
University of Alabama in Huntsville University of Alabama in Huntsville

LOUIS LOUIS

Dissertations UAH Electronic Theses and Dissertations

2024

Online learning for adaptive control : stable learning and control Online learning for adaptive control : stable learning and control

for aerospace and robotics for aerospace and robotics

Jacob G. Elkins

Follow this and additional works at: https://louis.uah.edu/uah-dissertations

Recommended Citation Recommended Citation
Elkins, Jacob G., "Online learning for adaptive control : stable learning and control for aerospace and
robotics" (2024). Dissertations. 414.
https://louis.uah.edu/uah-dissertations/414

This Dissertation is brought to you for free and open access by the UAH Electronic Theses and Dissertations at
LOUIS. It has been accepted for inclusion in Dissertations by an authorized administrator of LOUIS.

https://louis.uah.edu/
https://louis.uah.edu/uah-dissertations
https://louis.uah.edu/uah-etd
https://louis.uah.edu/uah-dissertations?utm_source=louis.uah.edu%2Fuah-dissertations%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/uah-dissertations/414?utm_source=louis.uah.edu%2Fuah-dissertations%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages

ONLINE LEARNING FOR ADAPTIVE

CONTROL: STABLE LEARNING AND

CONTROL FOR AEROSPACE AND

ROBOTICS

Jacob G. Elkins

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in

Mechanical Engineering

to

The Graduate School

of

The University of Alabama in Huntsville

August 2024

Approved by:

Dr. Farbod Fahimi, Research Advisor/Committee Chair

Dr. Avimanyu Sahoo, Committee Member

Dr. Rohan Sood, Committee Member

Dr. Howard Chen, Committee Member

Dr. Chang-kwon Kang, Committee Member

Dr. George Nelson, Department Chair

Dr. Shankar Mahalingam, College Dean

Dr. Jon Hakkila, Graduate Dean

Abstract

ONLINE LEARNING FOR ADAPTIVE CONTROL:
STABLE LEARNING AND CONTROL FOR AEROSPACE

AND ROBOTICS

Jacob G. Elkins

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Mechanical and Aerospace Engineering

The University of Alabama in Huntsville

August 2024

Aerospace and robotic systems perform various tasks in uncertain, dynamic

environments. Further, the data that a system encounters in the real-world is often

the most valuable. The most advanced aerospace and robotic systems of the future

will be able to learn online, during operation, from this real-world data. Aerospace

and robotic systems are often expensive and difficult to model, and the controllers of

these systems thus require rigorous control proofs and safety guarantees. Recently,

general research in artificial intelligence and machine learning (AI/ML) has made

significant strides in developing learning-based systems and controllers. However,

much of this research has focused on optimizing control performance, robustness,

or prediction accuracy, without considering the stability and safety requirements for

control of real-world aerospace and robotic systems. Additionally, the optimization

objectives of adaptive control and machine learning, adapting parameters over time

to achieve some desired goal or performance, are often closely related. Thus, the

theory and mathematical rigor of adaptive control can be used to augment popular

AI/ML tools for stability guarantees and online learning. This dissertation discusses

ii

research progress in utilizing AI/ML tools, namely deep neural networks, together

with adaptive control to achieve provably-stable online learning and optimization.

Part I first describes “learning for control,” where neural networks are stably used in

a fully online model-based nonlinear controller. The derived controller is shown to de-

sirably control robotic arms, spacecraft, and quadcopters under various disturbances

and model uncertainties with limited a priori modeling. Next, Part II describes

“control for learning,” where control-theoretic techniques are used to stably update

deep neural network parameters online. The proposed update law is shown to give

desirable performance when deep neural network outputs are used in predicting or

controlling dynamical systems, especially under domain shift from the training dis-

tribution to the target distribution, common in forecasting and sim-to-real transfer

of control policies. Throughout this dissertation, the connections between machine

learning and adaptive control are explored, with each field acutely poised to benefit

the other.

iii

iv

Acknowledgements

First, thank you to the Army Research Office for selecting me to serve as a

National Defense Science and Engineering Graduate Fellow. The chance to pursue

a doctoral degree is the opportunity of a lifetime in itself, and it fills me with pride

knowing that my work up to and beyond this point has the potential to positively

influence the things that I care about. This fellowship has allowed me to develop

the skills and knowledge that I needed to meaningfully contribute to the defense of

the United States in the critical technological area of intelligent systems. I will never

forget the day I was selected as a Fellow – thank you to the Department of Defense,

the U.S. Army, and my Army Research Lab mentor, Dr. Vernon J. Lawhern.

To my doctoral advisor, Prof. Farbod Fahimi: thank you for your time, exper-

tise, patience, and guidance. I am fortunate to have studied robotics with you, and

the progress shown in this dissertation would not have been possible without you.

To my advisor at the University of Alabama, Prof. Rohan Sood: thank you

for letting me join your laboratory all those years ago. Thank you for your guidance –

technical, professional, and personal – from the beginning of graduate school to now.

This dissertation would not have been possible without you pushing me to learn new

skills and get out of my comfort zone. I am deeply grateful.

Thank you to my doctoral committee members: Prof. Avimanyu Sahoo, thank

you for your hard work. Your courses, discussions, and help have given me the

thorough knowledge of nonlinear and adaptive control that I sought in doctoral study.

Prof. Howard Chen, thank you for your advice and help on my dissertation. I am

sure our paths will cross again. Prof. Chang-kwon Kang, thank you for your hard

work and advice in my coursework and my dissertation.

v

Thank you to Matt Seaman for taking a chance on me and believing in me,

when I wasn’t even sure I believed in myself yet. My time as a data science intern was

my first foray into the world of AI/ML, and I never looked back. I cannot overstate

how much I learned and grew during my summers across the country as an intern.

Thank you to those at LM who helped me along the way: Mike, Zach, and Norris, to

name a few – I enjoyed learning from all of you.

Thank you to Josh Darrow for taking a chance on me and letting me take my

AI skills to the next level. My experiences at Pax River have formed my technological

and personal foundations more than you know. I believe many of my opportunities

to this point have resulted from you giving me an opportunity. I am grateful for you

and my Navy team: Matt, Jason, Adam, Dewey, Joe – it was a pleasure.

Thank you to my previous teachers and professors who have had significant in-

fluence on my development: Harold Wright, Mike Pope, Derek Irons, Sheri Humphrey,

Amanda Bittinger, and countless others. I would not be who I am today without each

of you.

To my many friends who have helped me and supported me over my years

of school: Thank you to my close friend Leete Skinner, for helping me through my

first summer at LM and for continuing to lend some of the most valuable advice

I have ever received. Thank you to my close friend and freshman year roommate

Daniel Scruggs, for always being there to listen, to offer advice, and to help me

with anything. Thank you to my former ASRL labmates William Ledbetter and Ari

Rubinsztejn, for mentoring me and showing me the research ropes during my time as

a graduate student in Tuscaloosa.

Last yet foremost, thank you to my family. Thank you to my older brother,

Tyler, for your loving support as a brother. Thank you to my twin sister, Jessie, for

your loving support and help, both technically and emotionally. I am so glad I got to

spend time at the same college with both of you – that memory is worth the world.

vi

Thank you to my home lab colleague, Chief, for the unwavering support while lying

under my desk all these years. Thank you to my father, Jeff, for your sacrifice to our

family and for teaching me toughness and strength.

Above all, thank you to my mother, Kathy. You literally taught me everything

I know, from our homeschooling as a kid to our discussions and phone calls as an

adult. You instilled in me a relentless drive to do my best and an appreciation for the

beauty in knowledge and learning. It truly all begins with looking at Mars through a

telescope in the driveway when I was a kid. I hope this achievement helps demonstrate

how much I appreciate your sacrifice and your seemingly tireless effort towards me

and my siblings.

vii

Dedication

To my mother, for a debt that cannot be repaid. I love you, Mom.

viii

Table of Contents

Abstract . ii

Acknowledgements . v

Dedication . viii

Table of Contents . xiii

List of Figures . xiv

List of Tables . xvii

Epigraph . xviii

Chapter 1. Introduction . 1

1.1 Connecting Control and Learning 1

1.2 Organization . 3

1.3 Summary and Contributions 4

Part I. Learning for Control . 8

Chapter 2. Improving Model-Based Control with Online Adap-
tation of Neural Networks . 9

ix

2.1 Introduction . 9

2.2 Background and Literature Review 10

2.3 Contributions . 14

2.4 Notation and Preliminaries . 16

2.4.1 Notation . 16

2.4.2 Control Preliminaries 16

2.4.3 Online Function Approximation Using Neural Networks 18

2.5 Controller . 20

2.6 Stability Analysis of the Developed Controller 23

2.7 Simulation Results . 31

2.8 Extension: Control with Nondiagonal M Estimation 42

2.8.1 Extended Control and Update Laws 43

2.8.2 Stability Analysis of the Extended Controller 44

2.8.3 Simulation Results . 50

Chapter 3. Online Learning-Based Control of Spacecraft and
Quadcopters . 61

3.1 Introduction . 61

3.2 Background and Literature Review 62

3.3 Contributions . 65

x

3.4 Notation and Preliminaries . 66

3.4.1 Notation . 66

3.4.2 Control Preliminaries 67

3.5 Spacecraft Attitude Control 71

3.5.1 Quaternion Kinematics 72

3.5.2 Spacecraft Attitude Dynamics 73

3.5.3 Control Design . 74

3.5.4 Simulation Example 77

3.6 Quadcopter Control . 84

3.6.1 Quadcopter Kinematics 84

3.6.2 Quadcopter Dynamics 86

3.6.3 Control Design . 88

3.6.4 Simulation Example 97

Chapter 4. Conclusions, Discussion, and Future Work 106

4.1 Summary and Conclusions . 106

4.2 Discussion . 108

4.3 Future Work . 110

Part II. Control for Learning . 113

xi

Chapter 5. Online Transfer Learning Using Super-Twisting
Control . 114

5.1 Introduction . 115

5.2 Background and Literature Review 116

5.3 Contributions . 120

5.4 Motivating Example . 121

5.5 Notation and Preliminaries . 124

5.5.1 Notation . 124

5.5.2 Deep Neural Network Preliminaries 125

5.5.3 Control Preliminaries 126

5.6 Online DNN Updates Using Super-Twisting Control 129

5.6.1 Case I: Known ẋ . 131

5.6.2 Case II: Unknown or Estimated ẋ 135

5.7 Simulation Examples . 145

5.8 Example: Sim2real Model Reference Adaptive Control 148

Chapter 6. Conclusions, Discussion, and Future Work 154

6.1 Summary and Conclusions . 154

6.2 Discussion . 156

6.3 Future Work . 158

xii

References . 160

Appendix A: Simulation Details for Chapter 2 174

A.1 Dynamic Model . 174

A.2 Conventional Model-Based Sliding Mode Controller 178

Appendix B: Stability Analysis of the General Controller
for Chapter 3 . 180

xiii

List of Figures

2.1 Block diagram of the online neural sliding mode controller structure. 23

2.2 The simulated three-link manipulator with a revolute base. 31

2.3 Joint trajectories over time for the robot arm simulation (0.15 kg
mass loaded onto the end effector at t = 30 s). 34

2.4 Joint errors over time for the robot arm simulation (0.15 kg mass
loaded onto the end effector at t = 30 s). 35

2.5 Sliding variables over time for the robot arm simulation (0.15 kg
mass loaded onto the end effector at t = 30 s). 36

2.6 Learning updates over time for the robot arm simulation (0.15 kg
mass loaded onto the end effector at t = 30 s). 37

2.7 Joint trajectories over time for the robot arm simulation (0.5 kg
mass loaded onto the end effector at t = 30 s). 38

2.8 Joint errors over time for the robot arm simulation (0.5 kg mass
loaded onto the end effector at t = 30 s). 39

2.9 Sliding variables over time for the robot arm simulation (0.5 kg
mass loaded onto the end effector at t = 30 s). 40

2.10 Learning updates over time for the robot arm simulation (0.5 kg
mass loaded onto the end effector at t = 30 s). 41

2.11 Comparison of joint trajectories over time for the robot arm simu-
lation (0.15 kg mass loaded onto the end effector at t = 30 s). . . 53

2.12 Comparison of joint errors over time for the robot arm simulation
(0.15 kg mass loaded onto the end effector at t = 30 s). 54

2.13 Comparison of sliding variables over time for the robot arm simu-
lation (0.15 kg mass loaded onto the end effector at t = 30 s). . . 55

2.14 Comparison of learning updates over time for the robot arm simu-
lation (0.15 kg mass loaded onto the end effector at t = 30 s). . . 56

xiv

2.15 Comparison of eigenvalues of the estimate M̄ over time for the
robot arm simulation (0.15 kg mass loaded onto the end effector at
t = 30 s). 57

2.16 Comparison of joint trajectories over time for the robot arm simu-
lation (0.5 kg mass loaded onto the end effector at t = 30 s). . . . 57

2.17 Comparison of joint errors over time for the robot arm simulation
(0.5 kg mass loaded onto the end effector at t = 30 s). 58

2.18 Comparison of sliding variables over time for the robot arm simu-
lation (0.5 kg mass loaded onto the end effector at t = 30 s). . . . 59

2.19 Comparison of learning updates over time for the robot arm simu-
lation (0.5 kg mass loaded onto the end effector at t = 30 s). . . . 60

2.20 Comparison of eigenvalues of the estimate M̄ over time for the
robot arm simulation (0.5 kg mass loaded onto the end effector at
t = 30 s). 60

3.1 Block diagram of the learning-based spacecraft attitude controller. 78

3.2 Spacecraft trajectory, error, and control input versus time for the
sky-scanning attitude control simulation. 82

3.3 Components of M̂ and the Frobenius norm of V̂ and Ŵ over time
for the sky-scanning attitude control simulation. 83

3.4 Top view of the assumed quadcopter geometry, with four counter-
rotating rotors. 88

3.5 A simplified block diagram of the developed quadcopter controller. 96

3.6 Quadcopter trajectory over time in 3D space. 102

3.7 Error over time for each of the control variables in the quadcopter
controller. 103

3.8 Learning parameter estimates over time for the quadcopter controller.104

5.1 DNN predictions on the nominal system (ϵ = 1). 122

5.2 DNN predictions on the real system (ϵ = 1.5). 123

5.3 Online-adapted DNN predictions on the real system (ϵ = 1.5). . . 124

xv

5.4 Block diagram of the proposed online learning method, for a sim2real
control example. 125

5.5 Online-adapted DNN predictions on the real system (ϵ = 1.5) for
each case. 146

5.6 DNN prediction error on the real system (ϵ = 1.5) for each case. . 147

5.7 Perturbation analysis on the real system (ϵ = 1.5) for the DNN
trained with SN (Case II.a) and the DNN trained without SN (Case
II.b). 147

5.8 Comparison of the nominal system dynamics, the DNN-compensated
dynamics without the online update rule, and the DNN-compensated
dynamics with the developed online update rule. 152

xvi

List of Tables

2.1 Desired joint trajectories during the simulation. 32

2.2 Controller hyperparameters used in the simulation. 33

2.3 M -projection controller hyperparameters used in the simulation. . 51

3.1 Hyperparameters used for the simulated spacecraft attitude con-
troller. 81

3.2 Simulation parameters used for the quadcopter. 98

3.3 Hyperparameters used for the simulated quadcopter controller. . . 100

5.1 Nominal robot parameters used during dataset generation. 150

5.2 Real robot parameters used during simulation. 150

xvii

[Hephaestus] went to the doorway limping, and in support of their master moved his
attendants [...]. There is intelligence in their hearts, and there is speech in them
and strength, and from the immortal gods they have learned how to do things.

- Homer, The Iliad, Book XVIII, l.416-421 (Lattimore)

xviii

Chapter 1. Introduction

1.1 Connecting Control and Learning

The fields of artificial intelligence and machine learning (AI/ML) have

recently enjoyed an explosion of research interest and development, largely due

to the vast increase in data generation and available computational power [1].

This increase in data and computational power has allowed AI/ML researchers to

develop the early neural network theory of Turing, McCulloch, Pitts, Rosenblatt,

Minsky, Papert, and Hopfield into the powerful nonlinear function approximators

that comprise the backbone of most AI/ML breakthroughs in the last quarter

century, known as deep learning [2–6]. Improving the optimization, stability, and

explainability of these black-box function approximators is an ongoing research

topic, with the most important tool of this optimization being gradient-based

backpropagation, used to iteratively adjust function approximator parameters

to minimize prediction error via numerous data points [7]. Further, increased

computational power has led to the use of high-fidelity simulation being used

to drive AI/ML innovations, namely through reinforcement learning [8]. These

innovations have already made significant impacts on many fields, such as medical

diagnosis, finance, drug discovery, and retail, to name a few.

1

Aerospace and robotic systems are well-poised to benefit greatly from

recent AI/ML development in many ways. Aerospace systems generate large

amounts of data via sensors, are often complicated to control and difficult to

model, and operate in uncertain and ever-changing environments with distur-

bances. The controllers of aerospace and robotic systems must be robust to

internal and external disturbances and be able to adapt to unforeseen events

and changing environments. Thus, the field of adaptive control is a vibrant and

critical research field for aerospace and robotic systems – in fact, the genesis of

adaptive control lies in the design of autonomous flight controllers for airplanes

in the 1950s. Adaptive control is primarily concerned with accomplishing var-

ious control goals (such as trajectory tracking) in the presence of disturbances

and uncertainties; adaptive controllers may or may not have learning elements in

the control law [9]. For instance, the conventional formulation of sliding mode

control, a robust control paradigm utilized throughout this dissertation, can con-

trol systems under parameter uncertainty without any update laws or learning

elements. However, the notation of “learning” is often simply nomenclature, as

many adaptive control methods involve parameter estimation, which can easily

be argued as learning from an AI/ML perspective [10].

Adaptive control, due to its criticality to the safe and efficient operation

of aerospace and robotic systems, is likely the avenue of greatest benefit for in-

tegrating AI/ML into aerospace and robotics. This comes from a critical theory

of this dissertation: the data that a system encounters online, during

operation, is the most important for learning. As aforementioned, mod-

2

ern AI/ML is notoriously computationally and data intensive, through the opti-

mization methods used and the simulation and data processing required to train

models and agents. There remains much work to be done in incorporating these

AI/ML innovations into smart, adaptive aerospace controllers that are provably

stable and improve over time. For controllers to improve as they operate, the

controller must learn and evolve during operation to changing conditions and

environments. This field is generally called online learning, which is intimately

related to adaptive control with update rules for adjusting parameters. Online

learning for control comes with many challenges, such as computational cost of

updates while controlling, exploration without jeopardizing a control goal, op-

eration under high levels of system uncertainty, and overoptimizing to recent

inputs, called catastrophic forgetting. The primary goal of this dissertation

is to explore the connections between adaptive control and machine

learning in the online learning problem, and how each field could po-

tentially be used to improve the other. Put simply, the objective of this

dissertation research was to study ways to guarantee the training and performance

of AI/ML elements such that those elements can safely be used in aerospace and

robotic systems, among other applications.

1.2 Organization

This dissertation is divided by theme into two primary parts: Part I,

“Learning for Control,” and Part II, “Control for Learning.”

3

Part I: Learning for Control

Part I describes the progress made in developing adaptive controllers that

utilize and stably update AI/ML elements (namely, neural networks) online. The

motivation of this section is to explore how the adaptive control theories of Lya-

punov, LaSalle, and Barbalat can be used to derive stability guarantees on neural

networks, while improving adaptive control through nonlinear function approxi-

mation.

Part II: Control for Learning

Part II describes the developments made in using control-theoretic tech-

niques to update AI/ML instruments online. Using control theory to directly

update AI/ML function approximator parameters can give performance guaran-

tees on prediction error of the AI/ML elements being updated online. Consider-

ing the goals of adaptive control theory and AI/ML to be generally aligned, the

motivation of this section is to go beyond basic backpropagation – to improve

performance and stability of AI/ML elements when deployed online, especially

when the online data distribution is shifted from the training data distribution.

1.3 Summary and Contributions

In Chapter 2, the primary tool of modern AI/ML, the neural network

(NN) is stably incorporated into an online adaptive controller [11]. A dynamics

model common to many real-world robotic systems is assumed, and a NN is used

4

together with direct parameter estimation to learn the relevant functions and

parameters for control of the system fully online. The NN uses no pretraining,

which makes controller initialization an issue. To overcome this issue, a nonlinear

term in the control law is used – sliding mode control (SMC), a robust model-

based control paradigm. During development of the stability proof, it was found

that the learning error acts on the system equivalently to an external distur-

bance, allowing disturbance-rejecting nonlinear control terms to stabilize the sys-

tem during initial learning. The neural network term is found to increase

control accuracy while alleviating chatter, the primary drawback of

conventional sliding mode control. The controller is verified by simulating a

non-planar 3 degree-of-freedom robotic arm picking up a load, and the developed

controller outperforms conventional SMC, especially when the load margin built

into the conventional model-based SMC controller is exceeded. Further, Chapter

2 describes extending the controller to incorporate stable estimation of positive

definite coefficient matrices, which simplifies the learning problem for the NN.

In Chapter 3, the general online NN-based adaptive controller developed

in [11] is applied to two challenging aerospace control problems: rigid-body space-

craft attitude control and full quadcopter control. As in Chapter 2, the learning

elements allow adaptation, while the nonlinear control elements sta-

bilize the system during initial learning and reject disturbances after

learning converges. Spacecraft attitude control is chosen to show that careful

consideration of the sliding variable leads to minimum-time slews in quaternion

trajectory tracking. Quadcopter control is chosen to exemplify the use of virtual

5

control inputs and multiple variable-order subsystems to control a complicated,

underactuated system such as a quadcopter. Both applications of the con-

troller require decreased tuning and modeling than traditional model-

based approaches by simplifying complicated state functions into NN

approximations, rendering a highly adaptive and robust controller.

Chapter 4 concludes Part I with discussion and conclusions on the progress

made in using AI/ML instruments inside adaptive controllers, discussed in Chap-

ters 2 and 3. The chapter concludes with some possible avenues of future work,

such as developing recursive rules for arbitrary-depth DNNs or adaptive-gain rules

for the nonlinear control terms.

Chapter 5 discusses theoretical and experimental developments in utilizing

the mathematical rigor and stability proofs of control theory to update the param-

eters of AI/ML instruments directly [12]. An arbitrary-depth feed-forward deep

neural network (DNN) is considered, pretrained on a dataset that experiences

domain shift when deployed online. The DNN is formulated as a continuous-time

dynamical system to be controlled, and it is shown that a novel super-twisting-

based update law on the output layer of the DNN can guarantee online

prediction performance under domain shift. It is also shown that knowl-

edge of the time derivative of the DNN input vector is required to drive online pre-

diction error to zero. This derivative is often approximated via numerical differen-

tiation, or noisy through estimation. Theoretical analysis and experiment

show that training the DNN with spectral normalization can decrease

the upper bound of prediction error when the time derivative of the

6

DNN input vector is noisy or estimated. An important application of this

includes trivial implementation of simulation-trained controllers onto real-world

systems via online adaptation and learning (known as “sim2real” transfer [13]).

A sim2real transfer example is described for a model reference adaptive control

problem of a robot arm, where the DNN learns online to compensate for

unmodeled robot dynamics using only 10 seconds of simulation data.

Chapter 6 concludes Part 2 with discussion and conclusions on the theo-

retical developments and simulation results of Chapter 5. The chapter discusses

potential avenues of future work, such as update rules for other layers of the DNN,

update rules for different neural network architectures outside of an arbitrary-

depth feedforward DNN, and provably stable real-world control policies fully de-

rived from reinforcement learning.

7

Part I: Learning for Control

Stable Online Learning-Based Adaptive Control of Robotic
Manipulators, Spacecraft, and Quadcopters

8

Chapter 2. Improving Model-Based Control with Online

Adaptation of Neural Networks

This chapter presents progress in stably incorporating the most popular

tool in modern AI/ML, the neural network, inside of online adaptive controllers.

The neural network is used to learn a suitable model for control fully online,

where a nonlinear model-based control term is used to stabilize the system during

initial learning. This chapter is adapted from the work “Online Neural Sliding

Mode Control with Guaranteed Stability,” by Jacob G. Elkins and Farbod Fahimi,

published in the International Journal of Control in 2024 [11].

2.1 Introduction

Engineers utilize model-based control systems to leverage known system

information and behavior, often resulting in improved control accuracy or ro-

bustness. However, these system models can change over time, be difficult to

obtain for complex systems, or fail to capture higher-order effects in the system.

In this chapter, the highly robust model-based control methodology of sliding

mode control is extended to simplify the a priori system modeling. A neural

network learns an approximate system model fully online, with no pretraining.

The neural network term increases control accuracy while allowing lower gains

9

on the discontinuous terms in the control law, thereby alleviating chatter, the

primary drawback of conventional sliding mode control. The controller is verified

by simulating a non-planar 3 degree-of-freedom robotic arm picking up a load,

and the proposed controller is shown to outperform conventional sliding mode

control with no learning elements, especially when the load margin on the end

effector built into the conventional model-based controller is exceeded.

2.2 Background and Literature Review

As modern systems increase in complexity, the models required for effec-

tive model-based control become more difficult and time-consuming to derive and

obtain. Further, as aerospace and robotic systems operate in uncertain dynamical

environments, the controller must be robust to disturbances and model discrep-

ancies. There has been a multitude of research in the design and implementation

of adaptive and robust controllers, particularly motivated by aerospace applica-

tions. Some notable nonlinear control methodologies include, but are not limited

to, backstepping, feedback linearization, H∞ control, and sliding mode control

(SMC). Often, these controllers combine some form of (non-adaptive) control with

a form of parameter estimation or system identification [14, 15]. SMC has been

shown to effectively control many nonlinear dynamical systems in the presence

of disturbances and model uncertainties [16–19]. SMC involves defining a slid-

ing manifold, which defines the desired error behavior (often exponential). Once

the sliding manifold (or “mode”) is reached, the error will follow the prescribed

desired behavior – one of the primary advantages of SMC is the controller’s insen-

10

sitivity to system parameter deviations and disturbance rejection once the sliding

mode is reached.

Conversely, the primary drawback of SMC is chattering in the control

input to the system, due to discontinuity in the control law. This discontinuity

can potentially harm real-world acuators and lead to other undesirable side effects.

Chatter in SMC-based controllers has been attenuated in various ways, such as

using a continuous approximation of the discontinuous term (i.e., boundary layer

interpolation) or integrating the discontinuous term [9, 14, 16, 20].

Conventional SMC requires an a priori dynamical model and bounded

model uncertainty assumptions to assign convergence and stability guarantees.

As aforementioned, obtaining dynamical models of complicated nonlinear systems

can be difficult and expensive, often requiring experimental system identification

or simplifications in the model [21, 22]. Since SMC is robust to model uncer-

tainties, simplified dynamic models of the underlying system can often be used

effectively [23, 24]. Further, learning-based models have been shown to render im-

proved control accuracy by incorporating novel techniques from machine learning

to capture complex effects that are difficult to model [25–27].

The recent explosion of research interest large-scale data science and ma-

chine learning has impacted almost all fields in science and engineering. Notable

examples of the success of modern machine learning include high-level reinforce-

ment learning and planning [8], drug discovery in medicine [28], and image/text

generation [29]. These innovations are driven by one of the most popular and

effective instruments of learning-based models in machine learning, the neural

11

network, which has been shown to have significant power in function approxima-

tion [30]. While neural network research in control theory is not new [31–34], the

data and computing power available today have allowed neural networks to make

large strides in machine learning problems. Thus, a critical avenue of controls

research is studying how to effectively incorporate cutting-edge machine learning

research into the design, analysis, and verification of control systems.

Adaptive controllers utilizing neural networks have been extensively stud-

ied in various control design scenarios with promising results [31–41]. However,

some adaptive control methodologies have been shown to suffer in performance

and stability when using learned models [42]. Recently, there has been increased

research interest in incorporating stability guarantees and safety into these learned

models. Some large themes of stability guarantees in learned models include us-

ing Lyapunov theory to directly design [43] and train [44–46] neural networks,

contraction theory [42], and machine learning techniques such as spectral normal-

ization to establish Lipschitz-continuity bounds [25]. These works, along with the

research of this dissertation as a whole, have shown that considerable connections

exist among modern machine learning, nonlinear systems, and control theory.

Further, these works have highlighted that learning-based controllers should be

carefully designed to have rigorous performance and stability guarantees under

careful assumptions.

This chapter focuses on online learning in adaptive control, when the con-

troller must adapt as data is acquired during operation. Adaptive control and

online learning are closely related, as both are generally concerned with converging

12

on a parameter or set of parameters to achieve some goal. Previous works using

neural networks adapted online have shown effective control of nonlinear systems

in both discrete time [36–39] and continuous time [20, 35, 40, 41, 47]. Early pre-

vious works utilize neural networks with only one layer of parameters (no hidden

layer) [36]. However, neural networks with only an input and output, formerly

known as a two-layer perceptron, have been described by the universal approxi-

mation theorem to be incapable of effectively representing functions outside of a

specific class [5, 30]. Other works using neural networks evolved online in adaptive

control have used radial basis function (RBF) networks [37, 40, 47–52]. While

RBF networks have been theoretically guaranteed to exhibit universal approxi-

mation [53], their popularity in modern machine learning has declined due to the

success of feed-forward neural networks with computationally-simple activation

functions (such as sigmoid or ReLU). Other works have utilized terminal SMC

with RBF networks effectively [40, 52]. Terminal sliding mode with robust exact

differentiation and multilayer neural networks have been used with promising re-

sults for quadcopter control [41]. Recurrent neural networks have been shown to

be effective tools in online adaptation for an integral sliding mode controller [54],

though the work assumes some knowledge of system parameters. Another work in

[45] used a recurrent neural network to directly identify the system, as opposed to

controlling the system. Other works have used Lyapunov-derived neural network

update laws outside the scope of SMC, where [46] assumes a simplified system

with an identity control effectiveness matrix. Concurrent work to this chapter

also showed that multilayer feed-forward neural networks are effective in an in-

13

tegral sliding mode control scheme [20], where the state regulation problem is

considered. It is shown in [20] that the states of the system are ultimately upper

bounded around the zero state equilibrium point.

