0 to N=31 

W222(um) 

First Intercept 

 -0.09906 
 

W222 = (
Sm(symmetric)

2𝜆
)     

 n=0 to N=31                 

Z5 

First Intercept 

 0.0159883 
 

𝑍5 

= ∑ W222(symmetric)

𝑁

 0

∗
COS(2 ∗ Өm ∗ N)

2
 

n=0 to N=31 
Z6 

First Intercept 

 -0.0385992 
 

𝑍6 

= ∑ W222(symmetric)

𝑁

 0

∗
SIN(2 ∗ Өm ∗ N)

2
 

n=0 to N=31 

 

        As expected from the geometry, the skew ray angle of incidence is the same on every 

mirror.  But because the marginal ray is changing, the Seidel contribution at each surface is 

different.  After the above procedures we compared the Z5, Z6 data with Zemax Zernike’s Z5 

and Z6 coefficients after each single intercept for proof of concept. We noticed that the Z5 

calculated data is slightly lower than Zemax Z5 data and the Z6 calculated data are slightly 

higher than the Z6 data. Then, we compared calculated total Zernike Astigmatism, or the root 

sum square (RSS) as shown in Eqn.7.19, with the Zemax data and found that the results are 

essentially identical. The comparison data are shown in Figure 7.5, Figure 7.6, Figure 7.7 and 

Table 7.3: 

 

                                    Total Astigmatism = 𝑅𝑆𝑆 = √Z52 + Z62   .     (7.19) 



  

113 
 

 
Table 7.2 Step-by- step Z5 and Z6 calculation. 

Step-by-Step         Brief Description  

(ū𝑟, 𝑢𝑟), (ȳ𝑟, 𝑦𝑟), Rotate the gut ray to obtain collimated yӯ 

diagram  
𝐴𝑟 = 𝑢𝑟 + 𝑦𝑟/𝑅 &  𝐵𝑟 = ū𝑟 + ȳ𝑟/𝑅. Calculate the incidence angles for rotated yӯ 

diagram  
𝛼2 = (𝐸𝑃𝐷𝑔/𝐸𝑃𝐷𝑟)2 Calculate the normalization factor for the gut 

ray entrance pupil (𝐸𝑃𝐷𝑔) and the collimated   

yӯ diagram entrance pupil diameter (𝐸𝑃𝐷𝑟) 

𝐵 = √𝐴𝑟2 + 𝐵𝑟2    &  𝐵2 = 𝐴𝑟2 + 𝐵𝑟2 Calculate the magnitude of incidence angle to 

obtain compound angle of incident 

𝑆𝑚 = 𝛼2𝐵2 ∗ (𝑢𝑟𝑁+1 − 𝑢𝑟𝑁) ∗ 𝑦𝑟 Calculate normalized Seidel coefficients  

𝑊222 =
𝑆𝑚 

2𝜆
 Calculate normalized W222 

𝑍5 = 𝑊222 ∗
cos(2 ∗ Ө𝑚 ∗ 𝑁)

2
 Decompose The W222 

𝑍6 = 𝑊222 ∗  
sin(2 ∗ Ө𝑚 ∗ 𝑁)

2
 Decompose The W222 

Total Astigmatism = √Z52 + Z62   Calculate total Astigmatism 
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Table 7.3 Comparison between calculated Zernike’s coefficients and ray tracing data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N Calculated(Z5) Z5 (Zemax) Calculated(Z6) Z6 (Zemax) 

