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Abstract 
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Maher Mansur 
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August 2024 

 

Non-bonded interactions are fundamental forces that govern molecular relationships 

between two or more molecules. These interactions contribute to the stability of complex 

biological structures like DNA, RNA, and proteins, and control various biological processes. 

Almost all of these processes are significantly influenced by protein-protein and protein-ligand 

intermolecular interactions. Here, the interactions of various proteins with other proteins, peptides, 

and/or ligands were quantified computationally to tackle human health-related problems. For 

estimating the intermolecular interactions, a number of computational approaches including 

protein structure modeling, molecular dynamics simulations, molecular docking, ensemble 

docking, semi-empirical methods, etc., were used. The basics of Molecular Mechanics and 

Quantum Mechanics were applied throughout this dissertation, either separately or combinedly, to 

address the issues. This study is focused on three major projects.  In the first project, the role of 
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the SETBP1 protein's interaction with the SCF-βTrCP1 E3 ubiquitin ligase in Schinzel-Giedion 

Syndrome (SGS) was studied. A segment of the SETBP1 protein was modeled and was used to 

design Proteolysis Targeting Chimeras (PROTACs) for treating SGS. Additionally, we compared 

the binding affinity of several SETBP1 mutants with the ubiquitin ligase to understand the effect 

of mutation on ubiquitination and SGS severity. The second project examined the impact of SARS-

CoV-2 spike protein mutations on its binding with the human ACE2 receptor and the therapeutic 

antibody bebtelovimab. By computing the change in protein-protein intermolecular interaction 

energy, we predicted how these mutations may influence the efficacy of bebtelovimab. The final 

project concentrated on the cytochrome P450 enzyme. An initiative was taken to develop a 

computational method to identify potential toxic metabolites by combining molecular docking and 

semi-empirical quantum method by calculating the interaction energy between P450 and its 

ligands. Overall, this dissertation signifies the computational approaches in quantifying protein 

interactions. By integrating principles from biology, chemistry, and computational science, this 

research offers new insights to address health and environmental challenges. 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Acknowledgements 

This dissertation has been a difficult but gratifying journey, and it would not have been 

possible without the assistance, direction, and encouragement of several individuals and 

institutions. 

Firstly, I would like to express my deepest gratitude to my advisor, Dr. Jerome Baudry, for 

giving me this opportunity and for his invaluable time, guidance, and support throughout my PhD 

journey. Your guidance has had a significant impact on my research and academic development. 

I am also incredibly grateful to the members of my dissertation committee. I am thankful 

to Dr. Joseph Ng for allowing me to work in his lab and providing guidance. I am deeply thankful 

to Dr. Luis Cruz-Vera, who supported me throughout my PhD journey with useful advice and 

encouragement. I am fortunate to have collaborated with Dr. Baitang Ning and been supervised by 

Dr. Baitang Ning. I am thankful to Dr. Jennifer Golden for her constructive insights and 

suggestions. 

I also wish to express my gratitude to Dr. Marie-Pierre Gaigeot and Dr. Alvaro Cimas for 

their support. I wish to thank the Embassy of France in the United States for awarding me the 

Chateaubriand Fellowship and the University of Evry for allowing me to spend time in France. I'd 

like to thank The Oak Ridge Institute for Science and Education (ORISE) for granting me the 

ORISE fellowship and the US Food and Drug Administration for enabling me to work with them. 

I want to thank my colleagues, Dr. Armin Ahmadi and Sara Jackson, for their assistance 

and for making the work in the lab enjoyable. I would also like to thank Safwan Mahmud Haque 

for his help in my research. 



vi 
 

Finally, I must acknowledge my family. To my late father, who inspired me and is the 

reason I am pursuing my Ph.D. To my mother for her unwavering devotion and for taking care of 

me throughout difficult times. Thank you to my brothers for your assistance. 

Thank you all for being part of this journey. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



vii 
 

 Table of Contents  

Abstract .......................................................................................................................................... ii 

Acknowledgements ....................................................................................................................... v 

Table Of Contents ....................................................................................................................... vii 

List Of Figures............................................................................................................................... x 

List Of Tables ............................................................................................................................. xiii 

Epigraph………………………………………………………………………………………...xv 

      Chapter 1. Introduction…………………………………………………………………….1 

Chapter 2. Interaction between SETBP1 Protein and Ubiquitin Ligase Enzyme in  

Schinzel-Giedion Syndrome: Modulating Ubiquitination and Investigate Role of   

Mutations ............................................................................................................................. 11 

 2.1. Introduction ............................................................................................................ 11 

 2.2. Methods…………………………………………………………………………...14 

2.2.1. Modeling of SETBP1 .................................................................................... 14 

2.2.2. Development of PROTAC Molecules ........................................................... 17 

 2.2.3. Predicting Binding Affinities of Mutant SETBP1 and UBL .......................... 19 

 2.3. Result ..................................................................................................................... 22 

2.3.1. Generation of SETBP1 Model ...................................................................... 22 

2.3.2. Development of PROTAC ............................................................................ 26 

2.3.3. Predicting Binding Affinities of Mutant SETBP1 and UBL .......................... 34 



viii 

 2.4. Conclusion, Discussion and Future Work ............................................................. 44 

Chapter 3. Characterization of Protein-Protein Interactions of SARS-Cov-2 Spike 

Protein Mutants with ACE2 and Bebtelovimab, and Their Roles in Bebtelovimab's 

Efficacy ................................................................................................................................. 48 

3.1. Introduction ............................................................................................................ 48 

3.2. Methods.................................................................................................................. 52 

3.2.1. Computationally Predicting the Interacting Residues of Spike with ACE2  

and Beb….…………………………………………………………………...52 

3.2.2. Calculation of S:ACE Interaction Energies ................................................... 53 

3.2.3. Calculation of Spike:Beb Interaction Energies .............................................. 54 

3.2.4. Calculation of Binding Affinities of Dynamic Conformations of S:ACE2 and 

S:Beb Complexes ......................................................................................... 54 

3.3. Results and Discussion .......................................................................................... 55 

3.3.1. Computationally Predicting the Interacting Residues of Spike with ACE2 

and Beb. ....................................................................................................... 55 

3.3.2. Calculation of Interaction Energies of Rigid Energy-Minimized Structures .. 57 

3.3.3. Calculation of Binding Affinities of Dynamic Conformations ...................... 61 

3.4. Conclusion and Future Work ................................................................................. 62 

Chapter 4. Development of Semi-Empirical Quantum Chemistry Based Approach 

to Predict Substrate Binding of Cytochrome P450 ......................................................... 65 

