University of Alabama in Huntsville

LOUIS

Dissertations UAH Electronic Theses and Dissertations

2024

A new, intuitive method for the design and analysis of multi-pass
cavities

Adam S. Mansor

Follow this and additional works at: https://louis.uah.edu/uah-dissertations

Recommended Citation

Mansor, Adam S., "A new, intuitive method for the design and analysis of multi-pass cavities" (2024).
Dissertations. 406.

https://louis.uah.edu/uah-dissertations/406

This Dissertation is brought to you for free and open access by the UAH Electronic Theses and Dissertations at
LOUIS. It has been accepted for inclusion in Dissertations by an authorized administrator of LOUIS.


https://louis.uah.edu/
https://louis.uah.edu/uah-dissertations
https://louis.uah.edu/uah-etd
https://louis.uah.edu/uah-dissertations?utm_source=louis.uah.edu%2Fuah-dissertations%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/uah-dissertations/406?utm_source=louis.uah.edu%2Fuah-dissertations%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages

ANEW, INTUITIVE METHOD FOR THE DESIGN AND ANALYSIS OF
MULTI-PASS CAVITIES

Adam S Mansor

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in
Optical Science and Engineering Program
to
The Graduate School
of
The University of Alabama in Huntsville
May 2024

Approved by:

Dr. Patrick J. Reardon, Research Advisor and Committee Chair
Dr. Hongrok Chang, Committee Member

Dr. Lingze Duan, Committee Member

Dr. James Hadaway, Committee Member

Dr. Robert Lindquist, Committee Member

Dr. Don A Gregory, Department Chair

Dr. Jon Hakkila, College Dean

Dr. Jon Hakkila, Graduate Dean



Abstract

ANEW, INTUITIVE METHOD FOR THE DESIGN AND ANALYSIS OF
MULTI-PASS CAVITIES

Adam S Mansor

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Optical Science and Engineering Program

The University of Alabama in Huntsville
May 2024

This dissertation develops a new analytical approach for designing and analyzing multi-
pass cavities like the Herriott cell by employing the graphical yy diagram approach. The new
technique can be deployed in spectroscopy absorption detection, femtoseconds laser cavities, or
any off -axis spherical mirror interferometers applications. Such a system can be uniquely designed
and evaluated by entering a few parameters that define the required physics for the cell, the
packaging size limits for the system and the probe beam size, plus two user selected parameters.
The existing design method, developed by Herriott, is discussed and then the yy diagram method
is presented and applied, showing several design solutions that meet the spectroscopic absorption
system requirements. The adaptability of the yy diagram approach is then shown, presenting
several design solutions with mirrors of arbitrary curvatures and a new approach of rapid
calculations of 3" order astigmatism, the dominant aberration in these systems. This dissertation
also employs the yy diagram of Gaussian beams to illustrate detailed design parameters of a gas
spectrometer sensor and develops an enhanced Gaussian beam decomposition technique that could

be used for physical optics and diffraction analysis for this system or any other optical system.
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Chapter 1. Introduction

This research was initially conceived to provide an intuitive and rapid approach for the
design and analysis of multi- pass cavities such as a Herriott cell. A Herriott cell is a two concave
mirrors optical system where the optical path bounces back and forth multiple times between the
two mirrors before exiting the cell. These have been used as resonant cells for interferometer or
laser cavities [1] and, more commonly now, in spectroscopy as a method of providing a long path
length in a short optical package [2]. The design of these systems has been based on a method first
published by J. R. Pierce [3], which is a paraxial based method for electron beam systems. Once
designed, analyzing and adjusting these systems can be readily performed using geometrical optics
approaches, however, the beams propagating through them are generally small beams, sometimes
small gaussian laser beams. The geometrical analysis is therefore incomplete, especially when one
desires to analyze the beam after arbitrary numbers of reflections through the cavity. Thus, this
dissertation research effort not only will provide a better means of designing, understanding and
analyzing the performance of these systems, but also will provide a rapid way for designing multi-
pass cavities (MPC) with different radii of curvatures. Additionally, a modified physical optics
approach is being developed that can be used for the intracavity beam analysis of Herriott cells,
for any optical system or for any optical beam propagation calculations. Lastly, a novel approach
to calculate the third order aberrations of Astigmatism, the dominant aberration in these cells, is

provided.



Methods for the design and analysis of optical systems have undergone huge advances

over the centuries[4] [5] [6] [7] [8]. From an analytical perspective, these advances include the
development of paraxial optics, then aberration theories such as Seidel’s 3™ order methods and
then integrating advances in the understanding and derivations of physical optics methods which
enabled computation of the true diffraction-based performance of these systems as well as
understanding of fundamental light propagation. As digital computers advanced, this enabled real
ray tracing of effectively limitless numbers of rays and calculation of highly complex diffraction
problems. Today, lens design and analysis programs on standard computers are able to trace 100’s
of millions of ray-surfaces per second and compute and display 2048x2048 FFT-based
monochromatic diffraction patterns, point spread functions, in a few seconds.
However, there are still challenges at the most basic level for optical design and analysis, including
setting up the initial optical design (first order design). One method for simplifying the process of
designing the optical system was presented by Delano [9], the y¥ diagram, which enables a highly
graphical and intuitive means for laying out the optical design based on paraxial optics. This
method was extended to enable the tracing of gaussian beams throughout an optical system, thus
coupling the method to physical optics calculations.

For physical optics modeling, Huygens-Fresnel and Fraunhofer methods of propagation
calculation using numerical Fourier transform methods are applied extensively in physical optics
modeling of many situations including coronagraph analysis, laser beam propagation, digital
holography, interferometry and modeling of the diffraction patterns of many optical components
and systems [10] [11] [12]. Most software simulation packages use these fast Fourier transform
(FFT)-based methods to model the physical optics including interference and diffraction.

Employing these diffraction algorithm calculations can dramatically increase the computation time



for different applications. For example, optimizing or tolerancing of an optical system using
modulation transfer function (MTF) or encircled energy criteria can be 1000x slower than ray
tracing calculations. However, this method is often the approach of choice since it applies to a
broad range of propagation scenarios and is relatively straightforward, although, it has constraints
for calculating the sampling regimes correctly which, if not followed, could lead to erroneous
artifacts and when followed can require intractably large and long calculations. Another common
challenge is calculating long-range large beam propagation by using FFT based methods. The
constraints of sampling can conflict with reasonable execution times of the algorithm; avoiding
computational aliasing can require prohibitively massive data arrays which limit the processing to
large, specialized computer systems.

An alternative method to FFT-based diffraction calculations is Gaussian beamlet
decomposition (GBD) [8] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]. Waves, truncated
by any aperture, are represented by a set of Gaussian beamlets with appropriate amplitude, radii
beam waist and constant phase, which can then be linearly added at any plane of interest. There
are, of course, parameters that impact the accuracy of the model. Since a field is being represented
by an array of Gaussian beamlets, there can be undesired ripples in the fit and edge rounding at
what should be sharp cutoffs. How much the adjacent Gaussian beamlets overlap and the total
number of Gaussian beamlets employed drive these errors.

The research dissertation will couple some of these elements to provide a simple and
graphically intuitive method for designing and analyzing multi-pass cavity cells. In this research
dissertation, these individual components will be described more fully and then their proposed

coupling will be discussed.



Chapter 2 will present the necessary details and our nomenclature for Gaussian beams, the
yy techniques for paraxial and complex ray tracing of Gaussian beam optics [23] [24]. Chapter 3
will present the Gaussian Beam decomposition (GBD) method and current FFT-based approaches
for calculating beam propagation focusing on the diffraction of a square aperture as it contains two
conflicting challenges: a smooth field amplitude and a sharp edge. In this Chapter 4 we have
developed a modification of GBD or hybrid Gaussian beam decomposition (HGBD) and
comparison of GBD and HGBD is also presented. The HGBD method with results that show its
effectiveness. Chapter 5 is a detailed discussion of the Herriott cell background, including the
current method of design that is employed to the Orion space capsule. The research dissertation
author and Dr. Patrick Reardon were involved in the analysis, redesign, fabrication and testing of
a Herriott cell-based multi-Pass Cavity (MPC) system for measuring the 02, CO2 and H20 levels
aboard the Orion space capsule [25] [26] [27] [28] [29]. The design provided to the authors was
created following the methods published by Pierce and extended by Herriott [1] [3].

The Chapter 6 then goes through the process of we’ve initially developed to find a method
by which one can design a Herriott cell in the y§ diagram framework, for gut ray, collimated input
beam and different radii of curvatures. Chapter 7 presents a novel approach for numerical
calculation of dominate 3™ order aberration in MPC “Astigmatism”. Finally, Chapter 8 discusses

the future work.



Chapter 2.

2.1 Gaussian Beam Theory

Gaussian beams have long been used and defined in optics as they are the fundamental mode
of a cylindrical laser cavity [30] and they are one of the special case of functions that do not alter
their amplitude profile as they propagate, although their phase does change. As Gaussian beams
propagate, diffraction causes the Gaussian beamlets to broaden and diverge. The properties of a
Gaussian beam field are listed below [31]. Equation 2.1 and 2.2 are the field and intensity of a
single Gaussian beam. Equations 2.3 and 2.4 are the beam semi-diameter and field radius of
curvature, while Equations 2.5 and 2.6 define the Rayleigh range and divergence angle, parameters

used primarily to simplify the previous equations.

e/2 z |

‘2

Figure 2.1 Laser Gaussian beam layout [31].
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W (2) = w0 /1+ZZ—R22, (2.3)
R (2) =2+, (2.4)
Zp="o" (2.5)
O=—"- (2.6)

We denote Z, k, tan™! (%) and A as the axial propagation distance from the beam waist, the

wave number, the Gouy phase and the electric field amplitude respectively. From the paraxial

wave solution, there is one restriction [31] on wo, namely wo > A.
2.2 The yy Techniques of Paraxial Optics

The yy diagram is a representation of geometrical paraxial optics, developed by Delano [9].
It proceeds by plotting the paraxial chief and marginal ray heights at each surface as they are
sequentially encountered through the optical system. The marginal ray passes through the center
of the object and its images, where y=0 and it clips the edge of the stop and the stop’s images. The
paraxial chief ray starts at the edge of the object and passes through the center of the stop where ¥
=0 and the stop’s images. A simple y¥ diagram layout for single lens is illustrated in Fig2.2 a yy

diagram requires the LaGrange Invariant of the system to be properly scaled.
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Figure 2.2 yy Diagram of a simple optical System for gut ray [24].

2.3 Paraxial y§ Diagram Characterizations

The y¥ diagram requires scaling factor or LaGrange invariant (Lg) to keep the linearity of
paraxial optics calculation between the heights and angles. In case of positive geometrical optical
power, (®) such as concave mirrors, convex lenses the yy segment bends toward the origin, but,
for negative geometrical optical power such as convex mirrors and concave lenses the yy segment
bends away from the original. Alternately, flat optics such as plano mirrors reflect the yy segment
without any bending. Collimated input ray or infinite conjugate input yy diagram is presented by
parallel segment to y axis, where (¥, y) = (0, y) as illustrated in Fig2.3, consequently, skew input
ray or finite conjugate input yy diagram is presented as by-passing segment to § axis, where

(¥, Y) =(¥, 0) as illustrated in Fig2.2.
The yy LaGrange invariant typically has positive sign when moving clockwise around the

origin and negative sign when moving counterclockwise. The distance between two points is



related to the area swept out by a vector whose base is at the origin, from each sequential optical
element. All real and virtual images and pupil can be specified by y and y axis crossing. Some

properties of the yy techniques of paraxial optics are listed in table 2.1.

Object Plane st infinity

Figure 2.3 yy Diagram of a simple positive and negative optical system for collimated ray [32].

Table 2.1 The paraxial properties of an optical system represented by the yy diagram.

Properties Brief description
Lg=ynu — ynu LaGrange invariant or the scaling factor
1= L [¥0  §0 ] | Axial distance between locations represented by two points in the
Lg Lyl 1]
yy diagram
__1 [u0 107 | Optical power at a bend on the y§ diagram
Lg lul ull
= 113t Chief ray angle after element 1 with the optical surface
t1
=Yyt Marginal ray angle after element 1 with the optical surface
t1
= Chief ray angle when y =0
yn
— L9 Marginal ray angle when § =0
yn




2.4 The yy Techniques of Gaussian Beam (Complex Ray Tracing)

Kessler and Shack first presented the yy method of laser beam propagation [24].A simple
explanation for their development is to consider that two rays can represent a Gaussian beam, as

divergence ray and a waist ray, as shown in Fig .2.4.

Waist ray (v)

Divergence ray
W) /
Waist ray /L ‘N
RO) | —\ kj Divergence ray ()

Figure 2.4 Layout of complex ray tracing for Gaussian laser beam propagation.

The blue line represents the divergence ray of the propagating Gaussian beam. The red line
is a waist ray, a height wo from the optical axis. In the y§ method, the green line represents these
two rays, with § associated with the divergence ray and y associated with the waist ray-for this
particular state. These rays are then traced just as paraxial rays. The beam waist size wo is defined
by the smallest distance from the traced line to the yy diagram origin, Or the beam waist is located
where the line is tangent to a circle centered on the origin and its size is the radius of the circle.

The properties of the complex ray tracing technique of Gaussian beam are tabulated in table 2.2.



Table 2.2 The properties of the complex ray tracing of Gaussian beam.

Properties Brief description
Lg= A LaQrange invariant or the complex ray tracing
n scaling factor
= 1 [yO y0 Distance between 2 points in the complex ray
Lg [yl yli tracing
W=/72 + y2 Beam semi-diameter
=t Chief ray angle with the optical surface
t1
=22t Marginal ray angle with the optical surface
t1
= Z0r"24y"2) Radius of curvature of Gaussian beam
(yu+yn)
ZO—T[yOZ _y0? Rayleigh range (only for lines of y = a)
i L
- AL Divergence angle.
wy0 yO0
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Chapter 3.

3.1 Simulation of Diffraction Using the Huygens-Fresnel Technique

Huygens posited that a wavefront could be represented as a large number of point sources,
properly phased, where each of these point sources acts as a secondary emitter of spherical
wavefronts [33] [34]. As the wavefronts pass through an aperture, some of the wavefront is
clipped, bounding the set of point sources and changing the shape of the wavefront in the vicinity
of and beyond the aperture edge. Interference effects are seen in the regions where overlap between
the spherical wavelets occurs resulting in constructive or destructive interference.

For several decades, numerical Huygens-Fresnel diffraction propagation methods have been
used extensively in research and industry for simulating beam propagation in many applications.
The digital version of Fresnel equations is based on the fast Fourier transform (FFT), assuming
monochromatic light. Fresnel propagation regimes and criteria can be expressed by a 2D source
area U1(&, n) and 2D observation area Uz (X, y), on parallel planes and arbitrary propagation

distance r12 as shown in Figure 3.1 [12] [34].

X
& Observation Plane
Us(x, y)

Source Plane

Ui(& n)

Figure 3.1 Sommerfeld geometry for normal incident collimated source and Observation planes [12] [35].
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The Fresnel diffraction expression as shown in Eq. (3.1), can also be expressed as Eq. (3.2) [12]

[34][37],
U2x,y) = S [ UL m) exp {j = [Ge — 2 (v = n)* 1} dE (3.1)
U206,y) = 2 ] U1 mMhGe — €,y = n) dEdn (32)

where the impulse response (IMP) is shown in Eq. (9),

B y) =2 exp [ £ (2 +y2)] (3.3)
The transfer function (TSF) is shown in Eq. (10):

H(x, y) = e/ exp[ — jnAZ(fx % + fy )] . (3.4)

There are two ways to interpret Eq. (3.1), employing Eq. (3.1) or (3.4), yielding Eqn. (3.1) or
(3.1):

U2 (x, y) = FH{F{UL(x »)}F{R (x, 1)}, (3.5)

U2 (x, y) = FH{F{UL(x, y)IH (Fx, fy)}, (3.6)

where F and F*are the Fourier transform and inverse Fourier transform respectively.

Despite the fact that Egns. (3.5) and (3.5) are an identical solution for Eq. (3.1), different sampling
values when computing these numerically can lead to conflicting and erroneous results. For
relatively short propagation distances, or small A, the TSF method is generally employed, whereas
for relatively long propagation distances, or large A, the IMP method is generally employed [12]
[35] . Regardless, there are rigid sampling criteria for both IMP and TSF based solutions. Given a

two-dimensional function with uniform square sampling,

8(x, y) = g (mAx, nAy), (3.7)
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where Ax and Ay are the sampling interval in the x and y directions respectively m and n are
integer-valued indices. Letting Ax=Ay, the chirp function, TSF in Eq. (3.4) is sufficiently sampled
by Ax > A Z/Lx where Ly is the size of the data array which encompasses the aperture including a
surrounding zero band. Similarly, the chirp IMP function in Eq. (3.3) is sufficiently sampled when
Ax <A ZILx. These two expressions, which consider aliasing of the chirp function in the spatial
and frequency domains respectively [12] [33], are clearly in opposition. The critical sample
criteria should therefore work for both the TSF and IMP-based calculations when Ax=A Z/Lx [35]
[36].
3.2 Gaussian Beam Decomposition Method

Any field distribution can be represented as a set of uniformly arrayed Gaussian beamlets.
For a simple example, we choose a square aperture illuminated with a normally incident plane
wave, a flat top beam profile with uniform amplitude and initial constant phase. This example
contains the requirements of a smooth field amplitude as well as a sharp field edge, both of which
can be quantified. As it has a flat phase field, the beamlets will all have their waists at the aperture
plane. To obtain a flat top-hat amplitude profile with minimum ripples, the adjacent Gaussian
beamlets must sufficiently overlap. We denote overlap factor (OF) as the ratio of the beam

diameter, D = 2w at 1%&? irradiance to the adjacent beamlet center separation [15] [16] [17] [18]

[19] [20] [21] [22] Cs, by OF:%. For a square aperture, there are a few restrictions; the number of

Gaussian beamlets required along two dimensions (2D) to fill the square aperture is
_ Ls+*OF

NG—T,Where Ls is the square aperture length. Although there is no exact value for minimum

waist size, a reasonable value for the Gaussian beam decomposition (GBD) approach is wo>3 A

13



[17] and this criterion [33] will not conflict with Gaussian beam solution of paraxial wave equation
restrictions as mentioned in Sec.2.1.

When OF = 1.00, there will be substantial irradiance variation (ripples) in the GBD representation.
On the other hand, OF=2.00 yields a decrease in the steepness of the edge roll-off. To balance
these two limitations OF ~1.50 could be used.

The discrepancies among overlapping factors 1.00, 1.50 and 2.00 respectively at the plane of
decomposition (Z=0) are shown in Figure 3.2 [15] [17]. We simulated a square aperture of
dimensions Li=Lsy = Ls=20mm. The simulation uses Ng = 11, so 11x11 beamlets in the arrays
and

A= 0.5%10° m. The separation between two adjacent beamlets is 1.82 mm which leads to wo =

0.91mm, 1.36mm and 1.82mm respectively.
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Figure 3.2 Column (a) normalized 3D irradiance at Z=0 showing ripples and roll off slope, column (b) normalized
field magnitude cross section at Z=0 and column (c) 1/e2 map radii of 11x11 beamlets [15] [17].
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Chapter 4.

4.1 Modeling the Diffraction Pattern of Square Aperture by Overlap Factor 1.5 and FFT
Using the IMP and TSF

We will demonstrate and compare the diffraction patterns for a square aperture because we
know, analytically, the diffraction pattern for it with long propagation distances, the Fraunhofer
regime and near field Fresnel distances have been well documented. We shall employ different
beamlet numbers, Ng and beamlet sizes, mo and OF=1.5. The decomposition into Gaussian beamlet
propagation is a fast and simple technique. The GBD methodology can simulate the diffraction
pattern at any propagation plane location; far field or near field, at any propagation distance and
at any spatial resolution in the output plane. However, one must trade top hat smoothness for edge
roll off. The constraints and limitations of the FFT methodology are well known and were briefly
discussed.

The first example is near field propagation. For simplicity, we used the critical sample
criteria Ax= AZ/Lx and A=0.5*10° m to satisfy the IMP and TSF [12]critical sampling rate
simultaneously with square aperture length= 102 mm and propagation distance Z= 2000 m
employing a grid of X x X data points. We chose 77x77 beamlets and OF = 1.5 for the GBD
method. We have not investigated methods of making the code more efficient, so using 5929

beamlets will slow down the algorithm time, but at this stage, we are focusing on the accuracy of
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these calculations, not the speed. For the FFT-based approach, MATLAB code based on Ref. [12]

was written. We also created MATLAB code for the GBD method.

The second example is far field propagation. We modeled a smaller square aperture with length

size =20mm, again propagating Z= 2000 m. For this calculation, 15x15 beamlets for used for GBD

and the sampling rate for TSF and IMP were unchanged.
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Figure 4.1 (a) comparison of irradiance, magnitude and phase among TSF, IMP and GBD for 102x102 (mm) square
aperture with 77X77 beamlets and row (b) a base-10 logarithmic scale on the irradiance and magnitude of TSF, IMP
and GBD respectively for 102x102 (mm) square aperture with 77X77 beamlets.
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Figure 4.2 (a) comparison of irradiance, magnitude and phase among TSF, IMP and GBD, respectively for 20x20
mm square aperture with 15X15 beamlets and row (b) a base-10 logarithmic scale on the irradiance and magnitude
of TSF, IMP and GBD respectively for 20x20 mm square aperture with 15X15 beamlets.