1 0.0189543 0.0192441 -0.0457598 -0.0457985 

2 0.0193869 0.0190673 -0.0453272 -0.0451643 

3 -0.0157687 -0.0161864 -0.0307652 -0.0314361 

4 -0.0157687 -0.0142027 -0.0890800 -0.0902706 

5 -0.0108111 -0.0100833 -0.0890800 -0.0873772 

6 -0.0289333 -0.0291751 -0.0689043 -0.0699118 

7 -0.0530688 -0.0495003 -0.1271725 -0.1303873 

8 -0.0389180 -0.0360546 -0.1271725 -0.1288990 

9 -0.0443332 -0.0432079 -0.1140988 -0.1153684 

10 -0.0889298 -0.0831051 -0.1586954 -0.1645902 

11 -0.0652520 -0.0590322 -0.1685031 -0.1723523 

12 -0.0652520 -0.0612299 -0.1631370 -0.1652211 

13 -0.1191278 -0.1111522 -0.1854531 -0.1941885 

14 -0.0922209 -0.0813022 -0.2123600 -0.2190917 

15 -0.0919867 -0.0836126 -0.2117948 -0.2158265 

16 -0.1415168 -0.1314241 -0.2117948 -0.2229289 

17 -0.1225624 -0.1057196 -0.2575546 -0.2680781 

18 -0.1221298 -0.1082497 -0.2571220 -0.2644089 

19 -0.1572855 -0.1445041 -0.2425600 -0.2553113 

20 -0.1572855 -0.1337721 -0.3008748 -0.3162163 

21 -0.1523279 -0.1319698 -0.2988213 -0.3103980 

22 -0.1704501 -0.1535181 -0.2806991 -0.2945345 

23 -0.1945855 -0.1643974 -0.3389673 -0.3599953 

24 -0.1804347 -0.1524870 -0.3389673 -0.3554324 

25 -0.1858500 -0.1626149 -0.3258936 -0.3411134 

26 -0.2304466 -0.1942569 -0.3704902 -0.3975006 

27 -0.2067688 -0.1697771 -0.3802979 -0.4020280 

28 -0.2067688 -0.1749723 -0.3749318 -0.3928489 

29 -0.2606446 -0.2193160 -0.3972479 -0.4296636 

30 -0.2337376 -0.1860647 -0.4241548 -0.4516989 

31 -0.2335035 -0.1860647 -0.4235896 -0.4516989 
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Figure 7.5 Z5 comparison between calculated Zernike’s coefficients and ray tracing data. 

          

 
 

Figure 7.6 Z6 comparison between calculated Zernike’s coefficients and ray tracing data. 
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Figure 7.7 RSS comparison between calculated Zernike’s coefficients and ray tracing data. 

 

        Thus, we can now use this procedure to rapidly evaluate the total Astigmatism for a basic 

Herriott -like MPC with different “m” values to find the one with the least astigmatism, as shown 

in 7.4. 
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Table 7.4 Comparison between calculated Zernike’s coefficients for m1,3 and 5. 

m Z5 Z6 RSS 
1 -0.000816 -0.000186 0.0008368 
3 -0.05252 -0.040699 0.0664438 
5 -0.233504 -0.423589 0.4836858 

 

 

We noticed that by increasing the clocking angle Өm , in another words, increasing m and 

decreasing the mirrors RoCs the total Astigmatism will be increased. 
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Chapter 8. 

 

8.1   Summary and Conclusions 

 

 

 

         In this dissertation, we present Hybrid Gaussian Beam Decomposition which employs more 

than one size gaussian beamlet and a quantified equation for square aperture for any GBD 

approach. The goal of the approach is to increase the accuracy of the model’s representation for 

sharp edged field distributions by using narrower gaussian beamlets at the edges, but reducing the 

necessary computation by employing broader gaussian beamlets where the field distribution is 

slowly varying. We show comparisons for a simple analytically derivable solution –square 

aperture diffraction in the far field and near field – calculated using standard FFT approaches, 

standard GBD and the new hybrid GBD method introduced here. We show how the HGBD 

achieves better matching to the FFT based approaches for the higher spatial frequency effects with 

a reduction in the required ray tracing effort.  

 

We also demonstrate a new technique for designing Herriot MPCs, a novel, rapid and more 

intuitive approach using the yӯ diagram. The method was shown to be easily modified, leading to 

designs with different RoC’s. All equations needed for programming were presented, as well as a 

step-by-step approach. By employing standard yȳ relations, the mirror radii are calculated, 

providing all the parameters necessary for entering the solution into a lens design program. 
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Furthermore, we coupled both gaussian beam analysis into the design and third order aberration 

analysis for astigmatism to evaluate the quality of the probe beam. 