4.1. Introduction……………………………………………………………………….65 



ix 
 

 4.2. Methods.................................................................................................................. 66 

4.2.1. Selection of SEQM Hamiltonian ................................................................... 66 

4.2.2. Determination of the Minimum Residues Required for SEQM Calculations.67 

4.2.3 DFT Calculation to Verify the Electronic Description of Fe in Heme ........... 68 

4.2.4 Docking ....................................................................................................... 68 

4.2.5 Protein:Ligand Interaction Energy Calculation by SEQM ............................. 70 

 4.3. Results and Discussion .......................................................................................... 71 

4.3.1. PM7 Method Generated the Best Minimization Results ................................ 71 

4.3.2. Determination of Lowest Number of Residues in Both Systems for SEQM 

Calculations…………………………………………………………………………………………71 

4.3.3. Docking Results ........................................................................................... 80 

4.3.4. Correlation Between the Rankings of Interaction Energies Calculated by 

SEQM and Molecular Docking .................................................................... 82 

 4.4. Conclusion ............................................................................................................. 85 

       Chapter 5. Conclusion ........................................................................................................ 87 

References .................................................................................................................................. 90 

 

 

 



x 
 

List of Figures 

Figure 2.1. Proposed model for SETBP1 epigenetic network [Piazza et al. (2018)]……………...11 

Figure 2.2. Schematic representation of SETBP1 [modified from Piazza et al. (2013)]………….12 

Figure 2.3. Schematic of a PROTAC…………………………………………………………….13 

Figure 2.4. Models generated by trRosetta……………………………………………………….22 

Figure 2.5. (A) 1500 residues long best I-TASSER model of SETBP1 (N99-P1596).  

(B) Clostridium difficile toxin A [PDB ID: 4R04]……………………………………………….23 

Figure 2.6. 197 residues long QUARK models (V715-T911). …………………………………...24 

Figure 2.7. Possibility of SETBP1 to be an IDP as predicted by FoldIndex. Green means  

ordered residue and red means disordered residues………………………………………………24 

Figure 2.8. SETBP1 chains in different views.……………………………………………….......25 

Figure 2.9. Diverse superposed conformations of STEBP1 chain and UBL selected from  

MD trajectory….…………………………………………………………………………………26  

Figure 2.10. Two yellow spheres in UBL (orange) representing the docking sites for  

E3-ligands..…………………………….………………………………………………………...27 

Figure 2.11. Docking positions of the top-scoring ligands on SETBP1:UBL complex………….30  

Figure 2.12. 2-D structure of (A) warhead number 158, and (B) E3-ligand number 128…………30 

Figure 2.13. Whole PROTAC with warhead number 158 (green), E3-ligand number 128  

(cyan), and the top linker (yellow) ………………………………………………….……………31  



xi 
 

Figure 2.14. 2-D structure of PROTAC with linker 1 and 2 in orange boxes.………….…………32 

Figure 2.15. 2-D structure of PROTAC with linker 3, 4, and 5 in orange boxes.………………….33 

Figure 2.16. Interaction between residues with significant difference in interaction energy  

In G870V..…………………………………….………………………………………………….36 

Figure 2.17. Interaction between residues with significant difference in interaction energy  

in G870S...………………….…………………………………………….………………………38  

Figure 2.18. Interaction between residues with significant difference in interaction energy  

In I871S..……………………………………………………………….………………………...39  

Figure 2.19. Interaction between residues with significant difference in interaction energy  

in S867R..……………………………………………………………….………………………..41 

Figure 3.1. SARS-CoV2 genome [modified from Gordon et al. 2020]…….……………………48  

Figure 3.2. SARS-CoV2 proteins [Jamison Jr. et. al. 2022].…….……………………………….49 

Figure 3.3. S-protein of SARS-CoV-2…….…………………….…………………….………….50 

Figure 3.4. Up and down conformations of trimeric SARS-CoV-2 S-protein…….……………..51  

Figure 3.5. Crystal structure of S:beb complex (PDB ID: 7MMO). Interacting residues of  

S-protein are shown in zoomed in view of the interface………………….……………………….55 

Figure 3.6. Crystal structure of S-protein:ACE2 complex (PDB ID: 6M0J). Interacting  

residues of S-protein are shown in zoomed in view of the interface…..………….………………57 

Figure 4.1. 2D-structures of midazolam…….…………………….……………………………...69 



xii 
 

Figure 4.2. Superposition of initial structure of heme and Cys442 (orange) with the final  

optimized structures by (A) PM6 method (cyan) and (B) PM7 method (blue).…………………...70 

Figure 4.3.  Superposition of initial (orange) and final structures (bromoergocryptine in purple  

and midazolam in green).…….…………………………..……….…………………….………..73  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

List of Tables 

Table 2.1. Homology models of SETBP1 chain sorted in ascending order based on  

GB/VI scores…..…………………….……………………………….…………………….…….25 

Table 2.2: Top 10 poses of warheads ranked in ascending order based on PBSA score.  

Yellow highlighted pose was selected for linker screening………………….…………………...28 

Table 2.3. Top 10 poses of E3-ligands ranked in ascending order based on PBSA score.  

Yellow highlighted pose was selected for linker screening..………………….…………………..29 

Table 2.4. Computationally screened top 5 linkers for PROTAC development………………….32 

Table 2.5: Calculated total interaction energies of SETBP1:UBL in various SETBP1 mutants  

and their corresponding wild-type complex……..……………….………………………………34 

Table 2.6. Calculated interaction between residues with significant ΔΔE in G870V mutant and  

its corresponding wildtype complex.……..……………….……………………………………...36 

Table 2.7. Calculated interaction between residues with significant ΔΔE in G870S mutant and  

its corresponding wildtype complex….. ………………….……………………………………...37  

Table 2.8. Calculated interaction between residues with significant ΔΔE in I871S mutant and  

its corresponding wildtype complex…...………………….……………………………………...40 

Table 2.9. Calculated interaction between residues with significant ΔΔE in S867R mutant and  

its corresponding wildtype complex………..…………….……………………………………...42 

Table 2.10. Calculated interaction between residues with significant ΔΔE in I871T mutant and  

its corresponding wildtype complex……...……………….……………………………………...42  



xiv 
 

Table 2.11. SETBP1 mutants and their computationally calculated affinity  

with UBL……...…………….……………………………………………………………….…...43 

Table 3.1. Interacting residues in S-protein with ACE2 and beb, and their associated  

interaction energy……...……….……………………………………...........................................56 