The results in Figs.4.1 are from the near field diffraction example and Figs.4.2 are for far
field Fraunhofer diffraction pattern. It is apparent that both results match well, with some
indications of the edge smoothing from the GBD primarily evident in the far field calculations.
We note that the zeroes of the functions overlap precisely, matching the simple far-field result
from a square aperture with uniform amplitude as given by Eqn. 4.1 [12] [35] [36].

Note that the width of the central lobe for the far field pattern is Eqn.4.2 [12] [35] [36] which

matches the results. Note also that the TSF, IMP and GBD using OF=1.5 results are almost
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identical with slight difference in amplitude for lobes number 3,4 and 5. By increasing the number
of beamlets, Ng, while keeping OF constant, the smoothness of the top hat remains and, because
wo IS decreasing, the edge steepness increases. Thus, the second lobe irradiance goes from ~1.75X
factor error with 15x15 beamlets, to less than a 5% error at the 5™ lobe using 77x77 beamlets:
- § n

U(E n)=rect (E) rect (E)' 4.2)

Again, the constant Ls is the widths of the square aperture in § and 7 directions:
0=22=005m 4.2

x_0=2%=0,05m. (4.2)
Thus, equation 4.3 defines complete results for computing the diffraction from a square aperture
illuminated by a plane wave using the GBD method. Equation 4.3 for the square aperture is a
simple double summation over the Gaussian beamlets, computed for any (x,y;Z) position in the
diffracted field using well known Gaussian beam equations:

U2(x,y;Z) = 3—2 exp(ikz)exp(—itan™? (ﬁ)) *

Ax(m) Ay(n) —((X—Ax(m))2+(Y—Ay(n))2 (ik((X—Ax(m))2+(Y—Ay(n))2)>
Z—AJC(m) [ Z—Ay(n) exp( (W(2))? ) exp (2R(2)) 1 @43

where Ax(m) = Ay(n) are beam center locations determined once Cs is defined and W(Z), R(Z)
and the Gouy phase values were defined in table 2.4. This equation can be manipulated for any
aperture such as circle, or tringle aperture by changing the Gaussian beamlet locations, or for a
non-planar wavefront by appropriately addressing the initial Gaussian beamlet curvature and

phase.
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4.2 Hybrid Overlap Factor Configuration

We now discuss how to improve the accuracy of the GBD fit for the square aperture to both
minimize the ripple in the top hat region and increase the steepness of the edge. Increasing the
overlap factor decreases ripple and decreases the steepness of the edge, whereas, decreasing the
overlap factor will lead to increased ripple and an increase the steepness of the edge. One could
increase the number of beamlets at constant OF which would make the edges steeper due to the
gaussian beamlets being narrower, but at the cost of increasing the number of computations. What
we propose instead is to mix different beam waists in the decomposition: broad gaussians where
the field is slowly varying at the center of the aperture and narrow gaussians where the field is
rapidly varying at the edges. Thus, one can achieve reduced ripple and sharper edges while using
far less beamlets than if one had used the smaller beamlets throughout. Values of OF=2 can be
used for all beamlets, ensuring a smooth fit. Alternatively, OF selection can be an adjustable
parameter. Any field can be decomposed to GBD or hybrid Gaussian beam decomposition
(HGBD).

We again simulate the 20 mm aperture with A= 0.5*10° m. The central 7x7 beamlets were set to
OF=2 and defined for a 15mm square, yielding wo =Cs=2.143 mm. The edge beamlets are also set
to OF=2 and we arbitrarily set terms so that wo =Cs=1.25 mm and then added them with the
appropriate amplitude to yield a uniform field amplitude, accounting for both the average
amplitude vs OF and the remaining residual field amplitude needed after the central beamlets were
summed.

One feature in using the hybrid beamlets configuration is that amplitudes of the
summation of beamlets are driven by OF, so maintaining the same OF simplifies the summation.

However, the boundary between the large and small beamlets creates an asymmetric summation
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feature, a ridge, in the field distribution. This was solved by fitting a third set of Gaussian beamlets,

of another size, which effectively removed the ridge. We used a third Gaussian beamlets of wo=1.9

mm. Figures.5 shows the normalized 3D irradiance, 2D normalized field magnitude and 1/e* map

radii of HGBD for the 20mm square aperture.
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Figure 4.3 (a) normalized 3D field irradiance at Z=0 showing ripples and roll off slope, column (b) normalized
field magnitude cross section at Z=0 and column (c) 1/e2 map radii of 11x11 beamlets.

We compared the diffraction pattern at near and far field between the GBD and HGBD

models in Figs.4.4 and4.5. All models employed OF = 2, but for the two different GBD models,

we matched the largest and smallest beamlet sizes used in the HGBD model, equivalent to Ng =

9 and Ng =17 for the 20mm square aperture. The Z=50 m near field propagation for these two

GBD models and the HGBD are shown in Figure 4.4. It is clear that the Ng=9 GBD model does

not effectively capture the expected modulation at the center of the pattern which leads to

artifact, whereas the HGBD and Ng=17 GBD models closely match and show the expected
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modulations. A similar result is shown for the far field calculations in Figure 4.5, where it is
apparent that the HGBD and Ng =17 GBD are a close match. Thus, the HGBD model, which
employs 181 gaussian beamlets achieves the same resolution as the GBD model that employs

289 beamlets, implying a potential reduction in calculations of 37% once the decomposition is

completed.
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Figure 4.4 (a) comparison of irradiance between HGB, GBD17x17 and GBD 9X9 respectively for 20x20 mm near
field square aperture (b) comparison of magnitude, between HGBD and GBD17X17, GBD 9X9 respectively for
20x20 mm near field square.
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Chapter 5.

5.1 Introduction

In this chapter, we present Herriot’s approach to design off-axis multi-pass cavities
(HCMPC) with numerical examples. We were involved in the analysis, redesign, fabrication and
testing of a HCMPC spectrometer [25] [26] [27] [28] [29] for measuring the O2, CO2 and H20
levels aboard the Orion space capsule. The design provided to us was created following the
methods described by Herriott [1]. We found that Herriott’s design approach, though sufficient,
obscured how one would design a system from the first principles. In this Chapter firstly, we
present a detailed overview and analysis of the original design method developed by Pierce [3]
and Herriott. Secondly, we use Zemax to analyze the HCMPC’s. Thirdly, we show the process
for converting the HCMPC gut ray trace to HCMPC a paraxial model collimated ray. Lastly, we
show step-by-step of using HCMPC displacement value as yy diagram values. In the following
chapters we will present a step-by-step for an innovative yy diagram approach for designing an

absorbance spectrometer MPC, with several examples.

5.2 Herriott Cell Background and Design Analysis

The fundamental Herriott cell consists of a pair of identical positive powered (concave)

mirrors designed to provide a repeating optical path for an optical beam inserted into the cell.
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Pierce [3] has described and derived a paraxial solution in terms of a series of equally spaced
positive lenses with the same focal lengths. In terms of ray optics, the interferometer system
consisting of two equal and coaxial spherical mirrors is equivalent to a series of lenses. The
analysis of a paraxial solution in periodic focusing arrays was first applied to electron beam design.
Extension of this paraxial solution applied to the optical realm was accomplished by Herriot et al.
in 1964. Although Herriott’s original work was proposed for additional resonances for off-axis
interferometer [1][3], it was not until recently applied to variety of applications such as tunable
diode laser spectroscopy with long absorption path to detect gas molecules and to obtain high
energy femtosecond pulses from a compact laser cavity. Extremely long laser cavities or a long
path spectrometer can be compressed into small sizes as shown in Figure 5.1, where the blue line
indicates the multiple paths a single beam takes in the cell. We focus here and on the following
chapters, on its application to laser spectroscopic using tunable sources, enabling long absorption
paths in a short package, including NASA’s laser air monitoring spectrometer system (LAMS) for
the Artemis 111 mission. LAMS’s 31 laser beam bounces resulted in a 31X reduction in overall
system length highlighting how extremely long path spectrometers can be compressed into small
sizes using a Herriott cell. Herriott’s derivation assumes that the two mirrors are concave of the
same radii of curvatures, separated by a vertex distance of L and that the “exit” point overlaps the
“injection” point. Conversely, for spectroscopic applications the injected beam can’t overlap the

exit beam.
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Detector

Figure 5.1 A schematic of a Herriot type multi-pass cavities MPCs [7].

Round trips can be presented by the (ABCD) matrix. Imagine a ray starting in the plane of
the left mirror and after a round trip through the MPCs, this ray will have been transferred across
the length L, reflected by the spherical mirror of radius of curvature R2, transferred another
length L and finally reflected by the spherical mirror of radius of curvature R1 where we will let
R1=-R2, so it is again back in the plane of M1 and aiming towards M2 as illustrated in Fig 5.2.
The ray matrix describing the ray transformation by round trip through the MPCs are shown in

equations 5.1 and 5.2 [30] [31] [33] [37] by:

MI M2
4‘%‘

Figure 5.2 A round trip through the multi-pass cavities (MPCs) [7].
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After N round trips through the MPCs, therefore, the initial ray with displacement 7; and slope

;' is transformed to the ray with displacement ry and slope ry’ given by [31]

N :
[:N’]=21 g] [:] (5.3)

This ray matrix has determinant equal to AD-BC=1 and defining an angle 6 by

cosO = %(A + D) orcos® =1— %. (5.4)

The ABCD matrix after N rounds can be shown as [39]

A-D sinN© SinN©
A BV ————+ cosN© B——
_ 2 sin®© sin® (5 5)
- sinn® D—A sinN@© : :
c D C—— ————+4 cosN©
sin® 2 sin®

The stability of MPCs, in other words, the condition that the rays remain confined, are shown in

Equation 5.6 [30][31] [33] [37]:

L L
0<glg2 <1 where gl =1-—-&g2=1-—. (5.6)

Herriot noticed that Equation 5.6 can be reduced to equation 26 when R1=R2 [1] [37]
L
0 < 7 <4. (5.7)
Once again, the system can be unfolded into series of thin lenses of focal length f=R/2|, each

separated by a length equal to L.
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By using well-known techniques of matrix algebra and Sylvester’s theorem' the displacements

ry coordinates x,, and y,are equal to [37]

Xp = X COSNO + (W) nNo, (5.8)
Yn = Yo COSNO + (w) inN®. (5.9)

The corresponding relation for equal radii is [1]:

Xp = Xo COSNO + \/% (xo + 2fx{)sinN© (5.10)
where x,,, xo, N, f, 6, x; are the repeated radial displacements and the input beam coordinate in
axis direction, number of intercepts on the front and back spherical mirrors, the mirror focal length
(f = |R}/2), the angle between successive intercepts and the slope of input beam, respectively.

A corresponding relation holds for y,, [1]:

Yn = Yo COSNO + 4fL—_L(yO + 2fy)sinN®. (5.11)
The previous equations can be simplified as [1]:
Xp, = Asin (NO + a) (5.12)

Yn = Bsin(N© + B), (5.13)

where A and B are the maximum Xx- and y-semi-diameters of beam bounces on the mirrors. A

circular pattern is formed when

A=B & a=B+

SIE

(5.14)

27



5.3 The Multi-Passes Consecutive Re-entrant Condition

The multi-pass cavities (MPCs) can be designed in such a way that the beam bounces will
be consecutive or interlaced bounces as the beam progresses around the optical axis. It is only

the relationship between (0), the number of intercepts (2v) and the number of 27 rotation. Where

2v is the number of intercepts in the cavity and O rotates counterclockwise:

2vO = 2m. (5.15)

If the resonator dimensions are such that 2ve is equal to 2z as shown in equation 5.15, then a ray
consecutively returns exactly to its entrance point (xq, yo) = (x,, ¥,) after 2v trips through the
cavity and continues to retrace the same ray pattern again and again.

We can use the above finding to understand the way in which a ray is reflected back- and- forth
between the two concave mirrors of resonator. The even numbered intersection points will be the
point where the ray strikes the one mirror and the odd numbered points will correspond to the
points of impact on the other mirror.

For instance, closed paths of this type are known to exit for a confocal resonator with a
repetition rate of two returns or 2v =4. This will lead to a common and important design. The
confocal resonator, with mirrors of radii equal to the cavity length (2f=R1 = R2 = L). This MPC
design produces the smallest possible beam diameter at the cavity mirrors for a given cavity

length and is often used in lasers where the purity of the transverse mode pattern is important.
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2v=4, and p=1

15
— [g——mmm y"

-15

-15

Figure 5.3 Consecutive confocal cavity and correspond (x,,y,,) diagram plot.

Table 5.1 Consecutive Confocal cavity passes (a) (x,, y,) Vvalues (b) design parameters.

(a) (b)

Zov 186 412 331 v 2
1 = -10.414 O(rad)= /2

: Cos(e) 0
2 10.414 0 = e
3 0 10.414 - ey
4 -10.414 0

Another well-known MPC cavity when a cavity with a mirror separation equal to the focal length

(L=f) and closed path of three returns or 2v =6.
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L-R2

(a)

2v=6, and p=1

2v Xn In
0 -10.414 0
1 -5.207 -9.0188
2 5.207 -9.0188
3 10.414 0
4 5.207 9.0188
5 -5.207 9.0188
6 -10.414 0

(b)

Figure 5.4 Consecutive focal cavity and correspond (x,,, y,) diagram 2u=6 plot.

Table 5.2 Consecutive focal cavity passes (a) (x,, V) Values (b) design parameters.

V= 3
O(rad)= 1.047197551
Cos(8) 0.5

L= 75.5523

R= 151.1046

Another multi-passe cavity example is when 2v =32 and L=75.55 mm that will lead to

|R1|=|R2|=3932 mm.




2v=6, and p=1
15

-15

15

Figure 5.5 Consecutive multi-pass cavity and correspond (x,,, y,,)diagram plot.

31




Table 5.3 Consecutive multi-pass cavity passes (a) (x,, ) values (b) design parameters .

(a)

2v X Yn

0 -10.41400 0

1 -10.21390 | -2.031671
2 -9.62128 | -3.985265
3 -8.65892 | -5.785708
4 -7.36381 | -7.36381
5 -5.78571 | -8.658925
6 -3.98527 |-9.621281
7 -2.03167 | -10.2139
8 0.00000 -10.414
9 2.03167 | -10.2139
10 3.98527 |-9.621281
11 5.78571 | -8.658925
12 7.36381 | -7.36381
13 8.65892 | -5.785708
14 9.62128 | -3.985265
15 10.21390 | -2.031671
16 10.41400 | -1.28E-15
17 10.21390 | 2.031671
18 9.62128 | 3.985265
19 8.65892 | 5.785708
20 7.36381 7.36381
21 5.78571 | 8.658925
22 3.98527 | 9.621281
23 2.03167 10.2139
24 0.00000 10.414
25 -2.03167 | 10.2139
26 -3.98527 | 9.621281
27 -5.78571 | 8.658925
28 -7.36381 | 7.36381
29 -8.65892 | 5.785708
30 -9.62128 | 3.985265
31 -10.21390 | 2.031671
32 -10.41400 | 2.55E-15
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(b)

V= 16
©(rad)= 0.196350
COS(©) 0.980785

= 75.552

R= 3931.98556




From equations 5.4 and 5.15 the MPC can be designed with consecutive bounces. In other
words, if the designer specifies the numbers of passes 2v and the cavity length L the MPC can be
deigned, as -long-as, the stability condition is met. A comparison among the three consecutive
cavities explained above are shown in table 5.6.

In the following chapter we will explain in detail how one can calculate the numbers of
intercepts and the cavity length L for absorbance spectrometer. In this chapter we are focusing on

Herriot approach with arbitrary number of intercepts 2u and the cavity length L.

Table 5.4 Comparison among three different cavities.

\Y 2 3 16
B(rad)= 1.570796 1.0472 0.196350
COs(8) 0 0.500 0.980785

L= 75.55 75.55 75.55

|R|= 75.5523 151.1046 3931.98556

f= 37.776 75.552 1965.993

f/d 0.5 1 26.02172

d/f 2 1 0.038429

It is only the ratio between focal length focal length and the mirror spacing and © which determine
whether the MPC will have closed path or not. If the condition 0< % <4 holds, a ray returns to its

entrance point after 2|1 no matter what its entrance slope, additionally, a 1:1 image magnification
of the input spot after 2v and inverted image after v trips. The encircled energy does not degenerate
as the beam bounces back and forth between the mirrors. The beam is continuously refocused by

the concave mirrors [1] [37].
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5.4 The Interlaced Re-entrant Condition

The MPCs can be designed in such a way that the beam intercepts will be interlaced on a
circle. It is only the relationship among 6, the number of intercepts 2v and the number of 2w
rotation (p). Where v is the number of intercepts on each mirror and p is an integer number [ 1]

[40]:

2vO = 2um. (5.16)

The interlaced beam intercepts equation 5.16 with odd p and even 2v shall be used for
spectroscopic design for multi-passes cavity. By adjusting the odd value of p number, the designer
can choose a specific output beam intercepts coordinate and certain detector location.

By way of explanation, there are three rules for equation 5.16 namely:

1. When v and p share odd common factors, the results are inappropriate solutions. For
example, if 2v =2x3 and p is 3, a common factor of 2v and p is odd numbers or 3and 6 =
1t , therefore this solution can be quickly rejected.

2. When 2v and u share even common factors, the results are inappropriate solutions. For
example, if 2v = 2x3 and p is 2, a common factor of 2v and p is even numbers or 2 and
6 = 120° that will lead to 3 intercepts instead of 6 intercepts, therefore this solution can
be quickly rejected.

3. The confocal and focal MPC are distinctive resonators and never change the intercepts

coordinate locations, as illustrated in Figure 5.6 and Figure 5.7.
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2v=4, and p=3
15

-15

Figure 5.6 Distinctive interlaced confocal cavity and correspond (x,,, y,) diagram plot.

Table 5.5 Interlaced Confocal passes (a) correspond (x,, y,) (b) design parameters values.

(@)
2v Xn Yn
0 -10.414 0
1 0 -10.414
2 10.414 0
3 0 10.414
4 -10.414 0

An example when a cavity with a mirror separation equal to the focal length (L=f) one has closed

path of three returns or 2v =6 and p=3.
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(b)

v = 2
©(rad)= 47123
cos(e) 0

L= 75.552
R= 75.552




. L-R2

Figure 5.7 Distinctive interlaced focal cavity and correspond (x,, y,,) 2v =6 and p=5 plot.

Table 5.6 Distinctive interlaced focal passes (a) correspond (x,, ;) (b) design parameters values.

(a)

2l X Yn

0 -10.414 0

1 -5.207 -9.0188
2 5.207 -9.0188
3 10.414 0

4 5.207 9.0188
5 -5.207 9.0188
6 -10.414 0
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(b)
= 3
O(rad)= 5.235988
Cos(8) 0.5
L= 75.5523
R= 151.1046




Another example when 2v =32, u =5 and L=75.55 mm that will lead |R1|=|R2|=169.997mm

-15

Figure 5.8 Interlaced multi-pass cavity and correspond (x,,,y,) diagram plot.
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Table 5.7 Interlaced multi-passes cavity 32 (a) corresponded (x,,, y,,) values (b) design parameters.

(@)
2V Xn In
0 ~10.41400 0
1 -5.78571 | -8.658925
2 3.98527 | -9.621281
3 10.21390 | -2.031671
4 7.36381 | 7.36381
5 -2.03167 | 10.2139 (b)
6 -9.62128 | 3.985265
7 -8.65892 | -5.785708 V= 16
s o ese02 [m768705 Olrad)= 0981748
10 9.62128 | 3.985265 Cos(e) 0.55557
11 2.03167 | 102139 = 75.552
12 ~7.36381 | 7.36381 R= 169.9976
13 | -10.21390 | -2.031671
14 -3.98527 | -9.621281
15 578571 | -8.658925
16 10.41400 | -6.38E-15
17 578571 | 8.658925
18 -3.98527 | 9.621281
19 | -10.21390 | 2.031671
20 -7.36381 | -7.36381
21 2.03167 | -10.2139
22 9.62128 | -3.985265
23 8.65892 | 5.785708
24 0.00000 | 10.414
25 -8.65892 | 5.785708
26 -9.62128 | -3.985265
27 -2.03167 | -10.2139
28 7.36381 | -7.36381
29 10.21390 | 2.031671
30 3.98527 | 9.621281
31 -5.78571 | 8.658925
32 | -10.41400 | 0.00000

38



Table 5.8 Comparison among three different interlaced cavities.

V= 2 3 16
M 3 5 5
©(rad)= 4.7123 5.235988 0.981748
Cos(®) 0 0.500 0.55557
L= 75.55 75.55 75.55
IR|= 75.5523 151.1046 169.9976141
f= 37.776 75.552 84.99881
f/L 0.5 1 1.125037
L/f 2 1 0.88886

5.5 Step by Step of Designing Absorbance Herriott’s MPC

We will follow the Herriot approach for designing absorbance MPC spectrometer. From
equation 5.16 we will assume that we have 2v =32 intercepts (or 30 bounces excluding the input
and exit intercepts) and we choose arbitrary p=5 that will lead to © =0.981735 rad. From equation
5.4, we allocate that, the cavity length L=75.55, that leads to the mirror radii curvatures
R1=|R2|=170 mm. For now, we also allocate the beam footprints semi-diameter x, = r, = 10.414
mm. In the following chapter we will describe how one can calculate the number of intercepts
(bounces) and the beam footprints semi-diameter (r,y) that will be needed for any absorbance
spectrometer.