8.2   Future Work  

 

         The research presented here is only a first order design of MPC and an initial characterizing 

of dominant 3rd order astigmatism aberration. More work can still be done to optimize the real 

ray design. We discussed and demonstrated in Chapter 7 a new numerical approach to calculate 

3rd order aberrations such as stigmatism, but we didn’t present optimization (correction) 

methodology for 3rd aberrations.  Astigmatism, spherical and coma will contribute to overall 

MPC performance and could be calculated with same methodology in Chapter 7. 

Further research can explore evaluating or optimizing an MPC to minimize aberrations.  

This could include the addition of Asphericity to the mirrors – paraboloidal, ellipsoidal, 

hyperboloidal mirrors. 

                  However, initially, there are several variables that could be evaluated in an 

optimization.  It was shown in Chapter 7, that the amount of astigmatism for a specific design 

varied with the selected m.  This is not unexpected since this changes the radius of the mirrors 

and the clocking angle  will change the Seidel astigmatism calculation at each surface and the 

clocking angle will affect how the aberrations decompose.  This can also include the addition of 

varying the radius of curvature of the two mirrors.  A further variable in the aberration of a 

design that could be investigated is the adjustment of Km with an arbitrary constant.  This would 

allow one to alter how the decomposition of aberration into Z5 and Z6 terms, changing the 

summed total astigmatism. 

              All of these things are now readily and rapidly achievable with this new yӯ framework 

for designing MPC’s.  To try to achieve this optimization in Zemax or CodeV would be 
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extremely complex.  For one thing, the designer would have to create constraints in the optical 

design merit function that ensure that the beam footprints fall on a circle, that the intercepts do 

not overlap.     That would require many lines of code – at least 31 for a 31-bounce design just to 

ensure the first constraint.  Additionally, optimizations tend to find what are known as the “local 

minimum.”  The optical design code evaluates the design against the defined merit function, then 

perturbs each variable to determine the sensitivity of the merit function to that variable.  This 

matrix is solved to find the design that improves the Merit function value.  It is as if you are 

standing in a field at night looking for the lowest point with a flashlight that only works when 

you point it straight down and it only illuminates a small area around your feet.  You see the 

local slope of the terrain, take a step in that direction and repeat.  This will lead you to a low 

portion of the field, but not necessarily the lowest depending on where you start.  Changing the 

m value would not be a local move, so an optical design code would likely never make that step 

during an optimization. Zemax and CodeV do have what are known as “global optimization” 

modes, but the changes made when changing m are very discrete, so finding them may take a 

prohibitively long time.  And the difficulty would still be in building a complete merit function 

that is valid for all m values. The yӯ approach avoids all of these complexities and provides a 

method which produces designs that automatically meet all specifications. 
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Appendix A. 

 

                                                          

Chapter 3 MATLAB simulation code for Figure 3.2.1 Column (a) normalized 3D irradiance at 

Z=0 showing ripples and roll off slope, column (b) normalized field magnitude cross section at 

Z=0. 

 
% 2 D Gaussian Beam circles apertures OF=2 at Z=0 

 
clear all; close all; clc; 
 
lambda=0.5*10^-6;                       %wavelength in m 
k=2*pi/lambda;                          %wavenumber 
d0=0; 
d1=0;                                   %propagation distance(Z=0) 
w0=0.0018181818;   % beam waist (9.09090909*10^-4& 0.00136363636& 0.0018181818) 
L1=0.025;                                %source and observation plane side length 
M=250; 
dx1=L1/M; 
x1=-L1/2:dx1:L1/2-dx1; 
y1=x1; 
[X1,Y1]=meshgrid(x1,y1); 
 
%Initial y-ybar calculations for one beamlet 

 