With the considerations of modern machine learning described above, this

chapter connects one of the primary tools of machine learning, the multilayer

feed-forward neural network, to the conventional SMC robust control design. The

general control design framework presented is extensible to other neural network

architectures and real-world systems to be controlled. This chapter presents a

novel online-learning-based controller that needs no a priori system parameter

information, is robust to external disturbances, and gives guaranteed tracking

performance and stability. This chapter is some of the first work to provide a

conventional sliding mode controller using adaptive control, neural networks, and

direct parameter estimation with no prior knowledge of system parameters on a

general control-affine system.

2.3 Contributions

The full contributions of this chapter are as follows:

(1) This chapter presents generalized nth-order Lyapunov stability proofs

to derive real-time neural network update laws that are closely related to general

neural network backpropagation. This method results in globally asymptotically

stable trajectory-tracking error, which is an improvement compared to other work

in the literature that achieves ultimately upper bounded state convergence to

a zero equilibrium point [20]. In addition, the work in this chapter addresses

14

systems with an unknown constant control effectiveness matrix, which builds

upon previous work that assumes the control effectiveness matrix to be identity

[46].

(2) This chapter combines the robustness to disturbances and uncertainty

of SMC and direct adaptive control with the approximation power of multilayer

neural networks in a novel, general, lightweight framework that learns a suffi-

cient system dynamic model for control fully online. It is shown that the neural

network learning can reduce chattering by decreasing the discontinuous control

gains, which is widely considered the primary drawback of conventional SMC.

(3) The proposed controller’s effectiveness, generality, and ease of imple-

mentation is validated in an adaptive control problem by controlling a simulated

robotic arm, using no neural network pretraining or further a priori dynamic

modeling. The developed method learns the new system dynamics when an arbi-

trary load on the end effector is applied. The method developed in this chapter

is compared to conventional model-based SMC with a designed load margin on

the end effector, and it is shown that the developed method outperforms conven-

tional model-based SMC when the load applied exceeds the margin built into the

conventional SMC controller. In this scenario, the conventional SMC controller

fails, where the developed controller adapts to the new system dynamics.

(4) The general controlled is extended by a novel eigenspace projection rule

on the coefficient matrix, preserving the symmetric, positive definite property

of the assumed system dynamics. This method is validated in simulation and

compared to the general controller without the eigenspace projection, and it is

15

found that the eigenspace projection on the coefficient matrix seems to attenuate

chatter in some scenarios.

2.4 Notation and Preliminaries

This section presents the notation used in this chapter, the assumed dy-

namics for control derivation, and the basics of neural network function approxi-

mation.

2.4.1 Notation

The notation used in this chapter is specific to this chapter. The set of real

numbers is denoted as R, and the set of positive real numbers is denoted as R+.

Rn denotes the set of real vectors of dimension n× 1, and Rn×m denotes the set

of real matrices of dimension n×m. The nth time t derivative of a variable y(t)

is denoted as y(n) = d(n)y
dt(n) for n ∈ R+, where the first time derivative is denoted

simply as ẏ = y(1) = dy
dt
. The vector L2 norm is denoted as || · ||2. The diagonal

matrix Q ∈ Rn×n with values of the vector q ∈ Rn along the main diagonal is

denoted as diag(q). For vectors a, b ∈ Rn, the elementwise product is denoted as

a⊙ b.

2.4.2 Control Preliminaries

This chapter considers system dynamics of the form

My(n) + f(x) + d(t) = u(t), (2.1)

16

where M ∈ Rm×m is an unknown diagonal constant coefficient matrix, y(n) ∈ Rm

is the nth time derivative of system output, f(x) : Rp → Rm is some unknown

nonlinear system function of state x ∈ Rp to be learned online, d ∈ Rm is an

additive bounded environmental/internal disturbance term; and u ∈ Rm is the

control input.

The tracking error is defined as

e = yd − y, (2.2)

where yd is the desired system trajectory. As discussed above, sliding mode

control is the robust nonlinear control paradigm used in the work of this chapter.

This requires defining a sliding manifold (or variable) that prescribes desired

error performance. That is, when the sliding variable is driven to zero, the error

follows prescribed performance in time – known as ‘reaching” the sliding mode.

The sliding variable used is the filtered tracking error s, written as

s = e(n−1) +
n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i), (2.3)

where λ is a designed diagonal, positive definite matrix. Using the assumed

system in (2.1), the desired controller should drive s → 0 in time. When s = 0,

the controller has reached the sliding mode, where the error dynamics in (2.3)

exponentially converge to zero.

17

2.4.3 Online Function Approximation Using Neural Networks

While constant coefficients such as M in (2.1) can be learned directly

through online parameter adaptation, general nonlinear functions (such as the

state-function portion f(x) in (2.1)) must be learned using a nonlinear function

approximator. Easily-trainable models for general nonlinear function approx-

imation is a highly active research area in the field of machine learning, and

many different methods of nonlinear function approximation and modeling exist

throughout mathematics. In learning-based controls, an ideal function approxi-

mator is accurate, easy to update/tune, and computationally efficient. The work

in this chapter uses a neural network to learn f(x). Neural networks have ad-

equately modeled many nonlinear functions in a variety of data-driven machine

learning settings, with policy and value function representation in reinforcement

learning being of particular relevance to the work described in this chapter.

The simple neural network used in this chapter consists of three layers: an

input layer, a hidden layer, and an output layer. Neural networks of this architec-

ture can universally approximate a nonlinear function to an arbitrary error bound

ϵB, as described by the universal approximation theorem [30]. Mathematically,

this is represented as

f(x) = W Tσ
(
V Tx

)
+ ϵ (x) , (2.4)

where x ∈ Rp is the input vector, V ∈ Rp×nH is the matrix of weights connecting

the input layer and the hidden layer, σ(·) is a nonlinear activation function, and

18

W ∈ RnH×m is the matrix of weights connecting the hidden layer and the output

layer, and ϵ (x) is an approximation error bounded by ||ϵ (x) ||2 ≤ ϵB. Almost all

modern artificial neural networks employ neurons that contain a multiplicative

weight and an additive bias, modeled after the perceptron [4]. The work in this

chapter follows [35], appending a 1 to the input vector x and a constant first-term

of 1 in the activation vector σ
(
V Tx

)
to incorporate bias terms in the network.

This allows the update rules of the weightsW and V to also update the respective

bias vectors. For simplicity of notation, it is hereafter assumed that the dimension

of the state vector x ∈ Rp includes the appended 1.

Using this neural network to approximate the state function gives

f̂(x) = Ŵ Tσ
(
V̂ Tx

)
, (2.5)

where Ŵ and V̂ are the current weight estimates. The work of this chapter uses

the sigmoid function for the activation function σ(·), written as

σ (z) =
1

1 + e−z
. (2.6)

The activation function is performed elementwise on its input vector. The sigmoid

function is commonly used due to its continuity, its boundedness, and its simple

derivative, which is needed for the update rule of the neural network weights. The

derivative of the sigmoid function with respect to argument z is

σ′ (z) = σ (z) (1− σ (z)) , (2.7)

19

which is easily implemented and computationally efficient, since the quantity σ (z)

is already calculated from the forward pass of the neural network.

The update rules for Ŵ and V̂ will be developed and discussed in the

following sections.

2.5 Controller

As described above, the desired controller drives the sliding variable s→ 0

in time by learning online the nonlinear system function f(x) and constant pa-

rameter matrix M . When designing an online-learning based controller, the con-

troller must be stable and performing within error tolerances while the controller

is still learning about the system (i.e., before the learned parameters/functions

have converged). This is a crucial aspect of applying learning-based controllers

to unstable aerospace systems, such as quadcopters. As will be seen in Chapter

3, if there is no neural network pretraining or nonlinear control term in the con-

trol law, the quadcopter would initially fail to fly. Considering the controller’s

current estimates of system parameters and functions as system modeling errors,

a model-based control term that is robust to model uncertainties can be used to

stabilize the system in the outer loop before (and during) learning convergence.

In this chapter, it is only assumed that the system dynamics follow the

form of (2.1) and that the disturbance term δ(t) = da(t)+d, to be defined below,

is bounded by a constant vector ∆ = [∆1,∆2, . . . ,∆m]
T , such that |δi(t)| ≤ ∆i

for ∀t ≥ 0; i = 1, 2, . . . ,m. To simplify notation, a reference output yr is defined

such that

20

y(n)r = y
(n)
d +

n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i+1). (2.8)

The model-based control paradigm used in this controller is sliding mode

control, which is a well-developed model-based control methodology that is ro-

bust to model uncertainties and disturbances [16]. In conventional variable struc-

ture/sliding mode control, to achieve the sliding mode goal of s = 0, s is typically

evolved by a nonlinear, discontinuous function. Typically, the signum function

ṡ = −Ksign(s) is used, whereK is some positive gain. The discontinuity in ṡ can

cause chattering in real-world actuators due to their operation on discrete time

intervals. Chatter can be mitigated by using a boundary layer, which resolves the

discontinuity in ṡ by linearizing ṡ about some small boundary layer thickness ϕ.

The sat(·) function, shown below in (2.9) and used in the controller developed in

this chapter, concisely implements this idea:

sat(s/ϕ) =

sign(s) if |s| > ϕ

s
ϕ

if |s| ≤ ϕ.

(2.9)

Note that the boundary layer thickness ϕ is a hyperparameter, tuned for desired

accuracy while attenuating chatter.

The control law proposed in this chapter is

u = M̂y(n)r + f̂(x) + η ⊙ sat(s/ϕ), (2.10)

21

where M̂ is the current estimate of M , f̂(x) is the current estimate of the system

state function f(x), and η ∈ Rm is a positive gain vector tuned for performance

and assisting in initial learning convergence.

The current estimate of M is adapted by

˙̂
M = Hy(n)r sT , (2.11)

whereH ∈ Rm×m is a diagonal, positive definite gain matrix tuned for the learning

and stability of M .

The system state function f̂(x) is approximated using the neural network

given in (2.5) with sigmoid activation functions as described in Section 2.4.3.

Denoting the hidden layer activation function with current weight estimates as

σ̂ = σ(V̂ x) and its derivative as σ̂′ = σ′(V̂ x) = σ̂(1− σ̂), the online update rules

for the neural network weight matrices are given as

˙̂
W = Fσ̂sT (2.12)

˙̂
V = GxsT Ŵ T σ̂′, (2.13)

where F ∈ RnH×nH and G ∈ Rp×p are diagonal, positive definite update gain

matrices tuned for learning and stability, and x is the input vector to the neural

network. The hidden layer activation derivative is implemented using matrix

multiplication as σ̂′ = diag(σ̂)(I − diag(σ̂)), where I is the identity matrix. A

block diagram of the controller structure is shown in Figure 2.1. The following

22

section shows the derivation and equilibrium stability of these update rules by

the Lyapunov direct method of stability analysis.

Figure 2.1: Block diagram of the online neural sliding mode controller structure.

2.6 Stability Analysis of the Developed Controller

To construct a Lyapunov function candidate, consider the objective for

the controller: to drive the sliding variable s → 0 by learning relevant system

parameters. The relevant system parameters set for learning are M̂ and f̂(x),

where f̂(x) is represented by the neural network f̂(x) = Ŵ Tσ(V̂ Tx). Thus, the

goal of this controller is to drive the sliding variable s→ 0 by evolving M̂ , Ŵ , and

V̂ such that M̂ →M , Ŵ → W , and V̂ → V . Lyapunov function candidates must

be scalar and positive definite. Thus, a scalar quantification of matrix error is

needed for the following Lyapunov analysis. The matrix trace operator is related

to the Frobenius norm by

||A||2F = Tr
(
ATA

)
=
∑

a2ij, (2.14)

23

where Tr (·) denotes the matrix trace operator and aij is the (i, j)th component

of matrix A. Thus, a scalar measure of matrix error between the “ideal” matrix

A and the current estimate Â can be written as ||Ã||2F = ||A− Â||2F = Tr
(
ÃT Ã

)
.

Theorem 2.6.1. Let the desired system trajectory, yd, and its n time derivatives

be continuous and bounded. Let δ(t) = da(t) + d(t) be the sum of approxima-

tion/learning error and external disturbance, to be defined. Assuming δ(t) is

upper bounded such that ∀t ≥ 0 : |δi(t)| ≤ ∆, for i = 1, 2, . . . ,m; the dynamical

system in (2.1), the control input in (2.10), and update rules in (2.11), (2.12),

and (2.13); the estimates M̂ , Ŵ , and V̂ are bounded and s→ 0 as t→∞.

Proof. Considering the controller objectives described above, the positive definite

Lyapunov function candidate used for the controller in this chapter is given by

L =
1

2

(
sTMs+ Tr

(
M̃TH−1M̃

)
+ Tr

(
W̃ TF−1W̃

)
+ Tr

(
Ṽ TG−1Ṽ

))
, (2.15)

where M̃ =M − M̂ , W̃ = W − Ŵ , and Ṽ = V − V̂ .

Differentiating (2.15) with respect to time gives

L̇ = sTMṡ+ Tr
(
M̃TH−1 ˙̃M

)
+ Tr

(
W̃ TF−1 ˙̃W

)
+ Tr

(
Ṽ TG−1 ˙̃V

)
(2.16)

since it is assumed that Ṁ = 0. Differentiating (2.3) with respect to time and

using the relation in (2.8), ṡ can be written as

24

ṡ = y(n)r − y(n), (2.17)

where the system in (2.1) can be rewritten in an affine form as

y(n) =M−1 (u(t)− f(x)− d(t)) . (2.18)

Substituting the control law in (2.10) into the system in (2.18) and simplifying,

the relation for ṡ in (2.17) becomes

ṡ = y(n)r +M−1
(
−M̂y(n)r + f(x)− f̂(x)− η ⊙ sat(s/ϕ) + d(t)

)
, (2.19)

which is substituted into the Lyapunov derivative in (2.16) to get

L̇ = sTMy(n)r −sTM̂y(n)r +Tr
(
M̃TH−1 ˙̃M

)
+sT

(
f(x)− f̂(x)

)
+Tr

(
W̃ TF−1 ˙̃W

)
+ Tr

(
Ṽ TG−1 ˙̃V

)
− sTη ⊙ sat(s/ϕ) + sTd(t). (2.20)

The fourth term of (2.20) can be written as

f − f̂ = W Tσ(V Tx)− Ŵ Tσ(V̂ Tx) + ϵ (x) (2.21)

25

from (2.4) and (2.5), where the function arguments of f = f(x) and f̂ = f̂(x)

have been dropped for brevity. Adding and subtracting W Tσ(V̂ Tx) to (2.21) and

simplifying gives

f − f̂ = W T (σ(V Tx)− σ(V̂ Tx)) + (W T − Ŵ T)σ(V̂ Tx) + ϵ (x) . (2.22)

The shorthand notations of σ̃ = (σ(V Tx) − σ(V̂ Tx)) and σ̂ = σ(V̂ Tx) allows

rewriting (2.22) as

f − f̂ = W T σ̃ + W̃ T σ̂ + ϵ (x) , (2.23)

where adding and subtracting another Ŵ T σ̃ gives

f − f̂ = W̃ T σ̃ + Ŵ T σ̃ + W̃ T σ̂ + ϵ (x) . (2.24)

Here, as in [35], a Taylor series expansion is used for the hidden layer

activation function about a given input x:

σ(V Tx) = σ(V̂ Tx) + σ′(V̂ Tx)Ṽ Tx+O
(
(Ṽ Tx)2

)
, (2.25)

where σ̂′ denotes the hidden layer activation derivative and O
(
(Ṽ Tx)2

)
denotes

higher-order terms from the Taylor series expansion. Subtracting σ(V̂ Tx) in (2.25)

and using our shorthand notation gives

26

σ̃ = σ̂′Ṽ Tx+O
(
(Ṽ Tx)2

)
. (2.26)

Substituting (2.26) into the first and second terms of (2.24) renders

f − f̂ = Ŵ T σ̂′Ṽ Tx+ W̃ T σ̂ + da(t), (2.27)

where da(t) is the internal “disturbance” due to neural network approximation

errors and higher-order Taylor series terms, written as

da(t) = W̃ T σ̂′Ṽ Tx+W TO
(
(Ṽ Tx)2

)
+ ϵ (x) . (2.28)

Substituting (2.27) back into the Lyapunov derivative in (2.20) gives

L̇ = sTMy(n)r − sTM̂y(n)r + Tr
(
M̃TH−1 ˙̃M

)
+ sT Ŵ T σ̂′Ṽ Tx+ sT W̃ T σ̂

+ Tr
(
W̃ TF−1 ˙̃W

)
+ Tr

(
Ṽ TG−1 ˙̃V

)
− sTη ⊙ sat(s/ϕ)

+ sT (da(t) + d(t)). (2.29)

The last term in (2.29) shows that the approximation disturbance da(t) act on the

system similar to the external disturbances d(t). This is the motivation of using

a disturbance-rejecting nonlinear control term alongside learning elements – the

learning/approximation error can be considered as a disturbance and rejected by

a robust control term.

27

In general, for column vectors α⃗ and β⃗, the inner product can be written

as the matrix trace of the outer product, α⃗T β⃗ = Tr (β⃗α⃗T). This matrix trace

property allows reordering matrix terms such that unknown variables or parame-

ters can be factored out and combined with other terms. Various terms in (2.29)

can thus be rewritten as

sTMy(n)r = Tr (My(n)r sT) (2.30)

sTM̂y(n)r = Tr (M̂y(n)r sT) (2.31)

sT Ŵ T σ̂′Ṽ Tx = Tr (Ṽ TxsT Ŵ T σ̂′) (2.32)

sT W̃ T σ̂ = Tr (W̃ T σ̂sT). (2.33)

Substituting the relations in (2.30)-(2.33) back into (2.29) gives

L̇ = Tr
(
My(n)r sT

)
− Tr

(
M̂y(n)r sT

)
+ Tr

(
M̃TH−1 ˙̃M

)
+ Tr

(
Ṽ TxsT Ŵ T σ̂′

)
+ Tr

(
W̃ T σ̂sT

)
+ Tr

(
W̃ TF−1 ˙̃W

)
+ Tr

(
Ṽ TG−1 ˙̃V

)
− sTη ⊙ sat(s/ϕ) + sT (da(t) + d(t)). (2.34)

28

The matrix trace operator is a linear operator. Thus, for square matrices A and

B of equal dimension, Tr (A)+Tr (B) = Tr (A+B). This additive trace property

is used to combine like terms in (2.34) to get

L̇ = Tr
(
M̃Ty(n)r sT + M̃TH−1 ˙̃M

)
+ Tr

(
Ṽ TxsT Ŵ T σ̂′ + Ṽ TG−1 ˙̃V

)
+ Tr

(
W̃ T σ̂sT + W̃ TF−1 ˙̃W

)
− sTη ⊙ sat(s/ϕ) + sT (da(t) + d(t)), (2.35)

where the fact M̃T = M̃ = M − M̂ was used to simplify the first term in (2.35).

(2.35) can be factored and rewritten as

L̇ = Tr
(
M̃T

(
y(n)r sT +H−1 ˙̃M

))
+ Tr

(
Ṽ T
(
xsT Ŵ T σ̂′ +G−1 ˙̃V

))
+ Tr

(
W̃ T

(
σ̂sT + F−1 ˙̃W

))
− sTη ⊙ sat(s/ϕ)

+ sT (da(t) + d(t)). (2.36)

Since the “ideal” values of M , V , and W are all assumed to be constant, ˙̃M =

− ˙̂
M , ˙̃V = − ˙̂

V , and ˙̃W = − ˙̂
W . These relations are used to write

29

L̇ = Tr
(
M̃T

(
y(n)r sT −H−1 ˙̂

M
))

+ Tr
(
Ṽ T
(
xsT Ŵ T σ̂′ −G−1 ˙̂V

))
+ Tr

(
W̃ T

(
σ̂sT − F−1 ˙̂

W
))
− sTη ⊙ sat(s/ϕ)

+ sT (da(t) + d(t)). (2.37)

Substituting the update rules (2.11), (2.12), and (2.13) into (2.37) gives

L̇ = −sTη ⊙ sat(s/ϕ) + sT δ(t), (2.38)

which, by evaluating the expanded scalar form, can be combined and rewritten

as

L̇ = sTsat(s/ϕ)⊙ (δ(t)− η), (2.39)

where δ(t) = da(t) + d(t). Note that, according to the definition of sat(s/ϕ) in

(2.9), each term in the inner product si · sat(si/ϕ) ≤ |si|, for i = 1, 2, . . . ,m.

Under the assumption δ(t) is upper bounded such that ∀t ≥ 0 : |δi(t)| ≤ ∆, for

i = 1, 2, . . . ,m; (2.39) simplifies to the inequality relation

L̇ ≤ |s|T (∆− η), (2.40)

where |s|T = [|s1|, |s2|, . . . , |sm|] is an elementwise absolute value. Since L > 0,

selecting gains ηi > ∆, ∀i = 1, 2, . . . ,m forces L̇ ≤ 0. Using LaSalle’s invariance

principle and Barbalat’s lemma, s → 0 as t → ∞; while M̃ , W̃ , and Ṽ are all

30

bounded in time [9, 55, 56]. Further, since M̃ , W̃ , and Ṽ are bounded in time,

the estimates M̂ , Ŵ , and V̂ are also bounded in time.

2.7 Simulation Results

To validate the developed controller and highlight its ability to extend

conventional model-based SMC, a three-link robotic arm was simulated, shown

in Figure 2.2.

q0

q1

q2

Figure 2.2: The simulated three-link manipulator with a revolute base [57].

The joints q = [q0, q1, q2]
T are controlled via torque control by the control law in

(2.10) to track a desired trajectory in the joint space. The desired trajectories for

each joint are given in Table 2.1.

31

Table 2.1: Desired joint trajectories during the simulation.

Joint Trajectory (deg)

q0(t) 60 sin (t/10)
q1(t) 40 sin (t/5) + 40
q2(t) 35 sin (t/8)

The learned coefficient matrix and neural network parameters in the controller

are updated by integrating (2.11), (2.12), and (2.13) at each timestep. Additional

simulation details, including the robot model used, are described in Appendix A.1.

To demonstrate the adaptivity of the controller, the simulated manipulator

picks up a mass with the end effector during the experiment, thereby changing

the mass-moment matrix, M , and state-function, f(x), of the robot’s dynamics

in (2.1). In conventional model-based SMC, a load margin (that the conventional

SMC controller is robust to) is built into the assumed model via mass uncertainty

on the end effector [19]. However, if the mass picked up by the end effector

exceeds this margin, the stability guarantees on the conventional SMC controller

are no longer valid. Within the developed controller, the adaptive elements simply

adjust to the new system dynamics when the external load is applied.

The state vector used as input to the neural network is

x =

[
q0 q1 q2 q̇0 q̇1 q̇2 1

]T
(2.41)

since the robot dynamics are generally known to be functions of joint positions

and joint velocities. The 1 is appended to incorporate a bias as described in

32

Section 2.4.3. The neural network is initialized with all weights sampled from

a uniform distribution on the interval [−0.01, 0.01] with no pretraining, and M̂

is initialized as M̂(t = 0) = diag([0.1, 0.1, 0.1]). This initialization is a rough

estimate of M in the real system dynamics. The robot arm is initialized at

q(t = 0) = [10◦, 50◦, 10◦]T at rest, giving an initial error of 10◦ on each joint. All

hyperparameters used by the developed controller in the simulation are given in

Table 2.2, which were tuned to highlight the learning elements of the controller.

The controller is run at a fidelity of 100 Hz in each simulation.

Table 2.2: Controller hyperparameters used in the simulation.

Hyperparameter Value

η [0.01, 0.001, 0.001]T

ϕ [0.06, 0.002, 0.002]T rad
λ diag([1, 1, 1])
nH 25
F diag([1.5,]× 25)
G diag([0.4,]× 7)
H diag([0.9, 0.9, 0.1])

The model-based conventional robust SMC, implemented for comparison

and labeled “Conventional SMC” in the following plots, is built and tuned to

handle an end effector load margin of up to 0.2 kg. This controller is described

in detail in Appendix A.2.

Two different simulation experiments are presented in this chapter: in

the first experiment, the manipulator end effector picks up a 0.15 kg mass at

t = 30 s, which is well within the designed load margin for the conventional SMC

33

controller. The trajectories over time for each joint are shown in Figure 2.3, the

errors over time for each joint are shown in Figure 2.4, and the sliding variables

over time for each joint are shown in Figure 2.5. To see the adaptation of the

proposed controller over time, the learned values of M̂ and the Frobenius norm

of the neural network layers over time are shown in Figure 2.6. Some plots are

zoomed in to display controller behavior near the zero values.

0 5 10 15 20 25 30 35 40 45 50 55 60
−60

−40

−20

0

20

40

60

q 0
 (d

eg
)

Desired
Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

q 1
 (d

eg
)

Desired
Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−20

0

20

q 2
 (d

eg
)

Desired
Ours
Conventional SMC

Figure 2.3: Joint trajectories over time for the robot arm simulation (0.15 kg mass
loaded onto the end effector at t = 30 s).

34

0 5 10 15 20 25 30 35 40 45 50 55 60
−10

−8

−6

−4

−2

0

e 0
 (d

eg
)

5 10 15 20 25 30 35 40 45 50 55 60−0.2
0.0
0.2

Ours
Con entional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
−10.0

−7.5

−5.0

−2.5

0.0

2.5

e 1
 (d

eg
)

Ours
Con entional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

e 2
 (d

eg
)

Ours
Con entional SMC

Figure 2.4: Joint errors over time for the robot arm simulation (0.15 kg mass loaded
onto the end effector at t = 30 s).

Comparing the controller developed in this chapter with the conventional

SMC controller in Figure 2.4, the conventional controller performs ideally while

unloaded on the interval t ∈ [0, 30) s, due to perfect knowledge of the system

model. Once the end effector is loaded at t = 30 s, steady state error persists

in joints 1 and 2, due to the boundary layer required in the conventional SMC

controller for chatter attenuation – the primary drawback of conventional SMC.

The developed controller is able to adapt to the new load and effectively control

35

0 5 10 15 20 25 30 35 40 45 50 55 60
−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

s 0

5 10 15 20 25 30 35 40 45 50 55 60
−0.005
0.000
0.005

Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
−1.0

−0.5

0.0

0.5

1.0

1.5

s 1

5 10 15 20 25 30 35 40 45 50 55 60
−0.05
0.00
0.05

Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−0.5

0.0

0.5

1.0

1.5

s 2

5 10 15 20 25 30 35 40 45 50 55 60
−0.05
0.00
0.05

Ours
Conventional SMC

Figure 2.5: Sliding variables over time for the robot arm simulation (0.15 kg mass
loaded onto the end effector at t = 30 s).

the arm in all joints to similar performance as the unloaded case. The adaptation

can clearly be seen in Figure 2.6, where the learning elements adjust to the new

load at t = 30 s. In this experiment, the robust advantages of conventional SMC

can clearly be seen, but a strict load margin and system model (including perfect

knowledge of all system parameters) are assumed known a priori in this case.

In the second experiment, the manipulator end effector picks up a 0.5 kg

mass at t = 30 s, which is outside of the designed load margin for the conven-

36

0 5 10 15 20 25 30 35 40 45 50 55 60
0.0995

0.1000

M̂
00

0 5 10 15 20 25 30 35 40 45 50 55 60

0.25

0.50
M̂

11

0 5 10 15 20 25 30 35 40 45 50 55 60
0.10

0.12

M̂
22

0 5 10 15 20 25 30 35 40 45 50 55 60

0.076

0.078

||
̂ V|
| F

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

0.00

0.25

0.50

0.75

1.00

||Ŵ
|| F

Figure 2.6: Learning updates over time for the robot arm simulation (0.15 kg mass
loaded onto the end effector at t = 30 s).

tional SMC controller. This experiment was designed to show how the learning

elements of the developed controller can extend conventional SMC, especially

when controller design margins are violated. Similar to the first experiment, the

trajectories over time for each joint is shown in Figure 2.7, the errors over time

for each joint are shown in Figure 2.8, and the sliding variables over time for each

joint are shown in Figure 2.9. The learned values of M̂ and the Frobenius norm

of the neural network layers over time are shown in Figure 2.10.

37

0 5 10 15 20 25 30 35 40 45 50 55 60
−60

−40

−20

0

20

40

60

q 0
 (d

eg
)

Desired
Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
−40

−20

0

20

40

60

80

q 1
 (d

eg
)

Desired
Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−40

−20

0

20

q 2
 (d

eg
)

Desired
Ours
Conventional SMC

Figure 2.7: Joint trajectories over time for the robot arm simulation (0.5 kg mass
loaded onto the end effector at t = 30 s).

In this experiment, the conventional SMC controller fails to be robust to

the 0.5 kg load on its end effector, as expected, as this mass is outside of the

controller’s designed load margin. Figure 2.8 shows the errors of joints 1 and 2

increasing dramatically at t = 30 s, with joint 1 failing under the moment arm of

the applied load. The developed controller is again able to resume near-nominal

unloaded performance after learning converges on the new dynamics near t = 33

s. In Figure 2.10, both the mass moment matrix and neural network can again be

38

0 5 10 15 20 25 30 35 40 45 50 55 60
−10

−8

−6

−4

−2

0

e 0
 (d

eg
)

5 10 15 20 25 30 35 40 45 50 55 60−0.2
0.0
0.2

Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60

0

20

40

60

80

e 1
 (d

eg
)

Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−10

−5

0

5

e 2
 (d

eg
)

Ours
Conventional SMC

Figure 2.8: Joint errors over time for the robot arm simulation (0.5 kg mass loaded
onto the end effector at t = 30 s).

seen to adjust to the increased load at t = 30 s. Note that the general shape of the

updates in Figure 2.10 closely follows the shape of the updates in Figure 2.6 for

the 0.15 kg case, but with differing magnitudes, since the applied load is different.

For general remarks, it should be noted that while the proposed controller

assumes system dynamics following (2.1), no other a priori modeling of the sys-

tem parameters is required to implement the developed controller. A large ben-

efit of the developed controller comes with control of systems that are complex

39

0 5 10 15 20 25 30 35 40 45 50 55 60

−0.06

−0.04

−0.02

0.00

0.02

s 0
Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

s 1

Ours
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−0.5

0.0

0.5

1.0

1.5

s 2

5 10 15 20 25 30 35 40 45 50 55 60−0.05
0.00
0.05

Ours
Conventional SMC

Figure 2.9: Sliding variables over time for the robot arm simulation (0.5 kg mass
loaded onto the end effector at t = 30 s).

and difficult to model: the adaptive elements of the proposed controller learn a

suitable model for control fully online, removing the need for expensive system

identification.