We can now proceed to design a Herriott cell spectrometer. Firstly, the beam will be injected
through hole on the back of M1 at coordinate location (x,, y,)= (10.41 ,0), in the other word, the
beam will be injected at the back mirror semi-diameter location, but of course the mirrors will have

extra few millimeters for mechanical semi-diameters to eliminate vignetting. Secondly, from
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equation 5.6, 5.7 we calculate the stability factors G to ensure the stability of the cavity. Thirdly,
we calculate aimed locations on M2 (x4, y;) . Fourthly, we calculate the first slope values and field
of views for the first injected beam from (x(,yy) . Lastly, from equations 5.10 and 5.11 we
calculate the repeated displacement values respectively then plot the ray path in (x,, y,,) as viewed
along the Z axis from behind M1. The first order design of HCMPCs is shown in table 5.10 and

the repeated displacement values are shown in table 5.9 respectively.

Table 5.9 The displacement beam coordinates on front and back mirrors, respectively.

2v Xn In 2v Xn Yn

0 -10.414 0 1 -5.78570 |-8.65892
2 3.985265 -9.62128 3 10.2138 |-2.03167
4 7.36381 | 7.36381 5 -2.03167 | 10.2138
6 -9.62128 | 3.98526 7 -8.65892 |-5.78570
8 -2.3E-14 | -10.414 9 8.65892 |-5.78570
10 ]9.621281| 3.98526 11 2.03167 | 10.2138
12 -7.36381 | 7.36381 13 -10.2138 |-2.03167
14 -3.98527 | -9.62128 15 5.78570 |-8.65892
16 10.414 |-4.33E-14 17 5.78570 | 8.65892
18 -3.9852719.621281 19 -10.2138 | 2.03167
20 -7.36381 | -7.36381 21 2.03167 |-10.2138
22 19.621281 | -3.98526 23 8.65892 | 5.78570
24 6.6E-14 | 10.414 25 -8.65892 | 5.78570
26 -9.62128 | -3.98526 27 -2.03167 |-10.2138
28 7.36381 | -7.36381 29 10.2138 | 2.03167
30 ]3.985265| 9.62128 31 -5.78570 |8.658924
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Table 5.10 Description of first order design of Herriot cell.

Properties Allocated Values | Calculated Values Brief Description
u 5
2v 32 Number of intercepts
(6) 0.981735408 rad 2vO = 2un
L 75.552 mm Cavity length
ROC:|R1|:|R2| 17000 mm cosH=1 — L =1 — E
2f R
G 0.555580457 0< 2«
Xo -10.414 mm Input beam location
Vo 0 Input beam location
Terml 0.534503231 L
4f — L
X, -5.785814881 X1 = Xpcos(0) — y,sin(6)
Vi -8.658853398 V1 = X, sin(0) + y, cos(O)
(x0) 0.06125 xh = ’“L;"O
FOV=atan (0.06125)
) -0.114608 yh =2 ;y"
FOV=atan (-0.114608)
v
(n) X, = Xo COSNO + 4fL_—L (xo +
2fx4)sinN©
v L
o) Yn = Yo cOSNO + | == (o +
2fyg)sinN©
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Figure 5.10 Layout of combined front and back mirrors beam bounces.
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5.6 Using Ray Tracing Software (Zemax) to Analyze the Herriot Cell

From table 5.11 we entered the first order solution into Zemax to confirm the Herriot cell
design such as ROC and L. For now, we use the slope values to define the field of views (FOV)
on x and y directions respectively as shown in equations 5.17 and 5.18, but in the following
chapters we use yy equation to specify the field of views:

FOV-X = atan(0.061258031) = 3.53527° (5.17)
FOV-Y = atan (—0.114607409) = —6.59326°. (5.18)

We use the laser beam diameter as entrance pupil diameter =2mm (EPD=2mm) at the back of
M1 then decentered the input collimated beam by (x,,y,) = (-10.414,0). In the following
chapters we elaborate in detail how to calculate an exact entrance pupil diameter for plane wave
or collimate light. So, in Herriott approach you can only design the system from gut ray. The
Zemax first-order optical properties are shown in Fig5.11(b), where LaGrange or optical invariant
of system (LINV), entrance pupil position (ENPP), entrance pupil diameter (EPDI), exit pupil
position (EXPP), effective focal length (EFFL) and effective focal length for single element in the
local plan y (EFLY). The real ray displacement data, FOV and EPD values are shown in
Fig5.11(d). The inserted first order parameters such as ROC, L, decenter value are shown in

Fig5.11(c).
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Figure 5.11 (a) Layout of gut ray Herriot cell design in Zemax (b) merit function (c) lens data editor(d) Zemax real
ray tracing, FOV and EPD [7].

In the design shown in Fig5.11, the real ray solution closely matches the first order Herriot cell

displacements coordinate data (x,, y,), but there are discrepancies among HCMPC first order,

first order Zemax and paraxial optics Zemax, such as LaGrange invariant and EPD. These

discrepancies come from several sources:

1. The M1 and M2 surfaces are spherical not flat as assumed in paraxial optics, which alters

the real ray transfer distance, the local slope of the surface and aberrations. We will discuss

the aberration impacts in detail in the following chapters.

2. HCMPC approach the input beam is a gut ray (object of finite conjugate), but in Zemax

design the input beam is collimated (object of infinite conjugate object).

45



3.

The HCMPC entrance pupil diameter is the mirror diameter=20.8mm, but in Zemax the
EPD=2 mm, consequently, that will lead to deviation in LaGrange invariant for both

designs.

We found out that to make the HCMPC approach first order solution and first order solution for

Zemax sufficiently identical the following procedures will be needed:

1.

Rotate HCMPC displacements values (x,,, y,,) by the slope of the first segment, as shown
in Fig5.12 and Fig5.13

Calculate a new entrance pupil diameter for rotated HCMPC design, by way explanation,
EPD(collimated) = 2y, (rotated) , as shown in Fig5.14

Calculate a new FOV for the rotated HCMPC design, by way explanation, the new FOV

only in y-coordinate instead of x-coordinate and y-coordinate,

FOV(collimated) = /(FOV_X)? + (FOV_Y)2 = /(3.53527)2 + (—6.59326)2 = 7.481°.
Calculate the first order parameter for rotated HCMPC, such as, EPD, EFL, radius of
curvature and LaGrange invariant.

Insert the new collimated EPD and FOV into ZEMAX, without changing any other
parameters.

Compare the Zemax design with rotated HCMPC design, such as, LaGrange invariant and
yy diagram, as shown in Fig5.15.

After these procedures, the rotated HCMPC design and collimated input Zemax design are

sufficiently identical results.
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Figure 5.12 (a) Layout of Herriot collimated input design in Zemax (b) merit function (c) lens data
editor(d)Paraxial real ray tracing, FOV and EPD [7].

R (A0S) = [

2v Xp Yn

0 -10.414 0

1 -5.78571 -8.65892
2 3.985265 -9.62128
3 10.2139 -2.03167
4 7.36381 7.363810
5 -2.03167 10.21389
6 -9.62128 3.985265
7 -8.65892 -5.78570
8 -3.2E-15 -10414
9 8.658925 -5.78570
10 9.621281 3.985265
11 2.031671 10.21389
12 -7.36381 7.363810
13 -10.2139 -2.03167
14 -3.98527 -9.62128
15 5.785708 -8.65892
16 10414 -6.37E-15
17 5.785708 8.658924
18 -3.98527 9.621281
19 -10.2139 2.031670
20 -7.36381 -7.36381
21 2.031671 -10.2138
22 9.621281 -3.98526
23 8.658925 5.785708
24 2.81E-14 10414
25 -8.65892 5.785708
26 -9.62128 -3.98526
27 -2.03167 -10.2138
28 7.36381 -7.36381
29 10.2139 2.031670
30 3.985265 9.621281

[ Slope= [ -1.87087 |
I Slope Angle= I -61.875 ]
Xn

¥Yn

cos(A0S)
—sin(A0S)

sin(A0S)
cos(A0S)

Where, AOS is Angle of Slope of yy Diagram First Segment

2v Rotated x, | Rotated y,
0 -4.90913 -9.18433
1 4.909126 -9.18433
2 10.36385 -1.02075
3 6.606572 8.050131
4 -3.02302 9.965577
S, -9.96558 3.023025
6 -8.05013 -6.60657
7 1.02075 -10.3639
8 9.184328 -4.90913
9 9.184328 4.909126
10 1.02075 10.36385
11 -8.05013 6.606572
12 -9.96558 -3.02302
13 -3.02302 -9.96558
14 6.606572 -8.05013
15 10.36385 1.02075
16 4.909126 9.184328
17 -4.90913 9.184328
18 -10.3639 1.02075
19 -6.60657 -8.05013
20 3.023025 -9.96558
21 9.965577 -3.02302
22 8.050131 6.606572
23 -1.02075 10.36385
24 -9.18433 4.909126
25 -9.18433 -4.90913
26 -1.02075 -10.3639
27 8.050131 -6.60657
28 9.965577 3.023025
29 3.023025 9.965577
30 -6.60657 8.050131

Figure 5.13 An image of rotated gut ray real solution to be matched with the Zemax collimated design.
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Rotation of First 4 Segments Of Gut Ray HCMPC

15

Vn

—@— Gut Ray HCMPC

=@— Collimated HCMPC

-15

-15

Figure 5.14 Shows the Rotation of the gut ray (green) to facilitate the collimated ray (orange).
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Ybar
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Figure 5.15 (a) The y¥ diagram of collimated input design, (b) The y§ diagram of gut ray design [7].
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In the following chapter we create a new equation to collimate input HCMPC with examples. An

image of HCMPC programmed in Excel is shown in Appendix C.
5.7 Using the (x,,, y,) Values as yy Values to Design First Order Herriott Cell

From section 5.6 the rotated HCMPC displacement values (x,,, y,) and collimated Zemax
yy diagram are sufficiently identical results.
Thus, we used the displacement value (x,, ) = (¥», ¥,) and from table2.1 we use the y¥y
characterization to calculate the first order optical parameters. The results are sufficiently identical
results with HCMPC approach, as shown in table5.11 and table5.12. As expected, we noticed the

LaGrange invariant has negative sign and the explanation is the counterclockwise sense of ©.
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Table 5.11 Deploy the displacement (x,,, y,,) values as initial yy value description.

Properties Known Values Calculated Values Brief Description
yn = x, 4 Displacement in x direction(xn)
Y= ¥n 4 Displacement in y direction(yn)
Length (L) 75.5523 mm Axial distance between represented by
two points in the yy diagram
Lg LaGrange invariant or the scaling
-1.1935263 factor
_1[yn yn
Lo= <+l gn+1
u v Marginal ray angle
U:yn+1—yn
0 v Chief ray angle
U: yn+1-yn
D 0.0117646 diopters Optical power for back mirror
_ 1 Jun un
O Lg lun+l un+l
D, -0.0117646 diopters | Optical power for front mirror
Or=-Pg
fi 85.00076 mm Focal length for back mirror
_ 1
fi= o1
f2 -85.00076 mm Focal length for front mirror
_——
f= 2
Ry -170.002 mm Radius of curvature of back mirror
—-2n
Ri= 1
R 170.002 mm Radius of curvature of front mirror

Rzz - R1
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Table 5.12 Results of deploy the displacement values as initial yy values.

N y y L u i R1 ®1=02 | 1/®1=f1
0 10.414 0 1 75.552 | 0.11461

1 |5.785815/8.658853| 1 75.552 | 0.11461| -0.0613 | -170.0015 | 0.0117646 | 85.000762
2 |-3.98503[9.621379] 1 75.552 | 0.01274 | -0.1293 | -170.0015 | 0.0117646 | 85.000762
3 |-10.2138]2.032047| 1 75.552 | -0.1005 | -0.0824 | -170.0015 | 0.0117646 | 85.000762
4 |-7.36417]-7.36345| 1 75552 | -0.1244 | 0.03772 | -170.0015 ] 0.0117646 | 85.000762
5 |2.031043] -10.214 1 75.552 | -0.0377 | 0.12435| -170.0015 | 0.0117646 | 85.000762
6 |9.620087|-3.98598 | 1 75.552 | 0.08243 | 0.10046 | -170.0015 | 0.0117646 | 85.000762
7 |8.659423]5.784963| 1 75.552 |0.12933 ] -0.0127 | -170.0015 | 0.0117646 | 85.000762
8  [0.001024] 10.414 1 75.552 | 0.06127 | -0.1146 | -170.0015 | 0.0117646 | 85.000762
9 |-8.65828|5.786667| 1 75.552 | -0.0612 | -0.1146 | -170.0015 | 0.0117646 | 85.000762
10 |-9.62177|-3.98408| 1 75.552 | -0.1293 | -0.0128 | -170.0015 | 0.0117646 | 85.000762
11 |-2.03305|-10.2136| 1 75.552 | -0.0825 | 0.10044 | -170.0015 | 0.0117646 | 85.000762
12 [7.362723| -7.3649 1 75.552 | 0.037710.12436 | -170.0015 | 0.0117646 | 85.000762
13 [10.21422/2.030038| 1 75.552 | 0.12435]0.03774 | -170.0015 | 0.0117646 | 85.000762
14 |3.986922|9.620595| 1 75.552 | 0.10047 | -0.0824 | -170.0015 | 0.0117646 | 85.000762
15 | -5.784118.659992| 1 75.552 | -0.0127 | -0.1293 | -170.0015 | 0.0117646 | 85.000762
16 | -10.414 |0.002049] 1 75.552 | -0.1146 | -0.0613 | -170.0015 | 0.0117646 | 85.000762
17 | -5.78752 | -8.65771 1 75,552 | -0.1146 | 0.06124 | -170.0015 | 0.0117646 | 85.000762
18 |3.983136|-9.62216| 1 75.552 | -0.0128 | 0.12932 | -170.0015 | 0.0117646 | 85.000762
19 [10.21342-2.03406 | 1 75.552 | 0.10044 | 0.08246 | -170.0015 | 0.0117646 | 85.000762
20 |7.365621(7.361999| 1 75552 | 0.12437 | -0.0377 | -170.0015 | 0.0117646 | 85.000762
21 [-2.02903[10.21442] 1 75.552 | 0.03775 | -0.1243 | -170.0015 | 0.0117646 | 85.000762
22 | -9.6202 [3.987868| 1 75.552 | -0.0824 | -0.1005 | -170.0015 | 0.0117646 | 85.000762
23 |-8.66056 | -5.78326| 1 75,552 | -0.1293 | 0.0127 | -170.0015 | 0.0117646 | 85.000762
24 [-0.00307 | -10.414 1 75.552 | -0.0613 | 0.11459 | -170.0015 | 0.0117646 | 85.000762
25 |8.657146|-5.78837| 1 75.552 | 0.06122 | 0.11463 | -170.0015 | 0.0117646 | 85.000762
26 |9.622555(3.982189| 1 75.552 | 0.12932]0.01278 | -170.0015 | 0.0117646 | 85.000762
27 [2.035062[10.21322] 1 75.552 | 0.08247 | -0.1004 | -170.0015 | 0.0117646 | 85.000762
28 |-7.36127[7.366345| 1 75.552 | -0.0377 | -0.1244 | -170.0015 | 0.0117646 | 85.000762
29 [-10.2146 | -2.02803| 1 75552 | -0.1243 | -0.0378 | -170.0015 | 0.0117646 | 85.000762
30 |-3.98881|-9.61981 1 75.552 | -0.1005 | 0.0824 | -170.0015] 0.0117646 | 85.000762
31 |5.782407[-8.66113| 1 0 |0.01269]0.12933 0 0
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Chapter 6.

6.1 The MPC y§y Diagram Methodology Introduction

The yy diagram is a representation of geometrical paraxial optics, developed by Delano [9]
then extended and employed by others to design and analyze gaussian beams propagating through
optical systems [24][38] [39]. The yy diagram is a plot of the paraxial chief and marginal ray
heights at each surface as they are sequentially encountered through the optical system, with a
scaling factor defined by the LaGrange invariant (Lg) of the system. It can be described as
observing a skew ray propagating through an optical system as viewed along the optical axis. With
simple relations to connect individual and pairs of (¥, y) points to optical specifications, the
designer can readily calculate ray angles, beam sizes, distances, focal lengths and principal
locations. Additionally, simple graphical rules allow the designer to rapidly layout or evaluate
optical conditions throughout a system, including locating and determining the sizes of all pupils
and images, telecentric, plane wave and collimated spaces and evaluating distances, as shown in
Chapter 2.

We felt that Herriott’s design approach, though sufficient, obscured how one would
design a system from the first principles from the perspective of an optical designer. We also found
that Herriott’s didn’t present a methodology to calculate some of critical design aspects such as

the radial distance, ry, that defines the circle of the beam footprints. The variable r, is equivalent
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to Herriott’s 1o =A = B =/x¢2 + yo% = /x,%2 + ¥, for circular beam footprint on the
mirrors.

From Chapter 5, we also saw that Herriott’s MPC gut ray design approach deviates from paraxial
optics and some of the parameters of first order ray tracing software results such as entrance pupil
diameter and LaGrange invariant. If we treat (x,, y,) = (¥,y) in the diagrams Figure 5.10 we
see that every mirror is positive powered (the segments “bend” towards the coordinate origin),
every mirror is separated by the same distance (the area swept out by a vector whose base is at the
origin from element N to element N+1 is identical) and the radial distance of the spots from the
mirror center is identical. In case of Herriott’s MPC injected gut ray approach, once the LaGrange
Invariant (Lg) is properly set to match the mirror separations and powers, note that this case the
yy diagram itself does not precisely represent the Herriot’s MPC ray tracing software design. The
entrance pupil diameter represented by the yy diagram is nearly the diameter of the circle of dots,
but the probing beam is generally far smaller. Thus, the (x,, y,) = (¥,y) diagram is essential plot
of gut ray of the probing beam and it allows the designer to optimize and analysis the design and
after that the designer needs to fix the data to be correlated with geometrical optics convention
signs. And rotate the design to collimated injected beam to compute accurate values of entrance
pupil diameter and the LaGrange Invariant, as shown in the previous chapter. In the following
chapter, we will show how 3" order aberration calculations can be made with this approach.

In this chapter, firstly we define all parameters needed to lay out any MPC absorbance
spectrometer such as the clear aperture semi-diameter r,, number of mirrors intercepts (N), the
angles among the bounces ©m and the Kmn parameter (the numbers of y¥ circular rotation (27)
rotation) and cavity length. Secondly, we create intuitive yy diagram equations that correlate with

geometrical optics sign convention (rays propagate from left to right and ray angles are positive if
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the ray direction is obtained by rotating about the +z axis counterclockwise) for MPC gut ray
design instead of Herriott’s MPC Eqgn.5.10 and Eqn5.11 respectively. Thirdly we create the yy
diagram of collimated input of MPC for further analysis. Fourthly, we create equations of MPC of
different radii of curvature, Lastly, the chapter will include numerous step-by-step numerical
examples using first order yy approach and compared with ray tracing software (ZEMAX).

The creation of collimated input beam yy diagram equations to MPC will help the designer to
readily use the ray tracing software and obtain precise analysis of aberrations, tolerate, an accurate
values of entrance pupil diameter and LaGrange. Using the ray tracing software is an essential tool

to analyze, tolerate and obtain as build MPC model.

6.2 Defining MPC Absorbance Parameters

The optical designer is presented with a set of specifications for the system. First, the science
of the spectroscopic task will yield a minimum path length through which the laser probe must
pass, the overall length (OAL). Mechanical criteria for the packaging yield the maximum length
into which the system must fit, which yields a mirror separation, L. This sets the minimum number
of integer passes the probe beam must make through the cell, N > OAL/L, which requires N+1
points on the yy diagram, n = 0...N. One, n=0, is for the beam entering (o, Yo)and the last, n =
N, (¥31, y31) is for exiting the cavity, both of which are located at the respective mirrors. Note
that there may be additional packaging requirements that increase N. For example, if the detector
needs to be on the opposite side as the source, in our approach N must be odd and greater than
OAL/L. And finally, our N is related to Herriott’s v by N = 2v- 1 for odd N and N = 2v for even
N.

In other words, the input pass (Jo, Yo) is for the beam entering and (¥31, y31) is for exiting

the cavity, both of which are located at the respective mirrors, or the even numbered intersection
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points will be the point where the ray strikes (intercept) the one mirror and the odd numbered
points will correspond to the points of impact on the other mirror. In addition, that designer
obtains a 1:1 image of the input spot at (¥32, y32) and inverted image after at (J1e, Y16) for
concave mirrors. And the encircled energy does not degenerate as the beams bounce back and
forth between the mirrors but is continuously refocused by the concave MPC mirrors. These
concepts allow the designer to choose an accurate location of input beam locations and output
beam location (detector) for any absorbance MPC design and correlate with HCMPC approach.
Now that N has been defined, we now note that the probe beam has some diameter, D and to

ensure that beam footprints do not overlap, we set:

(N+1)D
2T

2mro =2 (N+1)D & ry =

(6.1)

Given this parameter, the ring of beams does not overlap one another, which is important at the
source and detector locations as the designer wants to avoid feedback into the source and stray
beams onto the detector as those beams will have traveled different distances through the cell, as

illustrated on Figure 6.1.