Lg=lambda/pi;                             %Lagrange invariant 
y0=w0;                                    %Initial y value & initial waist w0  
y0bar=0;                                  %initial ybar value  
w_beamlet=sqrt(y0^2+y0bar^2);             % waist initial value 
u0bar=Lg/y0; 
u0=0; 
theta=Lg/w0 
 
%beamlet propagation after d1  

 

y1bar=(d1*Lg)/y0;                         %y*ubar-ybar*u=lambda/pi=Lg 
y11=w0;                                   %w^2=sqrt(y^2+ybar^2) & sqrt(w1^2-y1bar^2); 
u1bar=(y1bar-y0bar)/d1;                 
zr=pi*w0^2/lambda;                        %Rayleigh range 
w1=sqrt(y1bar^2+y11^2);                   %new waist w^2=w0^2*(1+(z/zr)^2) 
w2=-w1; 
u1=(y11-y0)/d1; 
R1=(y11^2+y1bar^2)/(y11*u1+y1bar*u1bar);  %Beam radius R=(y^2+ybar^2)/(yu+ybar.ubar) 
Z=(y11*u1+y1bar*u1bar)/(u1bar^2+u1^2) 
 
%composition 

 

 G=((w0/w)*exp(1i*k*d0)*exp(-1i*atan(d0/zr)))*... 
(exp(-1*((X1-0).^2+(Y1-0).^2)/w0^2)... 
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+exp(-1*((X1-0).^2+(Y1-0.001818182).^2)/w0^2)... 
+exp(-1*((X1-0).^2+(Y1+0.001818182).^2)/w0^2)... 
+exp(-1*((X1-0).^2+(Y1-0.003636364).^2)/w0^2)... 
+exp(-1*((X1-0).^2+(Y1+0.003636364).^2)/w0^2)... 
+exp(-1*((X1-0).^2+(Y1-0.005454545).^2)/w0^2)... 
+exp(-1*((X1-0).^2+(Y1+0.005454545).^2)/w0^2)... 
+exp(-1*((X1-0).^2+(Y1-0.007272727).^2)/w0^2)... 
+exp(-1*((X1-0).^2+(Y1+0.007272727).^2)/w0^2)... 
+exp(-1*((X1-0).^2+(Y1-0.009090909).^2)/w0^2)... 
+exp(-1*((X1-0).^2+(Y1+0.009090909).^2)/w0^2)... 
+exp(-1*((X1-0.001818182).^2+(Y1+0).^2)/w0^2)... 
+exp(-1*((X1+0.001818182).^2+(Y1+0).^2)/w0^2)... 
+exp(-1*((X1-0.003636364).^2+(Y1+0).^2)/w0^2)... 
+exp(-1*((X1+0.003636364).^2+(Y1+0).^2)/w0^2)... 
+exp(-1*((X1-0.005454545).^2+(Y1+0).^2)/w0^2)... 
+exp(-1*((X1+0.005454545).^2+(Y1+0).^2)/w0^2)... 
+exp(-1*((X1-0.007272727).^2+(Y1+0).^2)/w0^2)... 
+exp(-1*((X1+0.007272727).^2+(Y1+0).^2)/w0^2)... 

 

 
I1=abs(G).^2;                       % Absolute irradiance 
figure(1);  
imagesc(x1,y1,I1);                  %Display absolute irradiance 
axis square; axis xy; 
xlabel('x (m) '); ylabel('y (m)'); 
title(['d1=',num2str(d1),'m']); 
colormap('jet');colorbar; 
figure(2)                           %Irradiance profile 
plot(x1,I1(M/2+1,:)); 
xlabel('x (m)'); ylabel('Irradiance'); 
title(['d1=',num2str(d1),'m']); 
figure(3)                           %Plot absolute field magnitude 
plot(x1,abs(G(M/2+1,:))); 
xlabel('x (m)'); ylabel('Magnitude'); 
title(['d1=',num2str(d1),'m']); 
figure(4)                           %Plot absolute field phase 
plot(x1,unwrap(angle(G(M/2+1,:)))); 
xlabel('x (m)'); ylabel('phase (rad)'); 
title(['d1=',num2str(d1),'m']); 
figure(5) 
mesh(x1,y1,I1); 
axis square; axis xy; 
title('11X11 beamlets array & 2.00 Overlap Factor') 
colormap('jet') ; 
colorbar; 
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Chapter 3 MATLAB simulation code for Figure 3.2.1 Column (c) 1/e2 map radii of 11x11 

beamlets. 