Further, during testing of the proposed controller, the benefit of chatter

attenuation using the neural network term was discovered. In the above experi-

ments, the developed controller was tuned for adaptation over control accuracy,

to showcase a possible scenario where the adaptive SMC prevails over conven-

40

0 5 10 15 20 25 30 35 40 45 50 55 60

0.1000

0.1005

M̂
00

0 5 10 15 20 25 30 35 40 45 50 55 60

0.5

1.0

M̂
11

0 5 10 15 20 25 30 35 40 45 50 55 60
0.10

0.12

M̂
22

0 5 10 15 20 25 30 35 40 45 50 55 60

0.08

0.09

0.10

0.11

||
̂ V|
| F

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

0.0

0.5

1.0

1.5

2.0

||Ŵ
|| F

Figure 2.10: Learning updates over time for the robot arm simulation (0.5 kg mass
loaded onto the end effector at t = 30 s).

tional robust SMC. When the developed controller is tuned for control accuracy

versus adaptation, the neural network term in the controller allows a low gain, η,

on the SMC term in (2.10). With a low gain on the discontinuous SMC term, a

low boundary layer value, ϕ, can be used to prevent chattering. This analysis can

be seen mathematically in the Lyapunov proof of Theorem 2.6.1 by assuming the

dynamics of (2.1) to be slightly modified to

41

My(n) + f ′(x) + d(t) = u(t)

such that f(x, d) = f ′(x) + d(t) is a new grouped state function and disturbance

term to be approximated online by the NN. Following similar analysis to the proof

of Theorem 2.6.1 and assuming da is upper bounded such that ∀t ≥ 0 : |da| ≤ ∆a,

for i = 1, 2, . . . ,m; (2.39) simplifies to the inequality relation

L̇ ≤ |s|T (∆a − η),

where da is the approximation error of the NN due to higher-order effects and

finiteness as defined in (2.28). Thus, selecting gains ηi > ∆a, ∀i = 1, 2, . . . ,m

guarantees L̇ ≤ 0. The neural network term in the proposed controller effectively

learns to compensate for the terms f(x) + d(t) in (2.1). Further, during imple-

mentation, da decreases over time as the NN learns over time, thus requiring a

lower gain η over time for guaranteed convergence. This lower-gain requirement is

the source of the reduced chatter that was experienced during the simulation and

testing of the developed controller. The methodology described in this chapter

can thus result in an overall higher control accuracy while alleviating chatter, the

primary drawback of switching controllers such as SMC.

2.8 Extension: Control with Nondiagonal M Estimation

Note that the controller developed in the chapter above assumes the coef-

ficient matrix M in (2.1) to be constant and diagonal. While this assumption is

42

reasonable from a controls approximation perspective, it is desirable to preserve

as much a priori structure in the dynamics as possible to simplify the learn-

ing problem. This is especially true in the online learning problem for control

considered in this chapter, since efficient computation and fast convergence are

necessary for effective control of real-world systems. This section thus details

extending the developed controller above to include systems that are accurately

modeled by (2.1) with a symmetric, positive definite coefficient matrix M . The

symmetric, positive definite M is consistent with serial robotic arms and other

physical systems [57].

2.8.1 Extended Control and Update Laws

This section assumes the system dynamics given in (2.1) with a constant,

symmetric, positive definite, unknown coefficient matrix M . The central idea of

the control law extension is to map (or project) the current estimate of M , M̂ , to

an allowable set of symmetric positive definite matrices. The general control law

of (2.10) is thus modified as

u = M̄y(n)r + f̂(x) + η ⊙ sat(s/ϕ), (2.42)

where M̄ is the current projected estimate of M , to be described below. The

NN weight update laws of (2.12) and (2.13) are used, with the evolution of the

estimate M̂ modified to

˙̂
M =

γ

2

(
y(n)r sT + s(y(n)r)T

)
+H(M̂ − M̄) + (M̂ − M̄)H, (2.43)

43

where γ ∈ R+ is a constant design gain and H ∈ Rm×m is now a constant design

diagonal Hurwitz matrix [58, 59]. Note that the update in (2.43) is symmetric as

required. Assuming the spectral decomposition of M̂ = U Λ̂UT where Λ̂ = diag(λ̂)

and λ̂ = [λ̂1, λ̂2, . . . , λ̂m]
T , the projection of the estimate M̂ to the symmetric

positive definite estimate M̄ is found as

M̄ = U Λ̄UT , (2.44)

where Λ̄ = diag(clip(λ̂)) is constructed by projecting the spectrum of M̂ in the

defined allowable eigenspace λi ∈ [αpd, βpd]:

clip(λ̂) =

βpd if λ̂i > βpd

αpd if λ̂i < αpd

λ̂i otherwise

(2.45)

for i = 1, 2, . . . ,m; where αpd, βpd are positive finite constants. This update rule

ensures the symmetric and positive definiteness of the estimate ofM to be within

the predefined eigenvalue bounds.

2.8.2 Stability Analysis of the Extended Controller

The control goals of the controller given in (2.42) with the update rules

given in (2.43), (2.12), and (2.13) remain the same as in Section 2.6. The Lya-

punov function candidate must be slightly modified to incorporate the bound-

edness of the clipped positive definite estimate, M̄ . To show this, the following

44

lemma is required to establish positive definiteness of the Lyapunov function can-

didate to be used in the stability proof.

Lemma 2.8.1. Let the unknown coefficient matrix M of the dynamical system in

(2.1) be symmetric and positive definite, with eigenvalues λ = [λ1, λ2, . . . , λm]
T .

Let λi ∈ [αpd, βpd] for i = 1, 2, . . . ,m; where αpd, βpd are positive finite constants.

The function

Lpd = Tr
(
(M − M̂)2 − (M̂ − M̄)2

)
(2.46)

is positive definite such that Lpd ≥ 0, with Lpd = 0 occurring at M = M̂ = M̄ .

Proof. The Lyapunov function candidate in (2.46) can be expanded as

Lpd = Tr
(
M2 − 2MM̂ − M̄2 + 2M̂M̄

)
, (2.47)

where the fact that M =MT , M̂ = M̂T , and M̄ = M̄T has been used to combine

like terms. Adding and subtracting M̄2 + 2MM̄ to (2.47) gives

Lpd = Tr
(
M2 − 2MM̂ − M̄2 + 2M̂M̄ + M̄2 + 2MM̄ − M̄2 − 2MM̄

)
, (2.48)

which can be combined to render

Lpd = Tr
(
(M − M̄)2 + 2(M − M̄)(M̄ − M̂)

)
. (2.49)

The matrix trace is a linear mapping, which allows (2.49) to be written as

45

Lpd = Tr
(
(M − M̄)2

)
+ 2Tr

(
(M − M̄)(M̄ − M̂)

)
. (2.50)

The first term in (2.50) is quadratic and clearly positive for all M̄ ̸= M . Using

the spectral decompositions M = VmΛV
T
m , M̂ = U Λ̂UT , and M̄ = U Λ̄UT , the

trace part of the second term in (2.50) can be written as

Tr
(
(M − M̄)(M̄ − M̂)

)
= Tr

(
(VmΛV

T
m − U Λ̄UT)(U Λ̄UT − U Λ̂UT)

)
. (2.51)

Note that, since M is real and symmetric, M is also Hermitian. Since M is

Hermitian, the eigenbasis U is orthogonal, such that UUT = UTU = I. Using

this fact, (2.51) can be simplified to

Tr
(
(M − M̄)(M̄ − M̂)

)
= Tr

(
(UTVmΛV

T
mU − Λ̄)(Λ̄− Λ̂)

)
. (2.52)

The eigenvalues of the unprojected estimate M̂ can belong to one of three par-

titions on the eigenspace: Ω− = {i | λ̂i < αpd}, Ω = {i | αpd ≤ λ̂i ≤ βpd}, or

Ω+ = {i | λ̂i > βpd} [59]. In the set Ω−, the eigenvalues of M̄ are projected via

(2.45) to the lower bound αpd such that λ̄i = αpd. In the set Ω, the eigenvalues of

M̄ are unprojected via (2.45) such that λ̄i = λ̂i. In the set Ω+, the eigenvalues of

M̄ are projected via (2.45) to the upper bound βpd such that λ̄i = βpd. On these

three partitions, the trace in (2.52) can thus be written in summation form

46

Tr
(
(M − M̄)(M̄ − M̂)

)
=
∑
i∈Ω−

(λi − αpd)(αpd − λ̂i) +
∑
i∈Ω

(λi − λ̂i)(λ̂i − λ̂i)

+
∑
i∈Ω+

(λi − βpd)(βpd − λ̂i), (2.53)

where it can easily be seen that the second term in (2.53) is zero. Since it is

assumed that λi ∈ [αpd, βpd] and λ̂i < αpd for i ∈ Ω−, the first term in (2.53)

is nonnegative. Similarly, since λi ∈ [αpd, βpd] and λ̂i > βpd for i ∈ Ω+, the

third term in (2.53) is also nonnegative. Thus, the second term in (2.50) is

entirely nonnegative. This shows that the Lyapunov candidate function in (2.46)

is positive definite such that Lpd ≥ 0 with equality Lpd = 0 occurring at M =

M̂ = M̄ .

Theorem 2.8.2. Let the desired system trajectory, yd, and its n time derivatives

be continuous and bounded. Let δ(t) = da(t) + d(t) be the sum of approxima-

tion/learning error and external disturbance, to be defined. Assuming δ(t) is

upper bounded such that ∀t ≥ 0 : |δi(t)| ≤ ∆, for i = 1, 2, . . . ,m; the dynamical

system in (2.1), the control input in (2.42), and update rules in (2.43), (2.12),

and (2.13); the estimates M̄ , M̂ , Ŵ , and V̂ are bounded and s→ 0 as t→∞.

Proof. Consider the composite Lyapunov function candidate of

47

L =
1

2

(
sTMs+

1

γ
Lpd + Tr

(
W̃ TF−1W̃

)
+ Tr

(
Ṽ TG−1Ṽ

))
, (2.54)

where the notation W̃ = W − Ŵ , and Ṽ = V − V̂ is again used, with Lpd defined

in (2.46).

Differentiating (2.54) with respect to time gives

L̇ = sTMṡ+
1

2γ
L̇pd + Tr

(
W̃ TF−1 ˙̃W

)
+ Tr

(
Ṽ TG−1 ˙̃V

)
. (2.55)

The system in (2.1) can be rewritten using the sliding variable as Mṡ =My
(n)
r +

f + d− u. Substituting the control law in (2.42) into this relation gives

Mṡ = M̃y(n)r + f(x)− f̂(x)− η ⊙ sat(s/ϕ) + d(t), (2.56)

where the notation M̃ = M − M̄ is used. The relation in (2.56) is substituted

into the Lyapunov derivative in (2.55) to get

L̇ = sTM̃y(n)r +
1

2γ
L̇pd + sT

(
f(x)− f̂(x)

)
+ Tr

(
W̃ TF−1 ˙̃W

)
+ Tr

(
Ṽ TG−1 ˙̃V

)
− sTη ⊙ sat(s/ϕ) + sTd(t). (2.57)

Following similar analysis from the proof of Theorem 2.6.1, (2.57) can be rewritten

as

48

L̇ = Tr
(
M̃Ty(n)r sT

)
+

1

2γ
L̇pd + Tr

(
Ṽ T
(
xsT Ŵ T σ̂′ +G−1 ˙̃V

))
+ Tr

(
W̃ T

(
σ̂sT + F−1 ˙̃W

))
− sTη ⊙ sat(s/ϕ)

+ sT (da(t) + d(t)), (2.58)

where the third and fourth terms in (2.58) are equal to zero using the NN weight

adaptation laws given in (2.12) and (2.13) and da(t) is defined in (2.28). Using

Lemma 2 of [59] and the update law in (2.43), the derivative of the composite

part of the Lyapunov function L̇pd is upper bounded such that

L̇pd ≤ 2γ Tr

(
−M̃

2

(
y(n)r sT + s(y(n)r)T

))
. (2.59)

Substituting the relation in (2.59) into (2.58) and the NN update rules in (2.12)

and (2.13), the Lyapunov derivative is now bounded by the inequality

L̇ ≤ Tr
(
M̃Ty(n)r sT

)
+ Tr

(
−M̃

2

(
y(n)r sT + s(y(n)r)T

))
− sTη ⊙ sat(s/ϕ)

+ sT (da(t) + d(t)), (2.60)

which, combining the first two terms, can be written as

49

L̇ ≤ Tr

(
M̃T

2

(
y(n)r sT − s(y(n)r)T

))
− sTη ⊙ sat(s/ϕ) + sT (da(t) + d(t)). (2.61)

Note that the matrix M̃T

2
is symmetric, and the matrix y

(n)
r sT − s(y(n)r)T is skew-

symmetric. Since the trace of the product of a symmetric matrix and a skew-

symmetric matrix is zero, the first term of (2.61) is equal to zero. Defining

δ(t) = da(t) + d(t) to be the sum of approximation/learning error and external

disturbance and assuming δ(t) is upper bounded such that ∀t ≥ 0 : |δi(t)| ≤ ∆,

for i = 1, 2, . . . ,m; the inequality relation in (2.61) simplifies to

L̇ ≤ |s|T (∆− η). (2.62)

Since the composite Lyapunov function Lpd in (2.46) is positive definite via

Lemma 2.8.1, the entire Lyapunov function given in (2.54) is positive definite.

The rest of the proof follows from the proof of Theorem 2.6.1, where the bound-

edness of M̂ and M̄ now come from the the composite Lyapunov function in

(2.46).

2.8.3 Simulation Results

For validation and testing of the controller in (2.42) and the positive def-

inite update law in (2.43), the three-link robot arm in Section 2.7 is simulated.

The joints of the robot arm are again controlled via torque control to follow the

50

desired joint space trajectory given in Table 2.1. The control law in (2.42) is

used, with the learned parameters updated via (2.12), (2.13), and the projection

in (2.43).

The robot’s end effector is unloaded in the simulation on the interval t ∈

[0, 30) s. As in Section 2.7, two separate experiments are run: a 0.15 kg load placed

onto the end effector at t = 30 s, and a 0.5 kg load placed onto the end effector

at t = 30 s. This is done to show the effectiveness of the developed controller(s)

over conventional model-based SMC with a built-in load margin. To compare

the impact of the positive definite M estimation of the controller described in

Section 2.8 with the diagonalM estimate of the controller described in Section 2.5,

the hyperparameters of the controller with the M projection are left the same as

the non-projected controller when applicable. Relevant hyperparameters of the

M -projection controller are given below in Table 2.3.

Table 2.3: M -projection controller hyperparameters used in the simulation.

Hyperparameter Value

η [0.01, 0.001, 0.001]T

ϕ [0.06, 0.002, 0.002]T rad
λ diag([1, 1, 1])
nH 25
F diag([1.5,]× 25)
G diag([0.4,]× 7)
H diag([−5,−5,−5])
γ 0.9
αpd 0.001
βpd 0.55

51

For the M -projection controller, the state vector input to the NN is given

in (2.41). The NN is initialized with all weights sampled from a uniform dis-

tribution on the interval [−0.01, 0.01] with no pretraining, with M̂(t = 0) =

diag([0.1, 0.1, 0.1]) and q(t = 0) = [10◦, 50◦, 10◦]T at rest, giving an initial error

of 10◦ on each joint.

In the plots below, the controller with update laws described in Section 2.5

is labeled as “ONSMC w/o Proj.,” with all hyperparameters and initializations as

described in Section 2.7 above. The controller with positive definiteM projection

described in Section 2.8 is labeled as “ONSMC w/ Proj.,” and the conventional

non-adaptive SMC described in Section 2.7 and Appendix A.2 is labeled as “Con-

ventional SMC.” Each controller is run at a fidelity of 100 Hz in the simulations.

The trajectories over time for each joint are shown in Figure 2.11, the

errors over time for each joint are shown in Figure 2.12, and the sliding vari-

ables over time for each joint are shown in Figure 2.13. To compare parameter

adaptation of each controller, the Frobenius norm of the coefficient matrix and

the neural network layers over time are shown in Figure 2.14. The eigenvalues of

the projected matrix M̄ are plotted in Figure 2.15. Some plots are zoomed in to

display controller behavior near the zero values.

While both of the controllers developed in this chapter tend to outper-

form conventional SMC in control error when the end effector is loaded, the

M -projection controller does not provide any noticeable reduction in control er-

ror. The primary difference effect of the M -projection can be seen in the learning

plot of Figure 2.14, where the Frobenius norm of M̂ generally remains the same

52

0 5 10 15 20 25 30 35 40 45 50 55 60
−60

−40

−20

0

20

40

60

q 0
 (d

eg
)

Desi ed
ONSMC w/o P oj.
ONSMC w/ P oj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

q 1
 (d

eg
)

Desi ed
ONSMC w/o P oj.
ONSMC w/ P oj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−20

0

20

q 2
 (d

eg
)

Desi ed
ONSMC w/o P oj.
ONSMC w/ P oj.
Conventional SMC

Figure 2.11: Comparison of joint trajectories over time for the robot arm simulation
(0.15 kg mass loaded onto the end effector at t = 30 s).

throughout the simulation. Interestingly, this offloads the learning required to

the first layer of the NN, V̂ . The second layer of the NN, Ŵ , remains the same

in its norm. The output of the first layer of the NN acts as a basis for the second

layer of the NN. The behavior in Figure 2.14 shows that, while the same general

shape of control input is required for the desired trajectory following, the output

magnitude required from the NN term is increased to achieve the same control

effort. In the controller without projection, the Frobenius norm of M̂ clearly

53

0 5 10 15 20 25 30 35 40 45 50 55 60
−10

−8

−6

−4

−2

0

e 0
 (d

eg
)

5 10 15 20 25 30 35 40 45 50 55 60−0.2
0.0
0.2

ONSMC w/o P oj.
ONSMC w/ P oj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
−10.0

−7.5

−5.0

−2.5

0.0

2.5

e 1
 (d

eg
)

ONSMC w/o P oj.
ONSMC w/ P oj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

e 2
 (d

eg
)

ONSMC w/o P oj.
ONSMC w/ P oj.
Conventional SMC

Figure 2.12: Comparison of joint errors over time for the robot arm simulation (0.15
kg mass loaded onto the end effector at t = 30 s).

increases when the end effector is loaded at t = 30 s. Each eigenvalue of M̄ can

be seen in Figure 2.15 to remain in the allowable eigenspace determined by the

eigenprojection of (2.45).

Next, the 0.5 kg load on the end effector at t = 30 s is simulated. Similar to

above, the trajectories over time for each joint are shown in Figure 2.16, the errors

over time for each joint are shown in Figure 2.17, and the sliding variables over

time for each joint are shown in Figure 2.18. The Frobenius norm of the coefficient

54

0 5 10 15 20 25 30 35 40 45 50 55 60
−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

s 0

5 10 15 20 25 30 35 40 45 50 55 60
−0.005
0.000
0.005

ONSMC w/o Proj.
ONSMC w/ Proj.
Con entional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
−1.0

−0.5

0.0

0.5

1.0

1.5

s 1

5 10 15 20 25 30 35 40 45 50 55 60
−0.05
0.00
0.05

ONSMC w/o Proj.
ONSMC w/ Proj.
Con entional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−1.0

−0.5

0.0

0.5

1.0

1.5

s 2

5 10 15 20 25 30 35 40 45 50 55 60
−0.05
0.00
0.05

ONSMC w/o Proj.
ONSMC w/ Proj.
Con entional SMC

Figure 2.13: Comparison of sliding variables over time for the robot arm simulation
(0.15 kg mass loaded onto the end effector at t = 30 s).

matrix and the neural network layers over time are shown in Figure 2.19, and the

eigenvalues of the projected matrix M̄ are plotted in Figure2.20.

For the 0.5 kg case, both of the controllers developed in this chapter again

outperform conventional SMC, which fails when the end effector is loaded by 0.5

kg at t = 30 s. The M -projection controller does not provide any noticeable

reduction in control error for this experiment. Interestingly, a slight reduction in

chatter in the M -projection controller can be seen in Figure 2.18, notably near

55

0 5 10 15 20 25 30 35 40 45 50 55 60

0.2

0.3

0.4

0.5

0.6

||M̂
|| F

0 5 10 15 20 25 30 35 40 45 50 55 60

0.080

0.081

0.082

0.083

||
̂ V|
| F

ONSMC w/o Proj.
ONSMC w/ Proj.

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

||Ŵ
|| F

Figure 2.14: Comparison of learning updates over time for the robot arm simulation
(0.15 kg mass loaded onto the end effector at t = 30 s).

t = 25 s and t = 50 s in s2. Similar to the 0.15 kg experiment, Figure 2.19 again

shows that the Frobenius norm of M̂ remains the same throughout the simulation,

thereby offloading the learning required to the first layer of the NN, V̂ . The second

layer of the NN, Ŵ , again follows the behavior of the non-projected controller.

The eigenvalues of M̄ again remain inside the allowable eigenspace determined

by the eigenprojection of (2.45), as shown in Figure 2.20.

56

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Pr
oj
ec

te
d
Ei
ge

nv
al
ue

s ̄λ0
̄λ1
̄λ2

Bounds

Figure 2.15: Comparison of eigenvalues of the estimate M̄ over time for the robot
arm simulation (0.15 kg mass loaded onto the end effector at t = 30 s).

0 5 10 15 20 25 30 35 40 45 50 55 60
−60

−40

−20

0

20

40

60

q 0
 (d

eg
)

Desi ed
ONSMC w/o P oj.
ONSMC w/ P oj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
−40

−20

0

20

40

60

80

q 1
 (d

eg
)

Desi ed
ONSMC w/o P oj.
ONSMC w/ P oj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−40

−20

0

20

q 2
 (d

eg
)

Desi ed
ONSMC w/o P oj.
ONSMC w/ P oj.
Conventional SMC

Figure 2.16: Comparison of joint trajectories over time for the robot arm simulation
(0.5 kg mass loaded onto the end effector at t = 30 s).

57

0 5 10 15 20 25 30 35 40 45 50 55 60
−10

−8

−6

−4

−2

0

e 0
 (d

eg
)

5 10 15 20 25 30 35 40 45 50 55 60−0.2
0.0
0.2

ONSMC w/o Proj.
ONSMC w/ Proj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60

0

20

40

60

80

e 1
 (d

eg
)

ONSMC w/o Proj.
ONSMC w/ Proj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time ()

−10

−5

0

5

e 2
 (d

eg
)

ONSMC w/o Proj.
ONSMC w/ Proj.
Conventional SMC

Figure 2.17: Comparison of joint errors over time for the robot arm simulation (0.5
kg mass loaded onto the end effector at t = 30 s).

58

0 5 10 15 20 25 30 35 40 45 50 55 60

−0.06

−0.04

−0.02

0.00

0.02

0.04

s 0

ONSMC /o Proj.
ONSMC / Proj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

s 1

ONSMC /o Proj.
ONSMC / Proj.
Conventional SMC

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

−1.0

−0.5

0.0

0.5

1.0

1.5

s 2

5 10 15 20 25 30 35 40 45 50 55 60−0.05
0.00
0.05

ONSMC /o Proj.
ONSMC / Proj.
Conventional SMC

Figure 2.18: Comparison of sliding variables over time for the robot arm simulation
(0.5 kg mass loaded onto the end effector at t = 30 s).

59

0 5 10 15 20 25 30 35 40 45 50 55 60
0.2

0.4

0.6

0.8

1.0

||M̂
|| F

0 5 10 15 20 25 30 35 40 45 50 55 60
0.08

0.09

0.10

0.11

0.12

0.13

0.14

||
̂ V|
| F

ONSMC w/o Proj.
ONSMC w/ Proj.

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

0.0

0.5

1.0

1.5

2.0

||Ŵ
|| F

Figure 2.19: Comparison of learning updates over time for the robot arm simulation
(0.5 kg mass loaded onto the end effector at t = 30 s).

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Pr
oj
ec

te
d
Ei
ge

nv
al
ue

s ̄λ0
̄λ1
̄λ2

Bounds

Figure 2.20: Comparison of eigenvalues of the estimate M̄ over time for the robot
arm simulation (0.5 kg mass loaded onto the end effector at t = 30 s).

60

Chapter 3. Online Learning-Based Control of Spacecraft

and Quadcopters

This chapter discusses progress in expanding the AI/ML-based online

adaptive controllers developed in Chapter 2 for learning-based control of aerospace

systems. The two aerospace control problems discussed are rigid-body spacecraft

attitude control and full quadcopter control. Both of these problems present

unique aspects of the developed controller, including reformulating the sliding

manifold, virtual control inputs, varying-order controllers, and particular tuning.

This chapter is adapted from the work “Stable Online Learning-Based Adaptive

Control of Spacecraft and Quadcopters,” by Jacob G. Elkins, Farbod Fahimi, and

Rohan Sood, presented at the 2024 IEEE Aerospace Conference in Big Sky, MT,

where it won best paper in the Software and Computing track [60].

3.1 Introduction

Aerospace systems routinely perform difficult tasks in diverse and uncer-

tain environments. The controllers of these systems must be adaptive to un-

foreseen internal and external disturbances and changes online, during operation.

This chapter builds off Chapter 2’s central idea of incorporating nonlinear sta-

bilizing elements into the control law for safe and stable online learning. The

61

learning elements allow adaptation, while the nonlinear control elements stabilize

the system during initial learning and reject disturbances after learning converges.

To demonstrate the versatility and various application intricacies of the proposed

controller, two common aerospace control problems are considered: rigid-body

spacecraft attitude control and quadcopter control. In spacecraft attitude con-

trol, the sliding variable used must be slightly modified from the general case to

guarantee minimum-distance slews for quaternion trajectory tracking. A satellite

sky-scanning problem is described and simulated to verify the attitude controller.

In quadcopter control, the full controller is divided into two second-order and

one fourth-order sub-controllers via virtual control inputs. The quadcopter dy-

namics are formulated to match the assumptions of the general controller with

minimal assumptions. A three-dimensional figure eight trajectory tracking prob-

lem is simulated to verify the full quadcopter controller, which effectively controls

the position and yaw of the quadcopter under wind and other aerodynamic ef-

fects. Both applications of the developed controller require minimal tuning and

modeling relative to conventional model-based approaches by simplifying com-

plicated state functions into online neural network approximations, rendering a

highly accurate and robust controller.

3.2 Background and Literature Review

Modern aerospace systems must be controlled with high accuracy and

disturbance rejection within uncertain, dynamic environments. Spacecraft must

closely follow planned trajectories to point onboard sensors and antennae for

62

observation and communication, while rejecting complicated disturbances such

as atmospheric drag, gravity-gradient torque, and solar radiation pressure [61].

Unmanned aerial vehicles (UAVs) must stably maneuver in complex indoor and

outdoor environments, under gusty winds and other aerodynamic effects, to per-

form a multitude of useful tasks [62]. The fields of adaptive and robust control

emerged in response to development of these complex systems and their challeng-

ing control requirements, with control systems “learning” and adapting over time

to new circumstances during operation [63]. Today, adaptive control remains a

critical and highly active research area, with work being done to find better ways

to efficiently and effectively control these complex systems under uncertainty and

unknown disturbances.

As described throughout this dissertation, the two fields of AI/ML and

adaptive control have many obvious connections and relations [10]. A critical

piece of study in modern AI/ML is that of explainable AI, which seeks to un-

derstand and derive more information out of traditionally black-box approaches

(such as deep learning [1]). In control theory, controllers must be proven mathe-

matically to drive control variables to desired values under certain assumptions.

Thus, controllers using black-box AI/ML instruments must incorporate those in-

struments in a provably stable manner. Common methods to stabilize and bound

training in ML include various forms of regularization and normalization (as will

be discussed in Chapter 5) [64, 65], with some learning stability guarantees given

in works such as [25–27, 43–45, 66, 67].

63

In this chapter, ML and adaptive control are combined fully online specif-

ically for the control of spacecraft and quadcopters. As described in Chapter 2,

when learning a suitable model for control fully online, the phase of control be-

fore the learned parameters have converged becomes difficult, with learned models

exhibiting stability and performance issues [68]. This is particularly true for sys-

tems such as quadcopters, where any instability could cause a crash during flight.

Sliding mode control (SMC), the highly-robust nonlinear control methodology, is

again used in this controller to stabilize the system during learning convergence

[16]. Notable early work including SMC with online-learned models includes [69],

which uses a neural network trained with a version of backpropagation. Other

works employing similar strategies of Lyapunov-based neural network evolution

and control laws include [20, 35, 52, 70]. In this chapter, the proofs and neural

network update laws in [35] are extended to include the disturbance-rejecting ro-

bustness of conventional SMC in a novel online adaptation and control framework

specifically for aerospace control systems.

Two common problems in aerospace control are considered in this chapter

to showcase the previously-developed controller: spacecraft attitude control and

quadcopter UAV control. These problems are studied due to their differences

in relative degree and control variable parameterization. For example, space-

craft attitude can be represented in many different ways, such as Euler angles,

quaternions, or modified Rodrigues parameters [61]. Thus, the sliding variable

(or manifold) and other small factors must be chosen carefully for desirable con-

trol performance. Notable previous work in learning-based adaptive control for

64

spacecraft attitude includes [71], which uses a direct parameter adaptation law

in a sliding spacecraft attitude controller. A basis function neural network with

only one layer is used in [49], with a similar control law used to control spacecraft

attitude under actuator faults and saturation. Quadcopter UAVs are increasingly

popular UAV platforms across many applications, due to their high maneuver-

ability and ease of use [72]. The control of quadcopters is not straightforward,

as quadcopters are generally an underactuated system, with four inputs (the four

rotor speeds) to six degrees of freedom (three position and three attitude). Re-

lated works using learning-based SMC for quadcopter control include [40, 41, 73].

In [73] and [40], radial basis function networks are used with fast-terminal SMC

to achieve desirable control performance for quadcopter UAVs. In [41], a simi-

lar scheme with neural networks adapted online is incorporated with numerical

differentiation.