Table 3.2. Experimental IC50 values and calculated interaction energies of S:ACE2 complex  

for wild-type and mutant spike sequences..…………………….………………………………..58 

Table 3.3. Experimental IC50 values and calculated interaction energies of S:beb complex  

for wild-type and mutant spike sequences...…………………….………………………………..59 

Table 3.4. Relative differences (ΔΔERel) between the changes in interaction energy for the  

S-protein:beb and S-protein:ACE2 interactions..……………….………………………………..60 

Table 3.5. Protein:protein binding affinity in S-protein:beb and S-protein:ACE2 complexes……61 

Table 4.1: Energy minimization of various systems of P450:bromoergocryptine of 3UA1….74-76 

Table 4.2: Energy minimization of various systems of P450:midazolam of 5TE8.…………..77-79 

Table 4.3. List of residues that are needed to obtain a satisfactory optimized structure….………80 

Table 4.4: S-score and PBSA scores of top docking poses and the ranking of the scores……….81 

Table 4.5. Interaction energy of docked poses calculated by PM7 method with reduced  

number of residues……….………………………………..………………….………………82-83 

Table 4.6. Pearson correlation coefficient between Rank_Eint with  Rank_S and Rank_PBSA   

after docking calculations...…………….……….………………….…………………………….84 

 



xv 
 

 

 

 

 

 

 

 

The thing we tell of can never be found by seeking, yet only seekers find it. 

— Bayazid Bastami 

 

 

 

 

 

 

 

 

 



1 
 

 

 

 Chapter 1. Introduction 

Intermolecular interactions are critical forces that govern the relationships between 

molecules, influencing various chemical and physical properties. This concept is fundamental and 

foundational to various fields like biology, biochemistry, biophysics, molecular biology, chemical 

biology, biotechnology, and pharmacology. Intermolecular interactions include various non-

bonded interactions between molecules, such as hydrogen bonding, metal coordination, 

hydrophobic forces, van der Waals forces, π-π interactions, dispersion and electrostatic effect1,2. 

These interactions are dynamic and facilitate all kinds of complex biological and biochemical 

processes in the cells2. Notably, these are crucial for the formation and stability of complex 

biological structures such as DNA, RNA, protein, etc. For example, hydrogen bonds play a big 

part in maintaining the double helix structure of DNA and the secondary structures of proteins 

(like alpha-helices and beta-sheets). Meanwhile, hydrophobic interactions are essential since these 

preserve the integrity of cellular membranes and dictates the proper folding of proteins. All these 

fundamental interactions assist a biomolecule to obtain a well-defined and unique 3-D structure3. 

This structure creates active sites or binding sites for the specific binding of other molecules, 

leading to specific functions. These functions involve diverse cellular processes including but not 

limited to enzyme-substrate interactions, immune responses, cellular transport mechanisms, cell 

signaling, DNA replication and repair, host-pathogen interactions, etc. are the results of the 

phenomena of molecular recognition by intermolecular interaction4. These interactions are also 

important for developing biomimetic materials, identification of disease biomarkers, and creation 

of biochemical tools like biosensors and affinity tags for protein purifications5,6. Other key aspects 
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of intermolecular interaction can be seen in bioengineering, involving engineering biomolecules 

such as enzymes for specific functions and modification of metabolic pathways. Molecular 

recognition followed by intermolecular interaction is essential for drug discovery, design, and 

development. Drug molecules interact with specific biological targets, such as enzymes or 

receptors, and specifically inhibit, activate, or modulate the target molecules. The primary step for 

drug development involves structure-based drug discovery, where the three-dimensional structure 

of the target biomolecule and the drug is used to screen molecules and determine the one that fit 

precisely into the binding site of the biomolecule. By having a better understanding of the 

interaction of the drugs and biomolecules, therapeutic efficacy is maximized, and the side effects 

are minimized.  

In cells, proteins are the main players involved in almost all cellular processes through 

interactions with other molecules4,7,8. This class of macromolecules participates heavily in 

molecule-molecule interactions with DNA, RNA, carbohydrates, other proteins, and ligands9. The 

geometry and size of biomolecules and ligands dictate how well they fit into a protein's binding 

site, which in turn influences the dynamics and stability of the complexes formed. Larger 

molecules can have more intermolecular interactions due to their higher surface area, which 

frequently results in the formation of more stable complexes. However, they may encounter steric 

hindrance that prevents them from interacting with some deep or narrow binding sites. 

Additionally, larger molecules become rigid upon binding, causing significant entropic penalties 

unless compensated by favorable enthalpic contributions4,10. Larger molecules could possess 

distinct structural features, increasing selectivity in binding and reducing off-target effects. On the 

other hand, smaller molecules may lack sufficient contact points for strong interactions and show 

less selectivity. But they are usually more flexible, diffuse swiftly, and can enter dense cellular 
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environments, leading to faster binding kinetics and thus making them more desirable in drug 

development11.  

Among all protein interactions, protein-protein interaction (PPI) and protein-ligand 

interaction (PLI) are of special interest. PPIs occur in numerous biochemical processes, while PLIs 

are crucial for cell signaling and interactions with drugs12,13. Infections, neurodegenerative 

diseases, and even cancer can occur due to any abnormalities in these interactions14–16.  

There are several in vitro, in vivo, and in silico methods for studying PPI and PLI. Each of 

these is designed to uncover different aspects of intermolecular interactions with varying degrees 

of resolution and specificity. The field of structural biology is instrumental in solving the 3-D 

structures of biomolecules and studying the structure-function paradigm. X-ray crystallography 

and nuclear magnetic resonance spectroscopy can provide detailed insights into atomic 

arrangements, helping to understand the structural basis of these interactions4,17. With cryo-

electron microscopy, structures of large and heterogeneous biomolecular complexes can be 

resolved, although with relatively lower resolution7,18. Isothermal titration calorimetry, surface 

plasmon resonance, and fluorescence polarization are widely used techniques that measure 

energetics, kinetics, and strength of binding between two molecules4,19–21. Other experimental 

techniques to study molecular interactions include, but are not limited to, mass spectrometry, 

proximity-based labeling techniques, protein microarrays, affinity chromatography, two-hybrid 

methods, phage display, and coimmunoprecipitation6,8,15,20–29. 