% 2 D Gaussian Beam circles apertures OF=1  

 
figure(1); 

viscircles([0 0],9.09090909*10^-4,'Color','black') 

viscircles([0,-0.001818182],9.09090909*10^-4,'Color','black') 

viscircles([0,0.001818182],9.09090909*10^-4,'Color','black') 

viscircles([0,-0.003636364],9.09090909*10^-4,'Color','black') 

viscircles([0,0.003636364],9.09090909*10^-4,'Color','black') 

viscircles([0,-0.005454545],9.09090909*10^-4,'Color','black') 

viscircles([0,0.005454545],9.09090909*10^-4,'Color','black') 

viscircles([0,-0.007272727],9.09090909*10^-4,'Color','black') 

viscircles([0,0.007272727],9.09090909*10^-4,'Color','black') 

viscircles([0,-0.0091],9.09090909*10^-4,'Color','black') 

viscircles([0,0.0091],9.09090909*10^-4,'Color','black') 

viscircles([-0.001818182,0],9.09090909*10^-4,'Color','black') 

viscircles([0.001818182,0],9.09090909*10^-4,'Color','black') 

viscircles([-0.003636364,0],9.09090909*10^-4,'Color','black') 

viscircles([0.003636364,0],9.09090909*10^-4,'Color','black') 

viscircles([-0.005454545,0],9.09090909*10^-4,'Color','black') 

viscircles([0.005454545,0],9.09090909*10^-4,'Color','black') 

viscircles([-0.007272727,0],9.09090909*10^-4,'Color','black') 

viscircles([0.007272727,0],9.09090909*10^-4,'Color','black') 

viscircles([ -0.0091,0],9.09090909*10^-4,'Color','black') 

viscircles([ 0.0091,0],9.09090909*10^-4,'Color','black') 

xlabel ('x (m) ','fontsize', 12, 'fontweight','bold'); ylabel('y (m)','fontsize', 12, 'fontweight','bold'); 

title ('2D Overlap factor=1.00','fontsize', 12, 'fontweight','bold'); 
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Appendix B. 

 

Chapter 4 MATLAB simulation code for Section 4.1, GBD and Eq.4.3 

clear all; close all; clc; 

 

lambda=0.5*10^-6;                         %Wavelength in (m) 

k=2*pi/lambda;                               %Wavenumber 

d1=2000;                                         %Propagation distance 

w0=0.001;                                       % Beam waist=1mm or 0.0013 for overlap factor 1,1.5, or 2 

L1=0.5;                                           %source and observation plane side length 

M=250; 

dx1=L1/M; 

x1=-L1/2:dx1:L1/2-dx1; 

y1=x1; 

[X1,Y1]=meshgrid(x1,y1); 

L2=lambda*d1/dx1; 

dx2=lambda*d1/L1; 

x2=-L2/2:dx2:L2/2-dx2; 

y2=x2; 

[X2,Y2]=meshgrid(x2,y2); 

L3=2*0.5; 

 
%Initial y-ybar calculations for one beamlet 

 

Lg=lambda/pi;                                    %Lagrange invariant 

y0=w0;                                                %Initial y value & initial waist w0 

y0bar=0;                                             %Initial ybar value 

w_beamlet=sqrt(y0^2+y0bar^2);       % waist initial value 

u0bar=Lg/y0; 

u0=0; 

theta=Lg/w0 

 
%Beamlet propagation after d1 

  

y1bar=(d1*Lg)/y0;                                                %y*ubar-ybar*u=lambda/pi=Lg 

y11=w0;                                                                 %w^2=sqrt(y^2+ybar^2)&sqrt(w1^2-y1bar^2) 

u1bar=(y1bar-y0bar)/d1;                 

zr=pi*w0^2/lambda;                                             %Rayleigh range 

w1=sqrt(y1bar^2+y11^2);                                    %new waist w^2=w0^2*(1+(z/zr)^2) 

w2=-w1; 

u1=(y11-y0)/d1; 