3.3 Contributions

The contribution of this chapter is the derivation of an applicable provably-

stable online learning-based control law for control of aerospace systems from the

novel general controller developed in Chapter 2 [11]. Motivated by the results in

[74] and [75], the spacecraft attitude controller proposed in [74] produced from

pure reinforcement learning has no rigorous stability guarantees. However, the

advanced and adaptive behavior of the learning-based controller proposed in [74]

is desirable. Further, the quadcopter controller derived in [75] is highly adap-

tive. Combining these works, this chapter describes the derivation, application,

65

and tuning of a novel controller of spacecraft and quadcopters from the gen-

eral robotic arm controller in Chapter 2. The implementation details specific

to aerospace control, including reparameterizing the sliding variable and using

control subsystems with virtual control inputs, are described in this chapter.

3.4 Notation and Preliminaries

This section describes the theory of the general controller, including the

system dynamics assumed, error formulation, control law, update rules, and neu-

ral network basics. The proof of asymptotic convergence to the origin and learned

parameter boundedness is also given in this section. This general controller will be

extended to both the spacecraft attitude control problem and the full quadcopter

control problem, described throughout this chapter.

3.4.1 Notation

The notation used in this chapter is specific to this chapter. The set of real

numbers is denoted as R, where Rm denotes a real-valued vector of dimension m

and Rm×n denotes a real-valued matrix of dimension m × n. The set of positive

real numbers is denoted as R+. The nth time derivative of some variable y is

denoted as y(n) = dny
dtn

. As shorthand for time derivatives, the notation y(1) = ẏ,

y(2) = ÿ, y(3) =
...
y , and y(4) =

....
y is used. The zero matrix of dimension m× n is

denoted as 0m×n, and the identity matrix of dimension m×n is similarly denoted

as Im×n.

66

3.4.2 Control Preliminaries

The general controller again assumes general nth order dynamics of the

form

My(n) + f(x) + d(t) = u(t), (3.1)

where M ∈ Rm×m is a diagonal coefficient matrix, y(n) ∈ Rm is the nth time

derivative of the system output, f(x) : Rp → Rm is a nonlinear function of state

x ∈ Rp, d ∈ Rm is a bounded disturbance; and u ∈ Rm is the system control

input. While this dynamics model is typical of serial robotic arms as discussed in

Chapter 2 [57], the form in (3.1) is easily reachable in spacecraft and quadcopter

applications [9, 26].

This chapter considers trajectory-tracking control, since regulation can

easily be derived from trajectory tracking formulations with zero (or constant)

predefined trajectories. The coefficient matrix M and the state function f(x) is

assumed to be unknown a priori and the system disturbance d(t) is assumed to

be bounded in magnitude, described in-depth in the stability proof below.

Defining tracking error as e = yd−y, where yd is the desired system output

trajectory, the nth-order filtered error is written as

s = e(n−1) +
n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i), (3.2)

where λ is a positive definite diagonal design matrix for desired error convergence.

67

Since the coefficient matrix, M , and the state function, f(x), are assumed

to be unknown, the control goal is to approximate these quantities fully online for

a controller that drives s→ 0 asymptotically. As can be seen in (3.2), when s = 0,

e approaches zero exponentially. Since the coefficient matrix, M , is assumed

constant, direct parameter estimation can be used for its online approximation,

while general nonlinear function approximation (such as neural networks) must

be used for the state function, f(x). However, with no initial pretraining of f(x)

or a poor initial guess ofM , an online learning-based controller could be prone to

initial instability and poor performance, which is highly undesirable in aerospace

systems such as spacecraft and quadcopters. Thus, the controller must be robust

to initial learning error while rejecting external disturbances during and after

learning convergence.

For the nonlinear robustifying term in the general controller of this chapter,

sliding mode control (SMC) is used [16]. The adaptivity of learning and the

robustness of SMC is combined in the following general control law, extended

throughout the rest this chapter:

u = M̂y(n)r + f̂(x) + (D + η) sat(s/ϕ), (3.3)

where M̂ is the learned online estimate of M , f̂(x) is the learned online estimate

of the state function f(x), D ∈ R+ is an elementwise upper bound on disturbance

to be discussed in-depth later, and η ∈ R+ is a control gain tuned for robustness

(especially during initial learning). The reference output y
(n)
r is a desired output

shifted by a variant of the filtered error, used to simplify notation, written as

68

y(n−1)
r = y

(n−1)
d +

n−2∑
i=0

(
n− 1

i

)
λn−i−1e(i) (3.4)

since ṡ = y
(n)
r − y(n). The sat(·) function is a continuous approximation of the

switching control of sign(·), designed to attenuate chatter in both simulation and

real-world systems [9]:

sat(s/ϕ) =

sign(s) if |s| > ϕ

s
ϕ

if |s| ≤ ϕ,

(3.5)

where ϕ is a boundary layer thickness value, tuned to limit chatter for a desired

control error.

As discussed above, since the state function f(x) is assumed to be any

general nonlinear function, a general nonlinear function approximation instrument

is required. Thus, the learned state function, f̂(x), is parameterized by a simple

neural network (NN) in this chapter, represented as

f̂(x) = Ŵ Tσ(V̂ Tx) (3.6)

where x ∈ Rp is the NN input vector, V ∈ Rp×nH is the first layer of NN weights,

W ∈ RnH×m is the second layer of weights, nH is the number of “hidden” neurons,

and σ(·) is a nonlinear activation function. The sigmoid function σ(z) = 1/(1 +

e−z) is used as the nonlinear activation, due to its continuous differentiability and

ease of derivative calculation (dσ(z)/dz = σ′ = σ(z)(1 − σ(z))). A constant 1 is

appended to the NN input x and the hidden input σ(V̂ Tx) = σ̂ to account for

69

additive bias terms in the NN, such that any tuning to Ŵ and V̂ also tunes the

corresponding bias.

The following update rules for the learned parameters are used in this

chapter:

˙̂
W = Fσ̂sT∆ (3.7)

˙̂
V = GxsT∆Ŵ

T σ̂′ (3.8)

˙̂
M = Hy(n)r sT∆, (3.9)

where s∆ = s − ϕsat(s/ϕ) is an algebraic distance of the sliding variable to the

boundary layer; F ∈ RnH×nH , G ∈ Rp×p, and H ∈ Rm×m are each diagonal gain

matrices tuned for learning. Note that the variable s∆ is used in the update

rules of this chapter (versus s in (2.3) of Chapter 2). This basically stops the

adaptation of learning elements at the boundary layer such that the nonlinear

control term can drive the system from the boundary layer closer to the s = 0

equilibrium point for added stability. Further note that the NN weight update

rules in Equations (3.7) and (3.8) are the familiar equations of minimizing mean

squared error via backpropagation, with s∆ replacing error.

The implementation of the general controller hence relies on converting the

system to be controlled into the form given in (3.1). As will be shown throughout

this chapter, this can sometimes be done directly (as in the spacecraft attitude

control case), or using a combination of virtual control inputs and control sub-

systems with differing relative degrees (as in the quadcopter case). In the next

70

subsection, the stability of the control law in (3.3) with the update rules given in

Equations (3.7)-(3.9) will be shown.

3.4.2.1 Stability of the General Controller

Theorem 3.4.1. Let the desired trajectory, yd, and all of its n time derivatives

be continuous and bounded, with coefficient matrix M constant, such that Ṁ =

03×3. Let δ(t) = da(t) + d(t) be upper bounded by D, where da(t) is an internal

“disturbance” due to NN approximation error and higher order Taylor series terms

to be derived in the proof. Consider the Lyapunov function candidate

L =
1

2

(
sT∆Ms∆ + Tr

(
M̃TH−1M̃

)
+ Tr

(
W̃ TF−1W̃

)
+ Tr

(
Ṽ TG−1Ṽ

))
,

(3.10)

where M̃ =M − M̂ , W̃ = W − Ŵ , and Ṽ = V − V̂ . With the Lyapunov function

candidate in (3.10), the system in (3.1), the control input in (3.3), and the update

rules in (3.7), (3.8), (3.9); there exists a positive gain η > 0 such that s∆, M̃ , Ṽ ,

W̃ all approach zero as t→∞, and the estimates M̂ , V̂ , Ŵ are bounded in time.

Proof. For proof, see Appendix B.

3.5 Spacecraft Attitude Control

This section describes the spacecraft attitude control problem, the kine-

matics of quaternions, and the rigid-body dynamics used to describe spacecraft

attitude. This section also describes the modification in choice of the sliding

71

variable and gives a simulation example of a satellite following a sky-scanning

trajectory under both constant and impulsive disturbances. The spacecraft atti-

tude control problem presents an interesting example for a typical implementation

of the general controller in second order (n = 2), and how the control designer

may choose values such as the sliding variable or output parameterization for the

system being controlled.

3.5.1 Quaternion Kinematics

In this chapter, the attitude of rigid-body spacecraft is represented by

the unit quaternion q ∈ SO(3), which relates the orientation of the body-fixed

frame of the spacecraft to some fixed reference frame. Quaternions are frequently

used in attitude representation due to their avoidance of gimbal lock and ease of

computational manipulation. Quaternions are generally evolved through time via

the kinematic equation

q̇ =
1

2
Ξ(q)ω, (3.11)

where

Ξ(q) =

q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

(3.12)

72

and ω ∈ R3 is the angular velocity about the spacecraft’s body-fixed principal

axes. For attitude trajectory tracking, the spacecraft’s current orientation, q,

is related to the desired orientation frame, qd, via the unit error quaternion,

δq ∈ SO(3), by

δq = q ⊗ q−1
d =

δq1:3
δq4

 =

ΞT (q)qd
qT qd

 , (3.13)

where δq1:3 = [δq1, δq2, δq3]
T is the vector part of the error quaternion, δq4 ∈ R

is the scalar part of the error quaternion, and the operator ⊗ denotes quaternion

multiplication [61].

The control goal is to manipulate the dynamics via the control law such

that the error quaternion, δq, approaches the identity quaternion, qI = [0, 0, 0, 1]T ,

thereby aligning the spacecraft orientation with the desired orientation.

3.5.2 Spacecraft Attitude Dynamics

The rigid body dynamics of a rotating spacecraft are defined by Euler’s

rotational equations of motion

Mω̇ + ω×Mω + d = τ , (3.14)

where M is the mass-moment of inertia matrix, ω = [ω1, ω2, ω3]
T is again the

angular velocity about the spacecraft’s body-fixed principal axes, d is an additive

torque disturbance, τ is the external torque control input about the spacecraft’s

body-fixed principal axes, and ω× is a cross-product matrix, defined as

73

ω× =

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3.15)

(3.14) is integrated in simulation for the ω at the next timestep with a given

control input τ .

3.5.3 Control Design

This section discusses the extension of the general controller in (3.3) to

the dynamics given in (3.14). Since the spacecraft attitude is represented via

quaternions, the following kinematic equation from [61] can be used to relate the

spacecraft angular acceleration about the body-fixed principal axes, ω̇, to the

second time derivative of the attitude quaternion, q̈:

q̈ =
1

2
Ξ(q)ω̇ − 1

4
||ω||22q. (3.16)

From the definition of the matrix Ξ(q) in (3.12), it can be shown that ΞT (q)Ξ(q) =

||q||22I3×3. Since unit quaternions are used thoughout this chapter, ||q||22 = 1,

which implies that the pseudoinverse relation Ξ†(q) = ΞT (q) holds. Solving (3.16)

above for ω̇ using the property Ξ†(q) = ΞT (q), the spacecraft angular acceleration

is equal to

ω̇ = 2ΞT (q)q̈ +
1

2
||ω||22ΞT (q)q. (3.17)

74

It can also be shown from (3.12) that ΞT (q)q = 03×1. Thus, (3.17) reduces to

ω̇ = 2ΞT (q)q̈, (3.18)

which, substituting into (3.14), gives

2MΞT (q)q̈ + ω×Mω + d = τ . (3.19)

(3.19) is in the control-affine form given in (3.1), so no virtual control inputs

are required to isolate the control input from any other quantities, which will

be discussed in the quadcopter control section below. (3.19) is a second-order

system with respect to time, with the control input τ appearing in the second-

order dynamics of our system output, q̈. Note that M is assumed to be constant

in Theorem 3.4.1 above. However, in (3.19), the effective M is now 2MΞT (q),

which varies with attitude q. It is now further assumed that the change in time

of this “effective” M is negligible, such that d
dt
(MΞT (q)) ≈ 03×3.

Thus, the spacecraft attitude control law is written as

τ = M̂ÿr + f̂(x) + (D + η) sat(s/ϕ). (3.20)

The attitude error of the spacecraft is represented by the error quaternion,

δq, which is not directly differentiated for ω̇. Thus, the sliding surface, s, must be

slightly modified to capture the desired spacecraft behavior. The sliding surface

used in the spacecraft attitude controller of this chapter is written as

75

s = ωd − ω + λ sign(δq4)δq1:3, (3.21)

where ωd and qd are the desired body-fixed angular velocity of the spacecraft

and the desired attitude of the spacecraft, respectively. Comparing (3.21) to

the general form of (3.2), the time derivative of the error is replaced by a form of

angular velocity error ωd−ω; and the output error is replaced by the vector part of

the error quaternion. However, since there are two “paths” on the sliding manifold

represented by the equivalent rotations δq (shortest path) and −δq (longest path),

the inclusion of the sign(δq4) term in (3.21) represents selecting the shortest path

on the sliding manifold. This analysis is derived from optimal control theory in

[76]. It should be noted that the desired trajectory quantities {qd, ωd, ω̇d} must all

be consistent, with the commanded quantities derived from the same underlying

desired kinematics (cf. [61]). An example of this trajectory generation using

desired Euler angle rates will be shown when describing the simulation of the

following section.

Similarly, the reference output, ÿr, is modified to

ÿr = ω̇d + λδq̇1:3, (3.22)

where the time derivative of the vector part of the error quaternion, δq̇1:3, is found

by the relation

δq̇1:3 =
1

2
δq4(ω − ωd) +

1

2
δq1:3 × (ω + ωd) (3.23)

76

where the × operator here designates simple vector cross-product [61]. Note

that neither the sign(δq4) term nor its derivative appear in (3.22). During the

shortest-path slew maneuver defined by the sliding manifold in (3.21), δq4 does

not change sign.

Comparing (3.19) to (3.1), it can be seen that the state function to be

approximated by the NN is f(x) = ω×Mω. The NN input vector for this controller

is thus

x = [ω1, ω2, ω3, 1]
T (3.24)

where the 1 is appended for bias, as described above. A block diagram of the

full spacecraft attitude controller is shown in Figure 3.1. Starting on the top

left of Figure 3.1, the controller commands a torque, τ , and sends it to the plant

(the spacecraft). The spacecraft state {q, ω} is compared to the generated desired

trajectory {qd, ωd, ω̇d} to get s and ÿr for the next control input. After each torque

is commanded, the learned parameters M̂, V̂ , Ŵ are updated via their respective

update rules.

3.5.4 Simulation Example

A sky-mapping spacecraft trajectory tracking problem is simulated as in

[61] by specifying the desired Euler angles {ϕd, θd, ψd} to follow

77

Figure 3.1: Block diagram of the learning-based spacecraft attitude controller.

ϕ̇d = 1 rev/h = 0.001745 rad/s

θd = 22.5◦ = 0.3927 rad

ψ̇d = 0.464 rpm = 0.04859 rad/s,

(3.25)

where ϕd and ψd are calculated by integrating the desired rates of ϕ̇d and ψ̇d, given

above, respectively. The desired body-fixed 3-1-3 Euler angles are converted to

the desired values required by the controller via

qd =

qd,1:3
qd,4

 =

sin
(
θd
2

)
cos
(
ϕd−ψd

2

)
sin
(
θd
2

)
sin
(
ϕd−ψd

2

)
cos
(
θd
2

)
sin
(
ϕd+ψd

2

)
cos
(
θd
2

)
cos
(
ϕd+ψd

2

)

(3.26)

78

ωd =

ϕ̇d sin θd sinψd

ϕ̇d sin θd cosψd

ψ̇d

 (3.27)

ω̇d = ϕ̇dψ̇d

sin θd cosψd

− sin θd sinψd

0

 . (3.28)

In the simulation, the mass-moment of inertia matrix for the spacecraft is

assumed to be

M =

399 −2.81 −1.31

−2.81 377 2.54

−1.31 2.54 377

 kg-m2 (3.29)

with the spacecraft controlled by external torques about the body-fixed principal

axes at a control frequency of 100 Hz. Note that the off-diagonal components

of the assumed inertia matrix are negligible compared to the diagonal compo-

nents, which is consistent with the assumption of a diagonal M in (3.1) and

described in the previous section. To showcase the disturbance-rejecting nature

of the controller, multiple external torque disturbances are imparted on the space-

craft during the simulation. The disturbance

79

d(t) =

0.5 sin (0.01t)

0.3

0.5 cos (0.015t)

 N-m (3.30)

is enacted at all timesteps in the simulation. This disturbance is a larger mag-

nitude version of the disturbance in the experiment in [61], designed to simulate

a disturbance torque such as gravity gradient. At timestep t = 40 s, an addi-

tional impulsive disturbance of [30,−15, 50]T N-m is enacted on the spacecraft.

At timestep t = 60 s, another impulsive disturbance of [30,−45, 5]T N-m is en-

acted on the spacecraft, while also changing the mass moment of inertia of the

spacecraft to

M =

100 −2.81 −1.31

−2.81 100 2.54

−1.31 2.54 377

 kg-m2. (3.31)

This change in moment of inertia is analogous to spacecraft operations such as

deploying deputy satellites, undocking from a larger spacecraft, or retracting solar

panels. Note that all disturbances above are described in the spacecraft body-

fixed frame. Equations (3.11) and (3.14) are jointly integrated using fourth order

Runge-Kutta with a timestep of 0.01 s for 100 s. The attitude quaternion is nor-

malized by δq = δq/||δq||2 after each integration step in the simulation to preserve

the unit quaternion property. Each torque command, τ , is clipped at a control

bound of 10 N-m, selected to mimic the torque produced from an impulsive thrust

80

attitude control system (like a cold gas thruster) [77]. The spacecraft is initialized

at an orientation of q(t = 0) = [0.3, 0.1,−0.1, 0.9434]T , with the coefficient gain

matrix in the controller initialized at M̂(t = 0) = diag(300, 300, 300), intended to

represent a rough estimate of the trueM in the system dynamics. The NN weight

matrices, V̂ and Ŵ , are initialized by sampling from a uniform distribution on

the interval [−0.1, 0.1).

The time history of the spacecraft attitude trajectory, Euler angle errors,

and control inputs for the simulation are shown in Figure 3.2, with the time

history of the adaptive parameters shown in Figure 3.3. The Frobenius norm of

the NN weight matrices is plotted to show how the magnitudes of the learned

parameters in the NN change, since the weight matrices have many components.

Controller hyperparameters used in the simulation are given in Table 3.1.

Table 3.1: Hyperparameters used for the simulated spacecraft attitude controller.

Hyperparameter Value

η 400
D 100
ϕ 0.05
λ diag(4, 4, 4)
nH 15
F diag((10,)× nH)
G diag((10,)× 4)
H diag(0.9, 0.9, 0.9)

In Figure 3.2, the spacecraft trajectory’s quaternion components q =

[q1, q2, q3, q4]
t are plotted, along with the desired trajectory’s quaternion com-

81

0 10 20 30 40 50 60 70 80 90 100
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Tr
aj

ec
to

ry

q1
q2
q3
q4

qd, 1
qd, 2
qd, 3
qd, 4

0 10 20 30 40 50 60 70 80 90 100
−10

0
10

Ro
ll

Er
ro

r (
de

g)

eϕ

0 10 20 30 40 50 60 70 80 90 100

−10

0

Pi
tc

h
Er

ro
r (

de
g)

eθ

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

Ya
)

Er
ro

r (
de

g)

eψ

0 10 20 30 40 50 60 70 80 90 100
Time (s)

−10

−5

0

5

10

Co
nt

ro
 I

np
(t

 (N
m

) τ1
τ2
τ3

Figure 3.2: Spacecraft trajectory, error, and control input versus time for the sky-
scanning attitude control simulation.

82

0 10 20 30 40 50 60 70 80 90 100

−0.04

−0.02

0.00

0.02

0.04

0.06
+3e2

M̂11

M̂22

M̂33

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

20

40

60

80 || ̂V||F
||Ŵ||FLe

ar
ni
ng

 U
pd

at
es

Figure 3.3: Components of M̂ and the Frobenius norm of V̂ and Ŵ over time for the
sky-scanning attitude control simulation.

ponents qd = [qd,1, qd,2, qd,3, qd,4]
T . To easily visualize the error over time in the

simulation, the spacecraft’s attitude is converted from the quaternion form, q,

back to 3-1-3 Euler angles {ϕ, θ, ψ}. These Euler angles are compared to the

desired Euler angles generated by evolving (3.25) in time to find the errors in roll,

eϕ = ϕd − ϕ, pitch, eθ = θd − θ, and yaw, eψ = ψd − ψ. The controller is able

to reject the continuous disturbance at all times, while handling the impulsive

disturbances at t = 40 s and t = 60 s. The settling time is due to the imposed

control limit of 10 N-m. The controller is also able to handle the internal change

in rotational inertia at t = 60 s. In Figure 3.3, the learning updates of M̂ , V̂ , and

Ŵ converge to a constant value around t = 23 s, with each parameter bounded

as proven in Theorem 3.4.1. The updates to V̂ and Ŵ in Figure 3.3 follow a

similar shape to the Euler angle errors in Figure 3.2, settling at t = 23 s once the

83

spacecraft reaches the boundary value s∆ = 0. As apparent from the simulation,

the spacecraft is controlled with high accuracy and robustness to both internal

and external disturbances, with only a very rough estimate of M̂(t = 0) for ini-

tialization, due to the proven-stable online-learning based controller developed in

this portion of the chapter.

3.6 Quadcopter Control

This section describes extending the general controller in (3.3) to the quad-

copter system. The section begins with discussion of the kinematics and dynamics

of the assumed system, followed by the control design. The quadcopter is con-

trolled by three subsystem controllers: two second-order controllers in vertical

position and yaw, and one fourth-order controller for both horizontal position di-

mensions. This control formulation requires calculation of virtual control inputs

and relating these virtual inputs to the final control input to the system: the four

rotor speeds. The quadcopter system is thus of merit to study implementation

of the general controller presented to control a complicated system of varying

order, and this example showcases the system modeling or parameter estimation

possibly needed for applying the developed controller to a particular system.

3.6.1 Quadcopter Kinematics

The quadcopter described in this chapter is modeled as a six degree-of-

freedom rigid body, controlled by the angular speed of each of the four rotors.

The quadcopter translates in space via the rotational relation

84

ṙ = V = RTv, (3.32)

where r = [rx, ry, rz]
T is the position vector relating the origin of the Earth-fixed

inertial frame {Xe, Ye, Ze} to the quadcopter-fixed body frame {X, Y, Z}. The

quadcopter velocity in the Earth-fixed frame is denoted as V = [Vx, Vy, Vz]
T , and

the quadcopter velocity in the body-fixed frame is denoted as v = [vx, vy, vz]
T .

The rotation matrix, R, relates free vectors in the Earth-fixed frame to the body-

fixed frame via a body-fixed 1-2-3 rotation, defined as

R =

cθcψ cϕsψ + sϕsθcψ sϕsψ − cϕsθcψ

−cθsψ cϕcψ − sϕsθsψ sϕcψ + cϕsθsψ

sθ −sϕcθ cϕcθ

 , (3.33)

where the shorthand c(·) = cos (·), s(·) = sin (·) is used. Φ = [ϕ, θ, ψ]T is the

vector of Euler angles (roll, pitch, yaw) relating the orientation of the quadcopter

body-fixed frame to the Earth-fixed frame. Both the roll angle, ϕ, and pitch

angle, θ, are assumed to be restricted to the domain (−π/2, π/2). The Euler

angle rotation rates, Φ̇, are related to the angular velocity about the quadcopter

body-fixed principal axes via

ω = BΦ̇, (3.34)

where

85

B =

cθcψ sψ 0

−cθsψ cψ 0

sθ 0 1

 . (3.35)

The matrix B above is invertible, since the determinant cos (θ) ̸= 0 due to the

pitch angle restriction θ ∈ (−π/2, π/2).

3.6.2 Quadcopter Dynamics

Since the quadcopter is modeled as a rigid body, its rotation dynamics

are similarly defined by Euler’s rotational equations of motion as in (3.14) of the

spacecraft example:

Mω̇ + ω×Mω + τd = τ , (3.36)

where τ = [τx, τy, τz]
T is the resultant control torque from the rotor inputs and τd

is some torque disturbance. Recall from above that ω× is the cross-product matrix

defined in (3.15). Translational motion of the quadcopter in the body-fixed frame

is described by the equation

mv̇ +mω×v + F ′
d = F ′ + F ′

g, (3.37)

where m is the mass of the entire quadcopter, F ′
d is a disturbance force in the

body-fixed frame, F ′
g = R[0, 0,−mg]T is the force due to gravity in the body-fixed

frame, and F ′ = [0, 0, f] is the control thrust force from the rotor inputs.

86

The equations of translational motion in the Earth-fixed inertial frame are

written via Newton’s second law as

mV̇ + Fd = F + Fg = RT

0

0

f

+

0

0

−mg

 , (3.38)

where Fd = RTF ′
d, F = RTF ′, and Fg = RTF ′

g.

The relation between the quadcopter control inputs, Ωi (the angular speed

of the ith rotor), and the resultant thrust/torques to control, is written as

f

τx

τy

τz

=

cT cT cT cT

d4cT −d3cT −d3cT d4cT

d1cT −d2cT d1cT −d2cT

−cQ −cQ cQ cQ

Ω2
1

Ω2
2

Ω2
3

Ω2
4

, (3.39)

where the various moment arms are d1 = d/
√
2 + xCoM , d2 = d/

√
2 − xCoM ,

d3 = d/
√
2 + yCoM , d4 = d/

√
2 − yCoM , cT is a coefficient of thrust, and cQ is a

coefficient of torque. As shown in Figure 3.4, d is defined as the distance from

the geometric center of the quadcopter to the center of each of the rotors, and

rCoM = [xCoM , yCoM , zCoM]T is the vector relating the geometric center of the

quadcopter to its center of mass. Note that the matrix in (3.39) is also invertible,

due to the determinant −8cQc3Td2 ̸= 0 since {cQ, cT , d} > 0 [78].

87

Figure 3.4: Top view of the assumed quadcopter geometry, with four counter-rotating
rotors.

3.6.3 Control Design

While the general controller is designed to require no a priori system

modeling, the trick in implementation is getting the system dynamics to the form

of the assumed system in (3.1), similar to the spacecraft control section above. As

aforementioned, the quadcopter is an underactuated system, having six degrees

of freedom (three position and three orientation) to four control inputs (the four

rotor speeds). The controller described in this subsection considers controlling

the quadcopter position in space rx, ry, rz and the yaw angle ψ via the four rotor

speeds. The form of the dynamics required by the controller in (3.1) can be

achieved by three subsystem controllers: two second-order controllers for rz and

88

ψ, and one fourth-order controller for rx and ry [78]. Each subsystem outputs

virtual control inputs related to the final control input to the system: the rotor

speeds, Ω.

3.6.3.1 Control of rz

Assuming the disturbance force Fd is unknown during control design, the

dynamics of rz from the last line in (3.38) is written as

mr̈z = R33f̂ −mg (3.40)

which relates the nominal value of control thrust force f̂ to the control variable

rz, where Rij is the (i, j)th element of R in (3.33). Note that the respective

component of Fd has been dropped in (3.40) above. To simplify notation, a new

control input u1 = f̂/cT is defined and substituted into (3.40) for f̂ to get

mr̈z = R33cTu1 −mg. (3.41)

Defining the virtual control input v1 = R33u1, (3.41) can be written as

m

cT
r̈z +

mg

cT
= v1, (3.42)

which is in the desired form of (3.1). The rz controller, following (3.3), is thus

v1 = M̂1r̈z,r + f1(x1) + (D1 + η1)sat(sz/ϕ1), (3.43)

89

where

sz = ėz + λ1ez (3.44)

from (3.2), and

r̈z,r = r̈z,d + λ1ėz (3.45)

from (3.4), where rz,d is a two-times differentiable desired trajectory of rz. Com-

paring (3.1) to (3.42), the state function to be approximated by the NN is

f(x) = mg/cT , which is a constant. The NN input vector, nominally contain-

ing all the variables of the approximated state function, is chosen as x1 = [1] to

approximate the constant term for continuity.

3.6.3.2 Control of ψ

From (3.34), the kinematics of the Euler angle rates Φ̇ can be written as

Φ̇ = B−1ω, (3.46)

where

B−1 =

cψ
cθ

− sψ
cθ

0

sψ cψ 0

−cψtθ sψtθ 1

 (3.47)

90

and the shorthand s(·) = sin (·), c(·) = cos (·), and t(·) = tan (·) is again used. To

relate the control torque about the Z-axis, τz, to the control variable, ψ, (3.46) is

differentiated with respect to time to get

Φ̈ = Ḃ−1ω +B−1ω̇. (3.48)

From the last line in (3.48), the yaw angular rate ψ̈ is related to the angular

acceleration about the Z-axis by the form

ψ̈ = fB(Φ, Φ̇, ω, ω̇) + ω̇z, (3.49)

where fB(Φ, Φ̇, ω, ω̇) is a state function capturing additional terms. Substituting

the last line of (3.36) for ω̇z into (3.49) gives

ψ̈ = fB(Φ, Φ̇, ω, ω̇) +
τz
Mzz

+
(Mxx −Myy)ωxωy

Mzz

, (3.50)

where {Mxx,Myy,Mzz} are the diagonal components of the mass-moment of in-

ertia matrix M . Defining a virtual control input v4 = u4 = τz/cQ for consistency,

(3.50) can be written in the desired form of (3.1) by

Mzz

cQ
ψ̈ + f4(Φ, Φ̇, ω, ω̇) = v4, (3.51)

where f4(Φ, Φ̇, ω, ω̇) is the new system state function in the ψ controller to be

approximated online via NN. The ψ controller, following (3.3), is finally given as

91

v4 = M̂4ψ̈r + f4(x4) + (D4 + η4)sat(sψ/ϕ4), (3.52)

where the NN input vector, x4, is chosen as x4 = [ΦT , Φ̇T , ωT , ω̇T]T to correspond

to the state functions described in Equations (3.50) and (3.51),

sψ = ėψ + λ4eψ (3.53)

from (3.2), and

ψ̈r = ψ̈d + λ4ėψ (3.54)

from (3.4). ψd is a two-times differentiable desired trajectory of the yaw angle, ψ.