However, experimental methods can be costly and labor-intensive since they may require 

complex setups9,17,32,33. These methods are also time-consuming, needing more time for data 

collection and analysis. Their validity may depend on the effectiveness of implementing assay 

protocols34. Moreover, some methods such as the two-hybrid system, mass spectrometry, and 
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phage display may exhibit relatively high noise levels, leading to high false-positive and false-

negative results9. Reports have been published where mass spectrometry methods fail to detect 

transient or weak interactions35–38. On the other hand, computational methods can be performed 

relatively quickly that allow researchers to explore many possibilities in a short period at a lower 

cost. Computational methods also reduce the handling of hazardous materials and conditions and 

can simulate scenarios that are not achievable in reality.  

In the absence of experimentally solved structures of proteins, computational modeling 

methods are used to predict their structure by using advanced algorithms and computational power. 

These computationally generated structures have been used to study the function of various 

proteins39,40.   

One way to study intermolecular interaction between molecules computationally is by 

using quantum mechanics (QM) methods41–44. These methods apply principles of quantum theory 

where every quantum entity is treated as having both particle-like and wave-like properties. The 

QM methods directly calculate the properties and behaviors of electrons between molecules and 

offer a thorough understanding of how molecules interact in various states. There are several 

different types of QM methods. The ab initio method approximates the Schrödinger equation and 

calculates the electron distribution to predict molecular geometry, energetics, and properties by 

determining the wavefunction45. However, ab initio calculations are comparatively slow and 

limited to small molecules45,46. The Density Functional Theory (DFT) method is one of the popular 

methods for investigating intermolecular interactions47–49. This method does not possess the 

precision of ab initio methods, but it is much faster as it derives the electron distribution without 

calculating a wavefunction45. Semi-empirical Quantum Mechanical (SEQM) methods offer a 

balance between computational speed and accuracy. Though SEQM are based on the principles of 
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quantum mechanics, they approximate certain quantum mechanical integrals based on empirical 

data or simpler mathematical models to find the best fit for some experimentally validated 

properties, a process known as parameterization (or parametrization)45. This significantly reduces 

computational costs while still providing reasonably accurate descriptions of molecular 

interactions. Commonly used SEQM techniques include neglecting differential overlap (NDO), 

neglect of diatomic differential overlap (NDDO), and the Hartree-Fock (HF) theory, leading to 

approaches such as AM1, PM3, PM6, PM7, MNDO, MNDOD, and OMx50–54. PM7 is one of the 

robust general-purpose semi-empirical methods with improved parameterization of heats of 

formation, hydrogen bonding, dispersion interactions, and the height of reaction barriers compared 

to its predecessor, the PM6 method55,56. The PM7 method is well-suited to study non-covalent 

interactions in large-scale biological systems, whereas the description for such interactions is 

inadequate in other methods55,57. 

Molecular mechanics (MM) methods are generally even faster than semi-empirical 

calculations. These non-QM, classical mechanics-based methods can model molecules and their 

interactions58,59. MM differs from QM principally in that, in MM, objects are considered as 

particles or rigid bodies with well-defined positions and velocities. Based on the positions of atoms 

and some empirical parameters, these methods use mathematical functions known as force fields 

to calculate the potential energy of a molecular system as well as interaction energies between 

molecules as a function of atomic coordinates. Some common force fields include Amber, 

CHARMM, and GROMOS60–65. 

The fundamentals of QM and MM are applied in various computational approaches, either 

independently or sometimes in conjunction66–69. Two of such approaches are molecular docking 
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and molecular dynamics (MD) that are widely used to investigate the interactions between 

molecules.   

Molecular docking is a computational technique that investigates the molecular recognition 

of two or more molecules with known structures. Docking can be either protein:protein docking 

or protein:ligand docking. Docking calculation predicts the mode of interaction, binding energetics 

as well as position, conformation and orientation, known as pose, of the ligand/protein binding 

onto another protein.  These predictions, in turn, can explain the mechanisms of the biochemical 

processes70,71. The protein:ligand molecular docking is considered as an efficient screening tool 

and often used in the primary step of structure-based drug discovery72,73. It explores numerous 

possible conformations of each ligand binding to a protein, and the interaction energy is calculated 

to determine the ligands, with a particular pose, are the most promising match71. This not only 

helps to understand the interaction mechanisms at the molecular level to design improved 

molecules, but also assists us to select only the best candidates for experimental validation, and 

thus saving the time and cost that would be higher due traditional experimental assays for all 

molecules74,75. 

Docking involves two key steps: (i) sampling the possible orientations and conformations 

of a ligand within the binding site of a protein by exploiting efficient computational search 

algorithms, (ii) ranking the poses of the ligands using a scoring function. Scoring functions serve 

as mathematical models that predict the binding free energies during the docking procedure, 

providing an idea of the strength and stability of the interaction between the molecules76. Docking 

is, in almost (albeit not all) every case, based on very heavily parametrized scoring functions 

derived from comparing calculations of binding energies of ligands and experimental binding 

affinities. These functions consider the atom types, positions, and bonding with other atoms in the 
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molecules while calculating the binding free energy. This energy calculated by the scoring 

functions is used to compare a database of potential molecules or even various modes of binding 

for the same molecule.  

There are several scoring functions available, each with its advantages and limitations.  The 

London ΔG scoring function estimates the free energy of binding between a ligand and its protein 

partner and is relied on London dispersion forces77,78. The GBVI/WSA ΔG is a forcefield-based 

scoring that considers gain/loss of rotational and translational entropy, coulombic electrostatic, 

van der Waals, solvation, and exposed surface area77,78. This function has been trained by the 

MMFF94x and AMBER99 forcefield on a dataset of 99 protein-ligand complexes79. The MM-

PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) and MM-GBVI (Molecular 

Mechanics-Generalized Born Volume Integral) methods are often applied to the calculation of 

binding free energies of ligands or proteins to other protein partners80–82 . These methods take into 

account the changes in entropy, polar and non-polar solvation free energy, and molecular 

mechanics energy between the bound complex and the unbound molecules. The key difference 

between these two methods is how the solvation free energy is estimated. In MM-PBSA, the polar 

part of the solvation free energy is calculated using the Poisson-Boltzmann (PB) equation, while 

the non-polar term is determined by changes in solvent-accessible surface area (SA).  In MM-

GBVI, these are computed using the Generalized Born (GB) model and the volume occupied by 

the solute, known as the volume integral (VI) approach, respectively. 