Figure 6.1 a) Correct size of mirror semi-diameter for absorbance spectrometer Mirror b) Undersized mirror semi-
diameter for absorbance spectrometer.
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For an example, assume a system requires a spectroscopic path length > 2282mm in a package
75.55mm in length between the mirrors and the detector. Also assume the Laser source has a 4.8
mm diameter beam and it must be on the opposite side of the cell from the detector. This requires
OAL/L= 2282/75.55 = 30.21 passes, so we select N=31, which is an odd number ensuring the
detector and source are on opposite sides of the cell. From equations 6.1, we find that r, >

32*4.8/(2m) = 24.45mm so we select minimum value ry = 25 mm.

6.3 The yy Diagram Methodology of Gut Ray with Numerical Example

We choose to plot the yy diagram MPC in a clockwise sense to follow geometrical optics
convention signs, so, we create gut ray MPC y¥ diagram baseline equations as shown in equations

6.2 and 6.3, where n=0 to N=31:

Vo = —Tocos(—nOm), (6.2)
Yn = —To sin(—nmOm). (6.3)

Then we define a new parameter, Km, which is related to the number of times the mirror
intercepts circle around the cell, in other words, the number of times the yy diagram mirror
intercepts circle around (2m) the cell. To avoid ambiguity, we change from Herriott’s notion of p

to m. The parameter Km also ensures that the beams are evenly spaced on the mirrors:

Km = m(2v-1) _ m(N) ] (64)

2v N+1
Then we calculate 6m between two sequence bounces as

om = 220 — 21, (6.5)

N N+1

From section 6.2 and section 6.3 we have all the parameters and equation required to completely

design gut ray yy diagram MPC absorbance spectrometer, which is programmed in Excel.
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6.4 Consecutive yy Diagram Gut Ray Design of MPC Absorbance Spectrometer

From section 6.2 we can proceed to design the consecutive yy diagram for absorbance
spectrometer application. Firstly, the beam will be injected through the back of M1 as calculated
from section 6.2,(¥0, Yo) =(25,0) and calculated intercepts (passes) N=31. Secondly, from

equation 6.4 and 6.5 the angle ©m between bounces for consecutive design can be calculated

m=1 as:
Km — ﬂy
N+1
Om = 2=
N+1

Thirdly, from equations 6.2 and 6.3 the points on the yy diagram will fall on a circle of
calculated radius ry, in other words, we can assign y and y to cosine and sine functions,
respectively, where the arguments will entail increments in angular steps. Fourthly, the radius of
curvature, glg2 parameter and stability, EFL, can be calculated from the yy diagram
characterization (Chapter2, table 2.21). Lastly, we plotted the repeated skew ray y¥ values and as
viewed along the Z axis from behind M1. The first order design of the consecutive yy diagram
MPCs are shown in table 6.1, table 6.2 and the repeated yy diagram values is shown in Figure 6.2,

Figure 6.3 respectively and an image of programmed Excel file attached on Appendix D.
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Table 6.1 Description of First Order Consecutive gut ray yy Diagram MPC.

Properties Allocated Values | Calculated Values Brief Description
m 1
I'o -25mm 0> (N+1)D
21
Number of intercepts (N) 31 N=OAL/L
Om 0.196350 Om = 2FKkm _ 2rm
N N+1
Yo -25 Input beam location
$0 =r, cos (—nOm)
Vo 0 Input beam location
Yo = rg sin (—nOm)
i $n = 1o cos (—nOm)
\ From n=0 to N=31
In N Yo = r0sin (—n6m)
From n=0 to N=31
Length (L) 75.552 mm Cavity length
_ 1 [y0 0
=20 1
U(rad) 0.00635 O= 119
t1
U(Rad) 0.064555 =21t
t1
R 3931.98556 __1 [u0 a0
Lg lul ul
< (Stability) 0.038429 0<<4
FOV (Y-direction) -3.693° FOV_X=atan (U)
FOV (X-direction) 0.364° FOV_Y=atan (U)
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Input Beam
(vo, y0)

Exit Beam
(yN, ¥N)
(yN/2, yN/2)

-30

Figure 6.2 Consecutive gut ray yy diagram MPC.
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Table 6.2 Consecutive gut ray yy diagram MPC.

N y y

0 -25.00000 0
2 -23.09699 9.567086
4 -17.67767 17.67767
6 -9.56709 23.09699
8 0.00000 25
10 9.56709 23.09699
12 17.67767 17.67767
14 23.09699 9.567086
16 25.00000 3.06E-15
18 23.09699 -9.567086
20 17.67767 -17.67767
22 9.56709 -23.09699
24 0.00000 -25
26 -9.56709 -23.09699
28 -17.67767 -17.67767
30 -23.09699 -9.567086

N y y

1 -24.51963 | 4.877258
3 -20.78674 | 13.88926
5 -13.88926 | 20.78674
7 -4.87726 | 24.51963
9 4.87726 24.51963
11 13.88926 | 20.78674
13 20.78674 | 13.88926
15 24.51963 [ 4.877258
17 24.51963 [ -4.87726
19 20.78674 [ -13.8893
21 13.88926 | -20.7867
23 4.87726 -24.5196
25 -4.87726 -24.5196
27 -13.88926 | -20.7867
29 -20.78674 | -13.8893
31 -24.51963 | -4.87726

Injected Be!

Front Mirror Intercepts (M1)

30

4]

y

4, 11

Fa)
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.ﬁﬂ 10
30;hj

(?20 -10

Yio

Back Mirror Intercepts (M2)

]

4]

30
'
20

y

D

-30

!

Exit Bea
&z
2

) 1

-10

Figure 6.3 Consecutive gut ray yy diagram MPC intercepts on M1, M2,
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6.5 Interlaced yy Diagram Gut Ray Design of MPC

Similarly, we follow the same producers on previous section, but we use m=5.The first order
design of the interlaced yy diagram MPCs is shown in table 6.3, table6.4 and the repeated yy
diagram values is shown in Figure 6.4, Figure 6.5 respectively and programmed Excel file image

is attached in Appendix D.

N=31,m=5
30
I L T e
E”, 20 T “ﬁ
E’/ \\ﬁ
E’, Input Beam y \‘ﬂ
/ (yN+1, §N+1) 10
267 ’/ 050 (¥N/2, §N2) \‘ 122}
o o ¥ 7]
30 A‘Q 20 -10 10 20 }’ 30
@\ ’”E
<) mn
N 0 /
25\ /]
) A
AN g
N R
Exit Beam m'ﬂ ﬁ‘.m m
(YN, ¥N)

Figure 6.4 Interlaced gut ray yy diagram MPC.
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Table 6.3 Description of first order Interlaced gut ray yy diagram MPC.

Properties Allocated Values Calculated Values Brief Description
m 5
- N+ 1)D
To 25mm Iy > (N+1)
21
Number of 31 N=OAL/L
bounces(N) When N=31
Length (L) 75.552 mm Cavity length
_ 1 [y0 0
T g |yl ¥l
©m(rad) 0.981748 Om = 2FKm _ zrm
N N+1
Jo -25 Input beam location
0 =ry cos (—nOm)
Vo 0 Input beam location
y0 =1, sin (—nOm)
¥n N §n =r, cos (—nOm)
Vi N y0 =r, sin (—nOm)
U(rad) 0.147061 U= 1413t
t1
U 0.27513 y=2iivi
t1
R 169.99761 __1 [u0 a0
Lg lul ul
2 (Stability) 0.88886 gl=g2=1-=
L
0< = 4
FOV(Y-direction) -15.4° FOV=atan (U)
FOV(X-direction) 8.366° FOV=atan (0)
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Table 6.4 Interlaced gut ray yy diagram MPC design.

n y y

0 -25.00 0

2 9.56709 | 23.09699
4 17.67767 | -17.67767
6 -23.09699 | -9.567086
8 0.000 25.00
10 23.09699 | -9.567086
12 -17.67767 | -17.67767
14 -9.56709 | 23.09699
16 25.00000 | 1.53E-14
18 -9.56709 | -23.09699
20 -17.67767 | 17.67767
22 23.09699 | 9.567086
24 0.000 -25.00
26 -23.09699 | 9.567086
28 17.67767 | 17.67767
30 9.56709 | -23.09699

n y y
1 -13.88926 | 20.78674
3 2451963 | 4.877258
5 -4.87726 | -24.5196
7 -20.78674 | 13.88926
9 20.78674 | 13.88926
11 4.87726 | -24.5196
13 | -24.51963 | 4.877258
15 13.88926 | 20.78674
17 13.88926 | -20.7867
19 | -24.51963 | -4.87726
21 487726 | 24.51963
23 20.78674 | -13.8893
25 | -20.78674 | -13.8893
27 -4.87726 | 24.51963
29 2451963 | -4.87726
31 | -13.88026 | -20.7867

Front Mirror Intercepts (M1)

1!
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e

-30 -20 -10
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-
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Figure 6.5 Interlaced gut ray yy diagram MPC intercepts on M1, M2.




6.6 Invalid yy Diagram Gut Ray Design of MPC

When N+1 and m share common factors, the results are inappropriate solutions. These
flawed solutions are visually obvious and, therefore, can be quickly rejected. For example, if N =
31 and m is even, a common factor of N+1 and mis 2. If N = 32, then if m is a multiple of 3, the
solution does not work. These flawed solutions are visually obvious —the number of points plotted
is a fraction N+1 - and, therefore, can be quickly rejected.

The designer must avoid beams from overlapping with one another, which is important at the
source and detector locations. Any beam returned to the laser source could lead to overheating and
laser instability. And any other feedback into the detector will lead to an increase in the stray light
and signal to noise ratio(S/N). Plus, these unwanted stray beams will have traveled different
distances through the cell, contaminating the signal.

Similarly, we use the same parameters as in the previous section, but we use m=2 and N=31. The
first order design of invalid yy diagram MPCs is shown in table 6.5, table 6.6, the repeated yy
diagram is shown in Figure 6.6, Figure 6.7 and programmed Excel file image is attached in

Appendix D. respectively.
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Table 6.5 Description of first order Interlaced gut ray yy diagram MPC.

Properties Allocated Values | Calculated Values Brief Description
m 2
o 25mm ry > w
21
Number of 31 N=OAL/L
bounces(N) when N=31
em(rad) 0.392699 om = 2™m _ 2rm
N N+1
Yo -25 Input beam location.
0 = rOcos (—nOm)
Yo 0 Input beam location.
Yo = rg sin (—nOm)
¥n yn = r0cos (—nOm)
V From n=0 to N=31
In N Yo = r0sin (—nOm)
From n=0 to N=31
Length (L) 75.552 mm Cavity length
w=25 7 5
U(rad) 0.025188 U= %11—”
U(rad) 0.12663 U:yi%l_yi
R 992.5320 __1 [u0 a0
Lg lul ul
R=2EFL=——
= (Stability) 0.152241 0<z<4
FOV(Y-direction) 7.22° FOV= atan (U)
FOV(X-direction) 1.44° FOV= atan (U)
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Figure 6.6 Invalid gut ray yy diagram MPC.
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Table 6.6 Invalid gut ray yy diagram MPC design.

n y y n y y
0 -25.00 0 1 -23.09699 9.567086

2 -17.67767 17.67767 3 -9.56709 23.09699
2 0.00000 25.00 5 9.56709 23.09699
. p—— Iy 7 23.09699 9.567086

9 23.09699 -9.56709
8 25.00000 3.06E-15

11 9.56709 -23.097
10 17.67767 -17.67767 13 29.56709 23,097
12 0.000 -25.00 15 | -23.09699 | -9.56709
Lo -17.67767 | -17.67767 17 -23.09699 | 9.567086
16 -25.00000 -6.13E-15 19 956709 23 09699
18 -17.67767 17.67767 n 9.56709 2309899
4l e 25100 23 23.09699 9.567086
22 17.67767 17.67767
24 25.00000 9.19E-15 25 23.09699 -9.56709
26 17.67767 -17.67767 2/ SSelils e ]
28 0.00000 -25.00 ?1) -29?;502760999 -9226079079
30 -17.67767 -17.67767 s =
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Figure 6.7 Invalid gut ray yy diagram MPC intercepts on M1, M2.
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6.7 Uneven and Unstable Intercepts for yy Diagram Gut Ray Design of MPC

A major advantage of yy technique that an easy visualization of uneven, invalid, unstable
and dysfunctional resonator. From Eqns. 6.4 and 6.5 these equations lead to an even distribution
for the circular beam footprints, although, there are some solutions the resonator can be stabled
but has uneven circular footprints distribution. For instance, if we allocate an arbitrary value for
Km=4.5 and from Egn.6.5, 6m = 52.258° and L/f=0.776, by way of explanation, if we assume
an arbitrary number for Km parameter or Km=4.5. The resonator in this case is stable but has

uneven circular distribution footprints as shown in Figure 6.8 and Figure 6.9.

Uneven Circular Distribution Footprints

30

-30

Figure 6.8 Uneven distribution gut ray yy diagram MPC.
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Figure 6.9 Invalid gut ray yy diagram MPC intercepts on M1, M2.

On the other hand, if we allocate an arbitrary extreme value for Km=15.5, in other words, if we
add an extreme constant to Km or Km=15.5. from Eqn.6.5, ©m = 1 and L/f=4. This is an unstable
MPC and the solution can be quickly rejected as shown in Figure 6.10.

The unstable result from the previous example is a perfect match to our results in section 5.4 for
HCMPC confocal interlaced case. For example, if 2v = 2x3 and p is 3, a [Use your notation here!]
common factor of 2v and p is odd numbers or 3 and © = mt, therefore, our yy diagram results will
always be identical to HCMPC approach but our approach is rapid and intuitive for optical

designers and the Km and ©m equations can be manipulated for a variety of applications.
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2E-13
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Figure 6.10 Unstable gut ray yy diagram MPC.

6.8 Collimated Injected Beam yy Diagram Design of MPC

In the previous Chapter, we found out that the ray tracing software (ZEMAX) doesn’t
provide accurate data of gut ray Lg and EPD and we rotated the design by the angle of the slope
to obtain accurate data. The reasons of these discrepancies are the entrance pupil diameter
represented by ray tracing software is the diameter of injected beam and the injected beam
generally far smaller from the y¥y diagram entrance pupil diameter. Where the yy diagram entrance
pupil diameter is nearly the diameter of the circle of dots.

Although it’s not necessary to rotate the design and the designer can always use the gut ray
design, more importantly, this simplifies communicating the design to the mechanical design team
when specifying the drawings for the mirrors and the designer can use the ray tracing software for

precision tolerances analysis and aberration result. It means the injected beam only has an y-angle
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instead of x- field angle and y- field angle and the entry of the design into an optical design code

is easier, to get the injected beam to be collimated space, the first segment must be parallel to the

y axis as discussed in previous Chapter. We create collimated input equations of MPC y¥ diagram,

a constant of = /2 + ©m /2 is added to equation 6.2 and 6.3, placing the injected beam segment at

the top of the diagram and symmetric about the y-axis. The equations for the y, values are,

therefore,
Yn = —TCOS (—Gm *n + g + eTm)
TC

= —Tr(CoS ((—em *n + eTm) + E) ,

where,
cos (B + g) = sin(—p)

- s~ (com+n +22)

= —rosn(om +n )

o =-ron(om-(-3).

wheren=0to N,

Similarly, the equations for the y,, values are, therefore,

Yn = —ToSin (—em * N + g + eTm)

= —rySsin ((—em *n + eTm) + g)

— _rpsin <(—8m (n- %)) + g)

where,
sin (—ﬁ + g) = cos(—p) = cos(p)

Yn = —TICOS (em * (n — %)) ,
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where n =0to N.
Since we require the mirrors to be separated by L and scaled by Lg, we can use the simple relations

for computing distance on the y§ diagram to derive the Lg:
Le= (yoF1 — Foya) * ()
= (rocos (=) = rusin (57) ) = (rusin (=) rocos (), )+ })
= ro? (cos (=) =sin (%)) = (sin (=) o5 (F),) () (6.17)
L = (2 rosin () cos (7)) « })
)

Lg = (ro sm(em)) G (6.18)

Using any programming software, the designer can now rapidly scan through multiple designs for
a single set of specifications and, when further analysis with an optical design code is desired, the
mirrors ROC, separation, location of injected beam offset on initial mirror, (xo, yo) = (Jo, Yo) and
the injected beam field angle, y-angle = atan (zio) where @ is readily computed through Delano the
yy diagram equations in Chapter 2.

We follow the same procedures for gut ray yy diagram HCMPCs to specify the MPC parameters
of collimated input beam. Firstly, from section 6.2 we can proceed to collimated input beam of
the consecutive or interlaced MPC y¥ diagram, thus, the beam will be injected through the back
of M1 at calculated ro=25 mm and calculated N=31 and cavity length L=75.55 mm. Secondly,
from equation 6.4 and 6.5 the angle 6m between bounces for consecutive or interlaced designs
can be calculated, m=1,2,3 and 5.

Thirdly, from equations 6.11, 6.16 and 6.18 the points on the yy diagram will fall on a circle of

radius ry but the first two points will be collimated to optical axis.
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Fourthly, the radius of curvature, G parameters, stability and EFL, can be calculated from the yy
diagram characterization. Lastly, we plotted the repeated the skew ray yy values and as viewed
along the Z axis from behind M1. We present 4 different designs example and compared with

Zemax data for proof of concept.

6.8.1 Collimated Input Beam Consecutive yy Diagram Design of MPC

In this design we use consecutive (m=1), r, =25mm, N=31 and collimated input beam. In
collimated approach equations 6.11, 6.16 and 6.18 will take care of geometrical optics convention
signs, with positive Lg.

We notice that the intercepts (0,1), (16,17) are both collimated and are, in fact, images of each
other: they, (¥32, y32) and (y17, y17), are inverted images of each other. In fact, every 16th
reflection of any mirror intercept is an inverted image. And the beam size does not significantly
grow as the beams bounce back and forth between the mirrors but is continuously refocused by
the concave MPC mirrors.

The first order design of collimated yy diagram MPCs is shown in Table 6.7, Table 6.8, the
repeated yy diagram is shown in Figure 6.11, Figure 6.12, the ZEMAX design data are shown in
Figure 6.13, Figure 6.14 and programmed Excel file image is attached on Appendix D.

respectively.
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Table 8.7 Description of first order consecutive collimated ray yy diagram MPC.

Properties Allocated Values | Calculated Values Brief Description
m 1
I 25mm [y 2 (N+1)D
21
Number of 31 N=OAL/L
bounces(N)
Length (L) 75.552 mm Cavity length
1 [y0 y0
T lyl oyl
©m(rad) 0.19634954 om = ZI\ZITT
yo -2.45043 7o = rysin <8m , (n B %))
Yo 24.87962 Ju = ryc0s <8m i (n B %))
EPD 50 mm EPD=2*y,
Lg 1.63874 Lg = <2 ro%sin (eTm) cos (GTm)>
1
@)
U(rad) 0.064867 g Vi1
t1
U(rad) 0 U yi+1—yi
t1l
R 3931.98556 R=2EFL=%
2 (Stability) 0.038429 0<i<4
FOV(X-direction) 3.711425° FOV=atan (U)
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Figure 6.11 Consecutive collimated input yy diagram MPC.
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Table 6.8 Consecutive collimated Input y§ Diagram MPC intercepts M1, M2 data.

N y y

0 -2.45043 | 24.87962
2 7.25712 23.92351
4 15.85983 [ 19.32526
6 22.04803 | 11.78492
8 24.87962 2.45043
10 23.92351 [ -7.25712
12 19.32526 | -15.85983
14 11.78492 | -22.04803
16 2.45043 | -24.87962
18 -7.25712 | -23.92351
20 -15.85983 | -19.32526
22 -22.04803 | -11.78492
24 -24.87962 | -2.45043
26 -23.92351 | 7.25712
28 -19.32526 | 15.85983
30 -11.78492 | 22.04803
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5 19.32526 15.85983
7 23.92351 23.92351
9 24.87962 24.87962
11 22.04803 22.04803
13 15.85983 15.85983
15 7.25712 7.25712
17 -2.45043 -2.45043
19 -11.78492 [ -11.78492
21 -19.32526 [ -19.32526
23 -23.92351 [ -23.92351
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Figure 6.12 Consecutive collimated Input yy Diagram MPC intercepts M1, M2 plot.




[R1/=3931.986 mm

Consecutive collimated m=1

m=1, and Om = 11.25°

[R2|=3931.986 mm

Input Beam

Detector

FOV_X=3.711425°

L=75.552 mm

Figure 6.13 Consecutive collimated input ray tracing simulation [7].