3.6.3.3 Control of rx, ry

To relate the control variables rx and ry to the control torques τx and τy,

(3.38) is differentiated twice with respect to time, assuming no disturbance force.

Noting the the time derivative of a rotating frame is written as ṘT = RTω×, these

derivatives are written as

mV̈ = RT

ω×

0

0

f̂

+

0

0

˙̂
f

 (3.55)

92

m
...
V = RT

(ω̇× + ω×ω×)

0

0

f̂

+ 2ω×

0

0

˙̂
f

+

0

0

¨̂
f

 . (3.56)

Note that this control subsystem is now fourth order in rx and ry, where the

rz and ψ controllers above are second order. Substituting the Euler rotational

equations in (3.36) for ω̇x and ω̇y in the first two equations in (3.56), the control

variables rx and ry are related to the control inputs τx and τy via

m
...
V x + fx(Φ, ω, f̂ ,

˙̂
f,

¨̂
f) =

R11f̂

Myy

τy −
R21f̂

Mxx

τx (3.57)

m
...
V y + fy(Φ, ω, f̂ ,

˙̂
f,

¨̂
f) =

R12f̂

Myy

τy −
R22f̂

Mxx

τx. (3.58)

To isolate the two control variables, it is hereafter assumed that Mxx = Myy =

Mxxyy. This assumption is mild and generally valid for the quadcopter system, as

quadcopters are typically designed near-symmetric to rotations about the body-

fixed X and Y axes for stability of flight. Defining new control inputs u2 = τx/cT

and u3 = τy/cT and rearranging gives

Mxxyym

cT

...
V x + f2(Φ, ω, f̂ ,

˙̂
f,

¨̂
f) = (R11u3 −R21u2)f̂ (3.59)

Mxxyym

cT

...
V y + f3(Φ, ω, f̂ ,

˙̂
f,

¨̂
f) = (R12u3 −R22u2)f̂ , (3.60)

93

which, defining virtual control inputs v2 = (R11u3 − R21u2)f̂ and v3 = (R12u3 −

R22u2)f̂ , renders the desired form of (3.1):

Mxxyym

cT

...
V x + f2(Φ, ω, f̂ ,

˙̂
f,

¨̂
f) = v2 (3.61)

Mxxyym

cT

...
V y + f3(Φ, ω, f̂ ,

˙̂
f,

¨̂
f) = v3. (3.62)

Since the unknown state functions f2 and f3 are functions of the same variables,

their approximation can be combined into one NN to get the rx, ry controller:

v2
v3

 = M̂23

r x,r

....
r y,r

+ f23(x23) +

(D2 + η2)sat(sx/ϕ2)

(D3 + η3)sat(sy/ϕ3)

 , (3.63)

where

sx =
...
e x + 3λ2ëx + 3λ22ėx + λ32ex (3.64)

sy =
...
e y + 3λ3ëy + 3λ23ėy + λ33ey (3.65)

from (3.2), and

....
r x,r =

....
r x,d + 3λ2

...
e x + 3λ22ëx + λ32ėx (3.66)

94

....
r y,r =

....
r y,d + 3λ3

...
e y + 3λ23ëy + λ33ėy (3.67)

from (3.4). rx,d and ry,d are a four-times differentiable desired trajectory of rx

and ry. The NN input vector is nominally chosen as x23 = [ΦT , ωT , f̂ ,
˙̂
f,

¨̂
f]T .

3.6.3.4 Getting Ω2 from u

Finally, the virtual control inputs {v1, v2, v3, v4} from each control sub-

system must be converted to the rotor speed inputs {Ω1, Ω2, Ω3, Ω4} for input

to the system. The intermediate control inputs {u1, u2, u3, u4} are related to the

virtual control inputs via

u1

u2

u3

u4

=

R33 0 0 0

0 −R12f̂ R11f̂ 0

0 −R22f̂ R12f̂ 0

0 0 0 1

−1

v1

v2

v3

v4

, (3.68)

where this coefficient matrix is invertible since the determinant R33f̂
2(R11R22 −

R12R21) ̸= 0 since ϕ ∈ (−π/2, π/2) and θ ∈ (−π/2, π/2). Substituting the

relations u1 = f̂/cT , u2 = τx/cT , u3 = τy/cT , and u4 = τz/cQ into (3.39), the

relation of the intermediate control inputs to the square of the rotor speeds is

written as

95

Ω2
1

Ω2
2

Ω2
3

Ω2
4

=

1 1 1 1

d4 −d3 −d3 d4

d1 −d2 d1 −d2

−1 −1 1 1

−1

u1

u2

u3

u4

. (3.69)

Note that the coefficient matrix above also uses the geometrical system parameters

d1, d2, d3, d4, which must be roughly estimated a priori. The coefficient matrix

above is invertible, as the determinant −4(d1d3 + d1d4 + d2d3 + d2d4) ̸= 0. The

full quadcopter control block diagram is shown in Figure 3.5.

Starting in the top left block in Figure 3.5, the three control subsystems

intake the desired position and yaw trajectories to generate the virtual control

inputs, v. The virtual control inputs are then converted to rotor speeds, Ω, via

Equations (3.68) and (3.69). The rotor speeds are sent to the quadcopter plant,

which outputs the state variables for position, velocity, attitude, and angular

velocity. These terms are then numerically differentiated and sent back to the

controller at the next timestep.

Figure 3.5: A simplified block diagram of the developed quadcopter controller.

96

Further note that, for the quadcopter system, the rotor speeds Ωi ≥ 0 are

calculated from the virtual control inputs vi, which can be positive or negative.

To avoid negative rotor speeds when solving (3.69), the v1 control is centered

about the hover mode, which is implemented as v1 ← v1 +mg/cT .

(3.40) is solved for f̂ for use in (3.68) above. Since r̈z is not usually known

or measured, Vz is numerically differentiated for r̈z in this chapter. Numerical

differentiation of Vx and Vy to get
...
r x,

...
r y,

....
r x, and

....
r y for the rx, ry controller

is also required. While other controllers (e.g., [78]) have avoided the require-

ment of calculating higher-order derivatives using dynamic models, the developed

controller learns these relations online. Thus, the trade-off for online learning

of suitable dynamic models in this controller requires calculation of higher-order

derivatives. While robust numerical differentiation is easily implemented for this

controller, it is an extra step to tune for control performance and stability.

3.6.4 Simulation Example

To validate the developed quadcopter controller, the Bitcraze Crazyflie

2.1 quadcopter system is simulated.1 The Crazyflie is a small lightweight drone,

commonly used as a platform for quadcopter swarm research. The simulation is

performed as in [78] by integrating Equations (3.36) and (3.37), with the addi-

tion of aerodynamic forces Fa and torques τa (considered as disturbances). The

aerodynamic force and torques used in the simulation are written as

1https://www.bitcraze.io/products/crazyflie-2-1/

97

Fa = −qfsSref

CL

CM

CN

 , τa = −qfsSrefdref

Cl

Cm

Cn

 , (3.70)

where qfs = 1
2
ρav

2
rel is the freestream dynamic pressure, ρa is the ambient air

density, vrel = v − RVw is the relative velocity of air on the quadcopter in the

body-fixed frame, Vw is the wind velocity in the inertial frame, Sref is the reference

surface area of the drone, dref is the mean diameter of the body, CL, CM , CN are

the aerodynamic force coefficients; and Cl, Cm, Cn are the aerodynamic torque

coefficients. The parameters used in the simulation are given in Table 3.2, where

d1−4 is shorthand for d1 = d2 = d3 = d4.

Table 3.2: Simulation parameters used for the quadcopter.

Parameter Value

d1−4 0.028 m
M diag(1.4, 1.4, 2.17)× 10−5 kg-m2

cT 3.16× 10−10

cQ 7.94× 10−12

CL 9.17854× 10−7

CM 9.17854× 10−7

CN 9.17854× 10−7

Cl 9.17854× 10−7

Cm 9.17854× 10−7

Cn 9.17854× 10−7

Sref 0.006 m2

dref 0.028 m
m 0.027 kg
Vw [3.53, 3.53, 0]T m/s
ρa 1.225 kg/m3

98

The four-time differentiable desired trajectory of the quadcopter for this

simulation example is a three dimensional figure eight, written as

rz,d = −0.5 sin
(
2πt

200

)
(3.71)

rx,d = 0.1 sin

(
2πt

100

)
(3.72)

ry,d = −0.1 sin
(
2πt

100

)
(3.73)

rψ,d =
π

4
sin

(
2πt

200

)
, (3.74)

which represents a reasonably complicated trajectory for showcasing the adaptiv-

ity and stability of the controller in each degree of freedom. The simulation is

integrated at a frequency of 1 kHz using fourth order Runge-Kutta. To calculate

f̂ for (3.68), the relation given in (3.40) is used to find f̂ = m(V̇z + g)/R33. The

first order sliding mode differentiator as described in [16] is used to calculate V̇z

for this equation. The same sliding mode differentiator in [16], now third order,

is also used to calculate the values V̇x, V̇y, V̈x, V̈y as required by the controller.

Estimates of m and cT are needed throughout the controller. As described

above, the controller also uses these estimated values to zero the rotor speeds

about the hover mode mg/cT . Further, estimates of the moment arms d1−4 are

needed for (3.69), which are easily measured. For the simulation experiment in

this section, approximate values on the {m, cT , d1−4} measurements are used, to

show the robust and adaptive nature of the controller. The hyperparameters used

for the controller in the simulation are given in Table 3.3.

99

Table 3.3: Hyperparameters used for the simulated quadcopter controller.

Hyperparameter Value

d1−4 0.03 m
cT 3× 10−10

m 0.025 kg

D1 0
η1 2.2× 107

λ1 4
ϕ1 0.006
F1 diag((10,)× nH,1)
G1 diag((10,)× 1)
H1 200000
nH,1 10

D2, D3 0
η2, η3 150
λ2, λ3 1
ϕ2, ϕ3 0.006
F23 diag((10,)× nH,23)
G23 diag((10,)× 7)
H23 10000
nH,23 15

D4 0
η4 5× 105

λ4 3
ϕ4 0.001
F4 diag((10,)× nH,4)
G4 diag((10,)× 7)
H4 1000
nH,4 15

100

The quadcopter is initialized at rest at the position r(t = 0) = [−0.002, 0.002, 0.05]T

m, with an attitude of Φ(t = 0) = [0.001,−0.001, 0.001]T rad. The initial val-

ues of the coefficient matrices are chosen as M̂1(t = 0) = [1 × 108], M̂23(t =

0) = diag(1000, 1000), M̂4(t = 0) = [1 × 107], from approximations of the co-

efficients given in Equations (3.42), (3.51), (3.61), and (3.62), respectively. All

NN weights are initialized by uniform sampling on the interval [−0.1, 0.1). The

state vectors input to the NNs in each of the subsystem controllers are x1 = [1],

x23 = [ΦT , ωT , 1]T , and x4 = [ΦT , ωT , 1]T . Note that these state vectors differ from

the nominal state vectors proposed above – in the simulation tests conducted, it

was found that values such as f̂ and its derivatives change very slowly, and similar

results in the controller can be achieved using simplified state vectors as input

to the NNs. A 1 is appended to the state vectors input to each NN and to each

vector of activations σ(V̂ Tx) to account for bias terms in each NN. For tuning

this controller, each subsystem was tuned individually for stability and desirable

performance. For instance, the rz subsystem controller requires higher learning

gains than the other subsystems, and this controller was tuned first for stability

in a hover mode. Next, the yaw controller was tuned for directional control, with

the rx and ry controller being tuned last for full control of the quadcopter. Also

note that D1 = D2 = D3 = D4 = 0 for all control subsystems, since the D

term is used as a formality in the proof of controller stability. Tuning η alone in

each controller renders the same effect, as (D + η) is the effective gain in each

controller. The trajectory-tracking simulation is run for 200 seconds, for one full

figure eight. The 3D plot of position over time is shown in Figure 3.6. The error

101

over time of each control variable is shown in Figure 3.7, with the time history of

the learned parameters in the controller shown in Figure 3.8.

x (m)

−0.4

−0.2

0.0

0.2

0.4

y (m)

−0.4

−0.2

0.0

0.2

0.4

z (
m

)

−0.4

−0.2

0.0

0.2

0.4

Start

⟶

⟶

⟶

⟶

⟶ctual Trajectory
Desired Trajectory

Figure 3.6: Quadcopter trajectory over time in 3D space.

In Figure 3.6, the quadcopter is seen to initially drop. This is due to a slight un-

derestimation in the hover mode based on the assumed values of m and cT in the

controller. Once the gain M̂1 is adapted effectively (near t = 4 s in Figure 3.8),

the rz subsystem controller is able to achieve sliding mode. The learning gain

H1 required a large value for this reason, such that the quadcopter does not drop

below some undesirable value in rz. In Figure 3.8, the updates for the rx, ry and

102

0 20 40 60 80 100 120 140 160 180 200
0.000
0.002
0.004
0.006
0.008
0.010

Po
sit

io
n
Er
ro
r,
x
(m

) ex

0 20 40 60 80 100 120 140 160 180 200
−0.005

−0.004

−0.003

−0.002

−0.001

0.000

Po
sit

io
n
Er
ro
r,
y
(m

)

ey

0 20 40 60 80 100 120 140 160 180 200
−0.05

−0.04

−0.03

−0.02

−0.01

0.00

Po
sit

io
n
Er
ro
r,
 (

m
)

ez

0 20 40 60 80 100 120 140 160 180 200
Time (s)

−0.06

−0.04

−0.02

0.00

Ya
w

Er
ro
r (

de
g)

eψ

Figure 3.7: Error over time for each of the control variables in the quadcopter con-
troller.

103

0 20 40 60 80 100 120 140 160 180 200
−1500

−1000

−500

0
+1e8

M̂1

0 20 40 60 80 100 120 140 160 180 200

0.25

0.50

0.75

||V̂1||F
||Ŵ1||F

0 20 40 60 80 100 120 140 160 180 200
1000

1010

1020

1030

M̂2

M̂3

0 20 40 60 80 100 120 140 160 180 200

0.4

0.5

0.6

||V̂23||F
||Ŵ23||F

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3
+1e7

M̂4

0 20 40 60 80 100 120 140 160 180 200
Time (s)

0.2
0.3
0.4
0.5

||V̂4||F
||Ŵ4||F

Le
ar
ni
ng

 U
pd

at
es

Figure 3.8: Learning parameter estimates over time for the quadcopter controller.

104

ψ controllers converge within the first few seconds of the simulation. This is due

to the high gains and update rates required for these control subsystems, since

any unstable flight early in the simulation would crash the quadcopter. With

level flight established in the rx, ry control subsystem, the rz controller can adapt

to the correct thrust needed. In Figure 3.7, the bounded error in ex and ey is

due to aerodynamic disturbances and noise in the numerical differentiatior. Note

that, in controllers such as [78], numerical differentiation is not needed, as knowl-

edge of the quadcopter system model is used to relate higher-order derivatives

to the system states. However, the general controller in the beginning of this

chapter is abstracted to any system under the dynamics form of (3.1), and this

system-agnostic approach requires numerical differentiation when those system

states are not measured or known. This can be seen as a sort of trade-off between

a priori modeling and the online learning of system models as in this chapter.

Further, the simulated quadcopter controller effectively rejects the 5 knot wind

disturbance and adapts to the uncertainties in assumed parameter values. Based

on the simulation results, the developed controller is able to accurately and de-

sirably control the quadcopter system in the presence of parameter uncertainty

and external disturbances.

105

Chapter 4. Conclusions, Discussion, and Future Work

4.1 Summary and Conclusions

Part I establishes the critical research progress made in incorporating

learning-based AI/ML elements stably inside online controllers. The primary

idea of Part I is that AI/ML elements can be cleanly reconciled with the analysis

and theories of adaptive control – since the goals of adaptive control and the

function approximation of AI/ML are often aligned, the use of adaptive control

theory to evolve these AI/ML elements online provides rigorous convergence and

stability guarantees not present in conventional AI/ML optimization. Further,

using these AI/ML elements to learn important features directly in the control

law can render more accurate and versatile controllers that require less a priori

system modeling or identification than their conventional counterparts.

Namely, Chapter 2 describes incorporating the most commonly used tool

in modern AI/ML, the feedforward neural network, inside of an adaptive control

law. This chapter assumes a basic robot model and uses a nonlinear sliding mode

control (SMC) term to guarantee learning stability and controller performance,

especially during the initial stages while the learning parameters converge. This

nonlinear control term is required due to the assumption of limited a priori knowl-

edge about the system and the problem of initialization of neural networks with

106

no pretraining. The learning error is categorized as an internal “disturbance”

and rejected by the nonlinear SMC term, with stability proven via the Lyapunov

analysis given in the chapter. The developed control law uses both a neural net-

work and direct parameter estimation to learn a model suitable for control fully

online. This controller is compared to a conventional model-based SMC with no

learning elements, in two simulated robot arm experiments. In the experiments,

the robot manipulator experiences different loads on the end effector, both inside

and outside of the designed load margin of the conventional SMC controller. The

proposed controller is shown to successfully adapt to the end effector loads, even

when conventional model-based SMC fails. Additionally, a novel update rule and

projection is developed for estimation of a positive definite coefficient matrix,

which helps simplify the learning problem for the neural network term. These

experiments validate the adaptive nature of the developed controller, and this

work shows how AI/ML techniques like neural networks can be used to extend

the performance and versatility of conventional controllers such as SMC.

To maximize the impact and application of the research progress for this

dissertation, Chapter 3 describes extending the general controller presented in

Chapter 2 to two notable aerospace control problems: rigid-body spacecraft at-

titude control and full quadcopter control. This is done to showcase different

modifications required to render desired performance from the general controller

in specific control scenarios. In spacecraft attitude control, the parameterization

of attitude orientation using quaternions requires some modification to variables

used in the controller, such as the sliding surface. The spacecraft attitude con-

107

troller is verified in a sky-scanning trajectory tracking simulation under various

perturbations, with the controller being particularly desirable for complicated

spacecraft structures. The perturbations simulated are modeled to reflect the

perturbation torques common to spacecraft operations, such as solar radiation

pressure, gravity gradient, or docking/undocking with other spacecraft. In quad-

copter control, varying-order control subsystems are used alongside virtual and

intermediate control inputs to guarantee trajectory tracking in position and yaw.

The developed controller is shown to be robust to internal modeling estimations

and aerodynamic perturbations such as wind. This chapter verifies that the de-

veloped AI/ML-based online controllers can safely and stably control relevant

aerospace systems, which was one of the original goals of this dissertation.

4.2 Discussion

As mentioned Chapter 1, ongoing challenges in online adaptation of AI/ML

elements in controllers includes initialization, computational cost, catastrophic

forgetting, and exploration without jeopardizing the control goal. The controllers

described throughout Part I are initialized with limited-to-no system modeling

or identification, so initialization becomes a pertinent issue. This is overcome by

the nonlinear SMC term described above, thereby guaranteeing controller conver-

gence assuming properly tuned gains. The computational cost of the developed

controllers is relatively small when compared to the massive neural networks used

in modern data science, often with millions of trainable parameters. However, in

control of aerospace and robotic systems, computation must be minimized for

108

fast online control. The general controller of Chapter 2 namely has four primary

calculations: the matrix-vector operations of the neural network term, the matrix-

vector operations of the other control law terms, the matrix-vector operations of

the parameter update rules, and the integration and update of the parameters.

For this reason, few neural network hidden neurons were used in simulation. It

was found that increasing the hidden layer neurons did not result in much im-

proved control accuracy for the increase in computation. This observation is likely

very relevant to the control of real-world systems, where acute real-time control

in more important than marginal increases in control calculation fidelity.

An important facet of joining AI/ML and control, noticed during the im-

plementation and testing of the developed controllers, is the notion of “learning.”

The neural networks in the controllers developed in Part I are evolved at each

timestep using a rule similar to mean-squared-error-minimizing backpropagation,

with various sliding variables replacing conventional prediction error. This is very

different from typical neural network training common to modern data science,

which usually includes backpropagation with a form of batch gradient descent. In

typical neural network training, the network is validated for performance across

the entire space of possible (or known) inputs. In the adaptive control formula-

tion here, since the networks are only evolved using the most recent data point at

each timestep, catastrophic forgetting becomes a topic of importance. However,

the goal of the neural network training (or evolution, as it is commonly referenced

in Part I) in the developed controllers is decreasing the relevant sliding variable

to zero at the current timestep, thereby decreasing control error to zero. This is

109

very different from a data science point of view, where a machine learning engi-

neer may be disconcerted to find that the neural networks trained online are used

more as an “instrument” for control and much less for function approximation in

the data-based modeling sense. In adaptive control, the notion of “learning” can

be considered as converging on parameters that achieve the desired control goal.

In AI/ML, learning is likely more concerned with the exploration and achieve-

ment of set goals without direct instruction. More discussion on some connections

between adaptive control and machine learning can be found in the works of [10]

and [79]. Lastly, the AI/ML elements in the developed controllers are designed to

drive control performance. Exploration was not incorporated in the control goal

of this research.

4.3 Future Work

There are many avenues for future development of the AI/ML-based online

controllers described in Part I. Notably, the control formulations and update laws

are formulated in continuous time – it is likely a discrete time formulation may

have benefit to both controls engineers and AI/ML engineers; as real-world actu-

ators, simulations, and epoch-based conventional AI/ML training all operate on

discrete-time intervals. Further, as described in the stability proofs for the general

controllers in Chapters 2 and 3, the learning stability and control convergence is

guaranteed for a gain on the nonlinear SMC term greater than the combined in-

ternal learning “disturbance” and external disturbance. Upon initialization, since

the neural network is not pretrained, this internal learning disturbance is high.

110

Thus, the gain on the nonlinear term – which also affects final control accuracy

through the chatter attenuation via boundary layer – requires a high term ini-

tially. During learning, however, this disturbance will decrease, requiring a lower

discontinuous gain for guaranteed stability (and thus, lower boundary layer and

increased control accuracy). An interesting route of future work is an adapta-

tion rule for this discontinuous gain to accommodate the various stages of the

controller, from initialization to learning convergence to unseen disturbances.

Further, the AI/ML tool used in the controllers developed in Part I is the

feedforward neural network, with only two layers of trainable parameters. Mod-

ern AI/ML implementations use much more complicated architectures of neural

networks, including recurrent, convolution, attention, or residual layers, depend-

ing on the type of data and application. Even the feedforward neural networks

use many more layers, thereby increasing the prediction power and nonlinearity

for a given amount of neurons. The controllers developed in Part I only required a

basic nonlinear function approximator, and thus only used a basic neural network

architecture. While it is not clear if more advanced architectures would result in

greater control accuracy or robustness, it is certainly of merit to study how to

stabilize the evolution of these neural network architectures and data processing

systems. The most immediate improvement to the update laws presented in Part

I is likely a recursive relation for a deep neural network with an arbitrary number

of layers.

Lastly, the extended controller described in Chapter 2 that estimates a

positive definite coefficient matrix was found to experience reduced chattering

111

than the controller that estimates a diagonal coefficient matrix. The adaptive

controllers compared in Chapter 2 were tuned to exhibit adaptivity over con-

ventional model-based SMC. It is likely that a different set of hyperparameters

for the M -projection controller could exhibit further desirable behavior, either in

reduced chatter or increased control accuracy.

112

Part II: Control for Learning

Stable Online Adaptation of AI/ML Elements Using
Control-Theoretic Techniques

113

Chapter 5. Online Transfer Learning Using

Super-Twisting Control

This chapter presents research progress in using techniques from control

theory to allow modern AI/ML tools to stably improve prediction performance

online, while deployed. The mathematical rigor and associated stability guaran-

tees of control-theoretic techniques give desirable convergence properties and error

bounds to the AI/ML engineer, which is not generally possible in typical AI/ML

training with gradient-based backpropagation. This chapter specifically consid-

ers an arbitrary-depth feedforward deep neural network (DNN), pretrained on a

training dataset, deployed online under domain shift. The DNN is analyzed as a

continuous-time dynamical system to be controlled, and the output of the penul-

timate DNN layer is assumed to be a functional basis for the last-layer prediction.

Last-layer parameter update laws are developed that guarantee prediction per-

formance online under domain shift, with algorithmic improvements and relevant

proofs presented to maximize the effectiveness of the developed update laws. No-

tably, spectrally normalized training is shown to control the upper bound of online

prediction error. This chapter is adapted from the work “Control-Theoretic Tech-

niques for Online Adaptation of Deep Neural Networks in Dynamical Systems”

by Jacob G. Elkins, Avimanyu Sahoo, and Farbod Fahimi, currently under re-

114

view for publication in the IEEE Transactions on Neural Networks and Learning

Systems [12].

5.1 Introduction

Deep neural networks (DNNs), trained with gradient-based optimization

via backpropagation, are currently the primary tool in modern artificial intel-

ligence, machine learning, and data science. In many applications, DNNs are

trained offline, through supervised learning or reinforcement learning, and de-

ployed online for inference. However, training DNNs with standard backpropaga-

tion and gradient-based optimization gives no intrinsic performance guarantees or

bounds on the DNN, which is essential for applications such as controls. Addition-

ally, many offline-training and online-inference problems, such as sim2real trans-

fer of reinforcement learning policies, experience domain shift from the training

distribution to the real-world distribution. To address these stability and trans-

fer learning issues, this chapter uses techniques from control theory to update

DNN parameters online. The fully-connected feedforward DNN is formulated as

a continuous-time dynamical system, and novel last-layer update laws are de-

veloped that guarantee desirable error convergence under various conditions on

the time derivative of the DNN input vector. It is further shown that training

the DNN under spectral normalization controls the upper bound of the error

trajectories of the online DNN predictions, which is desirable when numerically

differentiated quantities or noisy state measurements are input to the DNN. The

proposed online DNN adaptation laws are validated in simulation to learn the

115

dynamics of the Van der Pol system under domain shift, where parameters are

varied in online inference from the training dataset. The simulations demonstrate

the effectiveness of using control-theoretic techniques to derive performance im-

provements and guarantees in DNN-based learning systems. A model reference

adaptive control example is also provided for control of a robotic arm, where the

developed last-layer update laws allow the DNN to effectively compensate for

unmodeled dynamics on the simulated robotic arm.

5.2 Background and Literature Review

DNNs are biologically-inspired general nonlinear function approximators

that learn from processing data. DNNs are currently the primary tool in mod-

ern artificial intelligence, machine learning, and data science; driving popular

breakthroughs in reinforcement learning [8], natural language processing [80], and

content generation [81]. DNNs are popular and successful due to their general-

ity, ability to learn intricacies from data, and ease of implementation for parallel

computation. The modeling and function approximation capability of DNNs has

recently exploded, largely due to advancements in computer hardware and in-

creased data generation.

Most commonly, DNNs are trained on an offline dataset via gradient-based

optimization and backpropagation [82, 83]. Often, these DNNs are then deployed

online for inference, with the DNN model’s parameters static, only optimized dur-

ing the pre-deployment training. If there is a change in the underlying process

that generates the DNN training data, known as concept drift or domain shift,

116

DNN performance can suffer [84, 85]. It is desirable for DNN-based models to

further improve their performance over time during deployment in the real-world,

learning from the novel data being processed by the DNN. However, efficiently

updating DNN model parameters from novel signals to guarantee improved per-

formance is not straightforward. Retraining the entire DNN model on only the

novel data can introduce catastrophic forgetting, with the model parameters over-

optimizing to the recent inputs. However, retraining the entire DNN model with

the fully updated dataset can become computationally expensive and inefficient

at each datapoint [86]. Relevant problem areas in deep learning include trans-

fer learning, domain adaptation, and domain generalization [87–90]. In many

DNN applications, data is processed by the deployed DNN model sequentially in

time, especially when the DNN is approximating a dynamical quantity or system.

Common examples of online DNN deployment include forecast models [91] and

policies trained with reinforcement learning [92]. In these examples, there are

no intrinsic properties on the DNN trained with gradient-based backpropagation,

such as boundedness of DNN outputs or guarantees of convergence.

The motivating example for this chapter is the sim2real transfer of rein-

forcement learning (RL) policies, particularly when policies are used as controllers

[92, 93]. RL-based control policies are typically trained using a simulation of the

real-world control problem, where the simulation is constructed to model the real-

world physics as accurately as possible. Once desirable performance in simulation

is achieved, the policy is then deployed onto the real-world control problem [94].

However, the real-world is highly nonlinear, complex, and difficult to model; and

117

obtaining dynamic models for use in simulation can be expensive [21]. A discrep-

ancy between the simulated problem and the real-world problem represents a shift

in the training data distribution and the online data distribution; and standard

feedforward DNNs trained with conventional RL are not designed to adequately

adapt to this distribution shift, resulting in degraded policy performance in the

real-world. The progress in this chapter is further inspired by the controllers de-

veloped in [74], where a spacecraft attitude controller derived from pure RL has

no intrinsic stability guarantees, limiting its real-world application and effective-

ness. Common methods for solving the sim2real “reality gap” include domain

randomization [95–97], enforcing robustness via adversarial training [98, 99], and

meta-learning [100, 101].

Considering the important applications of DNNs to approximating dynam-

ical systems, the study of how to train and implement DNNs to maximize online

performance is of merit. In this chapter, techniques from control theory are used

to evolve offline-trained DNNs online to improve performance when deployed un-

der domain shift. The mathematical rigor of control theory can be used to estab-

lish desirable properties on DNN outputs, such as performance bounds and con-

vergence guarantees. Conversely, neural networks have been studied extensively

for use in control theory, beginning with notable works such as [102] and [32].

In most neural-network-based controllers, including Part I of this dissertation,

the neural network is simply used as an online adaptation instrument to guaran-

tee a control objective (such as tracking error convergence) [33–36, 38, 39, 46].

However, this dissertation includes these works as “learning for control,” whereas

118

this chapter attempts to use “control for learning,” utilizing the rigor and proven

convergence properties of control theory to increase learning performance itself.

When a DNN of arbitrary depth is deployed to control or predict a dynam-

ical system, the DNN itself can be modeled and analyzed as a dynamical system.