Despite these scoring functions are used to identify the most potential binding candidates, 

they have several limitations. Though the output energy values from the scoring functions often 

correlate with experimental binding data, they are not absolute binding energies and should not be 

taken as exact predictions83. Accurately predicting binding affinity remains a challenge due to the 
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complex nature of molecular interactions and the limitations of current models in fully capturing 

factors like solvation effects, entropy changes upon binding, and conformational flexibility71,72. 

Machine Learning-Based Scoring Functions are efficient but are limited by the accuracy and 

quality of training sets71. Besides, false positive poses of the ligands can be selected as the best 

candidates, which are actually far from the native pose84,85. 

Another limitation of traditional docking, which often introduces inaccuracies, is that it 

uses only a single protein structure, generally the crystal structure, as the receptor, without a 

solvent system. However, proteins are not static and can adopt multiple conformations in solution. 

Additionally, because of the conditions under which crystals form, the crystal structure may not 

represent the protein's natural state. To address these limitations, MD is performed to incorporate 

protein dynamics into docking by a technique known as ensemble docking86–88. MD generates 

multiple conformations of a protein in implicit or explicit solvent system that are then used against 

the ligands or other proteins during the docking process.   

MD simulates the movements of atoms over time by using the basics of Newtonian 

physics89–94. They provide information about the structural and thermodynamic properties of a 

molecular system by predicting its dynamic evolution. First, the forces on each atom of a molecular 

system are calculated using a force field. These forces include both bonded and non-bonded 

interactions. Bonded interactions consider the bond stretching and angle bending terms, which are 

modeled using simple virtual springs, as well as calculate the forces for dihedral angles. Non-

bonded interactions involve van der Waals and electrostatic forces, generally represented by the 

Lennard-Jones potential and Coulomb's law, respectively. Initial velocities for the atoms are 

assigned from a Maxwell-Boltzmann distribution at the specific temperature of the system set for 

MD. The motion of atoms is then predicted using Newton's laws of motion in small time steps, 



9 
 

usually 1 or 2 femtoseconds. The process is iterated until the MD reaches the final time-period, 

generally ranging from a few nanoseconds to microseconds. The most popular MD software 

packages are AMBER, CHARMM, GROMACS, or NAMD; some have the same names as their 

default force field62,92,95–98. 

Additionally, there are other computational techniques that are utilized for studying 

intermolecular interactions with their own pros and cons. Some of those are Monte Carlo 

simulations99,100, coarse-grained simulation101,102, and machine learning based methods such as 

deep learning and graph convolutional networks9. 

Building upon the foundational concepts and theoretical understanding of intermolecular 

interactions, this dissertation employs practical applications of PPI and PLI using computational 

methods. As demonstrated in the subsequent chapters, we explore the dynamic and often complex 

nature of these interactions. Our target was not only to deepen our understanding but also to 

address issues related to protein behavior in disease states, develop and improve therapeutics, and 

predict potential environmental pollutants. 

In the first chapter of the dissertation, we explored the complex intermolecular interactions 

of the SETBP1 protein, the causative protein of Schinzel-Giedion Syndrome, mutations in which 

cause the disease. Following computational modeling, we delved into the development of 

PROTACs (Proteolysis Targeting Chimeras) by applying our understanding of PLI to modulate 

the protein-peptide interaction between mutant SETBP1 and its binding partner, the SCF-βTrCP1 

E3 ubiquitin ligase. The protein-peptide interaction was also studied to calculate the interaction 

energy and binding affinity between mutants of SETBP1 and the ubiquitin ligase, which were 

compared with experimental data to explain the ubiquitination and SGS severity in mutant 

SETBP1. 
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The second chapter investigated PPI between SARS-CoV-2 spike protein and human 

ACE2 receptor protein, as well as the therapeutic antibody bebtelovimab. MDs were performed 

for the spike:ACE2 and spike:bebtelovimab complexes for several spike mutant proteins. The 

interaction energy and protein-protein binding affinity between the protein partners were 

calculated to determine the relative strength of the spike protein's binding to ACE2 and 

bebtelovimab in order to understand the efficacy of bebtelovimab. 

In the third chapter, protein-ligand interactions in cytochrome P450 enzyme (P450 in short) 

with its substrates were studied. This project involved the primary development of a computational 

method to screen small molecule substrates of P450 that could become toxic for humans upon 

metabolism. This method comprised both molecular mechanics and quantum mechanics 

approaches to achieve more accurate predictions of ligand binding. Substrates of P450 with known 

experimental binding geometries were docked onto the structures of P450, and the docking scores 

were then compared with the interaction energies between the final conformations and orientations 

of the ligands and the enzymes calculated using semi-empirical quantum mechanics (SEQM) 

methods. 
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Chapter 2. Interaction between SETBP1 Protein and Ubiquitin Ligase Enzyme in Schinzel-

Giedion Syndrome: Modulating Ubiquitination and Investigate Role of Mutations 

2.1. Introduction 

The human SETBP1 protein, also referred to as SET binding protein 1, derives its name 

from its ability to bind to the multifunctional protein SET, which participates in various cellular 

activities. Similar to its partner SET, SETBP1, a DNA-binding protein, undertakes numerous 

cellular functions103. Evidence suggests that SETBP1 serves as the hub of a protein-protein-DNA 

interaction network by forming a multiprotein complex with other multiple regulatory proteins104 

(Figure 2.1). It modulates the methylation of histone H3 and regulates the expression of MECOM. 

Additionally, the SETBP1-SET 

complex can suppress the activity of 

the oncosuppressor PP2A 

phosphatase. Nonetheless, the 

intricate mechanisms by which these 

functions are performed remain 

predominantly elusive.  

SETBP1 is a large protein, comprising 1596 residues. It possesses three AT-hooks that 

bind onto specific AT-rich genomic DNA sequences105 (Figure 2.2). Additionally, SETBP1 

Figure 2.1. Proposed model for SETBP1 epigenetic network 
[Piazza et al. (2018)]. 
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encompasses a segment termed the "SKI homologous region", which bears notable homology to 

the human SKI protein106. Within this domain, a degron motif is present that is targeted by SCF-

βTrCP1 E3 ubiquitin ligase (UBL) targets, leading to protein degradation through 

ubiquitination105. This UBL identifies degrons with the "DpSGφXpT" motif in specific proteins, 

where p before a residue means phosphorylated residue, φ signifies a hydrophobic amino acid 

(isoleucine in SETBP1) and X denotes any residue (glycine in SETBP1)107,108. At the C-terminus, 

SETBP1 features a repeat domain characterized by three consecutives repeats of PPLPPPPP. 