R1=(y11^2+y1bar^2)/(y11*u1+y1bar*u1bar);   %Beam radius R=(y^2+ybar^2)/(yu+ybar.ubar) 
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Z=(y11*u1+y1bar*u1bar)/(u1bar^2+u1^2) 

 
%composition 

 

ay=-7*0.00133:0.00133:7*0.00133; 

ax=-7*0.00133:0.00133:7*0.00133; 

G_sum=0; 

G_vec=zeros(M,M); 

for ii=1:length(ay) 

    for jj=1:length(ax) 

G=((w0/w1) * exp(1i*k*d1)*exp(-1i*atan(d1/zr))).*... 

   (exp(-1*((X2-ay(ii)).^2+(Y2-ax(jj)).^2)/(w1)^2).*exp(1i*k*((X2-ay(ii)).^2+(Y2-

ax(jj)).^2)./(2*R1))); 

G_sum=G_sum+G; 

G_vec(:,:) =G_sum; 

    end 

end 

 

I1=abs(G_vec).^2;                                %Absolute irradiance  

figure(1) 

imagesc(x2,y2,nthroot(I1,3));                %Display absolute irradiance & stretch image contrast 

axis square; axis xy; 

colormap('gray'); xlabel('x (m) '); ylabel('y (m)'); 

title(['d1=',num2str(d1),'m  stretched contrast']); 

colorbar; 

figure(2) 

imagesc(x2,y2,I1);                                  %Display absolute irradiance 

axis square; axis xy; 

colormap('gray'); xlabel('x (m) '); ylabel('y (m)'); 

title(['d1=',num2str(d1),'m']); 

colorbar; 

 
%Plot irradiance profile  

 

figure(3)          

plot(x2,I1(M/2+1,:)); 

xlabel('x (m)'); ylabel('Irradiance'); 

title(['d1=',num2str(d1),'m']); 

 
%Plot absolute field magnitude  

 

figure(4)          

plot(x2,abs(G_vec(M/2+1,:))); 

xlabel('x (m)'); ylabel('Magnitude'); 

title(['d1=',num2str(d1),'m']); 

 
%plot absolute field phase 
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figure(5)          

plot(x2,unwrap(angle(G_vec(M/2+1,:)))); 

xlabel('x (m)'); ylabel('phase (rad)'); 

title(['d1=',num2str(d1),'m']); 

 

figure(6) 

mesh(X2,Y2,I1); 

xlabel('x1'); 

ylabel('Intensity'); 

grid on; colorbar; 

 

%Section 4.2, HGBD 

clear all; close all; clc; 
B=21.25/20; 
lambda=0.5*10^-6;                         %Wavelength in (m) 
k=2*pi/lambda;                            %Wavenumber 
d1=50;                                    %Propagation distance (50&2000)           
w0=0.0021428571;              
w00=0.00125; 
w000=0.00190; 
L1=0.08;                                  %For 50 (m) L1=0.08, for 2000 L1=0.5; 
M=250; 
dx1=L1/M; 
x1=-L1/2:dx1:L1/2-dx1; 
y1=x1; 
[X1,Y1]=meshgrid(x1,y1); 
L2=lambda*d1/dx1; 
dx2=lambda*d1/L1; 
 
x2=-L2/2:dx2:L2/2-dx2; 
y2=x2; 
[X2,Y2]=meshgrid(x2,y2); 
 
%Initial y-ybar calculations for one beamlet 

 