Assuming the training distribution is reasonably close to the target (or online)

distribution, the output of the next-to-last layer forms a basis for function approx-

imation of the last layer. Similar to the distribution shift and transfer learning

approaches which retrain the last layer while freezing upper layers in the DNN

[103–106], the last layer of the DNN is evolved to learn online during operation in

a provably-stable manner, shown in the block diagram in Figure 5.4. Fine-tuning

DNN models by retraining lower layers is common in image processing and com-

puter vision, such as in the works of [103–106] previously mentioned. Deep model

reference adaptive control (MRAC) in [107] uses a similar offline DNN pretraining

step with an online update rule based on concurrent learning, though the update

rules and controller are specific to the linear MRAC case. The work in [46] derives

control-based update laws for both inner and outer layer weights for an arbitrary-

depth DNN in an assumed system. Both [46] and [107] utilize the projection

operator to stabilize the DNN weight updates for the trajectory tracking error

convergence control goal. The work in [44] uses a Lyapunov-based update law

on the DNN outer layer, which is very similar to mean-squared-error-minimizing

backpropagation. Further, DNN learning stability in [44] is guaranteed by a sys-

tem control law. This chapter also takes inspiration from [26], which combines

offline DNN learning with an online adaptation law. In [26], the authors use

119

a DNN to compensate for the aerodynamic disturbances in quadcopter control,

where the custom-designed adversarial learning algorithm optimizes an invariant

basis set for a Kalman-based online adaptation law. The works of [26] and [25]

both use spectral normalization to bound the Lipschitz constant on the DNN for

incorporation in a control law. This chapter aims to combine the ideas from these

data science and control-based works to:

(1) Improve learning itself online, i.e., decreasing DNN approximation

error over time, specifically under domain shift. This is contrasted to decreasing

trajectory tracking error of a control system by calculating a system input via

some DNN output, as in the works listed above. While the proposed DNN update

law can certainly be used inside an outer-loop controller (as shown in Section 5.8

below), this chapter aims to generalize to online DNN learning.

(2) Stabilize the DNN outputs intrinsically by directly updating the DNN

parameters.

(3) Show how machine learning developments, such as spectral normal-

ization, can give desirable control of prediction error convergence bounds in the

proposed control-based online DNN update.

5.3 Contributions

The novel update rule described in this chapter is based on the super-

twisting algorithm (STA) [16, 108, 109]. The STA is used in control, observation,

and differentiation, when finite-time asymptotic convergence is desired via a con-

tinuous control law [16]. Using the STA, this chapter further shows that other

120

deep learning techniques can be combined with the developed online adapta-

tion law to improve performance, such as spectral normalization during training

[110–112]. When the time derivative of the DNN input vector is noisy (from mea-

surement or numerical differentiation), it is shown that spectrally normalizing

the DNN during training defines the upper bound of the convergence error. The

primary contributions of this chapter are as follows:

(1) A novel online last-layer update law is developed for a pretrained DNN

when implemented onto a dynamical system, provably driving prediction error

to (or, depending on implementation, upper-bounding near) zero. This is par-

ticularly desirable under domain shift between the training data and online data

distributions.

(2) Spectral normalization is utilized to stabilize DNN training and to

control the upper bound on the prediction error, which improves online DNN

prediction performance by lowering the ultimate upper bound on the prediction

error.

5.4 Motivating Example

This section presents a concise and simple example to motivate the devel-

opments described in this chapter. Consider the unforced Van der Pol equation

[113], with dynamics written as

121

ż = ϵ

(
z − 1

3
z3 − θ

)
θ̇ = z,

(5.1)

where ϵ is a constant parameter. The goal is to use a DNN to learn the unknown

dynamics of z, assuming the dynamics of θ are known, and z, θ, ż can be measured.

Training a DNN on a feature dataset X = {z, θ} and a label dataset of Y =

{ż}, generated by the nominal system of Equation (5.1) with ϵ = 1, ż can be

approximated by a DNN to arbitrary accuracy, shown in Figure 5.1.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

−4

−3

−2

−1

0

1

2

3

̇ z

Nominal S stem
DNN Prediction

Figure 5.1: DNN predictions on the nominal system (ϵ = 1).

However, assuming a “real” system of Equation (5.1) with ϵ = 1.5, the

DNN experiences domain shift, with the test/online data (real system) generated

122

from a different distribution than the training data (nominal system). With-

out any online learning or retraining, the DNN performance suffers, as shown in

Figure 5.2.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

−6

−4

−2

0

2

4
̇ z

Real Sys em
DNN Predic ion

Figure 5.2: DNN predictions on the real system (ϵ = 1.5).

Since the DNN is trained to approximate the dynamical system in (5.1), the DNN

itself can be considered and analyzed as a dynamical system. Considering the

DNN as a dynamical system to control, control theory can be applied to update

the DNN parameters online. This is done to achieve desirable performance on

the real domain-shifted system without full retraining, shown in Figure 5.3.

The developed online update rule in this chapter takes advantage of the dynami-

cal nature of the DNN predicting online to achieve desirable performance under

domain shift. As described above, this is a common problem in transfer learning

and reinforcement learning, notably in sim2real transfer of control policies [92].

123

0 1 2 3 4 5 6 7 8 9 10
Time (s)

−6

−4

−2

0

2

4

̇ z

Real System
DNN Predicti n, Updated Online

Figure 5.3: Online-adapted DNN predictions on the real system (ϵ = 1.5).

The methodology developed in this chapter is summarized in Figure 5.4, for a

sim2real control example.

5.5 Notation and Preliminaries

This section describes the notation used throughout this chapter, the DNN

architecture considered in this chapter, and the general theory and assumptions

of the control algorithm used.

5.5.1 Notation

The notation of this chapter is again specific to this chapter. The set of

all real numbers is denoted as R, and the set of real vectors with n components

124

Figure 5.4: Block diagram of the proposed online learning method, for a sim2real
control example. The neural network model is first trained offline using conventional
supervised or reinforcement learning under spectral normalization. The learned model,
once deployed, is then updated online using the adaptation laws in Equations (5.10),
(5.11), and (5.12).

is denoted as Rn. The set of nonnegative real numbers is denoted as R≥0, and

the set of real positive numbers is denoted as R+. A general function of time

y = f(x, t), whosem time derivatives are continuous and differentiable, is denoted

as f ∈ Cm(T × X, Y), where t ∈ T is the time domain, x ∈ X is the input

domain, and y ∈ Y is the output range. The first derivative with respect to time

for a variable x is denoted as dx
dt

= ẋ for shorthand. || · ||2 denotes the 2-norm

(or Euclidean norm) of a vector. The operators λmin(Q) and λmax(Q) return

the minimum and maximum eigenvalues of a matrix Q, respectively. Any other

relevant and uncommon notations will be defined throughout the chapter.

5.5.2 Deep Neural Network Preliminaries

This chapter considers a fully-connected, feedforward DNN f(x) : Rn →

Rm, with L layers:

125

f(x) = WLϕ(aL−1) + bL, (5.2)

where aL−1 is the output of the next-to-last layer, written as

aL−1 = WL−1ϕ(WL−2ϕ(· · ·ϕ(W1x+ b1) · · ·) + bL−2) + bL−1, (5.3)

where Wi and bi is the weight and bias of the ith layer, respectively; ϕ(·) is a

bounded nonlinear activation function, and x ∈ Rn is the neural network input.

The DNN is assumed to be trained offline to optimize a feedback signal (such as

minimizing error or maximizing reward) to be implemented for online inference,

processing data and receiving error signals sequentially in time.

5.5.3 Control Preliminaries

As discussed throughout this dissertation, in model-based control of real-

world systems, it is difficult to accurately model the real-world system being

controlled. Control engineers have long studied how to design closed-loop con-

trollers that render desirable performance under model uncertainty and discrep-

ancy [16, 113]. One such robust control methodology is sliding mode control,

which aims to drive the nonlinear system to a desired manifold through the use of

a discontinuous control signal [17]. The controller is typically designed for finite-

time convergence of the sliding manifold to zero, which in turn is formulated for

exponential convergence of error to zero.

126

In conventional sliding mode control, the discontinuous control signal is

undesirable, as it can introduce chatter and harm actuators in real-world sys-

tems. The super-twisting algorithm (STA), introduced in [108], is a sliding mode

control algorithm that uses a continuous control signal to guarantee finite-time

convergence of the sliding variable, among other important qualities (cf. [16]).

This chapter follows the STA formulation and applies the Lyapunov stability

proof given in [109].

Consider the STA system in state variable form

ẋ1 = −k1|x1|1/2sign(x1) + x2 + p1(x1, x2, t)

ẋ2 = −k2sign(x1) + p2(x1, x2, t),

(5.4)

where x1, x2 ∈ R are state variables, k1, k2 ∈ R+ are constant design gains, and

p1(x1, x2, t), p2(x1, x2, t) : R2 × R≥0 → R are system perturbations. Note that

x1, x2 here are unrelated to the DNN input vector, x. The right-hand side of

Equation (5.4) is discontinuous, so the solution to the differential inclusion of

(5.4) is understood in the sense of Filippov [114]. The STA is widely used in

control, observation, and robust numerical differentiation [16, 115].

Notably, the STA in (5.4) is robust to the perturbation defined by

p1(x1, x2, t) = 0

|p2(x1, x2, t)| ≤ D,

(5.5)

127

where D ∈ R+ is any constant, provided that the gains k1, k2 in (5.4) are selected

appropriately [108, 109, 116–118]. More precisely, (5.4) under the perturbation

defined in (5.5) establishes the origin {x1 = 0, x2 = 0} as a global finite-time stable

equilibrium point. This was proven geometrically in [118], by the homogeneity

property of the controllers in [117] and [119], and by Lyapunov analysis in [109].

The Lyapunov analysis in [109] also establishes that, assuming the STA in (5.4)

is robust to perturbations of the form defined in (5.5), the STA is also robust to

perturbations of the form

|p1(x1, x2, t)| ≤ δ1 + δ2

√
|x1|+ x22

|p2(x1, x2, t)| ≤ D,

(5.6)

where δ1, δ2 ∈ R≥0 are constants. The authors in [109] further show that if δ1 = 0,

p1(x1, x2, t) will vanish at the origin, and the STA in (5.4) will still converge to the

origin in finite time. However, for perturbations that do not vanish at the origin in

the x1 channel (that is, δ1 ̸= 0 such that p1(0, 0, t) ̸= 0), the state trajectories will

not generally converge to the origin, but will be globally ultimately bounded [113].

This result is important, as in the DNN training development, the perturbation

in the x1 channel manifests from noise in the time derivative of the DNN input

vector, from either numerical differentiation or measurement noise.

128

5.6 Online DNN Updates Using Super-Twisting Control

Assume an arbitrary function y ∈ C2(T×X, Y) to be approximated offline

by an arbitrary-depth DNN, where t ∈ T = R≥0, x ∈ X = Rn, and y ∈ Y = Rm.

The “nominal” system can be written in state space form as

ż1 = z2

ż2 = ÿ

y = z1,

(5.7)

where z1, z2 ∈ Rm are state variables. The DNN is trained offline on data gener-

ated from the nominal system to some arbitrary approximation accuracy.

The trained DNN is assumed to be implemented online to estimate the

“real” system, y′, which is a domain-shifted process of the nominal system, y,

written as

ż′1 = z′2

ż′2 = ÿ′

y′ = z′1,

(5.8)

where z′1, z
′
2 ∈ Rm are real-system state variables. The goal of this chapter is to

use control theory to find a provably-stable update law such that the DNN trained

on the nominal system can perform effectively on the real system using feedback

129

from an error signal. As stated above, this problem corresponds to domain shift

and transfer learning problems common in using DNNs for reinforcement learning

and forecasting, to name a few. In general, this problem is applicable to any DNN

which is implemented to approximate a dynamical system online.

One possible method for the DNN-based model to learn online includes

retraining the entire model on both the nominal and real system data at certain

intervals during deployment. This method becomes computationally inefficient

and expensive as the training dataset grows, and typical backpropagation with

gradient-based optimization does not intrinsically provide stability guarantees.

Further, only retraining the model on the online real-system data acquired can

induce catastrophic forgetting, with the DNN parameters over-optimizing to the

recent data [86]. Taking inspiration from [26], only the parameters of the last

layer of the DNN are updated, which is computationally efficient and preserves

the overall learned feature representation of the training data generated by the

nominal system. In this way, the output of the next-to-last layer acts as a basis

for function approximation of the last layer of the DNN. In [26], a custom adver-

sarial learning algorithm is designed to maximize the independence of the learned

basis output. This chapter simply considers a DNN pretrained with conventional

gradient-based optimization, due to its prevalence in modern AI/ML. It is thus

assumed that the output of the next-to-last-layer, ϕ(aL−1), which can be consid-

ered as the learned representation of the important features of both y and y′, is

a suitable basis for approximation of the DNN’s output layer.

130

To implement a controller for updating the last layer of the DNN online,

(5.2) is differentiated with respect to time to get

˙̂y =
df(x)

dt
=
∂f

∂t
+
∂f

∂x

∂x

∂t
= ẆLϕ(aL−1) + ḃL + Γ, (5.9)

where ŷ ∈ Rm is the DNN output and Γ = Γ(ẋ) = WL
dϕ(aL−1)

dt
for notational

simplicity. The control problem is to derive update laws ẆL and ḃL to drive

e1 = ŷ − y′ → 0 as t→∞.

Note that the activation derivative term dϕ(aL−1)

dt
term in Γ is easily calcu-

lated using the chain rule, similar to backpropagation of error. The term Γ is only

a function of the time derivative of the DNN input vector, ẋ, since the weights

and biases of the DNN are known and unchanging with respect to time in this

formulation. Thus, from the ∂f
∂x

∂x
∂t

term in the chain rule, the online last-layer

update can be said to take advantage of the knowledge of the DNN architecture

and the knowledge of ẋ. This chapter discusses two cases below: (1) when ẋ is

known and (2) when ẋ is estimated or noisy.

5.6.1 Case I: Known ẋ

The online update laws forWL, the output layer weight, and bL, the output

layer bias, are given as

ḃL =
1

2
(−k1|e1|1/2sign(e1)− Γ + ẑ2) (5.10)

131

ẆL = ḃL
ϕT (aL−1)

||ϕ(aL−1)||22
, (5.11)

where ẑ2 is an augmented integral control term, evolved as

˙̂z2 = −k2sign(e1) (5.12)

and k1, k2 ∈ R+ are again constant design gains. Note that in (5.10), Γ = Γ(ẋ) is

used, since ẋ is known in this case.

Theorem 5.6.1. Suppose the approximation target y′ ∈ C2(T × X, Y), and its

second time derivative is bounded such that |ÿ′| ≤ Dy. Suppose the activation

derivative term Γ = WL
dϕ(aL−1)

dt
is known. Further, suppose y′ is approximated

by the DNN in (5.2), which is trained offline on data generated from y, and the

NN input x is continuously differentiable with respect to time. Then, for every

Dy > 0, there exist design gains k1, k2 such that the last-layer update rules in

(5.10), (5.11), and (5.12) cause e1 = 0 to be a robustly, globally, finite-time stable

equilibrium point, such that e1 → 0 at some finite time t < t′(e1, e2).

Proof. Substituting the update laws in Equations (5.10)-(5.12) into Equation (5.9)

gives the system

˙̂z1 = −k1|e1|1/2sign(e1) + ẑ2

˙̂z2 = −k2sign(e1)

ŷ = ẑ1.

(5.13)

132

Subtracting the system in (5.13) by the real system given in (5.8) gives the DNN

error dynamics under the proposed online STA update given in (5.10)-(5.12):

ė1 = −k1|e1|1/2sign(e1) + e2

ė2 = −k2sign(e1)− ÿ′,
(5.14)

where e2 = ẑ2 − z′2. Since it is assumed the real system signal is bounded such

that |ÿ′| ≤ Dy, each component of the system given in (5.14) is equivalent to

the robust scalar STA system in (5.4) under the perturbation given in (5.5), with

p1(x1, x2, t) = 0 and |p2(x1, x2, t)| = |ÿ′| ≤ Dy. The following analysis holds for

each component of the system in (5.14).

The derivative of the vector ζ = [ζ1, ζ2]
T = [|e1|1/2sign(e1), e2] can be

written as

ζ̇ =
1

|ζ1|
Aζ, (5.15)

where |ζ1| = |e1|1/2 and

A =

−1
2
k1

1
2

−k2 0

 . (5.16)

For the system in (5.14), the authors of [109] consider the strict Lyapunov

function candidate

V (e) = ζTPζ, (5.17)

133

where e = [e1, e2]
T and P = P T is positive definite, related to matrix A via the

Algebraic Lyapunov Equation (ALE)

ATP + PA = −QR. (5.18)

Assuming appropriate selection of gains k1, k2 ([109], Algorithm 1), the time

derivative of (5.17) along the system trajectories in (5.14) thus satisfies the rela-

tion

V̇ ≤ −|e1|1/2ζTQRζ (5.19)

almost everywhere, where QR = QT
R is positive definite. However, the Lyapunov

function in (5.17) is not locally Lipschitz continuous, as assumed in classical

Lyapunov theory [114, 120]. By Zubov’s theorem, which permits continuously

differentiable (and not necessarily locally Lipschitz continuous) Lypaunov func-

tions [113], the Lyapunov function in (5.17) decreases to zero monotonically in

time [109].

Further, the time of error convergence to the origin is finite, upper bounded

by

t′ =
2

σ̄
V 1/2(e(t = 0)), (5.20)

where

σ̄ =
λ
1/2
min(P)λmin(QR)

λmax(P)
(5.21)

134

and the notation λmin(A) and λmax(A) denotes the minimum and maximum eigen-

value on the spectrum of some matrix A, respectively. For details on the time

convergence of the STA algorithm and gain selection of k1, k2, the reader is re-

ferred to [109], Theorem 2.

5.6.2 Case II: Unknown or Estimated ẋ

In some applications, the activation derivative term dϕ(aL−1)

dt
term is noisy

and/or estimated. This can happen in some model reference adaptive control

cases, specifically when the time derivative of the DNN input vector, ẋ, must be

numerically differentiated for (or is calculated using noisy measurements, such as

from real-world sensors). This can be seen by calculating dϕ(aL−1)

dt
for the DNN

given in (5.2):

dϕ(aL−1)

dt
= ϕ′(aL−1)⊙WL−1(ϕ

′(aL−2)⊙WL−2(· · ·ϕ′(a1)⊙W1ẋ)), (5.22)

where ⊙ denotes the Hadamard product, ai = Wiϕ(ai−1)+ bi is the output of the

ith DNN layer, and ϕ′(z) = dϕ/dz denotes the activation function derivative. In

(5.22), the only potentially unknown term is ẋ, since the weights and biases of

the DNN are known. Using (5.22), Γ = WL
dϕ(aL−1)

dt
can be expanded as

Γ = WL(ϕ
′(aL−1)⊙WL−1(ϕ

′(aL−2)⊙WL−2(· · ·ϕ′(a1)⊙W1ẋ))). (5.23)

135

Denoting the estimate of Γ as Γ̂ = Γ(˙̂x) for shorthand, Γ̂ can similarly be written

as

Γ̂ = WL(ϕ
′(aL−1)⊙WL−1(ϕ

′(aL−2)⊙WL−2(· · ·ϕ′(a1)⊙W1
˙̂x))), (5.24)

where ˙̂x denotes the estimate of ẋ. The STA online update rules in (5.10)-(5.12)

are thus modified to use the estimate Γ̂:

ḃL =
1

2
(−k1|e1|1/2sign(e1)− Γ̂ + ẑ2) (5.25)

ẆL = ḃL
ϕT (aL−1)

||ϕ(aL−1)||22
(5.26)

˙̂z2 = −k2sign(e1), (5.27)

where k1, k2 ∈ R+ are again constant design gains. In this case, the estimate of

Γ̂ will introduce a perturbation term in the x1 channel of the system in (5.4),

which will cause the error system trajectories to not converge to zero but to be

ultimately bounded.

Since it is desirable to decrease the error trajectory bound, this section

further explores how to quantify and control the bounds on Γ and Γ̂. The works

[26] and [25] have shown that training DNNs under spectral normalization (SN)

can be used to derive convenient stability guarantees when using DNNs in dynam-

136

ical systems. Namely, spectral normalization controls the Lipschitz constant of a

DNN, which defines the bound on the DNN output from a bounded input [110].

The authors of [26], [25], and [110] each show that SN training can improve out-

of-domain generalization on DNN predictions and stabilizes training, especially

in sensitive network structures such as Generative Adversarial Networks [112].

Definition 5.6.2. A real function g is Lipschitz continuous if there exists a

constant γLip ∈ R+ such that

||g(w1)− g(w2)||2
||w1 − w2||2

≤ γLip (5.28)

for any w1, w2 in the domain of g. The smallest constant γLip satisfying (5.28),

||g||Lip, is called the Lipschitz constant, which provides a convenient bound for

relating function output given a bounded input.

Following the analysis in [25] and [112], the Lipschitz constant of a function

g is the maximum singular value of its gradient in the domain, written as ||g||Lip =

supξσ(∇g(ξ)), where σ(·) denotes the maximum singular value operator. The

DNN in (5.2) is a composition of functions, recursively hi(ξ) = Wiξi−1 + bi and

ξi−1 = ϕ(ai−1) for the i
th layer. Further, the Lipschitz constant for a composition

of functions gL ◦ gL−1 ◦ · · · ◦ g1 is bounded by the inequality

||gL ◦ gL−1 ◦ · · · ◦ g1||Lip ≤ ||gL||Lip||gL−1||Lip · · · ||g1||Lip. (5.29)

Since ||g||Lip = supξσ(∇g(ξ)), the Lipschitz constant of the ith DNN layer is

||hi||Lip = supξi−1
σ(∇(Wiξi−1 + bi)) = supξi−1

σ(Wi) = σ(Wi). That is, the Lips-

137

chitz constant of the ith DNN layer is the maximum singular value of the weight

matrix Wi. This can be calculated by σ(Wi) = maxj(
√
λj(W T

i Wi)), where λ(·) is

the eigenvalue operator. Using the inequality in (5.29), the Lipschitz constant for

the DNN in (5.2) can be bounded by

||f(x)||Lip ≤ σ(WL)||ϕ||Lipσ(WL−1)||ϕ||Lip · · ·σ(W1), (5.30)

where the Lipschitz constant of the activation functions ||ϕ||Lip can be easily found

based on the activation function used in the DNN. The ReLU activation function

is defined as ϕ(ai) = max(0, ai). Its derivative can be written as

ϕ′(ai) =

1 if ai ≥ 0,

0 otherwise,

(5.31)

which shows a Lipschitz constant ||ϕ||Lip = 1. The Lipschitz constant of the DNN

in (5.2) with ReLU activations is thus bounded by

||f(x)||Lip ≤
L∏
i=1

σ(Wi), (5.32)

which follows directly from (5.30). To control ||f(x)||Lip during training, Al-

gorithm 1 is implemented, where γ is the desired upper bound on the Lips-

chitz constant of the DNN in Equation (5.2) with ReLU activations, such that

||f(x)||Lip ≤ γ [25].

138

Algorithm 1 Spectrally normalized ReLU DNN training.

for epoch in range(max epochs)

optimize NN parameters Wi, bi for i = 1, 2, · · · , L

for i = 1, 2, · · · , L :

σi = σ(Wi)

if σi > γ1/L :

Wi ← Wi

σi
γ1/L

else:

continue

Note that in Algorithm 1, the normalizing weight update Wi ← Wi

σi
γ1/L

upper bounds the Lipschitz constant of the ith DNN layer hi by ||hi||Lip ≤ γ1/L.

Lemma 5.6.3. Consider the DNN given in (5.2), with activation functions ϕ(·)

defined as the rectified linear unit (ReLU) function, trained with spectral normal-

ization via Algorithm 1. If the Lipschitz constant of the DNN is upper bounded

by ||f(x)||Lip ≤ γ, then the Lipschitz constant of Γ is also upper bounded by

||Γ||Lip ≤ γ.

Proof. From (5.23), it can be seen that Γ is a recursion of linear operators, similar

to the analysis above for the ReLU DNN itself. Equation (5.23) can be rewritten

as a recursive composition of functions as

Γ = h′L ◦ z′L−1 ◦ h′L−1 ◦ · · · ◦ z′1 ◦ h′1, (5.33)

139

where h′i = Wiz
′
i−1 and z′i−1 = ϕ′(ai−1)⊙ h′i−1. The Lipschitz constant of a linear

map is its maximum singular value of its gradient, giving ||h′i||Lip = σ(Wi). The

function z′i−1 can be rewritten as the linear map z′i−1 = diag(ϕ′(ai−1))h
′
i−1 such

that ||z′i−1||Lip = σ(diag(ϕ′(ai−1))). The maximum singular value of a diagonal

matrix is equivalent to the infinity norm of its diagonal. With the ReLU derivative

given in (5.31), ||z′i−1||Lip = ||ϕ′(ai−1)||∞ = 1. From the inequality in (5.29), the

Lipschitz constant of Γ is thus upper bounded by

||Γ||Lip ≤ σ(Wi)σ(Wi−1) · · ·σ(W1) =
L∏
i=1

σ(Wi). (5.34)

Using Algorithm 1 to train the DNN controls the singular values of the DNN

weights, such that
∏L

i=1 σ(Wi) = γ. Thus, the Lipschitz constant of Γ is upper

bounded by

||Γ||Lip ≤ γ. (5.35)

Theorem 5.6.4. Suppose the approximation target y′ ∈ C2(T × X, Y), and its

second time derivative is bounded such that |ÿ′| ≤ Dy. Suppose the activation

derivative term Γ = WL
dϕ(aL−1)

dt
is estimated by Γ̂, with ẋ and its approximation

˙̂x both bounded. Further, suppose y′ is approximated by the DNN in (5.2) with

ReLU activation functions, which is trained offline on data generated from y via

Algorithm 1, and the NN input x is continuously differentiable with respect to

time. Then, for every Dy > 0, there exist design gains k1, k2 such that the

140

last-layer update rules in (5.25), (5.26), and (5.27) cause the error trajectories

e1, e2 to be globally ultimately bounded. The upper bound of each component of

the combined error ||ζ||2 =
√
|e1|+ e22 is defined by

ē =

√
λmax(P)

λmin(P)

ηγ||ẋ− ˙̂x||2
(1− κ)λmin(QR)

. (5.36)

Proof. Substituting the update laws in Equations (5.25)-(5.27) into Equation (5.9)

renders the system

˙̂z1 = −k1|e1|1/2sign(e1) + ẑ2 + Γ− Γ̂

˙̂z2 = −k2sign(e1)

ŷ = ẑ1.

(5.37)

Subtracting the system in (5.37) by the real system given in (5.8), the DNN error

dynamics under the modified online STA update rules in (5.25)-(5.27) are written

as

ė1 = −k1|e1|1/2sign(e1) + e2 + Γ− Γ̂

ė2 = −k2sign(e1)− ÿ′.
(5.38)

Since it is assumed |ÿ′| ≤ Dy, each component of the system given in (5.14) is

equivalent to the scalar STA system in (5.4) with perturbation terms p1(x1, x2, t) =

Γ− Γ̂ and p2(x1, x2, t) = −ÿ′. The perturbation in the e2 channel, p2, is assumed

141

to be upper-bounded by |p2(x1, x2, t)| = |ÿ′| ≤ Dy. The following analysis holds

for each component of the system in (5.38).

Investigating the perturbation in the e1 channel, p1(x1, x2, t) = Γ− Γ̂, the

relation

||Γ− Γ̂||2
||ẋ− ˙̂x||2

≤ ||Γ||Lip (5.39)

can be written directly from the definition of Lipschitz continuity in (5.28). Using

Lemma 5.6.3 and rearranging, p1(x1, x2, t) is upper bounded by

||p1(x1, x2, t)||2 ≤ γ||ẋ− ˙̂x||2. (5.40)

That is, the disturbance in the e1 channel is bounded by the desired Lipschitz

bound on the DNN times the error in the time derivative of the DNN input vector.

Since it is assumed that ẋ and its approximation ˙̂x are both bounded, the quantity

||ẋ− ˙̂x||2 is also bounded.

Further, since |p1x1, x2, t)|i ≤ ||p1(x1, x2, t)||∞ ≤ ||p1(x1, x2, t)||2 for i =

1, 2, ...,m; the perturbation on each component of the error system in (5.38) is

bounded by

|p1(x1, x2, t)| ≤ γ||ẋ− ˙̂x||2

|p2(x1, x2, t)| ≤ Dy.

(5.41)

142

Comparing the perturbation bounds in (5.41) to the form in (5.6), it can be seen

that δ1 = γ||ẋ− ˙̂x||2 and δ2 = 0. Assuming the gains k1, k2 are selected according

to the stability conditions in Theorem 5.6.1 (i.e., [109], Algorithm 1) and P,QR

satisfy (5.18), the time derivative of the Lyapunov candidate V (e) = ζTPζ along

the trajectories of the error system in (5.38) can be written as

V̇ ≤ − 1

|e1|1/2

(
ζTQRζ −

[
p1(x1, x2, t) 0

]
Pζ

)
. (5.42)

Substituting the perturbation inequality from (5.41) into (5.42) and simplifying

the quadratic term gives

V̇ ≤ − 1

|e1|1/2
(λmin(QR)||ζ||22 − ηγ||ẋ− ˙̂x||2||ζ||2) (5.43)

which, using the fact |e1|1/2 ≤ ||ζ||2, can be simplified to

V̇ ≤ −λmin(QR)||ζ||2 + ηγ||ẋ− ˙̂x||2. (5.44)

The Lyapunov function V (e) = ζTPζ is upper bounded by V ≤ λmax(P)||ζ||22,

which can be rearranged to V 1/2

λ
1/2
max(P)

≤ ||ζ||2. Substituting this relation and ||ζ||2 =

κ||ζ||2 + (1 − κ)||ζ||2 for a constant κ ∈ (0, 1) into (5.44) gives the simplified

inequality

V̇ ≤ −κλmin(QR)

λ
1/2
max(P)

V 1/2 (5.45)

in the region where ||ζ||2 ≥ µ, with

143

µ =
ηγ||ẋ− ˙̂x||2

(1− κ)λmin(QR)
. (5.46)

Thus, the error trajectories of each component of (5.38) enter the set Ωµ = {e ∈

R2 | V (e) ≤ λmax(P)µ
2} at some finite time t′ > 0 and remain in the set Ωµ

∀t > t′ [109]. This convergence time t′ can be estimated by Bihari’s inequality as

t′ =
2λ

1/2
max(P)

κλmin(QR)

[
V 1/2(e(t = 0))− λ1/2max(P)µ

]
. (5.47)

Finally, using the bounds on the Lyapunov function λmin(P)||ζ||22 ≤ V ≤

λmax(P)µ
2, the upper bound of the trajectories of ||ζ||2 ≤ ē are found to be

ē =

√
λmax(P)

λmin(P)

ηγ||ẋ− ˙̂x||2
(1− κ)λmin(QR)

, (5.48)

where P and Q are defined from the ALE in (5.18), and η =
√

1 + p212, where

p12 is the (1, 2)th component of P [109]. Thus, in the presence of noise in ẋ via

measurements or numerical differentiation, training the DNN with spectral nor-

malization can give the control designer quantifiable upper bounds on trajectory

convergence for the proposed online last-layer update rules in (5.25), (5.26), and

(5.27). For further details on the error bounds and time convergence of the STA

algorithm in this condition, the reader is referred to [109], Theorem 3.