Mutations in SETBP1 are associated with various diseases. Germline mutations can be 

manifested as either gain-of-function or loss-of-function mutations, leading to Schinzel-Gideon 

Syndrome (SGS) and SETBP1 disorder, respectively. In addition, somatic mutations in SETBP1 

have been identified, which may contribute to diverse myeloid malignancies109. 

Schinzel-Giedion syndrome (SGS; OMIM 269150) is a rare developmental disorder 

symptomized by multi-organ and skeletal anomalies, facial dysmorphisms, intellectual disabilities, 

and an elevated risk of tumor development104,109,110. Due to these severe health challenges, many 

affected individuals do not survive beyond childhood109. Currently, no cure or specific treatment 

for SGS exists. A significant number of mutations linked with SGS and malignancies occur within 

a mutational hotspot. This hotspot is located within the degron, spanning residues 868 to 871 of 

SETBP1109. Consequently, some mutations within the degron hinder the binding and 

ubiquitination of SETBP1 by the UBL, unlike in unaffected individuals111. This may result in the 

Figure 2.2. Schematic representation of SETBP1 [modified from Piazza et al. (2013)]. 
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accumulation of SETBP1. Administering an agonist may act as a drug, probably by restoring the 

interaction between SETBP1 and the ubiquitin ligase, thereby eliminating the surplus SETBP1 

implicated in SGS. 

One such agonist to treat SGS could involve Proteolysis Targeting Chimeras (PROTACs). 

PROTACs represent a novel class of therapeutics that have gained prominence in recent years. 

These molecules have emerged as a powerful tool in the treatment of myriad diseases, prominently 

including cancer112–115. What sets PROTACs apart from other therapeutic agents is their distinctive 

heterobifunctional design 

(figure 2.3). These molecules 

are fashioned with two distinct 

ligands connected through a 

linker. The first of these ligands, often referred to as the 'warhead,' is chosen to bind with a specific 

protein of interest (POI), SETBP1 in this case. In contrast, the other ligand, known as the E3 ligand, 

latches onto an UBL116. This dual ligand architecture effectively allows the PROTAC to act as a 

bridge, drawing the POI close to the E3 ligase, setting in motion the ubiquitination process. 

PROTACs offer several advantages over conventional small molecule inhibitors: they can target 

proteins previously deemed "undruggable" because of lacking well-defined pockets or active sites 

and when inhibition of that protein is insufficient and complete degradation is required, 

demonstrate enhanced target selectivity, and offers a promising strategy to bypass the ever-

challenging hurdle of drug resistance112,116. As a result, the global research community, from 

academia to industry, has increased its efforts in investigating the capabilities of PROTACs116. 

However, though the structure SCF-βTrCP1 E3 UBL is available in PDB107, no 

experimentally determined structures or computationally generated models exist for the entire 

Figure 2.3. Schematic of a PROTAC. 
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SETBP1 protein. As a result, a structure-based drug discovery approach for PROTAC could not 

be applied right away. Hence, the goal of the proposed research is to use computational structural 

biology and chemistry approaches to model SETBP1 protein and engineer PROTAC molecules 

for SGS treatment. Additionally, one other goal of this project is to predict changes in 

SETBP1:UBL interaction energy resulting from mutations in SETBP1. By completing these goals, 

we tested our hypothesis that every mutation in SETBP1 (i) lower the binding affinity between 

SETBP1 and UBL, that causes (ii) decrease ubiquitination, leading to (iii) increased SGS severity.  

2.2. Methods 

2.2.1. Modeling of SETBP1 

2.2.1.1. Homology Modeling of Whole SETBP1 

The sequence of human SETBP1 protein was downloaded from Uniprot (primary accession 

number: Q9Y6X0). At first the suitable templates as homologs of SETBP1 from the Protein Data 

Bank (PDB) was searched in pBLAST and MOE for homology modeling. The criteria for template 

selection for modeling was considered as follows: (i) template-target alignment quality with a 

preference for minimal gaps, insertions, and deletions, as these introduce uncertainties. 

BLOSUM62 substitution matrix was chosen since it tends to work well for a wide range of protein 

comparisons117; (ii) a sequence identity above 30% between the template and target, as identities 

below this threshold can result in unreliable models118; (iii) sourcing templates from humans or 

closely related organisms due to expected structural similarities; (iv) template structure resolution, 

with those below 2.0 Å deemed high quality; (v) an R-factor below 0.20, indicating a reliable 

structure; and (vi) templates with fewer missing residues were favored to reduce uncertainties, 

especially in functionally significant regions.  
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2.2.1.2. Threading  

Besides homology modeling, the more advanced techniques of threading and ab initio 

modeling were employed. Threading operates on the premise that, despite the vast array of protein 

sequences, the number of unique protein folds or shapes in nature are limited119. Consequently, 

even if two proteins do not originate from a shared ancestry and exhibit low sequence similarity, 

they may still assume similar 3D structures119. In threading, a small segment of the target SETBP1 

protein was compared against PDB structures of established structures to determine potential fold 

candidates120,121. For each template in the database, an energy profile was generated, representing 

the energy cost of positioning each amino acid type in each position of the template. The target 

sequence segment was aligned to each structure to discover an alignment that places the amino 

acids of the target sequence in the most favorable positions based on the energy profiles, and this 

alignment was scored. This score reflects how well the sequence conforms to the structure, 

accounting for various interactions, steric hindrance, hydrophobicity, and amino acid residue 

tendencies. The template structure with the most favorable (lowest) score was selected to be the 

best match for the target sequence. The whole process was repeated for the whole protein to 

determine the best model for SETBP1. For modeling SETBP1 with threading method, the online 

tool I-TASSER was used122,123. It has a limit of 1500 residues, hence residue 97-1596 were selected 

that contain the degron motif for generating models using I-TASSER.    

2.2.1.3. Ab initio Modeling  

The ab initio protein structure prediction utilizes short peptide fragments from the PDB 

based on local sequence similarity with the target sequence and apply these as building blocks124. 

The Monte Carlo method was used, where random fragments from the library were integrated. 