# [ Type [ Intl| Int2 Value [ Contribution
1[LINV|] O | 1.00 | 1.6217 0.00
2 |EFLY| 5 | 5.00 | 1965.993 0.000
3 |EPDI| O | 0.00 | 49.7592 0.000

Ybar

Figure 6.14 An image of consecutive collimated input ray tracing simulation data [7].
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6.8.2 Collimated Input Beam Interlaced yy Diagram Design of MPC

Similarly, in this design we use interlaced design where (m=3), r,=25mm, N=31and
collimated input beam. In collimated approach equations 6.11, 6.16 and 6.18 will take care of
geometrical optics convention signs. The first order design of collimated yy diagram MPCs is
shown in Table 6.9, Table 6.10, the repeated yy diagram values is shown in Figure 6.15, Figure

6.16, the ZEMAX design data are shown in Figure 6.17, Figure 6.18 respectively.

Figure 6.15 Interlace collimated input yy diagram MPC.
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Table 6.9 Description of first order interlaced collimated ray yy diagram MPC.

Properties Allocated Values | Calculated Values Brief Description
m 3
Io 25mm Iy > (N+1)D
21
Number of 31 N=OAL/L
bounces(N)
Length (L) 75.552 mm Cavity length
1 vy0 y0
T lyl yi
Om(rad) 0.58904862 om = 2™
N+1
Yo -7.25712 C i 1
Vn = rgsin{ Om (n 2)
1
Yo 23.92351 Yn = I'pCOS (em * (n - E))
EPD 50 mm EPD=2 *y,
4.5959 [, /6my _em\ (1
o = (eroan(G)n(Z)) )
U(rad) 0.192109 go Yitl-yi
tl
U(rad) 0 U yi+1—yi
tl
R 448.299 _ 1 [u0 10
Lg lul ul
R=2EFL=——
o 29
L o ——q _ 2
N (Stability) 0.337061 9,70=1-7
L
0< ?S 4
FOV (X-direction) 10.87456° FOV=atan (0)
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Table 6.10 Interlace collimated input yy diagram MPC design.

N y y

0 -7.25712 23.92351
2 19.32526 15.85983
4 22.04803 -11.78492
6 -2.45043 -24.87962
8 -23.92351 -7.25712
10 -15.85983 19.32526
12 11.78492 22.04803
14 24.87962 -2.45043
16 7.25712 -23.92351
18 -19.32526 -15.85983
20 -22.04803 11.78492
22 2.45043 24.87962
24 23.92351 7.25712
26 15.85983 -19.32526
28 -11.78492 -22.04803
30 -24.87962 2.45043

N y y

1 7.25712 23.92351
3 24.87962 2.45043
5 11.78492 -22.04803
7 -15.85983 -19.32526
9 -23.92351 7.25712
11 -2.45043 24.87962
13 22.04803 11.78492
15 19.32526 -15.85983
17 -7.25712 -23.92351
19 -24.87962 -2.45043
21 -11.78492 22.04803
23 15.85983 19.32526
25 23.92351 -7.25712
27 2.45043 -24.87962
29 -22.04803 -11.78492
31 -19.32526 15.85983
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Figure 6.16 Interlace Collimated input yy diagram MPC intercepts M1, M2.
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|R1|=448.299 mm |R2|=448.299 mm
m=3, and Om = 33.75°
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m»’.“” _- u
"._._l—
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B e N T
FOV_X=10.87°
4 et ———
— —
1.=75.552 mm R
Figure 6.17 Interlace Collimated input ray tracing simulation [7].
Y
# | Type | Intl [ Int2 | Value | Contribution
1)U | o | 1| 48027 0.00
2 |EFLY | 5 | 5 |224.1495 0.00 —_—
3 |EPDI| O 0 | 50.0000 0.00

Figure 6.18 An image of interlaced collimated input ray tracing simulation data [7].




6.8.3 Collimated Input Beam Invalid yy Diagram Design of MPC

Similarly, when m=2 this is invalid solution. Because of when N = 31 and m is even, a
common factor of N+1 and m is 2. The first order design of collimated invalid yy diagram MPCs
is shown in table 6.11, table 6.12, the repeated yy diagram values are shown in Fig 6.19, Figure

6.20, the ZEMAX design data are shown in Figure 6.21, Figure 6.22 and programmed Excel file

is attached in Appendix D., respectively.

Table 6.11 Description of first order invalid collimated ray yy diagram MPC.

Properties Allocated Values Calculated Values Brief Description
m 2
25mm N+ 1)D
To ° ry = g
21
Number of bounces(N) 31 N=OAL/L
Length (L) 75.552 mm Cavity length
1 [y0 y0
T gyl oyl
em(rad) 0.39269 om = =M
N+1
¥o -4.87726 ] _ ( 1
Vn = Ipsin| Om * (n - E)
Yo 24.51963 Yo = Tgcos (E)m i (n B %))
EPD 50 mm EPD=2 x y,
Lg 3.16572 Lg
(2 (Gm) <em)
= rp“sin > cos 5
&)
o
L
U(rad) 0.129110 0= yi+1-yi
B t1
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U(rad) 0 U yi+1—yi
- t1
R 992.532 _ 1 [u0 a0
Lg lul ul
R=2EFL=—
L ili 0.152241 I
F (Stablllty) . gl_gz_ 1-— H
L
0< ;S 4
FOV(X-direction) 7.356759° FOV=atan (0)
N=31,m=2

Figure 6.19 Invalid collimated input yy diagram MPC.
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Table 6.12 Invalid collimated interlaced yy diagram MPC design.

N y y

0 -4.87726 | 24.51963
2 13.88926 | 20.78674
4 2451963 | 4.87726

6 20.78674 | -13.88926
8 4.87726 | -24.51963
10 -13.88926 | -20.78674
12 2451963 | -4.87726
14 -20.78674 | 13.88926
16 -4.87726 | 24.51963
18 13.88926 | 20.78674
20 2451963 | 4.87726

22 20.78674 | -13.88926
24 487726 | -24.51963
26 -13.88926 | -20.78674
28 2451963 | -4.87726

30 -20.78674 | 13.88926
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N y y

1 4.87726 | 24.51963
3 20.78674 | 13.88926
5 2451963 | -4.87726
7 13.88926 | -20.78674
9 -4.87726 | -24.51963
1 -20.78674 | -13.88926
13 -24.51963 | 4.87726

15 -13.88926 | 20.78674
17 4.87726 | 24.51963
19 20.78674 | 13.88926
21 2451963 | -4.87726
23 13.88926 | -20.78674
25 -4.87726 | -24.51963
27 -20.78674 | -13.88926
29 2451963 | 4.87726

31 -13.88926 | 20.78674
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Figure 6.20 Invalid collimated input yy diagram MPC intercepts M1, M2.

[R1[=992.532 mm

[R2[=992.532 mm

m=2, and Om = 22.5°

Input Beam

FOV_X=7.357°

1.=75.552 mm

Figure 6.21 Invalid Collimated input ray tracing simulation [7].
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# | Type | Intl | Int2 | Value |Contribution
1 | LINV 0 2} 3.2279 0.00
2 | EFLY 5 5 |496.2660 0.00
3 | EPDI 0 0 50.00 0.00

Ybar

Figure 6.22 An image of invalid collimated input ray tracing simulation data [7].

We compare the resulting designs data tabulated in Table6.7.3.3. First, we note that the
mirror radius decreases with increasing m, where |R| is inversely dependent on m. Next, we see
that, for m = 2, the design produces 16 bounces beams that hit the exit position twice, so the

solution is not functional: N is odd and m is even. Finally, the injection and detection points are

always m footprints apart.

Table 6.13 Four different solutions of collimated MPCs using the yy diagram.

m Om ROC Source x-angle(deg)
1 11.25° | 3931.986 3.71

2 22.5° 992.532 7.357

3 33.75° | 448.299 10.87

5 56.25° 169.98 17.33
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6.9 Designing a MPC with Two Different Mirror Radii of Curvatures

The advantage of the yy diagram method is the graphical interpretations one can employ to
set up new design approaches. For example, one can quickly modify the design by changing the
value of r, for every other mirror intercept. This also requires a change in the calculation for the
Lg since the initial two data points are no longer in collimated space, so we modified in Eqns.6.17

and 6.18 to:

. (S} [S) 1
Lg = (2 I'o1lp2 Sin (Tm) Ccos ( ?m)) * (Z)
Lg = (r01r02 sin(em)) * (%) (6.19)
For this design, we did not force the injected beam to be in collimated space in the yy diagram, so
one must input both an x- and y-field angle when entering it into a lens design program where

y-angle = atan(uo) (6.20)
x-angle = atan(d0). (6.21)

We will present three different cases design for MPC with two different radii of curvatures:

Concave, concave mirrors, concave convex mirrors and plano concave mirrors.

6.9.1 Concave-Concave yy Diagram Design with Different Radii of Curvatures of MPC
Design

Similarly, in this design we use interlaced design where (m=5), ,N=31 but off axes input
beam and ry,; = 25,r,, = 21.25. The equations 6.11 and 6.16 will take care of geometrical optics

convention signs. We noticed that, from Figure 6.8.1.1 the design has two circles of two semi-

diameters of M1 beam intercepts ro; = v/Veven + Yeven? and M2 beam intercepts ry, =

VVoad? + Yoaa? as expected. The ray tracing also has very similar result, but the yy diagram

slightly different because of the diagonal field of view and the right-hand rules. The first order
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design of concave-concave yy diagram MPCs is shown in table 6.14, table 6.15, the repeated yy
diagram values is shown in Figure 6.23, Figure 6.24, the ZEMAX design data are shown in Figure

6.25, Figure 6.26, programmed Excel file is attached on Appendix D. respectively.

Concave-Concave, (m=5)
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J 11 . _ //
AVt i
e
( 1o

[¢5]

)

-30

Figure 6.23 Concave-concave interlace yy diagram MPC plot.
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Table 6.14 Description of first order interlaced concave-concave yy diagram MPC.

Properties Allocated Values | Calculated Values Brief Description
m 5
To1 25mm
To; 21.25
Number of bounces(N) 31 N=OAL/L
Length (L) 75.552 mm Cavity length
_ 1 [¥0 y0
th= Lg [yl y1
©m(rad) 0.981748 Om = 2™
N+1
Yo, §1 -11.7849, 10.01784 ) ) ( 1
Vn = IpsSin| Om * (n - E)
Yo, ¥ 22.04803, _ ( 1 )
v 18.74083 Yn = Tncos(Om ¢ (n 2)
EPD 40 EPD=2 * y,
Lg 5.8465 . (Om Om
Lg =(2ry2sin (—) cos (—)
2 2
©
(=
L
U(rad) 0.289 _ jit+1-yi
0="—"—"
t1
U(rad) -0.044 yi+1-—yi
U="——"
t1
R1| 143.1443 R=2EFL=—
(concave) 2ot
IR2| 218.09 o7 = L [ul al
(Concave) Lg luz 12
glg2 (Stability) 0.30866 0<glg2 <1
FOV/(X-direction) 16.096541° FOV=atan (0)
FOV(Y-direction) -2.506458 FOV=atan (U)
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Table 6.15 Concave-concave interlaced yy diagram MPC design data.

N y y

1 10.01718 | 18.74083
3 13.48086 | -16.4265
5 -20.335 | -6.16855
7 2.082864 | 21.14768
9 18.74083 | -10.0172
11 -16.4265 | -13.4809
13 -6.16855 | 20.33498
15 21.14768 | -2.08286
17 -10.0172 | -18.7408
19 -13.4809 | 16.42647
21 20.33498 | 6.168549
23 -2.08286 | -21.1477
25 -18.7408 | 10.01718
27 16.42647 | 13.48086
29 6.168549 | -20.335
31 -21.1477 | 2.082864

N y y

0 -11.7849 | 22.04803
2 24.87962 | 2.450429
4 -7.25712 | -23.9235
6 -19.3253 | 15.85983
8 22.04803 | 11.78492
10 2.450429 | -24.8796
12 -23.9235 | 7.257117
14 15.85983 | 19.32526
16 11.78492 -22.048
18 -24.8796 | -2.45043
20 7.257117 | 23.92351
22 19.32526 [ -15.8598
24 -22.048 -11.7849
26 -2.45043 | 24.87962
28 23.92351 | -7.25712
30 -15.8598 | -19.3253
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Figure 6.24 Interlace concave-concave yy diagram MPC intercepts M1, M2.

91




|R1|=218.09 mm R2|=143.14 mm
m=5, and Om = 56.25°
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Figure 6.25 Concave-concave ray tracing simulation [7].

# | Type [ Intl | Int2 Value Contribution
1| LINV 0 1 5.846 0.00
2| EFLY [ 6 6 109.045 0.00
3| EFLY | 5 5 71.572 0.00
4 | EPDI 0 0 40.00 0.00

Figure 6.26 An image of concave-concave ray tracing simulation data [7].
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6.9.2 Concave-Plano yy Diagram Design with Different Radii of Curvatures of MPC
Design

Similarly, in this design we use interlaced design where (m=5), ,N=31 but off axes input
beam, concave-plano mirrors and ry; = 25,1y, = 13.89. The equations 48 and 53 will take care
of geometrical optics convention signs. We noticed from Figure 6.8.2.1 that, the concave-plano

design only shows bending for the powered mirror and similarly there are two circles present M1

beam intercepts ro; = v/Veven> + Yeven? and M2 beam intercepts ro; = v/Voad’ + Yoaa® @S

expected. The first order design of concave-concave yy diagram MPCs is shown in table 6.16,
table 6.17, the repeated yy diagram values are shown in Figure 6.27, Figure 6.28, the ZEMAX
design data are shown in Figure 6.29, Figure 6.30 and an image of programmed Excel file is

attached in Appendix D. respectively.
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Table 6.16 Description of first order interlaced concave-plano yy diagram MPC.

Properties Allocated Values | Calculated Values Brief Description
m 5
o1 25
Io2 13.89
Number of bounces(N) 31 N=OAL/L
Length (L) 75.552 mm Cavity length
_ 1 [0 30
tl= Lg [yl i
&m(rad) 0.981748 em = 220
N+1
o, ¥1 -11.7849, 6.5477 ] _ < 1
Vn = Ipsin| Om * (n - E)
Yor Vo 22.04803, 12.24989 yo = r,cos (Gm . (n _ E))
EPD 27.78 EPD=2 * \/§% + y?
Lg 3.81577 ~ /Bm Om
Lg =|2ry2sin (—) cos (—)
2 2
&)
oy
L
U(rad) 0.243 g Vit1-yi
B t1
U(rad) -0.130 U= yi+1-—yi
B t1
R1 Plano R=2EFL=—
291
IR2| 109.86 oy = L [ul al
(Concave) Lg luz 02
glg2 (Stability) 0.3086 0<glg2 <1
FOV (X-direction) 13.63915° FOV=atan (U)
FOV(Y-direction) -7.3893° FOV=atan (U)
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Concave-Plano, (m=5)

30

y

-30

30

Figure 6.27 Concave-concave interlace yy diagram MPC plot.

Table 6.17 Concave-plano interlaced yy diagram MPC design.

N y y

0 -11.7849184 | 22.04803
2 24.87961817 | 2.450429
4 -7.257116931 | -23.9235
6 -19.32526133 | 15.85983
8 22.04803161 | 11.78492
10 2.450428508 | -24.8796
12 | -23.92350839 | 7.257117
14 15.8598321 | 19.32526
16 11.78491842 | -22.048

18 | -24.87961817 | -2.45043
20 7.257116931 | 23.92351
22 19.32526133 | -15.8598
24 | -22.04803161 | -11.7849
26 | -2.450428508 | 24.87962
28 23.92350839 | -7.25712
30 -15.8598321 | -19.3253
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N y y

1 6.547701 | 12.24989
3 8.811723 | -10.7371
5 -13.2919 | -4.03205
7 1.361458 | 13.82312
9 12.24989 -6.5477

11 -10.7371 | -8.81172
13 -4.03205 13.2919

15 13.82312 | -1.36146
17 -6.5477 -12.2499
19 -8.81172 | 10.73712
21 13.2919 | 4.032054
23 -1.36146 | -13.8231
25 -12.2499 | 6.547701
27 10.73712 | 8.811723
29 4.032054 | -13.2919
31 -13.8231 | 1.361458
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Figure 6.28 Interlace concave-plano yy diagram MPC intercepts M1, M2.

|R1|=Plano
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m=5, and Om = 56.25°

[R2|=109.2798 mm
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Figure 6.29 Concave-plano ray tracing simulation [7].
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Int2 Value Contribution
1 3.85522 0.000
54.6399 0.000
413520.0629 0.000
27.780 0.000

Type | |
LINV
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Figure 6.30 An image of concave-Plano ray tracing simulation data [7].

6.9.3 Concave-convex yy Diagram Design with different Radii of Curvatures of MPC
Design

Similarly, in this design we use interlaced design where (m=5), ,N=31 but off axes input
beam, concave-convex and ry; = 25 mm, ry, = 7.58 mm. The equations 48 and 53 will take care
of geometrical optics convention signs. We noticed from Figure 6.8.3.1 that the concave-convex
solution, the segments alternately bend towards and away from the origin indicating the positive

and negative powered mirror. We also noticed from Figure 6.8.3.1 that the design has two circles

present M1 beam intercepts ry; =\/5’even2+yeuen2 and M2 beam intercepts ry, =

\/ Voda” + Vevenoaa? as expected. The first order design of concave-convex yy diagram MPCs is
shown in table 6.18, table 6.19, the repeated yy diagram values are shown in
Figure6.31,Figure6.32, the ZEMAX design data are shown in Figure 6.33, Figure 6.34 and an

image of programmed Excel file is attached on Appendix D. respectively.
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Table 6.18 Description of first order interlaced concave-plano yy diagram MPC.

Properties Allocated Values Calculated Values Brief Description
m 5
To1 25
Ioz 7.58
Number of bounces(N) 31 N=OAL/L
Length (L) 75.552 mm Cavity length
_ 1 [¥0 ¥0
tl= Lg [yl yI
Om(rad) 0.981748 om = =™
N+1
Yo, ¥1 -11.7849, 3.5731 _ . ( 1
Vn = IpsSin| Om x (n - E)
Yoo Yo 22.04803,6.6849 | | _ . (o (em . (n _ 3)
EPD 15.16 EPD=2 * /3% + y?
Lg 2.085497 Lg
_ (212 (em) (em)
= Ip“sin > cos >
)
o
L
U(rad) 0.203 - yi+1l-—yi
0="——-—
tl
U(rad) -0.203 yi+1—yi
U="——"
t1
IR1| 90.85259 o1 = L[uO a0
Lg lul ul
IR2| 90.773 _ 1 qul al
¢z Lg luz 12
glg2 (Stability) 0.3086 0<glg2 <1
FOV(X-direction) 11.49044° FOV=atan (0)
FOV(Y-direction) -11.49405°

FOV=atan (U)
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Figure 6.31Concave-convex ray tracing simulation.
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Table 6.19 Concave-convex interlaced yy diagram MPC design.

N y y

0 |-11.784918| 22.04803
2 |24.8796181| 2.450429
4 |-7.2571169| -23.9235
6  |-19.325261| 15.85983
8 22.048031 | 11.78492
10 ] 2.4504285 | -24.8796
12 |-23.923508| 7.257117
14 115.8598321| 19.32526
16 ]11.7849184( -22.048
18 -24.87961 | -2.45043
20 | 7.2571161 | 23.92351
22 19.32526 | -15.8598
24 | -22.04803 | -11.7849
26 -2.450428 | 24.87962
28 23.92350 [ -7.25712
30 -15.8598 | -19.3253
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“ y
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C -10 ¥ 10
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20
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-30
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20
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N y y

1 3.573187 [6.684963
3 4.808701 | -5.85942
5 -7.25361 | -2.20036
7 0.74297 | 7.5435
9 6.684963 | -3.57319
11 -5.85942 | -4.8087
13 -2.20036 |7.253608
15 7.5435 [-0.74297
17 -3.57319 | -6.68496
19 -4.8087 |5.859419
21 [ 7.253608 |2.200358
23 -0.74297 | -7.5435
25 -6.68496 | 3.573187
27 | 5.859419 [4.808701
29 [ 2.200358 | -7.25361
31 -7.5435 | 0.74297
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Figure 6.32 Interlace concave-convex yy diagram MPC intercepts M1, M2.
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|R1/=90.8526 mm m=5, and Om = 56.25° |R2[=90.773 mm

Input Beam

FOV_X=11.49044°
FOV_Y=--7.49405°

— L=75.552 mm

Figure 6.33 Concave-convex ray tracing simulation [7].

# | Type | Intl | Int2 | Value |Contribution

1{unv| o | 1 [2.20973 0.00

2 |EFLY | 7 | 7 |-45.4269| 0.000

3| ey | 6 | 6 [45.38651]  0.00

4 |eppi| o | o [15.16000] 0.00 Yhar

Figure 6.34 An image of concave-convex ray tracing simulation data [7].

Finally, we compared the previous section designs, in the other words, same system requirements;
the cavity length and number of intercepts, but we manipulated the ry; & ry, and m = 5. That led

to concave-concave, concave-convex and concave-plano cases, with different FOVs.
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Table 6.20 Four different designs of gut ray MPCs including ROCs and FOVs using the yy diagram.

m Om R1 R2 Iy, Io x-angle | y-angle
257.6 3459.62

3 33.75° | (Concave) | (Concave) 25 21.25 10.08° -2.72°
218.09 143.14

5 56.25° [ (Concave) | (Concave) 25 21.25 16.1° -2.561°
90.86 90.86

5 56.25° [ (Convex) | (Concave) 25 7.58 11.49° -11.49°
109.28 Infinity

5 56.25° [ (Concave) | (Plano) 25 13.89 13.64° -7.39°
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Chapter 7.