144

5.7 Simulation Examples

Case I: Consider the Van der Pol system in (5.1), with the training (or

“nominal”) system value ϵ = 1, assuming the dynamics θ̇ = z are known. The

DNN in (5.2) with 3 layers of 8, 16, 8 neurons, respectively, is trained with ReLU

activation functions and spectral normalization via Algorithm 1, with γ = 32.

The training dataset of features X = {z, θ} and label dataset of Y = {ż} are

generated by the nominal system for 30 seconds at time intervals of 0.01 seconds.

The DNN is trained with the Adam optimizer for 20,000 epochs with a batch size

of 8 [121]. The DNN is then implemented online onto the real system of ϵ = 1.5,

where the time derivative of the DNN input vector ẋ = [ŷ, z]T is used. Note that

this input vector uses the DNN prediction ŷ, which approximates the learning

target ż. The update rules (5.10), (5.11), and (5.12) are used, with k1 = 50,

k2 = 1.

Case II.a: The Van der Pol system in (5.1) is again considered, with the

training (or “nominal”) system value ϵ = 1, assuming the dynamics of θ are

known but noisy. The DNN in (5.2) with 4 layers of 8, 16, 8 neurons, respec-

tively, is trained with ReLU activation functions and spectral normalization via

Algorithm 1, with γ = 1. The training dataset of features X = {z, θ} and la-

bel dataset of Y = {ż} is generated by the nominal system for 30 seconds at

time intervals of 0.01 seconds. The DNN is trained with the Adam optimizer for

20,000 epochs with a batch size of 8. The DNN is then implemented online onto

the real system of ϵ = 1.5, where the time derivative of the DNN input vector

145

˙̂x = [ŷ, z + 10 sin (20πt)]T is used. The update rules (5.25), (5.26), and (5.27) are

used, with k1 = 50, k2 = 1.

Case II.b: Case II.b is the same as Case II.a above, but the DNN is not

trained with spectral normalization. The DNN is implemented online to predict

the real system of ϵ = 1.5, where update rules (5.25), (5.26), and (5.27) are used,

with k1 = 50, k2 = 1.

The DNN outputs over time for each case, compared to the real system,

are shown in Figure 5.5. To compare the behavior of each case, the prediction

error e1 for each case is shown over time in Figure 5.6. To compare the error

analysis in Theorem 5.6.4, ||Γ− Γ̂||2 for Case II.a and Case II.b are plotted over

time, along with the defined error bound in (5.35), in Figure 5.7.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

−6

−4

−2

0

2

4

̇ z

3.8 4.0 4.2

1.8 1.9 2.0 2.1 2.2

Real S stem
DNN, Case I

DNN, Case II.a
DNN, Case II.b

Figure 5.5: Online-adapted DNN predictions on the real system (ϵ = 1.5) for each
case.

146

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
io
n
Er

ro
r,
e 1

3.5 4.0 4.5 5.0

0.00

0.25

DNN, Case I
DNN, Case II.a
DNN, Case II.b

Figure 5.6: DNN prediction error on the real system (ϵ = 1.5) for each case.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

5

10

15

20

25

30 ||Γ− ̂Γ||2 w/o SN
||Γ− ̂Γ||2 w/ SN
SN Bound

Figure 5.7: Perturbation analysis on the real system (ϵ = 1.5) for the DNN trained
with SN (Case II.a) and the DNN trained without SN (Case II.b). The red dotted line
represents the upper bound from (5.34) at each timestep.

147

In Figure 5.5, each DNN successfully converges near the real system using

the proposed online update rules, after being trained on a small nominal system

dataset. In Figure 5.6, the perturbation in the e1 channel from the disturbance

in Γ − Γ̂ now causes the e1 trajectories in Case II.a and II.b to be ultimately

bounded. However, when the DNN is trained with spectral normalization, the

controlled Lipschitz constant upper bounds the disturbance Γ − Γ̂, causing the

upper bound of the e1 trajectory to be smaller than the DNN trained without

spectral normalization in Case II.b. In Figure 5.7, the upper bound on Γ − Γ̂

from (5.34) is plotted over time, along with the Γ− Γ̂ disturbance from both Case

II.a (w/ SN) and Case II.b (w/o SN). It can be seen from this figure that the

DNN trained without spectral normalization causes a larger disturbance in the

e1 channel, where the DNN trained with spectral normalization obeys the proven

disturbance bound in (5.34).

5.8 Example: Sim2real Model Reference Adaptive Control

As mentioned above, the sim2real problem of control policies is a notable

application of the online DNN learning methodology developed above. To show

a possible application example, this section describes a model reference adaptive

control (MRAC) problem of a robot arm. Consider the robot arm simulated in

Chapter 2, where it is assumed that a nominal dynamic model of the robot is

known. The goal of this section is to use a DNN to learn the model discrepancies

between the nominal model and the real system, where the control policy will be

deployed.

148

The dynamics of the nominal system are assumed to be of the form

Fnom(y, ẏ, ÿ) = τ − F̂ (y, ẏ, ÿ), (5.49)

where Fnom(y, ẏ, ÿ) = Mnomÿ + fnom is the nominal part of the dynamics ad-

equately explained by the known dynamic model, F̂ (y, ẏ, ÿ) = M̂ÿ + f̂ is the

unmodeled part of the dynamics to be learned (due to parameter uncertainty in

this example), and τ is the control input. Note that M and f = C(q, q̇)q̇ +G(q)

are from the reference robot model described in Appendix A.1.

The nominal dataset {x, τ, Fnom} is constructed via simulation of the

known robot model performing a continuous slew maneuver for 10 seconds, at a

frequency of 100 Hz. The state vector x given as input to the DNN is x = {q, q̇, q̈},

where q ∈ R3 is the vector of robot joint angles. The control law used dur-

ing dataset generation is τ = τnom − Ks, where τnom = Mnomṡr + fnom and

K = diag([2, 0.9, 0.5]) is a design gain matrix. The filtered control error s is cal-

culated as s = ė−λe, with λ = diag([4, 4, 4]), and ṡr = q̇− s denoting a reference

velocity error. A 3-layer spectrally-normalized DNN with 8, 16, and 8 neurons

per layer is trained via the Adam optimizer on the feature dataset X = {x} for

5000 epochs with a desired SN constant of 1.2. The learning target is to minimize

the mean squared error between F̂ , now parameterized by a DNN, and τ −Fnom.

The parameters assumed for the nominal robot model are given in Table 5.1.

To simulate implementing this controller in a sim2real scenario, the phys-

ical parameters of the simulated “real” robot to be controlled are varied from

those used during the dataset generation. The parameters used for the real robot

149

Table 5.1: Nominal robot parameters used during dataset generation.

Parameter Value

R0 0.06 m
l1 0.3 m
l2 0.3 m
m0 4 kg
m1 0.8 kg
m2 0.85 kg

model are given in Table 5.2. Note that both sets of parameters are designed in

this example to simulate a real robotic system, where an imperfect but reasonable

dynamics model is acquired via measurement and system identification.

Table 5.2: Real robot parameters used during simulation.

Parameter Value

R0 0.065 m
l1 0.296 m
l2 0.31 m
m0 4 kg
m1 0.815 kg
m2 0.8 kg

The control law on the real robot now becomes

τ = τnom −Ks+ τdist, (5.50)

150

where τdist is the current DNN approximation of F̂ , the combined disturbance due

to parameter uncertainty. This control law simply uses the DNN to learn and di-

rectly compensate for the effects of parameter uncertainty in the real robot, where

the dynamics of the real system ideally become equivalent to the dynamics of the

nominal system. The update rules of the last DNN layer given in (5.25), (5.26),

and (5.27) are performed online at every timestep. A super-twisting differentiator

[16] is used to approximate
...
q , which is needed for constructing ẋ for calculation

of Γ̂ in (5.25). As mentioned above, this causes the error trajectories e1 to not

converge to zero but to be ultimately bounded near zero (dependent on differen-

tiation accuracy).

The comparison of the nominal robot controlled by τ = τnom−Ks (labeled

“Nominal System”), the real robot controlled via (5.50) without online learning

(labeled “Without Online Update, Real System”), and the real robot controlled

via (5.50) with the last-layer update laws given in (5.25), (5.26), and (5.27) (la-

beled “With Online Update, Real System”) is shown below in Figure 5.8.

Figure 5.8 shows that the model reference controller on the real system

without online updates has control error, since the real system has differing dy-

namics from the model used to build and train the controller (i.e., domain shift).

However, for the model reference controller on the real system with the developed

online update laws, the prediction error e1 converges to a small error ball, allowing

the model reference controller to return the system to dynamics almost identical

to the nominal system. The prediction error here is due to the numerical differ-

entiation used in the update. It is important to note that this controller is able to

151

0 1 2 3 4 5 6 7 8 9 10
−0.10

−0.05

0.00

0.05

0.10

Co
nt
ro
l E

rro
r (
(a
d)

Nominal Sy)t m

e[0]
e[1]
e[2]

0 1 2 3 4 5 6 7 8 9 10

−0.75

−0.50

−0.25

0.00

0.25

0.50

P(
 d

ict
io
n
E(
(o
((
Nm

)

e1[0]
e1[1]
e1[2]

0 1 2 3 4 5 6 7 8 9 10
Tim ())

0

1

2

3

4

5

6

Co
nt
(o
l I
np

ut
 (N

m
) τ[0]

τ[1]
τ[2]

0 1 2 3 4 5 6 7 8 9 10
−0.10

−0.05

0.00

0.05

0.10
Without Onlin Updat , R al S,st m

e[0]
e[1]
e[2]

0 1 2 3 4 5 6 7 8 9 10

−0.75

−0.50

−0.25

0.00

0.25

0.50

e1[0]
e1[1]
e1[2]

0 1 2 3 4 5 6 7 8 9 10
Tim (s)

0

1

2

3

4

5

6
τ[0]
τ[1]
τ[2]

0 1 2 3 4 5 6 7 8 9 10
−0.10

−0.05

0.00

0.05

0.10
With Onlin Updat , R al S,)t m

e[0]
e[1]
e[2]

0 1 2 3 4 5 6 7 8 9 10

−0.75

−0.50

−0.25

0.00

0.25

0.50

e1[0]
e1[1]
e1[2]

0 1 2 3 4 5 6 7 8 9 10
Tim ())

0

1

2

3

4

5

6
τ[0]
τ[1]
τ[2]

Figure 5.8: Comparison of the nominal system dynamics, the DNN-compensated
dynamics without the online update rule, and the DNN-compensated dynamics with
the developed online update rule.

152

learn to compensate the dynamics of the uncertain real-world system from only

10 seconds of simulation data due to the proposed online learning laws, essentially

negating the sim2real problem. Further, this controller now has a quantification

of what is unknown or unmodeled about the system, which could be beneficial in-

formation for operators or controllers that use uncertainty to adapt control gains

or to drive safe exploration.

153

Chapter 6. Conclusions, Discussion, and Future Work

6.1 Summary and Conclusions

Part II describes the research progress made in using control theory itself

to improve AI/ML performance online, when deployed. The central idea of Part

II is that the mathematical rigor and goals of control theory are often aligned

with many tasks in modern AI/ML, especially in aerospace and robotics; and

these control-theoretic tactics can be used directly to improve AI/ML perfor-

mance and stability. This is contrasted with Part I, which is primarily concerned

with studying these AI/ML elements inside adaptive control laws to improve

control performance, versatility, and robustness. Additionally, many tricks used

to stabilize and improve training of AI/ML elements, such as normalization or

regularization, likely have applications to controls and additional mathematical

description via control theory.

Chapter 5 considers evolving deep neural networks (DNNs) online during

inference, when the online distribution is shifted from the offline distribution used

to train the DNN. This problem frequently arises when DNNs are used to approx-

imate dynamical systems, which is of particular interest to transfer learning and

reinforcement learning for forecasting, controls, and sim2real transfer. When us-

ing a DNN to approximate a dynamical system online, the DNN itself can be con-

154

sidered as a dynamical system to be controlled. The chapter describes using the

super-twisting algorithm, a well-known sliding mode control algorithm, to evolve

the last-layer parameters of the DNN in continuous time. Last-layer evolution has

been shown in transfer learning to effectively and efficiently provide updates to

DNN-based models from newly acquired data while limiting catastrophic forget-

ting, when retraining the entire model can be expensive and infeasible. Further,

the developed online update laws in Chapter 5 render proven error trajectory

convergence of the DNN outputs, which is desirable in many online DNN pre-

diction scenarios, since conventional gradient-based backpropagation does not

intrinsically provide any DNN performance guarantees or bounds. This can allow

drop-in performance and stability guarantees on the DNN in controls scenarios,

when some notion of input-output stability is required or necessary. Chapter 5

describes the application of the developed update laws in two possible cases: (1)

when the time derivative of the DNN input vector is known and (2) when the time

derivative of the DNN input vector is approximated or noisy. In the latter case,

spectrally normalizing the DNN during training improves online DNN predic-

tion performance, since the desired spectral normalization constant of the DNN

upper-bounds the prediction error trajectory convergence. The methodology and

relevant convergence proofs are validated for each described case via numerical

simulation, with the DNN trained to approximate the dynamics of the Van der

Pol oscillator online under domain shift. In each case, the developed last-layer

update rules allow the DNN to perform effectively on the online domain-shifted

system. Lastly, Chapter 5 gives an example of using the developed update laws

155

inside a model reference adaptive controller for a simulated sim2real robot control

problem, where the controller effectively learns to compensate the dynamics of

the uncertain real-world system from only 10 seconds of simulation data.

6.2 Discussion

Chapter 1 mentions that one of the primary theories of this dissertation

is the data that a system encounters online, during operation, is the

most important for learning. To this end, the developed online update laws

of Chapter 5 effectively perform online learning on the contemporarily dominant

AI/ML tool, the feedforward DNN. As described in Chapter 4, this notion of

“learning” is likely foreign to a typical AI/ML engineer or data scientist, whom

would opt for recording data over time and retraining the entire DNN at some pre-

scribed interval during deployment. It is likely that retraining the entire DNN,

when the online data distribution shift from the offline distribution is high or

highly dynamic, would improve performance of last-layer online update laws sim-

ilar to those described in Chapter 5. This is closely related to concurrent learning

in adaptive control, which is involves recording data over time for updating param-

eters of an adaptive controller [122–124]. However, the developments in Chapter

5 aim to keep the application generalized to online learning in AI/ML instruments

such as the deep neural network, although the results and theories of concurrent

learning likely give similar performance for online learning and estimation of dy-

namical systems. The mentioned concurrent learning works specifically aim to

match the neural network parameters to the “ideal” neural network parameters

156

to decrease prediction error. While the goal of decreasing neural network predic-

tion error itself is aligned with the goal of Chapter 5, the concept of ideal neural

network parameters is external to most modern data science, with models using as

many parameters as necessary to increase model accuracy and decrease training

time/compute required. The ideas described Chapter 5 can be further contrasted

to similar works using full Lyapunov-based updates, such as [44, 66, 67], where

stability in the neural network is extrinsically dependent on a control law itself

(as in Chapters 2 and 3 of this dissertation).

The basic ideas of Part II came from deep learning research connecting

backpropagation of errors, gradient descent on an objective function, and neu-

roevolution in the brain [125]. It is likely that our brains use much more efficient

and effective neuroevolution methods than the calculus of gradient descent that

currently drives deep learning data-based models. Thus, similar to the controllers

in this dissertation driving errors to zero using a sliding manifold, this disserta-

tion hypothesizes that some error representation or error-based update is more

effective and efficient than first-order backpropagation with gradient descent, es-

pecially for the safety-critical applications of aerospace and robotics. Chapter 5

thus, in a general sense, presents the research progress made in using ideas from

control theory to help accomplish the goal of going beyond backpropagation to

achieve improved, more efficient neural network training.

157

6.3 Future Work

The most direct avenue of future work, expanding on the ideas presented

in Part II of this dissertation, is the study of other control formulations to stably

update neural network parameters online. In Chapter 5, the control-based online

update laws are based on super-twisting control, which avoids the need for cal-

culating the time derivative of the sliding variable. Other control methodologies,

such as backstepping, could be of merit for study in the last-layer update scheme.

These control methodologies may be used alongside other pertinent AI/ML tech-

niques to derive improved performance, just as Chapter 5 shows spectrally nor-

malizing the DNN layers controls the upper bound on prediction error in the

developed super-twisting scheme. Additional future work includes transferring

the ideas of Chapter 5 to other neural network architectures, such as recurrent

neural networks or convolutional neural networks. It is likely that these archi-

tectures require different formulations on the dynamics and analysis to guarantee

performance, which may require an alternative control formulation and derived

update law (such as a generalized parameter tensor update law versus a parameter

matrix update law).

The developments described in Chapter 5, as mentioned above, are inspired

by the sim2real transfer of reinforcement learning policies. When sim2real control

policies are used from pure reinforcement learning, such as in [74], there are no

intrinsic stability guarantees. The stable DNN-based model reference adaptive

control example in Chapter 5 gives promising results for sim2real transfer of DNNs

158

using online learning. Future work includes the study of stable sim2real transfer of

full reinforcement learning based policies using the derived online update laws in

Chapter 5 for the control of robotic arms, spacecraft, or aircraft. Not only would

these stability guarantees allow drop-in use of online-adapted DNNs in controllers

(such as the controller in the model reference adaptive control example of Chapter

5), reinforcement learning policies could adapt online to novel behavior not seen

in simulation, which is currently a difficult and ongoing research problem. Online

adaptation of learning-based policies is of paramount research importance for the

intelligent systems of tomorrow that will work with and for humans in aerospace

and robotics.

159

References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, Cambridge, MA, 2016.

[2] Alan Turing. Intelligent machinery (1948). B. Jack Copeland, pages 395–
432, 2004.

[3] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5:
115–133, 1943.

[4] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386,
1958.

[5] Marvin Minsky and Seymour A. Papert. Perceptrons. MIT Press, Cam-
bridge, MA, USA, 1969.

[6] John J Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences, 79(8):2554–2558, 1982.

[7] Paul J. Werbos. Beyond regression: New tools for prediction and analysis
in the behavioral sciences. PhD thesis, Committee on Applied Mathematics,
Harvard University, Cambridge, MA, 1974.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[9] Jean-Jacques Slotine and Weiping Li. Applied Nonlinear Control. Prentice-
Hall, New Jersey, USA, 1991.

[10] Joseph E. Gaudio, Travis E. Gibson, Anuradha M. Annaswamy, Michael A.
Bolender, and Eugene Lavretsky. Connections between adaptive control and
optimization in machine learning. In IEEE 58th Conference on Decision and
Control (CDC), pages 4563–4568, Nice, France, 2019.

160

[11] Jacob G. Elkins and Farbod Fahimi. Online neural sliding mode control
with guaranteed stability. International Journal of Control, pages 1–11,
2024. doi: 10.1080/00207179.2024.2332521.

[12] Jacob G. Elkins, Avimanyu Sahoo, and Farbod Fahimi. Control-theoretic
techniques for online adaptation of deep neural networks in dynamical sys-
tems. IEEE Transactions on Neural Networks and Learning Systems, 2024.
Under review.

[13] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa,
Melissa Mozifian, Florian Golemo, Chris Atkeson, Dieter Fox, Ken Gold-
berg, John Leonard, et al. Sim2real in robotics and automation: Appli-
cations and challenges. IEEE Transactions on Automation Science and
Engineering, 18(2):398–400, 2021.

[14] Jean-Jacques Slotine and J. A. Coetsee. Adaptive sliding controller syn-
thesis for non-linear systems. International Journal of Control, 43(6):1631–
1651, 1986.

[15] Shankar Sastry and Marc Bodson. Adaptive Control: Stability, Conver-
gence, and Robustness. Prentice-Hall, New Jersey, USA, 1994.

[16] Yuri Shtessel, Christopher Edwards, Leonid Fridman, and Arie Levant. Slid-
ing Mode Control and Observation. Springer, New York, NY, 2014.

[17] Christopher Edwards and Sarah K. Spurgeon. Sliding Mode Control: Theory
and Applications. CRC Press, London, 1998.

[18] Vadim I. Utkin. Sliding Modes in Control and Optimization. Springer,
Berlin, Germany, 2013.

[19] Farbod Fahimi. Autonomous Robots: Modeling, Path Planning, and Con-
trol. Springer, New York, 2008.

[20] Nikolas Sacchi, Gian Paolo Incremona, and Antonella Ferrara. Neural
network-based practical/ideal integral sliding mode control. IEEE Control
Systems Letters, 6:3140–3145, 2022. doi: 10.1109/LCSYS.2022.3182814.

[21] Karel J. Keesman. System Identification: An Introduction. Springer, Lon-
don, 2011.

161

[22] Pierangela Morga, Mauro Mancini, and Elisa Capello. Flexible spacecraft
model and robust control techniques for attitude maneuvers. In 2022 Amer-
ican Control Conference (ACC), pages 1120–1126, Atlanta, GA, USA, 2022.
doi: 10.23919/ACC53348.2022.9867280.

[23] Farbod Fahimi and Chris Van Kleeck. Alternative trajectory-tracking con-
trol approach for marine surface vessels with experimental verification.
Robotica, 31(1):25–33, 2013. doi: 10.1017/S0263574712000070.

[24] Farbod Fahimi. Towards full formation control of an autonomous helicopters
group. In 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 2007. doi:
10.1109/AERO.2007.352851.

[25] Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzade-
nesheli, Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural
lander: Stable drone landing control using learned dynamics. In 2019 Inter-
national Conference on Robotics and Automation (ICRA), pages 9784–9790,
Montreal, QC, Canada, 2019. doi: 10.1109/ICRA.2019.8794351.

[26] Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, An-
ima Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural-fly enables rapid
learning for agile flight in strong winds. Science Robotics, 7(66), 2022. doi:
10.1126/scirobotics.abm6597.

[27] Guanya Shi, Wolfgang Hönig, Xichen Shi, Yisong Yue, and Soon-Jo Chung.
Neural-swarm2: Planning and control of heterogeneous multirotor swarms
using learned interactions. IEEE Transactions on Robotics, 38(2):1063–
1079, 2021.

[28] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Ž́ıdek, Anna Potapenko, et al. Highly accurate protein structure prediction
with alphafold. Nature, 596(7873):583–589, 2021.

[29] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical text-conditional image generation with clip latents.
arXiv preprint arXiv:2204.06125, 2022.

162

[30] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359–366,
1989. ISSN 0893-6080. doi: 10.1016/0893-6080(89)90020-8.

[31] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike
adaptive elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-13(5):834–846, 1983.
doi: 10.1109/TSMC.1983.6313077.

[32] Kumpati S. Narendra and Kannan Parthasarathy. Identification and control
of dynamical systems using neural networks. IEEE Transactions on Neural
Networks, 1(1):4–27, 1990. doi: 10.1109/72.80202.

[33] Robert M. Sanner and Jean-Jacques Slotine. Gaussian networks for direct
adaptive control. IEEE Transactions on Neural Networks, 3(6):837–863,
1992. doi: 10.1109/72.165588.

[34] Fu-Chuang Chen and Hassan K. Khalil. Adaptive control of a class of
nonlinear discrete-time systems using neural networks. IEEE Transactions
on Automatic Control, 40(5):791–801, 1995. doi: 10.1109/9.384214.

[35] Frank L. Lewis, Aydin Yesildirek, and Kai Liu. Multilayer neural-net robot
controller with guaranteed tracking performance. IEEE Transactions on
Neural Networks, 7(2):388–399, 1996. doi: 10.1109/72.485674.

[36] Sarangapani Jagannathan and Frank L. Lewis. Discrete-time neural net
controller for a class of nonlinear dynamical systems. IEEE Transactions
on Automatic Control, 41(11):1693–1699, 1996. doi: 10.1109/9.544013.

[37] Indrani Kar and Laxmidhar Behera. Direct adaptive neural control
scheme for discrete time affine nonlinear systems. In 2008 IEEE Inter-
national Symposium on Intelligent Control, pages 1097–1102, 2008. doi:
10.1109/ISIC.2008.4635966.

[38] Avimanyu Sahoo, Hao Xu, and Sarangapani Jagannathan. Neural network-
based adaptive event-triggered control of affine nonlinear discrete time
systems with unknown internal dynamics. In 2013 American Control
Conference (ACC), pages 6418–6423, Washington, DC, USA, 2013. doi:
10.1109/ACC.2013.6580845.

163

[39] Avimanyu Sahoo, Hao Xu, and Sarangapani Jagannathan. Adaptive
neural network-based event-triggered control of single-input single-output
nonlinear discrete-time systems. IEEE Transactions on Neural Networks
and Learning Systems, 27(1):151–164, 2016. doi: 10.1109/TNNLS.2015.
2472290.

[40] Qudrat Khan Safeer Ullah and Adeel Mehmood. Neuro-adaptive fixed-
time non-singular fast terminal sliding mode control design for a class of
under-actuated nonlinear systems. International Journal of Control, 96(6):
1529–1542, 2023. doi: 10.1080/00207179.2022.2056514.

[41] Safeer Ullah, Qudrat Khan, Adeel Mehmood, Syed Abdul Mannan Kirmani,
and Omar Mechali. Neuro-adaptive fast integral terminal sliding mode con-
trol design with variable gain robust exact differentiator for under-actuated
quadcopter uav. ISA Transactions, 120:293–304, 2022.

[42] Hiroyasu Tsukamoto, Soon-Jo Chung, and Jean-Jacques Slotine. Learning-
based adaptive control using contraction theory. In 2021 60th IEEE Confer-
ence on Decision and Control (CDC), pages 2533–2538, Austin, TX, USA,
2021. doi: 10.1109/CDC45484.2021.9683435.

[43] Spencer M Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov
neural network: Adaptive stability certification for safe learning of dynam-
ical systems. In Conference on Robot Learning (CoRL), pages 466–476,
Zürich, Switzerland, 2018.

[44] Runhan Sun, Max L. Greene, Duc M. Le, Zachary I. Bell, Girish Chowdhary,
and Warren E. Dixon. Lyapunov-based real-time and iterative adjustment
of deep neural networks. IEEE Control Systems Letters, 6:193–198, 2022.
doi: 10.1109/LCSYS.2021.3055454.

[45] Alejandro Guarneros-Sandoval, Mariana Ballesteros, Ivan Salgado, Julia
Rodŕıguez-Santillán, and Isaac Chairez. Lyapunov stable learning laws for
multilayer recurrent neural networks. Neurocomputing, 491:644–657, 2022.
ISSN 0925-2312. doi: 10.1016/j.neucom.2021.12.041.

[46] Omkar Sudhir Patil, Duc M. Le, Max L. Greene, and Warren E. Dixon.
Lyapunov-derived control and adaptive update laws for inner and outer

164

layer weights of a deep neural network. IEEE Control Systems Letters, 6:
1855–1860, 2022. doi: 10.1109/LCSYS.2021.3134914.

[47] Mou Chen, Peng Shi, and Cheng-Chew Lim. Adaptive neural fault-tolerant
control of a 3-dof model helicopter system. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 46(2):260–270, 2016. doi: 10.1109/TSMC.
2015.2426140.

[48] Juntao Fei and Hongfei Ding. Adaptive sliding mode control of dynamic
system using rbf neural network. Nonlinear Dynamics, 70:1563–1573, 2012.

[49] Bing Xiao, Qinglei Hu, and Youmin Zhang. Adaptive sliding mode fault tol-
erant attitude tracking control for flexible spacecraft under actuator satura-
tion. IEEE Transactions on Control Systems Technology, 20(6):1605–1612,
2012. doi: 10.1109/TCST.2011.2169796.

[50] Tong Yang, Ning Sun, and Yongchun Fang. Neuroadaptive control for com-
plicated underactuated systems with simultaneous output and velocity con-
straints exerted on both actuated and unactuated states. IEEE Transac-
tions on Neural Networks and Learning Systems, pages 1–11, 2021. doi:
10.1109/TNNLS.2021.3115960.

[51] Van Trong Dang, Dinh Bao Hung Nguyen, Thi Dieu Trinh Tran, Duc Thinh
Le, and Tung Lam Nguyen. Model-free hierarchical control with fractional-
order sliding surface for multisection web machines. International Journal
of Adaptive Control and Signal Processing, 37(2):497–518, 2023. doi: 10.
1002/acs.3534.

[52] Liangyong Wang, Tianyou Chai, and Lianfei Zhai. Neural-network-based
terminal sliding-mode control of robotic manipulators including actuator
dynamics. IEEE Transactions on Industrial Electronics, 56(9):3296–3304,
2009. doi: 10.1109/TIE.2008.2011350.

[53] J. Park and I. W. Sandberg. Universal approximation using radial-basis-
function networks. Neural Computation, 3(2):246–257, 1991. doi: 10.1162/
neco.1991.3.2.246.

[54] Juntao Fei and Cheng Lu. Adaptive sliding mode control of dynamic sys-
tems using double loop recurrent neural network structure. IEEE Trans-

165

actions on Neural Networks and Learning Systems, 29(4):1275–1286, 2018.
doi: 10.1109/TNNLS.2017.2672998.

[55] Joseph P. LaSalle. Some extensions of liapunov’s second method. IRE
Transactions on Circuit Theory, 7(4):520–527, 1960. doi: 10.1109/TCT.
1960.1086720.

[56] Frank L. Lewis, Chaouki T. Abdallah, and Darren W. Dawson. Robot
Manipulator Control: Theory and Practice. Macmillan, New York, 2014.