These combinations of fragments produced a low-energy, physically plausible conformation for 
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SETBP1. The resultant structure was assessed using a scoring function that represents the potential 

energy of the structure. The preliminary models generated through fragment assembly may often 

encompass steric clashes or unrealistic geometries. Iterative cycles of fragment substitution, 

coupled with local energy minimization, were executed to refine these models and enhance their 

quality. Two online servers, trRosetta125,126, and QUARK127,128 were utilized for generating models 

of SETBP1 by ab initio method. These tools can take input of maximum 1000 and 199 residues, 

respectively. In the case of trRosetta, the sequence of SETBP1 from residue 299 to 1298 was input 

excluding 298 residues from both termini. For QUARK, the selected segment of SETBP1 was 

residue 715-911. In both, the degron motif was included in the model prediction.    

2.2.1.4. Prediction of Intrinsically Disordered Nature of SETBP1 

Then, we investigated whether SETBP1 could be an intrinsically disordered protein (IDP). 

IDPs lack a defined structure and may become ordered upon binding to other molecules. Online 

computational tools FoldIndex and PONDR that predicts protein’s folding propensity i.e., the 

folded or intrinsically disordered nature of protein regions based on their sequence composition 

and charge-hydrophobicity properties as well as the tendency of specific residues within a protein 

region to adopt secondary structural configurations were used for this129,130. 

2.2.1.5. Homology Modeling of Partial SETBP1 

A short chain of SETBP1 containing the was modeled in the presence of SCF-βTrCP1 E3 

UBL. During this the degron motif and as many as possible nearby residues were included in the 

modeling process. The Homology modeling protocol mentioned previously was followed 

preferentially searching for a protein targeted by SCF-βTrCP1 E3 ubiquitin ligase. 
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2.2.2. Development of PROTAC Molecules 

2.2.2.1. Molecular Dynamics Simulations 

MD simulation of SETBP1 chain in complex with UBL was performed. For MD, the 

structure was prepared in the Molecular Operating Environment (MOE), version 2022.0277. The 

whole structure was energy minimized until the root mean-square (RMS) energy gradient reached 

<10-6 kcal/mol/Å2, using the Amber10:EHT force field as implemented in MOE, and an implicit 

8-10 Å distance solvation model., The structures were then solvated by adding explicit water 

molecules in a cubic box. Sodium and chloride ions were added to neutralize the system and to 

model physiological ionic strength at 0.1 mol/L. 

The MD simulation was carried out using NAMD 2.14 with the Amber10:EHT force field 

and an 8-10 Å gas phase solvation model. The system was minimized for 10 ps at 0 K, then heated 

for 100 ps to raise the temperature to 300 K. The production stage of MD was then conducted for 

100 ns at a constant temperature and a constant pressure of 1 atm. Periodic boundary conditions 

were applied to mimic an infinite system and to minimize edge effects. The Particle Mesh Ewald 

method was enabled for periodic electrostatic interactions. A time step of 2 fs was used for the 

integration of the equations of motion. The system was sampled, and the atomic coordinates were 

saved at every 10 ns of the MD simulations.  

After the MD simulations, the trajectory was analyzed using MOE’s ‘MD_analysis’ facility 

that calculates various molecular properties of a series of conformations. The root-mean-square 

deviation (RMSD) of the protein backbone atoms from each frame of the trajectory relative to the 

starting structure was calculated to determine when the trajectory became equilibrated. All post-

equilibrated conformations were clustered into 10 clusters based on RMSD values. One 
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SETBP1:UBL conformation from each cluster was selected for the subsequent docking 

calculations.   

2.2.2.2. Ensemble Docking 

Ensemble dockings of warheads and E3-ligands were conducted in MOE targeting 

SETBP1 and UBL, respectively, against the above 10 conformations of the complex. The docking 

sites in each case were selected strategically. For warheads, the docking sites were all the residues 

except the degron motif in SETBP1. And for E3-ligands, the ‘Site Finder’ feature in MOE was 

used to identify the active pockets in UBL. Other than the pocket to which SETBP1 binds with 

UBL, two pockets that are close to SETBP1 were selected as the binding site for E3-ligands in the 

docking calculations.  

Databases of warheads and E3-ligands were obtained from PROTAC-DB 2.0 and 

PROTACpedia131,132. From the databases, a total of 535 unique warheads and 143 unique E3-

ligands were used for initial docking calculations. The molecules were washed to remove 

unwanted minor components (e.g., counterions and solvent molecules) and protonated to get the 

charge-neutral species of the molecules.  

During docking, the ligands were placed in different orientations onto the proteins, known 

as poses. Pharmacophore placement was employed for docking. For each receptor-ligand pair, a 

maximum of 1000 poses were allowed, which were then evaluated using the London dG scoring 

method. The top 30 poses were selected for further refinement through protein-ligand complex 

structure minimization in induced fit mode.  Each pose was then scored using the GBVI/WSA ΔG 

Scoring function (S-score) to estimate the free energy of ligand binding to select the top 5 poses 

for each receptor-ligand pair. These poses were refined further by additional minimization (0.001 

kcal/mol/Å RMS gradient) where receptor atoms within 15 Å of the ligands were unfixed while 
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the rest were fixed. The final receptor-ligand interaction energy was computed using the PBSA 

solvation model. The resulting poses were ranked according to PBSA score to determine the top 

ligands that bind to the respective receptors more stably.   

2.2.2.3. Linker Screening 

A database of linkers sourced from PROTAC-DB 2.0 was used to predict the best linkers 

for the top warhead and E3-ligand. Out of 1500 linker structures, 800 linkers with lowest molecular 

weight were selected. These were washed and protonated like before. The linkers were screened 

against the selected top warhead and E3-ligand complexed with SETBP1 and UBL from the 

docking calculations using MOE PROTAC Modeling Tool. Each linker was screened twice where 

the first time one end of the linker was bound to one of the ligands, and the second time to the 

other ligand. The top linkers were selected based on the energy of the interaction between the 

protein part of warhead:SETBP1 and UBL:E3-ligand complexes that occurred due to that 

particular linker.  

2.2.3. Predicting Binding Affinities of Mutant SETBP1 and UBL 

2.2.3.1. Single-Point Mutation 

Five SETBP1 mutants, S867R, G870V, G870S, I871S, and I871T were included in this 

study. The introduction of spike single-point mutations in SETBP1 was carried out using the 

'Protein Builder' feature in MOE. 