Lg=lambda/pi;                          %Lagrange invariant 
y0=w0;                                 %Initial y value & initial waist w0 
y00=w00; 
y000=w000; 
y0bar=0;                               %Initial ybar value 
y00bar=0;             
y0000bar=0;           
u0bar=Lg/y0; 
u00bar=Lg/y00; 
u000bar=Lg/y000; 
u0=0; 
u00=0; 
u000=0; 
theta=Lg/w0 
theta_00=Lg/w00 
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theta_000=Lg/w000 
 
%Beamlet propagation after d1 (m)  

 
y1bar=(d1*Lg)/y0;                       %y*ubar-ybar*u=lambda/pi=Lg 
y1bar_00=(d1*Lg)/y00; 
y1bar_000=(d1*Lg)/y000; 
y11=w0;                                 %w^2=sqrt(y^2+ybar^2) & sqrt(w1^2-y1bar^2); 
y11_00=w00; 
y11_000=w000; 
u1bar=(y1bar-y0bar)/d1;  
u1bar_00=(y1bar_00-y00bar)/d1; 
u1bar_000=(y1bar_000-y0000bar)/d1; 
zr=pi*w0^2/lambda;                        %Rayleigh range 
zr_00=pi*w00^2/lambda;  
zr_000=pi*w000^2/lambda;  
w1=sqrt(y1bar^2+y11^2);                   %New waist w^2=w0^2*(1+(z/zr)^2) 
w1_00=sqrt(y1bar_00^2+y11_00^2);  
w1_000=sqrt(y1bar_000^2+y11_000^2);  
u1=(y11-y0)/d1; 
u1_00=(y11_00-y00)/d1; 
u1_000=(y11_000-y000)/d1; 
R1=(y11^2+y1bar^2)/(y11*u1+y1bar*u1bar);   %Beam radius R=(y^2+ybar^2)/(yu+ybar.ubar) 
R1_00=(y11_00^2+y1bar_00^2)/(y11_00*u1_00+y1bar_00*u1bar_00); 
R1_000=(y11_000^2+y1bar_000^2)/(y11_000*u1_000+y1bar_000*u1bar_000); 
Z=(y11*u1+y1bar*u1bar)/(u1bar^2+u1^2) 
z_00=(y11_00*u1_00+y1bar_00*u1bar_00)/(u1bar_00^2+u1_00^2) 
z_000=(y11_000*u1_000+y1bar_000*u1bar_000)/(u1bar_000^2+u1_000^2) 
A=((w0/w1)*exp(1i*k*d1)*exp(-1i*atan(d1/zr))); 
A_00=((w00/w1_00)*exp(1i*k*d1)*exp(-1i*atan(d1/zr_00))); 
A_000=((w000/w1_000)*exp(1i*k*d1)*exp(-1i*atan(d1/zr_000))); 
 