[57] John J. Craig. Introduction to Robotics: Mechanics and Control. Pearson,
New York, NY, USA, 2018.

[58] Rahul Moghe. Adaptive Algorithms for Identification of Symmetric and
Positive Definite Matrices. Phd dissertation, The University of Texas at
Austin, 2021.

[59] Rahul Moghe and Maruthi R. Akella. Projection scheme and adaptive con-
trol for symmetric matrices with eigenvalue bounds. IEEE Transactions
on Automatic Control, 68(3):1738–1745, 2023. doi: 10.1109/TAC.2022.
3153458.

[60] Jacob G. Elkins, Farbod Fahimi, and Rohan Sood. Stable online learning-
based adaptive control of spacecraft and quadcopters. In 2024 IEEE
Aerospace Conference, Big Sky, MT, USA, 2024. doi: 10.1109/AERO58975.
2024.10521254.

[61] F. Landis Markley and John L. Crassidis. Fundamentals of Spacecraft At-
titude Determination and Control. Springer, New York, NY, 2014.

[62] Hazim Shakhatreh, Ahmad H. Sawalmeh, Ala Al-Fuqaha, Zuochao Dou,
Eyad Almaita, Issa Khalil, Noor Shamsiah Othman, Abdallah Khreishah,
and Mohsen Guizani. Unmanned aerial vehicles (uavs): A survey on civil ap-
plications and key research challenges. IEEE Access, 7:48572–48634, 2019.
doi: 10.1109/ACCESS.2019.2909530.

[63] Petros A. Ioannou and Jing Sun. Robust Adaptive Control. Dover Publica-
tions, Inc., Mineola, NY, USA, 2012.

166

[64] Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michalski, and Sylvain
Gelly. A large-scale study on regularization and normalization in GANs.
In 36th International Conference on Machine Learning, pages 3581–3590,
Long Beach, CA, USA, 2019.

[65] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral normalization for generative adversarial networks. ArXiv,
abs/1802.05957, 2018.

[66] Emily J. Griffis, Omkar Sudhir Patil, Zachary I. Bell, and Warren E. Dixon.
Lyapunov-based long short-term memory (lb-lstm) neural network-based
control. IEEE Control Systems Letters, 7:2976–2981, 2023. doi: 10.1109/
LCSYS.2023.3291328.

[67] Wanjiku A. Makumi, Zachary I. Bell, and Warren E. Dixon. Approximate
optimal indirect regulation of an unknown agent with a lyapunov-based
deep neural network. IEEE Control Systems Letters, 7:2773–2778, 2023.
doi: 10.1109/LCSYS.2023.3289474.

[68] Hiroyasu Tsukamoto, Soon-Jo Chung, and Jean-Jacques Slotine. Learning-
based adaptive control using contraction theory. In 2021 60th IEEE Confer-
ence on Decision and Control (CDC), pages 2533–2538, Austin, TX, USA,
2021. doi: 10.1109/CDC45484.2021.9683435.

[69] Aamer I. Bhatti, Sarah K. Spurgeon, and Xiao-Yun Lu. A nonlinear sliding
mode control design approach based on neural network modelling. Inter-
national Journal of Robust and Nonlinear Control, 9(7):397–423, 1999. doi:
10.1002/(SICI)1099-1239(199906)9:7⟨397::AID-RNC412⟩3.0.CO;2-0.

[70] Edoardo Vacchini, Nikolas Sacchi, Gian Paolo Incremona, and Antonella
Ferrara. Design of a deep neural network-based integral sliding mode control
for nonlinear systems under fully unknown dynamics. IEEE Control Systems
Letters, 7:1789–1794, 2023. doi: 10.1109/LCSYS.2023.3281288.

[71] Qinglei Hu. Robust adaptive sliding mode attitude maneuvering and
vibration damping of three-axis-stabilized flexible spacecraft with actu-
ator saturation limits. Nonlinear Dynamics, 55:301–321, 2009. doi:
10.1007/s11071-008-9363-1.

167

[72] Shweta Gupte, Paul Infant Teenu Mohandas, and James M. Conrad. A
survey of quadrotor unmanned aerial vehicles. In 2012 IEEE Southeastcon,
pages 1–6, Orlando, FL, USA, 2012. doi: 10.1109/SECon.2012.6196930.

[73] Benke Gao, Yan-Jun Liu, and Lei Liu. Adaptive neural fault-tolerant control
of a quadrotor uav via fast terminal sliding mode. Aerospace Science and
Technology, 129:107818, 2022. doi: 10.1016/j.ast.2022.107818.

[74] Jacob G. Elkins, Rohan Sood, and Clemens Rumpf. Bridging reinforcement
learning and online learning for spacecraft attitude control. Journal of
Aerospace Information Systems, 19(1):62–69, 2022. doi: 10.2514/1.I010958.

[75] Ryan Mathewson and Farbod Fahimi. Nonlinear adaptive sliding mode con-
trol with application to quadcopters. Nonlinear Engineering, 12(1), 2023.
doi: doi:10.1515/nleng-2022-0268.

[76] John L. Crassidis, Srinivas R. Vadali, and F. Landis Markley. Optimal
variable-structure control tracking of spacecraft maneuvers. Journal of
Guidance, Control, and Dynamics, 23(3):564–566, 2000. doi: 10.2514/2.
4568.

[77] J. A. Lenda. Manned maneuvering unit: User’s guide. Technical report,
Martin Marietta Corp., Denver, CO, 1978.

[78] Alexander Poultney, Christopher Kennedy, Garrett Clayton, and Hashem
Ashrafiuon. Robust tracking control of quadrotors based on differential flat-
ness: Simulations and experiments. IEEE/ASME Transactions on Mecha-
tronics, 23(3):1126–1137, 2018. doi: 10.1109/TMECH.2018.2820426.

[79] Guanya Shi. Reliable Learning and Control in Dynamic Environments:
Towards Unified Theory and Learned Robotic Agility. Phd thesis, California
Institute of Technology, 2023.

[80] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

168

[81] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical text-conditional image generation with clip latents.
arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

[82] Geoffrey E. Hinton David E. Rumelhart and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–536, 1986. doi:
10.1038/323533a0.

[83] Paul J. Werbos. Backpropagation: past and future. In IEEE 1988 Inter-
national Conference on Neural Networks, pages 343–353 vol.1, 1988. doi:
10.1109/ICNN.1988.23866.

[84] Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1521–1528, 2011. doi: 10.1109/CVPR.2011.5995347.

[85] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil D. Lawrence. Dataset shift in machine learning. MIT Press, Cam-
bridge, MA, 2009.

[86] Steven C.H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning:
A comprehensive survey. Neurocomputing, 459:249–289, 2021. ISSN 0925-
2312. doi: 10.1016/j.neucom.2021.04.112.

[87] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu,
Hengshu Zhu, Hui Xiong, and Qing He. A comprehensive survey on
transfer learning. Proceedings of the IEEE, 109(1):43–76, 2021. doi:
10.1109/JPROC.2020.3004555.

[88] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adap-
tation: Learning bounds and algorithms. In Conference on Learning Theory
(COLT), Montreal, QC, Canada, 2009.

[89] Donghyun Kim, Kaihong Wang, Stan Sclaroff, and Kate Saenko. Domain
adaptation: Learning bounds and algorithms. In European Conference on
Computer Vision, pages 621–638, Tel Aviv, Israel, 2022.

[90] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain general-
ization. arXiv preprint arXiv:2007.01434, 2020.

169

[91] Bryan Lim and Stefan Zohren. Time-series forecasting with deep learn-
ing: a survey. Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 379(2194), 2021. doi: 10.
1098/rsta.2020.0209. URL https://royalsocietypublishing.org/doi/

abs/10.1098/rsta.2020.0209.

[92] Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino.
Crossing the reality gap: A survey on sim-to-real transferability of robot
controllers in reinforcement learning. IEEE Access, 9:153171–153187, 2021.
doi: 10.1109/ACCESS.2021.3126658.

[93] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real
transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 737–744,
2020. doi: 10.1109/SSCI47803.2020.9308468.

[94] Michel Breyer, Fadri Furrer, Tonci Novkovic, Roland Siegwart, and Juan
Nieto. Flexible robotic grasping with sim-to-real transfer based reinforce-
ment learning. arXiv preprint arXiv:1803.04996, 2018.

[95] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel. Domain randomization for transferring deep neural net-
works from simulation to the real world. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 23–30, Van-
couver, BC, Canada, 2017. doi: 10.1109/IROS.2017.8202133.

[96] Stephen James, Andrew J. Davison, and Edward Johns. Transferring end-
to-end visuomotor control from simulation to real world for a multi-stage
task. In 2017 Conference on Robot Learning (CoRL), pages 334–343, Moun-
tain View, CA, USA, 2017.

[97] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar
Hafner, Steven Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile
locomotion for quadruped robots. In Proceedings of Robotics: Science and
Systems, pages 10–20, Pittsburgh, PA, USA, 2018.

[98] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Ro-
bust adversarial reinforcement learning. In International Conference on
Machine Learning, pages 2817–2826, Sydney, Australia, 2017. PMLR.

170

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0209
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0209

[99] Xinlei Pan, Daniel Seita, Yang Gao, and John Canny. Risk averse ro-
bust adversarial reinforcement learning. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8522–8528, Montreal, QC,
Canada, 2019.

[100] Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer,
Joel Z. Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran,
and Matt Botvinick. Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763, 2016.

[101] Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta
reinforcement learning for sim-to-real domain adaptation. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 2725–
2731, 2020. doi: 10.1109/ICRA40945.2020.9196540.

[102] Paul J. Werbos. Neural networks for control and system identification. In
28th IEEE Conference on Decision and Control, volume 1, pages 260–265,
Tampa, FL, USA, 1989. doi: 10.1109/CDC.1989.70114.

[103] Tyler LaBonte, Vidya Muthukumar, and Abhishek Kumar. Towards last-
layer retraining for group robustness with fewer annotations. In Advances
in Neural Information Processing Systems (NeurIPS), New Orleans, LA,
USA, 2023.

[104] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana
Rosing, and Rogerio Feris. Spottune: Transfer learning through adaptive
fine-tuning. In 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4800–4809, Long Beach, CA, USA, 2019.
doi: 10.1109/CVPR.2019.00494.

[105] Nima Tajbakhsh, Jae Y. Shin, Suryakanth R. Gurudu, R. Todd Hurst,
Christopher B. Kendall, Michael B. Gotway, and Jianming Liang. Convo-
lutional neural networks for medical image analysis: Full training or fine
tuning? IEEE Transactions on Medical Imaging, 35(5):1299–1312, 2016.
doi: 10.1109/TMI.2016.2535302.

[106] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki,
and Stefan Carlsson. Factors of transferability for a generic convnet rep-
resentation. IEEE Transactions on Pattern Analysis and Machine Intel-

171

ligence, 38(09):1790–1802, 2016. ISSN 1939-3539. doi: 10.1109/TPAMI.
2015.2500224.

[107] Girish Joshi, Jasvir Virdi, and Girish Chowdhary. Asynchronous deep model
reference adaptive control. In Conference on Robot Learning (CoRL), pages
984–1000, London, England, 2021.

[108] Arie Levant. Sliding order and sliding accuracy in sliding mode control.
International Journal of Control, 58(6):1247–1263, 1993. doi: 10.1080/
00207179308923053.

[109] Jaime A. Moreno and Marisol Osorio. Strict lyapunov functions for the
super-twisting algorithm. IEEE Transactions on Automatic Control, 57(4):
1035–1040, 2012. doi: 10.1109/TAC.2012.2186179.

[110] Peter L. Bartlett, Dylan J. Foster, and Matus J. Telgarsky. Spectrally-
normalized margin bounds for neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), volume 30, Long Beach, CA,
USA, 2017.

[111] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization
for improving the generalizability of deep learning. arXiv preprint
arXiv:1705.10941, 2017.

[112] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral normalization for generative adversarial networks. In International
Conference on Learning Representations, Vancouver, BC, Canada, 2018.

[113] Hassan K. Khalil. Nonlinear Systems. Prentice-Hall, New Jersey, USA,
2002.

[114] Aleksei F. Filippov. Differential Equations with Discontinuous Right-Hand
Side. Springer Dordrecht, The Netherlands, 1988.

[115] Arie Levant. Robust exact differentiation via sliding mode technique. Auto-
matica, 34(3):379–384, 1998. ISSN 0005-1098. doi: 10.1016/S0005-1098(97)
00209-4.

[116] Leonid Fridman and Arie Levant. Higher order sliding modes. Sliding mode
control in engineering, 11:53–102, 2002.

172

[117] Arie Levant. Homogeneity approach to high-order sliding mode design. Au-
tomatica, 41(5):823–830, 2005. ISSN 0005-1098. doi: 10.1016/j.automatica.
2004.11.029.

[118] Arie Levant. Principles of 2-sliding mode design. Automatica, 43(4):576–
586, 2007. ISSN 0005-1098. doi: 10.1016/j.automatica.2006.10.008.

[119] Yury Orlov. Finite time stability and robust control synthesis of uncertain
switched systems. SIAM Journal on Control and Optimization, 43(4):1253–
1271, 2004. doi: 10.1137/S0363012903425593.

[120] Andrea Bacciotti and Lionel Rosier. Liapunov Functions and Stability in
Control Theory. Springer-Verlag Berlin, Heidelberg, Germany, 2005.

[121] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014.

[122] Girish Chowdhary and Eric Johnson. Concurrent learning for convergence in
adaptive control without persistency of excitation. In 49th IEEE Conference
on Decision and Control (CDC), pages 3674–3679, Atlanta, GA, USA, 2010.
doi: 10.1109/CDC.2010.5717148.

[123] Girish Chowdhary, Tansel Yucelen, Maximillian Mühlegg, and Eric N. John-
son. Concurrent learning adaptive control of linear systems with exponen-
tially convergent bounds. International Journal of Adaptive Control and
Signal Processing, 27(4):280–301, 2013. doi: 10.1002/acs.2297.

[124] Anup Parikh, Rushikesh Kamalapurkar, and Warren E. Dixon. Integral
concurrent learning: Adaptive control with parameter convergence using
finite excitation. International Journal of Adaptive Control and Signal Pro-
cessing, 33(12):1775–1787, 2019. doi: 10.1002/acs.2945.

[125] Yoshua Bengio, Dong-Hyun Lee, Jorg Bornschein, Thomas Mesnard, and
Zhouhan Lin. Towards biologically plausible deep learning. arXiv preprint
arXiv:1502.04156, 2015.

173

Appendix A: Simulation Details for Chapter 2

A.1 Dynamic Model

Langrangian mechanics were used to derive the dynamic model for the

RR-planar robot on a revolute base simulated in Section 2.7. Each link of the

robot arm is assumed to be l1 = l2 = 0.2 m in length, with m1 = m2 = 0.3 kg

point masses at the distal ends of each link. The radius of the base is assumed

to be R0 = 0.05 m, with a mass of m0 = 0.5 kg. These values were assumed to

model a Robotis OpenManipulator robotic arm. Robot dynamics can generally

be written in the form

M(q)q̈ + C(q, q̇)q̇ +G(q) + d(t) = τ , (A.1)

where q = [q0, q1, q2]
T is the vector of joint angles of the robot [57]. In each of

the following equations, g is the acceleration due to gravity, l1 is the length of the

arm from joint 1 to joint 2, l2 is the length of the arm from joint 2 to the end

effector, mi is the mass of the ith joint, and R0 is the radius of the revolute base.

The mass moment of inertia matrix, M(q), for this robot is given as

M(q) =

M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 , (A.2)

where

174

M0,0 =
1

2
m0R

2
0 + (m1 +m2)l

2
1 cos

2 (q1) + 2m2l1l2 cos (q1 + q2) cos (q1)

− 2m2l
2
2 sin (q1) sin (q2) cos (q1 + q2) +m2l

2
2(cos

2 (q1) + cos2 (q2))−m2l
2
2 (A.3)

M0,1 =M1,0 = 0 (A.4)

M1,1 = (m1 +m2)l
2
1 +m2l

2
2 + 2m2l1l2 cos (q2) (A.5)

M0,2 =M2,0 = 0 (A.6)

M1,2 =M2,1 = m2l
2
2 +m2l1l2 cos (q2) (A.7)

M2,2 = m2l
2
2. (A.8)

The Coriolis matrix, C(q, q̇), for this robot is given as

C(q, q̇) =

C0,0 C0,1 C0,2

C1,0 C1,1 C1,2

C2,0 C2,1 C2,2

 , (A.9)

where

175

C0,0 = −
1

2
(m1+m2)l

2
1 sin (2q1)q̇1−m2l1l2 sin (2q1 + q2)q̇1−

1

2
m2l1l2 sin (2q1 + q2)q̇2

− 1

2
m2l1l2 sin (q2)q̇2 −

1

2
m2l

2
2 sin (2q1 + 2q2)q̇1 −

1

2
m2l

2
2 sin (2q1 + 2q2)q̇2 (A.10)

C0,1 =

(
−1

2
(m1 +m2)l

2
1 sin (2q1)−m2l1l2 sin (2q1 + q2)

− 1

2
m2l

2
2 sin (2q1 + 2q2)

)
q̇0 (A.11)

C0,2 =

(
−1

2
m2l1l2 sin (2q1 + q2)−

1

2
m2l1l2 sin (q2)−

1

2
m2l

2
2 sin (2q1 + 2q2)

)
q̇0

(A.12)

C1,0 =

(
1

2
(m1 +m2)l

2
1 sin (2q1) +m2l1l2 sin (2q1 + q2)

+
1

2
m2l

2
2 sin (2q1 + 2q2)

)
q̇0 (A.13)

C1,1 = −m2l1l2 sin (q2)q̇2 (A.14)

C1,2 = −m2l1l2 sin (q2)q̇1 −
3

2
m2l1l2 sin (q2)q̇2 (A.15)

176

C2,0 =

(
1

2
m2l1l2 sin (2q1 + q2) +

1

2
m2l1l2 sin (q2) +

1

2
m2l

2
2 sin (2q1 + 2q2)

)
q̇0

(A.16)

C2,1 = m2l1l2 sin (q2)q̇1 +
1

2
m2l1l2 sin (q2)q̇2 (A.17)

C2,2 = 0. (A.18)

Lastly, the gravity vector, G(q), for this robot can be written as

G(q) =

G0

G1

G2

 , (A.19)

where

G0 = 0 (A.20)

G1 = (m1 +m2)gl1 cos (q1) +m2gl2 cos (q1 + q2) (A.21)

G2 = m2gl2 cos (q1 + q2). (A.22)

177

Given a torque input τ and an external disturbance d(t), we can solve

(A.1) for the angular acceleration of the joints, q̈:

q̈ =M−1(q) (τ − C(q, q̇)q̇ −G(q)− d(t)) . (A.23)

The relation in (A.23) is integrated twice at each timestep for q̇ and q, given the

initial position and velocity of each joint.

To simulate load on the end effector, the mass of link 2, m2, is changed to

m2 ← m2 +mload, where mload is the mass picked up by the end effector.

A.2 Conventional Model-Based Sliding Mode Controller

The conventional model-based sliding mode controller used in the simula-

tion experiments in Chapter 2 is implemented as in Section 5.5 of [19]. Defining

joint error q̃ = q − qd, the sliding variable s = ˙̃q − Λq̃, and a reference sliding

variable sr = q̇d − Λq̃; the control law applied to the system is written as

u = M̂ṡr + Ĉsr + Ĝ−Ksat(s/ϕ), (A.24)

where Λ is a positive diagonal design matrix for desired error behavior, ϕ is the

boundary layer for chatter attenuation, M̂ , Ĉ, and Ĝ are the system model terms

calculated using nominal system parameters, K is a diagonal gain matrix whose

selection is to be described, and sat(s/ϕ) is the saturation function given in (2.9).

178

The nominal system model terms M̂ , Ĉ, and Ĝ are calculated using (A.2)-

(A.22) with the nominal (real, with end effector unloaded) system parameters

m̂0 = 0.5 kg, m̂1 = 0.3 kg, m̂2 = 0.3 kg, R̂0 = 0.05 m, l̂1 = 0.2 m, and l̂2 = 0.2 m.

The gain matrix K must be selected to guarantee robust control under

model uncertainty. The gain matrix, which guarantees controller stability, is

calculated as

K = diag(|M̃ṡr + C̃sr + G̃|+ η), (A.25)

where η is a design gain vector, M̃ = M̂ −M , C̃ = Ĉ − C, and G̃ = Ĝ − G

are the uncertainties in the system model; and M , C, G are the system model

terms under “worst case” values of the system parameters. The terms M , C, G

are calculated using (A.2)-(A.22) assuming m2 = m̂2 + ∆m2, where ∆m2 = 0.2

kg is the designed load margin. The rest of the system parameters used for the

“worst-case” calculation are the same as the nominal case above. The desired

error behavior is selected as Λ = diag(1, 1, 1) to be consistent in comparing the

two controllers in Section 2.7. The column gain is set as η = [1, 1, 1]T , with a

boundary layer value ϕ = [0.05, 0.05, 0.05]T rad. Note that the derivation of this

controller assumes that the C matrix used for the system model is chosen such

that Ṁ − 2C = 0, which can be verified from the system model given in (A.2)-

(A.22). Another important note is that this controller can require much higher

integration fidelity for desirable performance in simulation, due to numerical in-

tegration failing to resolve discontinuities in the sign(·) function. Further details

on this controller can be found in [19].

179

Appendix B: Stability Analysis of the General Controller

for Chapter 3

Proof of Theorem 3.4.1. Differentiating the Lyapunov candidate in (3.10) with

respect to time gives

L̇ = sT∆Mṡ + Tr
(
M̃TH−1 ˙̃M

)
+ Tr

(
W̃ TF−1 ˙̃W

)
+ Tr

(
Ṽ TG−1 ˙̃V

)
, (B.26)

where ṡ∆ = ṡ since ϕ is a constant and s∆ is only nonzero when s > ϕ (outside

of the boundary layer). Differentiating (3.2) with respect to time and using the

notation simplification in (3.4), ṡ can be written as

ṡ = y(n)r − y(n), (B.27)

where the system in (3.1) can be rewritten in an affine form as

y(n) =M−1 (u(t)− f(x)− d(t)) . (B.28)

Substituting (3.3), (B.27), and (B.28) into (B.26) and simplifying gives

180

L̇ = sT∆My(n)r − sT∆M̂y(n)r + Tr
(
M̃TH−1 ˙̃M

)
+ sT∆

(
f − f̂

)
+ Tr

(
W̃ TF−1 ˙̃W

)
+ Tr

(
Ṽ TG−1 ˙̃V

)
− sT∆(D + η)sat(s/ϕ) + sT∆d. (B.29)

Considering the “ideal” neural network as f = f(x) = W Tσ(V Tx) + ϵ(x) (com-

pared to (3.6)), the fourth term of (B.29) can be written as

f − f̂ = W Tσ(V Tx)− Ŵ Tσ(V̂ Tx) + ϵ (x) , (B.30)

where ϵ(x) is an approximation error due to the finiteness of the neural network

approximator. Adding and subtracting W Tσ(V̂ Tx) to (B.30) and simplifying

gives

f − f̂ = W T (σ(V Tx) − σ(V̂ Tx)) + (W T − Ŵ T)σ(V̂ Tx) + ϵ (x) . (B.31)

Using the shorthand notations σ̃ = σ(V Tx) − σ(V̂ Tx) and σ̂ = σ(V̂ Tx), (B.31)

can be rewritten as

f − f̂ = W T σ̃ + W̃ T σ̂ + ϵ (x) . (B.32)

Adding and subtracting Ŵ T σ̃ to (B.32) and simplifying finally gives

f − f̂ = W̃ T σ̃ + Ŵ T σ̃ + W̃ T σ̂ + ϵ (x) . (B.33)

181

Following [35], the Taylor series expansion for the hidden layer activation

function σ(·) about a V̂ T for a given input x is written as

σ(V Tx) = σ(V̂ Tx) + σ′(V̂ Tx)Ṽ Tx+O
(
(Ṽ Tx)2

)
, (B.34)

where σ̂′ denotes the hidden layer activation derivative and O
(
(Ṽ Tx)2

)
denotes

higher-order terms. Subtracting over the σ(V̂ Tx) in (B.34) and using the short-

hand notation gives

σ̃ = σ̂′Ṽ Tx+O
(
(Ṽ Tx)2

)
. (B.35)

Substituting (B.35) into the first and second terms of (B.33) now gives

f − f̂ = Ŵ T σ̂′Ṽ Tx+ W̃ T σ̂ + da(t), (B.36)

where da(t) is the internal “disturbance” due to neural network approximation

error and higher-order Taylor series terms, written as

da(t) = W̃ T σ̂′Ṽ Tx+W TO
(
(Ṽ Tx)2

)
+ ϵ (x) (B.37)

since W̃ T + Ŵ T = W T . Substituting (B.36) back into the Lyapunov derivative in

(B.29) gives

182

L̇ = sT∆My(n)r − sT∆M̂y(n)r + Tr
(
M̃TH−1 ˙̃M

)
+ sT∆Ŵ

T σ̂′Ṽ Tx+ sT∆W̃
T σ̂

+ Tr
(
W̃ TF−1 ˙̃W

)
+ Tr

(
Ṽ TG−1 ˙̃V

)
− sT∆M̂(D + η)sat(s/ϕ) + sT∆(da + d).

(B.38)

In (B.38), the “disturbance” due to learning, da, acts on the system just as the

external disturbance, d, does. Thus, as discussed in Chapter 2, a disturbance-

rejecting robustifying control term can stabilize the system in the early stages of

learning when da is large, which is especially important in aerospace control (such

as quadcopters).

In general, for column vectors α⃗ and β⃗, the inner product can be written

as the matrix trace of the outer product, α⃗T β⃗ = Tr (β⃗α⃗T). Using this matrix

trace property, relevant terms in (B.38) can be rewritten as

sT∆My(n)r = Tr (My(n)r sT∆) (B.39)

sT∆M̂y(n)r = Tr (M̂y(n)r sT∆) (B.40)

sT∆Ŵ
T σ̂′Ṽ Tx = Tr (Ṽ TxsT∆Ŵ

T σ̂′) (B.41)

sT∆W̃
T σ̂ = Tr (W̃ T σ̂sT∆). (B.42)

183

Using the relations in (B.39)-(B.42) and the additive trace property Tr (A) +

Tr (B) = Tr (A+B), (B.38) can be simplified to

L̇ = Tr
(
M̃
(
y(n)r sT∆ +H−1 ˙̃M

))
+ Tr

(
W̃ T

(
σ̂sT∆ + F−1 ˙̃W

))
+ Tr

(
Ṽ T
(
xsT∆Ŵ

T σ̂′ +G−1 ˙̃V
))
− sT∆(D + η)sat(s/ϕ) + sT∆(da + d). (B.43)

Note that M̃ =M − M̂ was used to combine the first two terms of (B.38). Since

˙̃M = − ˙̂
M , ˙̃V = − ˙̂

V , and ˙̃W = − ˙̂
W , (B.43) can be further simplified to

L̇ = Tr
(
M̃
(
y(n)r sT∆ −H−1 ˙̂

M
))

+ Tr
(
W̃ T

(
σ̂sT∆ − F−1 ˙̂

W
))

+ Tr
(
Ṽ T
(
xsT∆Ŵ

T σ̂′ −G−1 ˙̂V
))
− sT∆(D + η)sat(s/ϕ) + sT∆(da + d). (B.44)

Substituting the update rules (3.7), (3.8), and (3.9) into (B.44), (B.44) finally

reduces to

L̇ = sT∆ (−(D + η)sat(s/ϕ) + δ(t)) , (B.45)

where δ(t) = da(t) + d(t) is the total disturbance on the system. Assuming that

D is the upper bound of the infinite norm of δ(t) for ∀t ≥ 0 : ||δ(t)||∞ ≤ D,

L̇ ≤ −η||s∆||1 (B.46)

184

for all s outside the boundary layer. Since L > 0, selecting a positive gain η > 0

forces L̇ ≤ 0 such that s∆ approaches zero as t → ∞ and M̃ , Ṽ , and W̃ are

bounded in time [9, 56]. Further, since M̃ , Ṽ , and W̃ are bounded in time, the

estimates M̂ , V̂ , and Ŵ are bounded in time [55].

185

	Online learning for adaptive control : stable learning and control for aerospace and robotics
	Recommended Citation

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Epigraph
	Chapter 1. Introduction
	Connecting Control and Learning
	Organization
	Summary and Contributions

	Part I. Learning for Control
	Chapter 2. Improving Model-Based Control with Online Adaptation of Neural Networks
	Introduction
	Background and Literature Review
	Contributions
	Notation and Preliminaries
	Notation
	Control Preliminaries
	Online Function Approximation Using Neural Networks

	Controller
	Stability Analysis of the Developed Controller
	Simulation Results
	Extension: Control with Nondiagonal M Estimation
	Extended Control and Update Laws
	Stability Analysis of the Extended Controller
	Simulation Results

	Chapter 3. Online Learning-Based Control of Spacecraft and Quadcopters
	Introduction
	Background and Literature Review
	Contributions
	Notation and Preliminaries
	Notation
	Control Preliminaries

	Spacecraft Attitude Control
	Quaternion Kinematics
	Spacecraft Attitude Dynamics
	Control Design
	Simulation Example

	Quadcopter Control
	Quadcopter Kinematics
	Quadcopter Dynamics
	Control Design
	Simulation Example

	Chapter 4. Conclusions, Discussion, and Future Work
	Summary and Conclusions
	Discussion
	Future Work

	Part II. Control for Learning
	Chapter 5. Online Transfer Learning Using Super-Twisting Control
	Introduction
	Background and Literature Review
	Contributions
	Motivating Example
	Notation and Preliminaries
	Notation
	Deep Neural Network Preliminaries
	Control Preliminaries

	Online DNN Updates Using Super-Twisting Control
	Case I: Known dotx
	Case II: Unknown or Estimated dotx2

	Simulation Examples
	Example: Sim2real Model Reference Adaptive Control

	Chapter 6. Conclusions, Discussion, and Future Work
	Summary and Conclusions
	Discussion
	Future Work

	References
	Appendix A: Simulation Details for Chapter 2
	Dynamic Model
	Conventional Model-Based Sliding Mode Controller

	Appendix B: Stability Analysis of the General Controller for Chapter 3