7.1 MPC off-Axis Astigmatism Aberration Background

The off-axis incidence input beam inside the MPC will lead to Astigmatism. By checking
the Zemax design spot diagram, wavefront map and wavefront function for the design in

section.5.6 as shown in Figure 7.1, it is obvious that the most dominant aberration in the system is

Astigmatism.
2:-0.78
(@)
OBJ: -3.5353, 6.5933 (deg)

(en)

o

(@)

(e)

(en)

<

IMA: 4.303, -9.259 mm
Surface: IMA
Spot Diagram

2/22/2024 Zemax
Units are um. Legend items refer to Wavelengths Zemax OpticStudio 23.1.02
Field 3 1
RMS radius : 59.043
GEO radius : 118.937 Sequential_06_Herriott_Adam.ZMX
Scale bar : 400.000 Reference : Chief Ray Configuration 1 of 1
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(b)

Y-Pupil (Rel. Units)

2/22/2024

0.7800 pm at -3.5353,
Peak to valley 1.07
Surface: Image

Exit Pupil Diameter:

0
X-Pupil (Rel. Units)

Wavefront Function

6.5933 (deg)
10 waves, RMS = 0.2539 waves.

4.2977E+01 Millimeters

Zemax
Zemax OpticStudio 23.1.02

Sequential_06_Herriott_Adam.ZMX
Configuration 1 of 1

©

-1.0

A7

Wavefront
Function

1.002
0.895
0.788
0.68

0.574
0.467
0.36

0.253

Al
-\\k “0-9_Pupil (R21. UnitsS-5
QS

0.145
0.038
-0.069

Waves

| 2/22/2024

0.7800 pym at -3.5353,

Peak to valley = 1.0710 waves,

Surface: 37
Exit Pupil Diameter:

Wavefront Function

6.5933 (deg)
RMS = 0.2539 waves.

4.2977E+01 Millimeters

Zemax
Zemax OpticStudio 23.1.02

|

Sequential_06_Herriott_Adam.ZMX
Configuration 1 of 1

Figure 7.1 a) Spot diagram b) Wavefront function c) Wavefront map of Zemax design in section 5.6 [7].
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In this section, we present Astigmatism aberration background and in the following sections, we
demonstrate a novel approach of numerical calculation of Astigmatism Zernike fringe
polynomials: terms Zs and Zg for an MPC.

Astigmatism is seen as a different focus position along the chief ray for tangential (y-
direction) and sagittal (x-direction) respectively. Astigmatism occurs because the two orthogonal

directions experience different geometrical optical power (®) as shown in Figure 7.2.

Tangential Focus.
Sagittally Blur. Sagittal Focus.
Tangentially Blur.

Figure 7.2 Astigmatism 3-D plot and corresponding spot diagram [6] [40] [41].

From Chapters 5 and 6, we demonstrated that the optical power for concave mirror is [6][32]:

|| = |3R| = |ﬁ| =2C. (7.1
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Coddington’s extended and modified equation 7.1 explicitly includes the off-axis angle. Oblique

or slanted power (®og) is added for each single reflection [6][32][40] [41]:

|®0B| = |2Ccos(U)]. (7.2)
The reason these power differences occur between on-axis and off-axis object points is that the
ray experience different effective surface curvature as the field increases. Coddington present

two equations for tangential power ®t and sagittal ®s as shown in equations 7.3 and 7.4 [6]:

POB
cos? (0)

|ds| = |®OB]. (7.4)

| Pt =

(7.3)

Thus, we see that the Astigmatism is dependent quadratically on the chief ray angle.
7.2 Off-Axis MPC Seidel and Zernike Polynomials Astigmatism Aberration Background

Seidel polynomials are used to describe aberration for rotationally symmetric optical
systems. We briefly discussed in Chapters 5, 6 that the advantage of using a symmetric, or
collimated yy diagram is calculating an accurate aberration value. In the following section we
use a collimated incident beam yy diagram to calculate an accurate value for Seidel Astigmatism
value, then we decompose the result in x-direction and y-direction to obtain Zernike fringe

polynomials: termsZs and Zs.

Seidel introduced Astigmatism wavefront coefficient (W222):
Sm
w222 = (35), 79)

where Seidel coefficient (Sm) equal to [6]:
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Sm= -} Bs® * (Uy41 — uy) * Y. (7.6)

And the chief ray incidence angle (Bs?) equal to:

Bs = Nrefretive index) (0 + ¥€) 7

Where, n(yepretive indgex) = 1 for air.

Figure 7.3 Astigmatism 3-D plot using Seidel W222 for circular exit pupil aperture [12].

Zernike’s polynomials are orthonormal polynomials on a unit circle that are often used
in optics as their forms tend to match common aberration terms (Seidel) and most optics have
circular apertures. They are used to describe wavefronts from symmetric and non-symmetric
optical systems. Calculating the Zernike coefficients using the Fringe (also called the "University

of Arizona™) polynomials is a common approach in optical design, fabrication and testing. As built
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optical design performance can be obtained by inserting the measured 37 Zernike coefficients from
an interferometer into a Zemax design model. The Zernike’s coefficients of Astigmatism for x-

direction (Z5) and y-direction (Z6) in units of waves as shown equations 7.9, to 7.10:

Z5 = Y¥(p? COS(2%z)) (7.9)

76 = YN( p? sin(2dz)), (7.10)

where @z, p are the polar coordinates describing the wavefront, measured counterclockwise from

the local x axis and the radial coordinate normalized.
7.3 Off-Axis MPC Astigmatism Aberration using yy Diagram Calculation

We can now employ our novel approach yy diagram to calculate the sagittal (Z5) and
tangential(Z6) Zernike’s coefficients through the MPC. Zernike’s (dz) rotation angle rotates in
counterclockwise; thus, we follow Zernike’s sign conventions. The approach is as follows. We
note that the gut ray of the injected collimated laser beam (a skew ray) intercepts the mirror at a
compound angle — both in x and y. Seidel calculations are made assuming the field of view is in
one plane, typically the y-z plane. Reflections of all rays are in a single plane with the local normal

of the reflecting surface, so we will replace the standard y-z plane angle of incidence with the

compound angle of incidence: replacing Seidel’s B with vA® + B®. This takes care of the Seidel
chief ray. To determine the marginal ray values needed for our calculation, we simply scale down
the current collimated input marginal ray values to gut ray values, in other words, we calculate
normalization factor (a) . Then, we need to account for the fact that the compound angle of
incidence is rotating by ©6m every reflection. So, unlike typical Seidel calculations where we add

up the contribution from every surface, we decompose the calculated Seidel into an X and Y
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components — Z5 and Z6. It is these values that can then be summed up for all the surfaces and
then combined to get a “total Astigmatism.”
We first review the original design from Chapter 5 with identical concave mirrors.
To adapt the off-axis MPC to Seidel’s equations the following procedures will be needed it:
1. Use the yy diagram with the collimated input or rotate the y§ diagram to make in collimated
input form; (ar, ur).
2. Calculate the gut ray incidence angle in x-direction and y-direction (Ar, Br) for rotated
field of views, Ar = u, +yr/R & Br = i, + yr/R.
3. Calculate the magnitude of incidence angles to obtain symmetric incidence angle,
B =+VAr?2 +Br? & B? = Ar? + Br?.
4. Calculate the normalization factor for the gut ray entrance pupil diameter (EPDg) and
collimated ray entrance pupil diameter (EPDr ) « = EPDg/EPDr.

5. Calculate normalized Sm(symmetric) = a?B? * (Upy41 — Upy) * YT

6. Calculate new W222(symmetric) = (W) .
7. Decompose the W222(symmetric) to cosine and sine functions,

COS(2x6m=*N) SIN(2xOm=N)

Z5 = W222(symmetric) * & Z6 = W222(symmetric) *

We recap the created new equations for Z5, Z6 decomposition for MPC from Eqn.7.11 to eqn.7.18

to avoid ambiguity:

W222(symmetric) = () (7.11)
Sm(symmetric) = — Y% o * B2 * (Upyipq — Upy) * YT (7.12)
Ar = u, +yr/R (7.13)
Br =0, + yr/R (7.14)
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B2 = Ar? + Br? (7.15)

_ EPDg _ XPDg

~ EPDr  XPDr (7.16)
Z5 = YNW222(symmetric) = m (7.17)
Z6 = YN W222(symmetric) = SIN@+OmsN) (7.18)

2

The step-by-step Z5 and Z6 calculation diagram is shown in Figure 7.4,and Table 7.2. The first

order data are shown in Table 7.1

(@ (b) ©

Z5

N6

_ [ cos(A0S)  sin(AOS)
R (405) = —sin(40S) cos(A0S)

Where, AOS is Angle of Slope of yy Diagram First Segment

Figure 7.4 Column (a) Rotated Field of view (b) symmetric field of view magnitude (c) decomposition of W222.
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Table 7.1 Description of first order step-by-step Zernike’s coefficient calculation for the first bounce on M2.

First Intercept

Properties Allocated Values Calculated Values Brief Description
m 5
To 10.414
Number of bounces(N) 31 N=OAL/L
Length (L) 75.552 mm Cavity length
__1 [0 30
= [yl 71
Om(rad) 0.981748 Oc = N * Om
First Intercept Om = 2m
N+1
n=0 to N=31
Yo 10.414 Vn = rocos(nbm)
Yo 0 Yn = I'p sin(n®m)
a 0.108 EPDg  XPDg
EPDr  XPDr
Url(rad) -0.129953558 01 = y1-y0
ot
First Intercept
n=0 to N=31
Un(rad) 2.35117E-17 Ul =820
t1
First Intercept n=0 to N=31
IC| 0.005882436 ol — L [0 10
(Concave) Lg lyl1 a1
First Intercept 1
R=2EFL=—
C
n=0 to N=31
Arl(rad) -0.05403 Ar =u, +yr/R
First Intercept n=0 to N=31
Bri(rad) 0.101075943 Bs = n( + yc)
n=0 to N=31
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AOI (B?) 0.01313 B2 = Ar? + Br?

Angle of incident n=0 to N=31

Sm1(symmetric -0.000154 Sm(symmetric
y YN

= —Zaz* B2

0
* (Upng1 — Upn) * YT

n=0 to N=31
W222(um) -0.09906 w222 = (Smlymmetrioy
27
First Intercept n=0 to N=31
Z5 0.0159883 Z5
First Intercept N
= Z W222(symmetric)
0
COS(2 * 6m * N)
* —
2
n=0 to N=31
Z6 -0.0385992 Z6
First Intercept N
= z W222(symmetric)

0
SIN(2 * ©m * N)
oot

2
n=0 to N=31

As expected from the geometry, the skew ray angle of incidence is the same on every
mirror. But because the marginal ray is changing, the Seidel contribution at each surface is
different. After the above procedures we compared the Z5, Z6 data with Zemax Zernike’s Z5
and Z6 coefficients after each single intercept for proof of concept. We noticed that the Z5
calculated data is slightly lower than Zemax Z5 data and the Z6 calculated data are slightly
higher than the Z6 data. Then, we compared calculated total Zernike Astigmatism, or the root
sum square (RSS) as shown in Eqn.7.19, with the Zemax data and found that the results are
essentially identical. The comparison data are shown in Figure 7.5, Figure 7.6, Figure 7.7 and

Table 7.3;

Total Astigmatism = RSS = VZ5%2 + 762 . (7.19)
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Table 7.2 Step-by- step Z5 and Z6 calculation.

Step-by-Step

Brief Description

(ar,ur), (yr,yr),

Rotate the gut ray to obtain collimated yy
diagram

Ar =u, +yr/R& Br =u, +yr/R.

Calculate the incidence angles for rotated yy
diagram

a? = (EPDg/EPDr)?

Calculate the normalization factor for the gut
ray entrance pupil (EPDg) and the collimated
yy diagram entrance pupil diameter (EPDr)

B =+ Ar?2 4+ Br? & B? = Ar? + Br?

Calculate the magnitude of incidence angle to
obtain compound angle of incident

Sm = a’B? * (Upyy1 — Upy) * YT

Calculate normalized Seidel coefficients

Sm :
w222 = - Calculate normalized W222
22
cos(2*Omx N
75 — W222 ( *2 *N) Decompose The W222
sin(2 *x ®m * N) Decompose The W222

Z6 = W222 % >

Total Astigmatism = VZ52 + 762

Calculate total Astigmatism
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Table 7.3 Comparison between calculated Zernike’s coefficients and ray tracing data.

N Calculated(Z5) Z5 (Zemax) Calculated(Z6) | Z6 (Zemax)
1 0.0189543 0.0192441 -0.0457598 -0.0457985
2 0.0193869 0.0190673 -0.0453272 -0.0451643
3 -0.0157687 -0.0161864 -0.0307652 -0.0314361
4 -0.0157687 -0.0142027 -0.0890800 -0.0902706
5 -0.0108111 -0.0100833 -0.0890800 -0.0873772
6 -0.0289333 -0.0291751 -0.0689043 -0.0699118
7 -0.0530688 -0.0495003 -0.1271725 -0.1303873
8 -0.0389180 -0.0360546 -0.1271725 -0.1288990
9 -0.0443332 -0.0432079 -0.1140988 -0.1153684
10 -0.0889298 -0.0831051 -0.1586954 -0.1645902
11 -0.0652520 -0.0590322 -0.1685031 -0.1723523
12 -0.0652520 -0.0612299 -0.1631370 -0.1652211
13 -0.1191278 -0.1111522 -0.1854531 -0.1941885
14 -0.0922209 -0.0813022 -0.2123600 -0.2190917
15 -0.0919867 -0.0836126 -0.2117948 -0.2158265
16 -0.1415168 -0.1314241 -0.2117948 -0.2229289
17 -0.1225624 -0.1057196 -0.2575546 -0.2680781
18 -0.1221298 -0.1082497 -0.2571220 -0.2644089
19 -0.1572855 -0.1445041 -0.2425600 -0.2553113
20 -0.1572855 -0.1337721 -0.3008748 -0.3162163
21 -0.1523279 -0.1319698 -0.2988213 -0.3103980
22 -0.1704501 -0.1535181 -0.2806991 -0.2945345
23 -0.1945855 -0.1643974 -0.3389673 -0.3599953
24 -0.1804347 -0.1524870 -0.3389673 -0.3554324
25 -0.1858500 -0.1626149 -0.3258936 -0.3411134
26 -0.2304466 -0.1942569 -0.3704902 -0.3975006
27 -0.2067688 -0.1697771 -0.3802979 -0.4020280
28 -0.2067688 -0.1749723 -0.3749318 -0.3928489
29 -0.2606446 -0.2193160 -0.3972479 -0.4296636
30 -0.2337376 -0.1860647 -0.4241548 -0.4516989
31 -0.2335035 -0.1860647 -0.4235896 -0.4516989
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Figure 7.5 Z5 comparison between calculated Zernike’s coefficients and ray tracing data.
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Figure 7.6 Z6 comparison between calculated Zernike’s coefficients and ray tracing data.
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Comparsion of RSS Values ——RSS(Calculated)

= RSS(ZEMAX)
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Figure 7.7 RSS comparison between calculated Zernike’s coefficients and ray tracing data.

Thus, we can now use this procedure to rapidly evaluate the total Astigmatism for a basic
Herriott -like MPC with different “m” values to find the one with the least astigmatism, as shown

in7.4.
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Table 7.4 Comparison between calculated Zernike’s coefficients for m1,3 and 5.

m 75 76 RSS

1 -0.000816 | -0.000186 0.0008368
3 -0.05252 | -0.040699 0.0664438
5 -0.233504 | -0.423589 0.4836858

We noticed that by increasing the clocking angle ®&m , in another

decreasing the mirrors RoCs the total Astigmatism will be increased.
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Chapter 8.

8.1 Summary and Conclusions

In this dissertation, we present Hybrid Gaussian Beam Decomposition which employs more
than one size gaussian beamlet and a quantified equation for square aperture for any GBD
approach. The goal of the approach is to increase the accuracy of the model’s representation for
sharp edged field distributions by using narrower gaussian beamlets at the edges, but reducing the
necessary computation by employing broader gaussian beamlets where the field distribution is
slowly varying. We show comparisons for a simple analytically derivable solution —square
aperture diffraction in the far field and near field — calculated using standard FFT approaches,
standard GBD and the new hybrid GBD method introduced here. We show how the HGBD
achieves better matching to the FFT based approaches for the higher spatial frequency effects with

a reduction in the required ray tracing effort.

We also demonstrate a new technique for designing Herriot MPCs, a novel, rapid and more
intuitive approach using the yy diagram. The method was shown to be easily modified, leading to
designs with different RoC’s. All equations needed for programming were presented, as well as a
step-by-step approach. By employing standard y¥y relations, the mirror radii are calculated,

providing all the parameters necessary for entering the solution into a lens design program.
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Furthermore, we coupled both gaussian beam analysis into the design and third order aberration

analysis for astigmatism to evaluate the quality of the probe beam.

8.2 Future Work

The research presented here is only a first order design of MPC and an initial characterizing
of dominant 3™ order astigmatism aberration. More work can still be done to optimize the real
ray design. We discussed and demonstrated in Chapter 7 a new numerical approach to calculate
3" order aberrations such as stigmatism, but we didn’t present optimization (correction)
methodology for 3 aberrations. Astigmatism, spherical and coma will contribute to overall
MPC performance and could be calculated with same methodology in Chapter 7.

Further research can explore evaluating or optimizing an MPC to minimize aberrations.
This could include the addition of Asphericity to the mirrors — paraboloidal, ellipsoidal,
hyperboloidal mirrors.

However, initially, there are several variables that could be evaluated in an
optimization. It was shown in Chapter 7, that the amount of astigmatism for a specific design
varied with the selected m. This is not unexpected since this changes the radius of the mirrors
and the clocking angle will change the Seidel astigmatism calculation at each surface and the
clocking angle will affect how the aberrations decompose. This can also include the addition of
varying the radius of curvature of the two mirrors. A further variable in the aberration of a
design that could be investigated is the adjustment of Km with an arbitrary constant. This would
allow one to alter how the decomposition of aberration into Z5 and Z6 terms, changing the
summed total astigmatism.

All of these things are now readily and rapidly achievable with this new yy framework

for designing MPC’s. To try to achieve this optimization in Zemax or CodeV would be
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extremely complex. For one thing, the designer would have to create constraints in the optical
design merit function that ensure that the beam footprints fall on a circle, that the intercepts do
not overlap.  That would require many lines of code — at least 31 for a 31-bounce design just to
ensure the first constraint. Additionally, optimizations tend to find what are known as the “local
minimum.” The optical design code evaluates the design against the defined merit function, then
perturbs each variable to determine the sensitivity of the merit function to that variable. This
matrix is solved to find the design that improves the Merit function value. Itis as if you are
standing in a field at night looking for the lowest point with a flashlight that only works when
you point it straight down and it only illuminates a small area around your feet. You see the
local slope of the terrain, take a step in that direction and repeat. This will lead you to a low
portion of the field, but not necessarily the lowest depending on where you start. Changing the
m value would not be a local move, so an optical design code would likely never make that step
during an optimization. Zemax and CodeV do have what are known as “global optimization”
modes, but the changes made when changing m are very discrete, so finding them may take a
prohibitively long time. And the difficulty would still be in building a complete merit function
that is valid for all m values. The yy approach avoids all of these complexities and provides a

method which produces designs that automatically meet all specifications.

120



[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]
[9]

References

D. Herriott, H. Kogelnik and R. Kompfner, "Off-axis Path in Spherical Mirror

Interferometer,” Applied Optics, vol. 3, no. 4, pp. 523-526, (1964).

P. Mudgett and et al., "Laser Spectroscopy Multi-Gas Monitor: Results of a Year Long

Technology Demonstration on ISS," ICES, pp. 2015-243, (2015).

J. R. Pierce, Theory and Design of Electron Beams,, New York: Van Nostrand, New York,

(1954), pp. 194-197.
W. J. Smith, Modern Optical Engineering, 3, Ed., The McGraw Hill companies, Inc, 2000.

R. R. Shannon, The Art and Science of Optical Design, Cambridge: Cambridge University

Press, (1997).
J. M. Geary, Introduction to Lens Design, Virginia: Willmann Bell, Inc, (2002).

OpticStudio Physical Optics User Manual, Zemax license “Act-1050511-1-1433766350-

ANSYS-1-1433818441,” Ansys academic research optics..
ASAP Optical Software User Manual..

E. Delano, "First-Order Design and the yy Diagram," Applied Optics, vol. 2, no. 12, pp.

1251-1256, (1963).

[10] T. C. Poon and . J. P. Liu, “Modern Digital Holography with MATLAB,”, Cambridge

University press, (2014).

[11] G. Nehmetallah, . R. Aylo and L. Williams, , Analog and Digital Holography with

MATLAB, Washington : SPIE, Bellingham,, (2015).

121



[12] D. Voelz, Computational Fourier Optics a MATLAB Tutorial, Washington: SPIE press,

Bellingham, (2011).