%Composition 

              
 G=  (A).*(exp(-1*((X2-0).^2+(Y2-0).^2)./(w1^2)).*exp(1i*k*((X2-0).^2+(Y2-
0).^2)./(2*R1)))...    
+(A).*(exp(-1*((X2-0.0021428*B).^2+(Y2+0).^2)./(w1^2)).*exp(1i*k*((X2-
0.0021428*B).^2+(Y2-0).^2)./(2*R1)))... 
+(A).*(exp(-
1*((X2+0.0021428*B).^2+(Y2+0).^2)./(w1^2)).*exp(1i*k*((X2+0.0021428*B).^2+(Y2-
0).^2)./(2*R1)))... 
+(A).*(exp(-1*((X2-0.00428*B).^2+(Y2+0).^2)./(w1^2)).*exp(1i*k*((X2-
0.00428*B).^2+(Y2-0).^2)./(2*R1)))... 
+(A).*(exp(-
1*((X2+0.00428*B).^2+(Y2+0).^2)./(w1^2)).*exp(1i*k*((X2+0.00428*B).^2+(Y2-
0).^2)./(2*R1)))... 
+(A).*(exp(-1*((X2-0.006428*B).^2+(Y2+0).^2)./(w1^2)).*exp(1i*k*((X2-
0.006428*B).^2+(Y2-0).^2)./(2*R1)))... 
+(A).*(exp(-
1*((X2+0.006428*B).^2+(Y2+0).^2)./(w1^2)).*exp(1i*k*((X2+0.006428*B).^2+(Y2-
0).^2)./(2*R1)))... 
+(A_00*0.25).*(exp(-1*((X2-0.0073*B).^2+(Y2+0).^2)./(w1_00^2)).*exp(1i*k*((X2-
0.0073*B).^2+(Y2-0).^2)./(2*R1_00)))... 
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+(A_00*0.25).*(exp(-
1*((X2+0.0073*B).^2+(Y2+0).^2)./(w1_00^2)).*exp(1i*k*((X2+0.0073*B).^2+(Y2-
0).^2)./(2*R1_00)))... 
+(A_00).*(exp(-1*((X2-0.00855*B).^2+(Y2+0).^2)./(w1_00^2)).*exp(1i*k*((X2-
0.00855*B).^2+(Y2-0).^2)./(2*R1_00)))... 
+(A_00).*(exp(-
1*((X2+0.00855*B).^2+(Y2+0).^2)./(w1_00^2)).*exp(1i*k*((X2+0.00855*B).^2+(Y2-
0).^2)./(2*R1_00)))... 
+(A_000*0.19).*(exp(-1*((X2-0.00672*B).^2+(Y2+0).^2)./(w1_000^2)).*exp(1i*k*((X2-
0.00672*B).^2+(Y2-0).^2)./(2*R1_000)))... 
+(A_000*0.19).*(exp(-
1*((X2+0.00672*B).^2+(Y2+0).^2)./(w1_000^2)).*exp(1i*k*((X2+0.00672*B).^2+(Y2-
0).^2)./(2*R1_000)))... 
+(A).*(exp(-1*((X2+0).^2+(Y2-0.0021428*B).^2)./(w1^2)).*exp(1i*k*((X2-0).^2+(Y2-
0.0021428*B).^2)./(2*R1)))...% 
 
I1=abs(G).^2;                      % Absolute irradiance 
figure(1) 
imagesc(x2,y2,nthroot(I1,3));      %Display absolute irradiance & stretch image 
contrast axis square; axis xy; 
colormap('gray'); xlabel('x (m) '); ylabel('y (m)'); 
title(['d1=',num2str(d1),'m  stretched contrast']); 
colorbar; 
figure(2) 
imagesc(x2,y2,I1);                  %Display absolute irradiance 
axis square; axis xy; 
colormap('gray'); xlabel('x (m) '); ylabel('y (m)'); 
title(['d1=',num2str(d1),'m']); 
colorbar; 
 
%Irradiance profile  

 
figure(3)          
plot(x2,I1(M/2+1,:)); 
xlabel('x (m)'); ylabel('Irradiance'); 
title(['d1=',num2str(d1),'m']); 
 
%Plot absolute field magnitude  

 
figure(4)          
plot(x2,abs(G(M/2+1,:))); 
xlabel('x (m)'); ylabel('Magnitude'); 
title(['d1=',num2str(d1),'m']); 
 
%Plot absolute field phase 

 
figure(5)          
plot(x2,unwrap(angle(G(M/2+1,:)))); 
xlabel('x (m)'); ylabel('phase (rad)'); 
title(['d1=',num2str(d1),'m']); 
figure(6) 
mesh(X2,Y2,I1); 
xlabel('x2'); 
ylabel('Intensity'); 
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Appendix C. 

Chapter 5 Programmed Excel file for HCMPC Design Approach 32 Intercepts. 
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Appendix D. 

 Chapter 6 Programmed Excel file for yӯ diagram gut ray design of MPC. 



  

135 
 

Chapter 6 Programmed Excel file for yӯ diagram collimated ray design of MPC. 
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 Chapter 6 Programmed Excel file for yӯ diagram different radii of curvatures MPC. 
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Appendix E. 

 

 

 Chapter 7 Programmed Excel file for Zernike’s Coefficients Calculations. 
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