[13] J. Arnaud, , "Representation of Gaussian beam by complex Rays," Applied Optics, vol. 24,
no. 4, pp. 538-543, (1985).

[14] A. W. Greynolds, "Fat Rays Revisited: A Synthesis of Physical and Geometrical Optics
with GauBlets,"” in International optical design conference,, (2014).

[15] J. E. Harvey, R. G. Irvin and R. N. Pfisterer, "Modeling physical Optics Phenomena by
Complex Ray Tracing,," Optical. Engineering, vol. 54, no. 3, pp. 035-105, (2015).

[16] S. A. Miller, J. Pond and B. Michel , "Retracing Meets Maxwell's Equations: Integrating

Micro- and Macro-optical design,” in German International conference Photonik, (2005).

[17] N. G. Worku, "Decomposition of a Field with Smooth Wavefront into a Set of Gaussian
beams with Non-zero Curvatures," The Optical Society of America, vol. 35, no. 7, pp.

1091-1102, (2018).

[18] N. G. Worku and H. Gross, "Propagation of Truncated Gaussian Beams and Their

Application in Modeling Sharp-edge Diffraction," vol. 36, no. 5, pp. 859-868.

[19] N. G. Worku and H. Gross, "Gaussian Pulsed Beam Decomposition for Propagation of

Ultrashort Pluses Through Optical System," vol. 37, no. 1, pp. 98-107, (2020).

[20] R. Herloski, S. Marshall and R. Antos, "“Gaussian beam ray-equivalent modeling and
optical design,” Applied Optics, vol. 22, p. 1168-1174, (1983).

[21] P. D. Colbourne, "Generally astigmatic Gaussian beam representation and optimization
using skew rays," Classical Optics, OSA Tech. Digest, Optica Publishing Group,, p.

IW3A .4, (2014)..

122



[22] H. Kogelnik,, "On the propagation of Gaussian beams of light through lenslike media
including those with a loss or gain variation,” Applied. Optics, vol. 4, p. 1562—-15609,
(1965).

[23] J. Arnaud, "Representation of Gaussian beams by complex rays," Applied. Optics, vol. 24,
p. 538-543, (1985).

[24] D. Kessler and R. V. Shack, "yy Diagram, a powerful optical design method for laser
systems,” Applied Optics., pp. 2692-2707, .(1992).

[25] J. G. Pohly, L. E. Christensen and K. Mansour,, "Orion LAM Laser Absorption
Spectrometer for Human Spaceflight — Flight Unit Build and Test Results,” ICES, pp.

2020-360.
[26] C. Matty and et al., "Tunable Laser Adsorption Absorption Spectroscopy for Human
Spaceflight," ICES-, pp. 2019-358, (2019).

[27] D. C. Scott, R. L. Herman, C. R. Webster and R. D. Ma, "Airborne laser infrared
absorption spectrometer (ALIAS-II) for in situ atmospheric measurements of N20, CH4,
CO, HCL and NO2 from balloon or remotely piloted aircraf,” Applied Optics, vol. 38, no.

21, pp. 4609-4622, (1999).

[28] i. Esquivias and et al., "Evaluation of the Radiation Hardness of GaSb-based Laser Diodes

for Space Applications,” IEEE RADECS Proceedings, (2011).

[29] p. Werle and F. Slemr, "Signal-to-noise Ratio Analysis in Laser Absorption Spectrometers

using Optical Multiphases Cells," Applied Optics, vol. 30, no. 4, pp. 430-434, (1991).

[30] A. E. Siegman, SIEGMAN Lasers, California: University Science Books Sausalito,

(1986)..

123



[31] P. W. Milonni and J. H. Eberly, Laser Physics Book, New Jersy : Wily, Hoboken, (2010).

[32] M. J. Mouroulis,, Geometrical Optics and Optical Design, New York: Oxford University

press, Oxford, (1997).

[33] F. L. Pedrotti and . L. S. Pedrotti, Introduction to Optics, 4th ed., New Jersy: Prentice Hall,

Englewood Cliffs, (1993).

[34] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics” 2ed Edition, NY: Wiley —

Inter-science,, (1991)..

[35] J. W. Goodman, Introduction to Fourier Optics,4th ed, New York : W.H. Freeman and

company, (2017).

[36] C. S. Williams, Introduction to the Optical Transfer Function, Bellingham, Washington:

USA: SPIE, ( 2002).

[37] A. Sennaroglu and J. G. Fujimoto,, "Design Criteria for Herriott-type multi-pass Cavities

for Ultrashort Pulse Lasers," Optics Express, vol. 11, pp. 1106-1113, (2003).

[38] K. A. Menard, "Simple Multi-Lens Intracavity Gaussian Laser Beam Simulation using

Complex Rays," Optical Engineering, vol. 62, no. 8, p. 085104, (2023).

[39] R. Alsalamah and P. J. Reardon, "Simplified Physical Model of Interferometric Radius of
Curvature Test using yybar Diagram," Optical Engineering, vol. 58, no. 9, p. 095104,

(2019).

[40] H. Gross, F. Blechinger and B. Achtner,, Handbook of optical systems, vol. 4, Survey of

Optical Instruments (Wiley), (2008)..

[41] J. M. Geary, Optical Testing, Virginia: Willmann Bell, Inc,, (2012)..

124



Appendix A.

Chapter 3 MATLAB simulation code for Figure 3.2.1 Column (a) normalized 3D irradiance at
Z=0 showing ripples and roll off slope, column (b) normalized field magnitude cross section at

Z=0.

% 2 D Gaussian Beam circles apertures OF=2 at Z=0

clear all; close all; clc;

lambda=0.5*10"-6; %wavelength in m

k=2*pi/lambda; %wavenumber

de=0;

d1=0; %propagation distance(Z=0)
wo=0.0018181818; % beam waist (9.09090909*10"-4& ©.00136363636& 0.0018181818)
L1=0.025; %source and observation plane side length
M=250;

dx1=L1/M;

x1=-L1/2:dx1:L1/2-dx1;

yl=x1;

[X1,Y1]=meshgrid(x1,y1);

%lnitial y-ybar calculations for one beamlet

Lg=lambda/pi; %Lagrange invariant

yo=wo; %Initial y value & initial waist we
yobar=0; %initial ybar value
w_beamlet=sqrt(y0~2+yebar~2); % waist initial value

ulbar=Lg/y0;

uo=0;

theta=Lg/wo

%beamlet propagation after d1

ylbar=(dl*Lg)/yo; %y*ubar-ybar*u=lambda/pi=Lg

y11=wo; %wr2=sqrt(y~2+ybar~2) & sqrt(wl”2-ylbar”2);
ulbar=(ylbar-y@bar)/d1l;

zr=pi*w0”2/lambda; %Rayleigh range

wl=sqrt(ylbar”2+y1112); %new waist w”2=w0"2*(1+(z/zr)"2)

w2=-wl;

ul=(yl1i-y0)/d1;
R1=(y11”2+ylbar~2)/(yll*ul+ylbar*ulbar); %Beam radius R=(y”~2+ybar~2)/(yu+ybar.ubar)
Z=(yll*ul+ylbar*ulbar)/(ulbar”~2+ul”2)

%composition

G=((wo/w)*exp(1i*k*do)*exp(-1i*atan(de/zr)))*...
(exp(-1*((X1-0).72+(Y1-0).72)/we"2)...
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+exp(-1*((X1-9)
+exp(-1*((X1-0)
+exp(-1*((X1-0)
+exp(-1*((X1-9)
+exp(-1*((X1-9)
+exp(-1*((X1-0)
+exp(-1*((X1-0)
+exp(-1*((X1-0)
+exp(-1*((X1-9)
+exp(-1*((X1-9)
+exp(-1*((X1-0.
+exp(-1*((X1+0.
+exp(-1*((X1-0.
+exp(-1*((X1+0.
+exp(-1*((X1-0.
+exp(-1*((X1+0.
+exp(-1*((X1-0.
+exp(-1*((X1+0.

Il1=abs(G)."2;
figure(1);

.~2+(Y1-0.001818182).
.A2+(Y1+0.001818182).
.~A2+(Y1-0.003636364).
.~A2+(Y1+0.003636364)
.~A2+(Y1-0.0805454545)
.A2+(Y1+0.005454545)
.A2+(Y1-0.007272727)
.A2+(Y1+0.007272727)
.A2+(Y1-0.009090909)
.~A2+(Y1+0.009090909)
001818182).72+(Y1+0)
001818182).72+(Y1+0)
003636364) . 22+(Y1+0)
003636364) . 72+(Y1+0)
005454545) . 2+ (Y1+0)
005454545) . A2+ (Y1+0)
007272727) .7 2+(Y1+0)
007272727) .7 2+(Y1+0)

imagesc(x1,y1,I1);
axis square; axis xy;

xlabel('x (m) '

)5 ylabel('y (m)');

title(['d1l=",num2str(dl), 'm']);

colormap('jet")
figure(2)

;colorbar;

plot(x1,I1(M/2+1,:));

xlabel('x (m)")

5 ylabel('Irradiance’

title(['dl=",num2str(dl), 'm']);

figure(3)

plot(x1,abs(G(M/2+1,:)));
xlabel('x (m)'); ylabel('Magnitude');
title(['d1l=",num2str(dl), 'm']);

figure(4)
plot(x1,unwrap(

angle(G(M/2+1,:))));

A2)/wen2). ..
A2)/wer2). ..
A2)/wen2). ..

A2)/wer2) ...
A2)/wen2) ...
LA2)/wer2) . ..
A2)/wen2) ...
LA2)/wer2) . ..
A2)/wen2) ...
A2)/wer2) ...
JA2)/wer2) . ..
A2)/wen2) ...
A2)/wer2) ...
A2)/wen2) ...
A2)/wer2) ...
A2)/wen2) ...
A2)/wenr2) ...
A2)/wer2) ...

% Absolute irradiance

%Display absolute irradiance

%Irradiance profile
)s

%Plot absolute field magnitude

%Plot absolute field phase

xlabel('x (m)"); ylabel('phase (rad)');
title(['d1l=",num2str(dl), 'm']);

figure(5)
mesh(x1,y1,I1);

axis square; axis xy;
title('11X11 beamlets array & 2.00 Overlap Factor')

colormap('jet")
colorbar;

)
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Chapter 3 MATLAB simulation code for Figure 3.2.1 Column (c) 1/e* map radii of 11x11
beamlets.

% 2 D Gaussian Beam circles apertures OF=1

figure(1);

viscircles(J0 0],9.09090909*10"-4,'Color','black")
viscircles([0,-0.001818182],9.09090909*107-4,'Color', black’)
viscircles([0,0.001818182],9.09090909*10"-4,'Color','black’")
viscircles(]0,-0.003636364],9.09090909*107-4,'Color','black’)
viscircles(]0,0.003636364],9.09090909*10"-4,'Color','black’")
viscircles(]0,-0.005454545],9.09090909*107-4,'Color', black’)
viscircles([0,0.005454545],9.09090909*10"-4,'Color','black")
viscircles([0,-0.007272727],9.09090909*10"-4,'Color','black’)
viscircles([0,0.007272727],9.09090909*10"-4,'Color','black’")
viscircles([0,-0.0091],9.09090909*10"-4,'Color','black’)
viscircles([0,0.0091],9.09090909*10”-4,'Color','black’)
viscircles([-0.001818182,01,9.09090909*10/-4,'Color', black")
viscircles([0.001818182,0],9.09090909*10"-4,'Color','black’")
viscircles([-0.003636364,0],9.09090909*10"-4,'Color','black’)
viscircles([0.003636364,0],9.09090909*10"-4,'Color','black’")
viscircles([-0.005454545,01,9.09090909*10”-4,'Color',' black’)
viscircles([0.005454545,0],9.09090909*10"-4,'Color','black")
viscircles([-0.007272727,0],9.09090909*10"-4,'Color','black’)
viscircles([0.007272727,0],9.09090909*10"-4,'Color','black’")
viscircles([ -0.0091,0],9.09090909*10"-4,'Color','black")
viscircles([ 0.0091,0],9.09090909*107-4,'Color','black’)
xlabel ('x (m) ','fontsize’, 12, 'fontweight','bold’); ylabel('y (m)',"fontsize’, 12, ‘fontweight','bold");
title ('2D Overlap factor=1.00','fontsize’, 12, 'fontweight','bold");
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Appendix B.

Chapter 4 MATLAB simulation code for Section 4.1, GBD and Eq.4.3

clear all; close all; clc;

lambda=0.5*10"-6; %Wavelength in (m)

k=2*pi/lambda; %Wavenumber

d1=2000; %Propagation distance

w0=0.001,; % Beam waist=1mm or 0.0013 for overlap factor 1,1.5, or 2
L1=0.5; %source and observation plane side length

M=250;

dx1=L1/M;

x1=-L1/2:dx1:L1/2-dx1;

y1=x1;

[X1,Y1]=meshgrid(x1,yl);
L2=lambda*d1/dx1;
dx2=lambda*d1/L1,
X2=-L2/2:dx2:L2/2-dx2;
y2=X2;
[X2,Y2]=meshgrid(x2,y2);
L3=2*0.5;

%lnitial y-ybar calculations for one beamlet

Lg=lambda/pi; %L agrange invariant
y0=w0; %Initial y value & initial waist w0
yObar=0; %Initial ybar value

w_beamlet=sqrt(y0"2+yObar*2); % waist initial value
uObar=Lg/y0;

u0=0;

theta=Lg/w0

%Beamlet propagation after d1

ylbar=(d1*Lg)/y0; %y*ubar-ybar*u=lambda/pi=Lg

y11=wo0; Y%ow"2=sqrt(y"2+ybar"2)&sqrt(wl”2-ylbar2)
ulbar=(ylbar-yObar)/d1;

zr=pi*w0"2/lambda; %Rayleigh range

wl=sqrt(ylbar"2+y1112); %new waist w2=w0"2*(1+(z/zr)"2)

w2=-wl;

ul=(yll-y0)/d1;
R1=(y11"2+ylbar"2)/(y11*ul+ylbar*ulbar); %Beam radius R=(y"2+ybar"2)/(yu+ybar.ubar)
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Z=(y11*ul+ylbar*ulbar)/(ulbar"2+ul”2)
%composition

ay=-7*0.00133:0.00133:7*0.00133;
ax=-7*0.00133:0.00133:7*0.00133;
G_sum=0;
G_vec=zeros(M,M);
for ii=1:length(ay)
for jj=1:length(ax)
G=((w0/w1l) * exp(li*k*d1l)*exp(-li*atan(dl/zr))).*...
(exp(-1*((X2-ay(ii)).~2+(Y2-ax(jj)).~2)/(w1)"2).*exp(Li*k*((X2-ay(ii)). 2+(Y 2-
ax(ij))."2)./(2*R1)));
G_sum=G_sum+G;
G_vec(:,:) =G_sum;

end
end
I1=abs(G_vec)."2; %Absolute irradiance
figure(1)
imagesc(x2,y2,nthroot(11,3)); %Display absolute irradiance & stretch image contrast

axis square; axis xy;

colormap(‘gray"); xlabel('x (m) "); ylabel('y (m)?);
title(['d1=",num2str(d1),'m stretched contrast);

colorbar;

figure(2)

imagesc(x2,y2,11); %Display absolute irradiance
axis square; axis xy;

colormap(‘gray"); xlabel("x (m) "); ylabel('y (m)?;
title(['d1=",num2str(d1),'m]);

colorbar;

%Plot irradiance profile

figure(3)

plot(x2,11(M/2+1,)));

xlabel('x (m)"); ylabel('Irradiance’);
title(['d1=",num2str(d1),'m]);

%Plot absolute field magnitude

figure(4)
plot(x2,abs(G_vec(M/2+1,’)));
xlabel('’x (m)"); ylabel('Magnitude’);
title(['d1=",num2str(d1),'m]);

%plot absolute field phase
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figure(5)

plot(x2,unwrap(angle(G_vec(M/2+1,3))));
xlabel('x (m)"); ylabel('phase (rad));

title(['d1=",num2str(d1),'m]);

figure(6)
mesh(X2,Y2,11);
xlabel('x1");
ylabel('Intensity");
grid on; colorbar;

%Section 4.2, HGBD

clear all; close all; clc;

B=21.25/20;
lambda=0.5*10"-6;
k=2*pi/lambda;

d1=50;
wo=0.0021428571;
wo00=0.00125;
wo000=0.00190;

L1=0.08;

M=250;

dx1=L1/M;
x1=-L1/2:dx1:L1/2-dx1;
yl=x1;
[X1,Y1]=meshgrid(x1,y1);
L2=lambda*d1l/dx1;
dx2=1ambda*d1/L1;

x2=-L2/2:dx2:L2/2-dx2;
y2=x2;
[X2,Y2]=meshgrid(x2,y2);

%lnitial y-ybar calculations for one beamlet

Lg=lambda/pi;
yo=wo;

yo00=w00;
y000=w000;
yObar=0;
y00bar=0;
y0000bar=0;
udbar=Lg/yo;
udebar=Lg/ye0;
ueeebar=Lg/y000;
uof=0;

uoo=0;

ufvo=0;
theta=Lg/we
theta_00=Lg/wo0

%Wavelength in (m)
%Wavenumber
%Propagation distance (50&2000)

%For 50 (m) L1=0.08, for 2000 L1=0.5;

%Lagrange invariant
%Initial y value & initial waist w@

%Initial ybar value
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theta_000=Lg/w000
%Beamlet propagation after d1 (m)

ylbar=(dl1*Lg)/y0; %y*ubar-ybar*u=lambda/pi=Lg

ylbar 00=(d1*Lg)/yeo;

ylbar_000=(d1*Lg)/y0ee;

y1l1=wo0; %WA2=sqrt(y”2+ybar~2) & sqrt(wl”2-ylbar”2);
yll 00=w00;

yll 000=w000;

ulbar=(ylbar-yebar)/di;

ulbar_00=(ylbar_0e-yeebar)/dl;

ulbar_000=(ylbar_000-y0eeobar)/d1;

zr=pi*w0”~2/lambda; %Rayleigh range
Zr_00=pi*w00~2/lambda;

Zr_000=pi*w000~2/lambda;

wl=sqrt(ylbart2+yl1112); %New waist w”2=w0"2*(1+(z/zr)"2)
wl_00=sqrt(ylbar_0072+yll 0072);

wl_000=sqrt(ylbar_00072+yll 000"2);

ul=(yli-yo)/d1,;

ul 00=(yll _00-y0e)/d1;

ul_000=(yll_000-y000)/d1;

R1=(yl1l1”2+ylbar~2)/(yl1*ul+ylbar*ulbar); %Beam radius R=(y”2+ybar~2)/(yu+ybar.ubar)

R1_00=(yll_00~2+ylbar_0072)/(yll_00*ul_00+ylbar_00*ulbar_00);
R1_000=(yll_000~2+ylbar_00072)/(yll _000*ul_000+ylbar_000*ulbar_000);
Z=(yll*ul+ylbar*ulbar)/(ulbar”2+ul”2)
z_00=(yll_@0*ul_ee+ylbar_00*ulbar_00)/(ulbar_0072+ul_00"2)
Zz_000=(yll 000*ul_0ee+ylbar_000*ulbar_000)/(ulbar_000"2+ul_000"2)
A=((wo/wl)*exp(1i*k*d1l)*exp(-1li*atan(dl/zr)));
A_00=((wo0/wl_00)*exp(1li*k*d1l)*exp(-1i*atan(dl/zr_00)));

A _000=((w000/wl_000)*exp(li*k*dl)*exp(-1li*atan(dl/zr_000)));

%Composition

G= (A).*(exp(-1*((X2-0).72+(Y2-0).72)./(W1”2)) . *exp(1i*k*((X2-0)."2+(Y2-
0).72)./(2*R1)))...
+(A).*(exp(-1*((X2-0.0021428*B) .~ 2+(Y2+0).”2)./(w1"2)) . *exp(1i*k*((X2-
0.0021428%B).A2+(Y2-0).72)./(2*R1)))...
+(A) . *(exp(-

1% ((X2+0.0021428*B) . A2+(Y2+0) .72) ./ (w1”2)) . *exp (1i*k*( (X2+0.0021428*B) . 2+(Y2-
0).72)./(2*R1)))...

+(A) . *(exp(-1*((X2-0.00428*B) . 2+ (Y240).72)./ (w1l 2)) . *exp(Lli*k*((X2-
0.00428*B).72+(Y2-0).72)./(2*R1)))...

+(A) . *(exp(-

1*((X2+0.00428*B) . ~2+(Y2+0) .72)./(w1”2)) . *exp(1i*k* ((X2+0.00428*B) . 2+(Y2-
0).72)./(2*R1)))...

+(A) . *(exp(-1*((X2-0.006428*B) .2+ (Y2+0).72)./(wl”r2)) . *exp(1i*k* ((X2-
0.006428*B)."2+(Y2-0).72)./(2*R1)))...

+(A) . *(exp(-

1*((X2+0.006428*B) . 2+(Y240) .72)./(W1”2)) . *exp(1i*k* ((X2+0.006428*B) . 2+(Y2-
0).72)./(2*R1)))...

+(A_00%0.25) . *(exp(-1*((X2-0.0073*B) . 2+(Y2+0).72)./(wl_0072)).*exp (1i*k*((X2-
0.0073*B).72+(Y2-0).72)./(2*R1_00)))...
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+(A_00*0.25) . *(exp(-

1% ((X2+0.0073*B) . "2+(Y2+0) .72)./(Wwl_00"2)) . *exp(1i*k*((X2+0.0073*B) . 2+(Y2-
0).72)./(2*R1_00)))...
+(A_00).*(exp(-1*((X2-0.00855*B) . A2+ (Y2+08).72)./(wl_00°2)) . *exp(1i*k*((X2-
0.00855*B) . A2+(Y2-08).72)./(2*R1_00))). ..

+(A _00).*(exp(-

1*((X2+0.00855*B) . ~2+(Y2+0) .~2)./(wl_00"2)) . *exp(1i*k*((X2+0.00855%*B) . 2+(Y2-
0).72)./(2*R1_00)))...

+(A_000*0.19) . *(exp(-1*((X2-0.00672*B) . 2+(Y2+0).72)./(wl_000°2)).*exp(1i*k* ((X2-
0.00672*B) . 2+(Y2-08).72)./(2*R1_000))). ..

+(A_000*0.19).*(exp(-

1% ((X2+0.00672*B) . ~2+(Y2+0) .~2) ./ (Wl_000"2) ). *exp(1i*k*((X2+0.00672*B) . 2+(Y2-
0).72)./(2*R1_000)))...

+(A) . *(exp(-1*((X2+0) . 2+(Y2-0.0021428*B).~2)./(w1"2)) . *exp(1i*k*((X2-0) . 2+(Y2-
0.0021428*B).~2)./(2*R1)))...%

I1=abs(G)."2; % Absolute irradiance
figure(1)
imagesc(x2,y2,nthroot(I1,3)); %Display absolute irradiance & stretch image

contrast axis square; axis xy;

colormap('gray'); xlabel('x (m) '); ylabel('y (m)');
title(['d1l=",num2str(dl), 'm stretched contrast']);

colorbar;

figure(2)

imagesc(x2,y2,I1); %Display absolute irradiance
axis square; axis xy;

colormap('gray'); xlabel('x (m) '); ylabel('y (m)');
title(['dl=",num2str(dl), 'm']);

colorbar;

% lrradiance profile

figure(3)

plot(x2,I1(M/2+1,:));

xlabel('x (m)'); ylabel('Irradiance');
title(['d1l=",num2str(dl), 'm']);

%Plot absolute field magnitude

figure(4)

plot(x2,abs(G(M/2+1,:)));

xlabel('x (m)'); ylabel('Magnitude');
title(['dl=",num2str(dl), 'm']);

%Plot absolute field phase

figure(5)
plot(x2,unwrap(angle(G(M/2+1,:))));
xlabel('x (m)"); ylabel('phase (rad)');
title(['d1l=",num2str(dl), 'm']);
figure(6)

mesh(X2,Y2,I1);

xlabel('x2");

ylabel('Intensity');
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Appendix C.

Chapter 5 Programmed Excel file for HCMPC Design Approach 32 Intercepts.
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Appendix D.

Chapter 6 Programmed Excel file for yy diagram gut ray design of MPC.

File

Paste

v

® v )

Home Insert Pagelayout Formulas Data Review View Automate Help

At (Calbi Jiu AN E= @ v B Wap Text General

(B Copy A s e e 1o

BIUVEHO Ay Z=Z=ZEE EMegetiCeter v § v % 9 G
GFormalPainter
Clipboard ] Font 1Y Alignment Y Number
v s X Vv fx

B C D £ F
N y [y [ n Juef]ul a [ o [ Rt [Ftt| 02 | R | F2
0 -25.00000] o 1 028 0
1 1308026 2078674 1 | 7555 0275 0.147061] 0.011765] -169.998] 84 99881] -0.01176] 169.9976 | -64.998607
2 056700] 23.006988] 1| 75.55] 0.031] 0.310466] 0.011765] -169.998] 84 99881] -0.01176] 169,976 | -84.998807
3 2451063 48772581 1| 75.55] -0.24] 0.197911] 0.011765] -169.998] 84.99881] -0.01176] 169.9976 -84 90807
4 1767767 1767767 1| 7555] 03[ -0.09056] 0.011765] -169.998] 84 99881] -0.01176] 169 9976 -84 998807
5 -47126] 2451063 1 [ 75.55] -0.09] -0.29854] 0.011765] -169.998] 84.99881| -0.01176] 169.9976 | -84 998807
6 -2300699| 0567086 1 | 75.55] 0.198] -0.24115] 0.011765] -169.998] 8499881] -0.01176] 169.9976  -84.998807
7 2078674 13880256 1 [ 75.55] 031] 0.030578] 0.011765] -169.998] 8499881] -0.01176] 169.9976 | -84.99807
8 0000000 25| 1 [ 7556 0.147] 0275132 0.011765) -169.998] 8499881] -0.01176] 169.9976 -84998807
9 2078674] 13880256] 1| 75.55] -0.16] 0.275132] 0.011765] -169.998] 8499881] -0.01176{ 169.9976 | -84 998807
10 23.00699] -0567066 1| 75.55] -0.31] 0.030578] 0.011765] -169.998] 84 99881| 20.01176] 169.9976 | -84 90807
1 4.87726] 2451963 1 | 7555) -0.2] -0.24115( 0.011765] -169 998] 8499881| 0.01176] 169.9976 | -84 998807
12| -memer] -remrer] 1 [ 75.55] 0.001] -0.20854] 0.011765] -169.998] 8499881] -0.01176] 169.9976 -84 99807
13| 451063 a8mrase1] 1 [ 75.56] 0.209] -0.09086] 0.011765] -169.998] 8499881 -0.01176] 169.9976 -84 99807
14 -956709] 2.006988] 1| 75.5] 0.241] 0.197011] 0.011765] -169.998] 84.99881] -0.01176] 169.9976 -64.998807
15 1308026 2078674 1 [ 75.55] -0.03] 0.310466] 0.011765] -169.998] 84 99881] -0.01176] 169.9976 | -84.998807
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18 956700 2300690 1 [ 75.55] 0.03] -0:31047] 0.011765] -169.99] 84 99881] -0.01176] 169.9976 84998807
19 | 2451063 -4n77se] 1 [ 75.56] 0.241] -0.19701] 0.011765] -169.998] 8499881 -0.01176] 169.9976] -84 998807
0 | -remer] tremer| 1 | 7555 0299] 0.09056] 0.011765] -169.998] 84.99881| -0.01176] 169.9976 -84 98807
2 467726 24519632 1| 75.55] 0.091] 0.208535[ 0.011765] -169.998] 84 99881] -0.01176] 169 9976 | -84.998807
2 23.00609] 0.5670858] 1 | 7555 02| 0241155 0011765 -169.998] 84.99881] -0.01176] 169.9976 -84 90807
3 2078674] 1388926 1| 75.55] -0.31] 003058] 0011765] -169 998] 8499881] 0.01176[ 169.9976 | -64 908807
P 0000000 28] 1| 7556 -0.15] -0.27513] 0.011765) -169.998] 84.99881] -0.01176] 169.9976 -64.998807
%5 | o07e674] 1386928 1 | 7555] 0.147] -027513] 0.011765] -169.998] 84.99881| -0.01176] 169.9976 -84 908807
% | -23.00699] 05670858 1 | 7555 0:31] -003058] 0.011765] -169.998] 84.99881] -0.01176] 169.9976 | -84 90807
Pl 487126 24519632 1 [ 75.55] 0.198] 0.241155] 0.011765] -169.998] 84 99881] -0.01176] 169.9976 -84 90807
2 1767767 1767767 1| 75.56] -0.09] 0.298535] 0.011765] -169.998] 84 99881] -0.01176] 169 9976 -84 99807
» 2451063 4677268 1 [ 7555 -03] 0.09056] 0.011765] -169.998] 84.99881| -0.01176] 169.9976 | -84 90807
30 956700 2309699 1 | 75.55] -0.24] 0.19791] 0.011765] -169.998] 84.99881] -0.01176] 169.9976 | -64.998607
31 -1380026] -2078674] 1 | 75.55] 0.031] -0.31047] 0.011765] -169.998] 84.99881] -0.01176] 169.9976 | -84.99807
3 | 25000000 -306E-14] 1| 7555] 0275] -0.14706[ 0.011765] -169.998] 84 99881] -0.01176] 169.9976 | 84998807
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Chapter 6 Programmed Excel file for yy diagram collimated ray design of MPC.

Filee Home Insert Pagelayout Formulas Data Review View Automate Help
){, Cut Ml = = = o ab |
D ‘Aptos Narrow vH11 V‘ A== ‘:“ o v ¢o Wrap Text |General
(@ copy PPN P
B I U-H2vAv === &% EMegetiCenter v §+v% 9
& Format Painter
Clipboard N Font N Alignment N Number
P51 v fx
A B c D E F 6 H I J K L M N 0
X0= 2% mm 0= 0 mi= 5 Km= 2.906
length(U)=| 75552 | mm Fov= 0|Invalid m2= 2 | Phase(me | 18261
lg=  |45959259| unitless FOV= 10.8745592 m3= 3 N= 3
EPD=  |47.847017 L 296682401 |Invalid mé= 4 | om(Rad) | 0.5890
Lf 0.33706078 m5= 1 [Om(degrees)s| 33.75
N y y n L u 1 o1 EFL RoC
0 | 725712 |23.92351] 1.000 | 75552 |0.000000 | 0.192109 ’
1 725712 | 2392351 1.000 | 75552 | -0.107 | 0.159733 | 0.004461 | 224.14949 | 448.299 Front Mirror (M1)
2 | 1932526 1585983 | 1.000 | 75552 | 0477 | 0.073517 | 0.004461 | 224.14949 | 448.299 »
3 | 2487962 | 245043 | 1.000 | 75552 | -0.188 |-0.037479 | 0.004461 | 224.14949 | 448.299 ofif 2 o
4 | 2204803 |-11.78492| 1.000 | 75552 | -0.136 |-0.135842 [ 0.004461 | 224.14949 | 448299 ol 2
5 11.78492 |-22.04803| 1.000 | 75.552 | -0.037 [-0.188418 | 0.004461 | 224.14949 | 448.299 €2
6 | -245043 |-24.87962 1.000 [ 75552 | 0.074 [-0.177486 [ 0.004461 | 224.14949 | 448299 At 10
7 | 1585083 |-19.32526] 1.000 | 75552 [ 0.160 |-0.106730 | 0.004461 | 22414949 | 448299 s
8 | -23.92351 | 725712 | 1.000 | 75552 | 0.192 | 0.000000 | 0.004461 | 224.14949 | 448.299 " 0
9 [ 2302351 | 725712 | 1000 | 75552 | 0160 | 0106730 | 0.004461 | 22414949 | 448299 | % -0 0 0 1 2 *¥
10 | 1585983 [ 19.32526] 1.000 | 75552 | 0.074 | 0177486 | 0.004461 | 224.14949 | 448.299 'E 10
11| -245043 |2487962| 1.000 | 75552 | -0.037 | 0.188418 | 0.004461 | 224.14949 | 448.299 vill 'E
12| 1178492 |22.04803 1.000 | 75552 | -0.136 | 0.135842 | 0.004461 | 224.14949 | 448.299 o e®
13| 2204803 | 11.78492| 1.000 | 75552 | -0.188 | 0.037479 | 0.004461 | 224.14949 | 448.299 Bl o
14 | 2487962 | -2.45043 [ 1.000 | 75552 | -0.177 |-0.073517 | 0.004461 | 224.14949 | 448.299 %
15 | 19.32526 |-15.85083 1.000 | 75552 | -0.107 |-0.159733 | 0.004461 | 224.14949 | 448.299
16| 725712 |-23.92351( 1.000 | 75552 | 0.000 |-0.192109 | 0.004461 | 224.14949 | 448.299
17 | 725712 |-23.92351( 1.000 | 75552 | 0.107 |-0.159733 | 0.004461 | 224.14949 | 448.299 Back Mirrors (M2)
18 | -19.32526 |-15.85983 1.000 | 75552 | 0.477 |-0.073517 | 0.004461 | 224.14949 | 448299 ”
19 | 2487962 | -2.45043 [ 1.000 | 75552 | 0.188 | 0.037479 | 0.004461 | 224.14949 | 448.299 ''r
20 | -2204803 [ 11.78492| 1.000 | 75552 | 036 | 0.135842 | 0.004461 | 224.14949 | 448.299 At - BN 5
2| 1178492 [22.04803| 1.000 | 75552 | 0.037 | 0.188418 | 0.004461 | 22414949 | 448.299 oldl
22 | 245043 [2487962| 1.000 | 75552 | -0.074 | 0177486 | 0.004461 [ 22414949 | 448.299 1 =
23 | 1585983 [19.32526| 1.000 | 75552 | -0.160 | 0.106730 | 0.004461 [ 22414949 | 448.299 o X
24 2392351 | 7.25712 | 1.000 | 75552 | -0.192 | 0.000000 | 0.004461 | 224.14949 | 448.299 5 0 g
2 | 2302361 | 725712 | 1000 | 7556 | -0.160 |-0106730] 00061 | 22414949 | aa2e9 | 0 T 0 0 w2 '
2 | 1585983 [-19.32526] 1.000 | 75552 | -0.074 |-0.177486 | 0.004461 | 224.14949 | 448.299 ¢ 0
27 | 245043 [-2487962] 1000 | 75552 | 0.037 |-0.188418 | 0.004461 | 224.14949 | 448299 ¢ 15
28 | -11.78492 |-22.04803] 1.000 | 75552 | 0.136 | -0.135842 | 0.004461 | 224.14949 | 448.299 ‘s o
29 | -22.04803 |-11.78492| 1.000 | 75552 | 0188 |-0.037479 | 0.004461 | 224.14949 | 448.299 f7 e
30 | 2487962 | 245043 | 1.000 | 75552 | 0477 | 0.073517 | 0.004461 | 22414949 | 448.299 &
3| -19.32526 | 1585983 | 1.000 | 75552 | 007 | 0.159733 | 0.004461 | 224.14949 | 448.299
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Chapter 6 Programmed Excel file for yy diagram different radii of curvatures MPC.

File

Paste

v

10
1|
12 |
13[
14 |
15|
16 |
17|
18 |
19[
20|
|
22|
2|
24|
|
2 |
27|
28|
»|
30/
21|
32|
33[
34 |
35|
36 |
37|
38|

Home |Insert Pagelayout Formulas Data Review View Automate Help
& cut \Calibri i A A == @ v 25 Wrap Text General
(@ Copy ~ et e it i | i
B I UvH-+ v Av === & 355 [ Merge&Center v $V%, %
& Format Painter
Clipboard [ Font [N Alignment N Number

M N (0] P
N y y n L a u o1 EFL ROC
0 |-11.7849] 22,048 | 1.000 | 75552 | 0203 | -0.203
1 [357319 [6.68496 | 1.000 | 75552 | 0282 | -0.056 | -0.02203 | -45.384 | -00.7688919 |
2 | 248796245043 | 1.000 | 75552 | -0.266 | -0.110 | 002201 | 45428 | 90.85671285
3 | 48087 [-5.85042] 1000 | 75552 | 0160 | -0.230 | -0.02203 | -45.384 | -00.7688919
4 |-725712|23.9235] 1.000 | 75552 | 0000 | 0288 | 002201 | 45428 | 90.85671285
5  [-7.26361][2.20036] 1.000 | 75552 | 0160 | 0239 | -0.02203 | -45.384 | -00.7688919
6 |-19.3253] 158598 | 1.000 | 75552 | 0266 | -0.110 | 002201 | 45428 | 90.85671285
7 [074207 [ 75435 | 1.000 | 75552 | 0282 | 0056 | 0.02203 | -45.384 | -90.7688919
8 | 22048 [11.7849] 1000 | 75562 | 0203 | -0203 | 002201 | 45428 Front & Back yj
9 1668496 [-3.57319] 1.000 | 75552 | -0.056 | -0.282 | 0.02203 | -45.384
10 | 245043 |-24.8795] 1.000 | 75562 | -0.110 | 0266 | 0.02201 | 45.428 20
11 [5.85942[ -4.8087 | 1.000 | 75562 | -0239 | 0.160 | -0.02203 | -45.384
12 |23.9235)7.25712| 1.000 | 75552 | 0288 | 0.000 | 002201 | 45428
13 [2.20036[7.25361 | 1.000 | 75562 | 0239 | 0.160 | -0.02203 | -45.384
14 158598 | 193253 | 1.000 | 75562 | -0110 | 0.266 | 002201 | 45428
15 [ 7.5435 [-0.74297] 1.000 | 75562 | 0056 | 0.282 | -0.02203 | -45.384
16 | 11.7849 | 22.048 | 1.000 | 75562 | -0203 | 0203 | 0.02201 | 45.428
17 [-357319[-6.68496| 1.000 | 75552 | -0.282 | 0.056 | -0.02203 | -45.384
18 |-24.8796|-2.45043] 1.000 | 75552 | 0266 | 0110 | 002201 | 45428
19 [-4.8087 [5.85942 | 1.000 | 75562 | 0.160 | 0239 | -0.02203 | -45.384
20 |725712]239235| 1000 | 75552 | 0000 | 0288 | 0.02201 | 45428
21 [7.25361 220036 | 1.000 | 75552 | 0160 | -0.239 | -0.02203 | -45.384
22 193253 |-15.8598] 1.000 | 75552 | 0266 | 0110 | 002201 | 45.428
23 [-0.74297[ 75435 | 1000 | 75552 | 0282 | -0.056 | 0.02203 | -45.384
24 | 22.048 |-11.7849] 1000 | 75552 | 0203 | 0203 | 002201 | 45.428
25 |-668496[357319] 1.000 | 75552 | 0056 | 0282 | -0.02203 | -45.384
26 |-2.45043] 24.8796 | 1000 | 75552 | 0110 | -0.266 | 002201 | 45.428
27 585942 [ 48087 | 1.000 | 75552 | 0239 | -0.160 | -0.02203 | -45.384
26 | 23.9235|-7.25712] 1000 | 75562 | 0288 | 0000 | 002201 | 45428
29 220036 [7.25361] 1.000 | 75552 | 0239 | -0.160 | -0.02203 | -45.384 30
30 |-15.8598]-19.3253] 1.000 | 75552 | 0110 | 0.266 | 002201 | 45.428
31 [ -7.5435 [0.74207 | 1.000 | 75552 | -0.056 | 0282 | -0.02203 | -45.384
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Appendix E.

Chapter 7 Programmed Excel file for Zernike’s Coefficients Calculations.

e Home Insert  Page Layout

| Gt
I

Uiy Ovhv Merge&(enter v $ v % ) <'08 .?8 ,

Clpboard N Font N Algrment N Number N Stles
SO v R
R B e e N e e e e e ey {2 M B & Mk
f
! PO off ] 500581 o Pl 0108010 i) ngebitiee 0SUTTT4 RAD
{ [SLOFEAM 4 EPOow| Sk W Ak ROy AL DRI D
{ le | 1% i |0 Q)
§ iy
§6F0 [N [ i [y [RotudRotatd n [ L Rotated{ufRotated ] LI o Tre[R] 2 o] [ A IRTB2ARRTE2AT Sn [ Smi2 | w222 [ 24 [ 20 alelaed(ZFalulted (2(Z5(Zema] PAREMAY) *
7m0 [0 T ool ol 1 \ |
$ [ T 08 | 7000 -uwm W] -nwl [ uwmsl TTEAE]_Qts] 08T s 0ERD | 000 4
$ EREEE 1 [ETATE ue T SSHE]_ 0ot oo oo 00RgeS | e
(I ERET T f [ K [ AL 4: m
(R I ! [ 0
0 [ 8 [om] el s ! RN | 2] 0 A0 ‘
0 [ e e 1 [0 o 7400 4 e T T
R 1 O R T3 "
5 HEIE 1 GBRrs [Tae] Adser] om0 2EN 40 7
() § [ oo e 4 | [ ERA uwul [ 2EH] 180
f 10 Saen -agued] i Q02436 | 40 s ] AMEG] A "
B [ o] e I [ FIEED w
R 1 R | 0 4 R
o [ T oase] f [ AR e s |
[ ] e see ] 4 f [T R L0
2 [ T f O | 2408 L
bl [ 08| BITER | - f OESHA8 | 74040 TEN] A0 j
U R I [T i TE] | L
% [AERES i Q02436 | 40 Bl AHEN] A0t L
B [0 [ 2mene] o I N0RA | ] T R
al [ [ v | 1 0 | 4 0 T A
B [ ] e & I ORNR | 24 0 30
o [ [ 4 f gt | 2400 0 I
0 [ T ] ] f [ T [T v
il R ] 1 OISHAA8 | 2403 | D0BHRRYY QLE0] 0ekte] I R
(] 5 | g6 s o] 41 0501 | TAwa A05z] 0] 001 smumm mms 208 ek v 0o 000 | e
» o [ 960 ] ot mage] 1 msam wu nnuss W] 0 G0N 1A Q0] 0 nms m e N = N R I
W[ Tomn ] marese | o] o1 s o]0 ee3i [ o T onoetsas | 248 a0nenre] o] ot e TSE] 0 a
I R R f T A T R T suem ORIV IATVE] AU AT IW.E
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