2.2.3.2. Calculation of Total Interaction Energy Between Rigid Mutant SETBP1 Models and 

UBL Crystal Structure 

The introduction of spike single-point mutations in SETBP1 was carried out using the 

'Protein Builder' feature in MOE. The interaction energy between the mutated SETBP1 and UBL 

was calculated in triplicates as follows: two rounds of energy minimization were executed. In the 
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initial round, all atoms of the system were held fixed except the mutated residue and all the residues 

in SETBP1 and UBL that had at least one atom within 7 Å of any atom in the mutated residue. In 

the second round of minimization, all atoms were unfixed, and the energy minimization was 

repeated. The minimizations were performed until the root-mean-square (RMS) energy gradient 

reached <10-6 kcal/mol/Å2, utilizing Amber10:EHT as implemented in MOE, and an 8-10 Å Born 

solvation model. Subsequently, the interaction energies were computed using the MOE 'Potential 

Energy' tool, which automatically calculated the energy of the SETBP1:UBL complex minus the 

sum of the energies of SETBP1 and UBL individually.  

To assess the effect of a given mutation on the SETBP1:UBL interaction in comparison to 

the wild-type SETBP1, the same procedure as described above for the mutated species was applied 

to the wild-type SETBP1 sequence. The wild-type SETBP1 structure underwent energy 

minimization initially with the atoms of the residue slated for mutation, along with its neighboring 

residues, held fixed. Subsequently, all atoms were released, and full energy minimization was 

performed. The arithmetic average values of interaction energies from the triplicates in both cases 

of mutant and wild-type complexes were recorded with a +/- range.  

2.2.3.3. Calculation of Interaction Energy Between Specific Residues of Mutant SETBP1 and 

UBL 

In addition to the total interaction energy between minimized SETBP1 chain and the 

protein UBL, MOE ‘Protein Contact’ panel was used to break down the total interactions between 

protein:peptide chain into the interaction energies between individual residues. The panel 

examines the contact surfaces between atoms of protein residues of a complex and calculates the 

interaction energy. The types of interactions between two residues, such as ionic (I), hydrogen 

bonds (H), and/or Van der Waals distance interactions (D), could also be identified in the 'Protein 
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Contacts' panel. After calculating such interaction energies between residue pairs in the triplicate 

structures of the mutant SETBP1:UBL complexes, an arithmetic average for each pair was 

determined. 

After the MD simulations, the trajectories were analyzed using MOE’s ‘MD_analysis’ 

facility that calculates various molecular properties of a series of conformations. The root-mean-

square deviation (RMSD) of the protein backbone atoms from each frame of the trajectory from 

the starting structure was calculated to determine when the trajectory became equilibrated. All the 

structures from the equilibration phase were included in the further analysis where the interaction 

between mutant SETBP1 and ligase in all those structures was calculated using MM/GBVI 

protein-protein affinity score, and the arithmetic averages were calculated. 

2.2.3.4. Calculation of Binding Affinities of Dynamic Conformations of Mutant SETBP1 and 

UBL 

To calculate the binding affinity for three mutants, I871S, G870S, and S867R with UBL 

considering the dynamic motion of the complexes, MD were performed. The N-terminal F box 

domain (residues 139 to 186) and the α-helical domain (residues 187 to 252) of UBL were deleted 

from the model since those domains are distant from the SETBP1:UBL interaction site. The 

method of MD has described in section 2.2.2.1. All the conformations from the equilibration phase 

were included in the calculation where the interaction between mutant SETBP1 and UBL for each 

conformation was calculated using MM/GBVI protein-protein affinity score. Finally, the 

arithmetic average was calculated for each mutant.  
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2.3. Result  

2.3.1.   Generation of SETBP1 Model 

2.3.1.1. Modeling of Full-SETBP1 

The homology modeling of full length SETBP1 could not be done because the search for 

homologous proteins did not identify any protein in pBLAST and MOE indicating that there are 

homologs of SETBP1 that have a solved experimental structure. 

 

 

The models predicted by trRosetta exhibited distortion and lacked reproducibility (figure 

2.4). The similarity between two protein structures is scored by a “TM-score”. It ranges from 0 to 

1, and a score of 0.5 or more indicates the structures have roughly the same fold. The models 

generated by trRosetta had lower TM scores (0.128-0.147). The I-TASSER yielded somewhat 

reproducible results, generating several acceptable models (figure 2.5). However, the topology of 

the best-predicted model (TM-score 0.5) had an extensive similarity to a non-DNA-binding toxin 

from the bacteria Clostridium difficile, raising doubt regarding the result (figure 2.5). From an 

evolutionary standpoint, it seems unlikely that a human DNA-binding protein exhibits structural 

similarity to a bacterial toxin. QUARK produced several models with compact globular shapes, 

but almost devoid of secondary structures (figure 2.6). 

Figure 2.4. Models generated by trRosetta. 
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Figure 2.6. 197 residues long QUARK models (V715-T911). 

              

Figure 2.5. (A) 1500 residues long best I-TASSER model of SETBP1 (N99-P1596). (B) 
Clostridium difficile toxin A [PDB ID: 4R04]. 
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2.3.1.2. Prediction of Intrinsically Disordered Nature 

Due to the inconsistency in the results, we investigated whether SETBP1 could be an 

intrinsically disordered protein (IDP). So, we employed two online tools, FoldIndex and PONDR, 

to predict this. The predictions from these two tools indicated that a substantial portion of SETBP1 

could be an IDP, where on average, 1120 residues and 23 regions are distorted with the longest 

region containing 195 residues. 

 

 

 

Figure 2.7. Possibility of SETBP1 to be an IDP as predicted by FoldIndex. Green means ordered residue 
and red means disordered residues. 
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2.3.1.3. Homology Modeling of Partial SETBP1 

After being unable to predict a satisfactory structure of 

the whole SETBP1, we modeled a partial chain of the protein. 

Given that the degron motif of SETBP1 interacts with the SCF 

βTrCP1 E3 UBL, we searched for proteins with sequences 

homologous to the SETBP1 degron and its adjacent residues, as 

well as targeted by SCF-βTrCP1 E3 ubiquitin ligase. Our search 

identified the experimental crystal structure of the ubiquitin 

ligase complexed with a 11-residue long β-catenin fragment 

containing the degron motif (PDB ID: 1P22)107. In total of 26 consecutive residues of β-catenin 

chain including those 11 residues, shows 27% sequence identity and 50% sequence similarity with 

the SETBP1 segment P855-D880.  

Table 2.1. Homology models of SETBP1 
chain sorted in ascending order based on 

GB/VI scores. 

Figure 2.8. SETBP1 chains in different views (template in purple the best scoring model in cyan, other models 
in yellow) with UBL (green). Atoms of the SETBP1 residues that were mutated, are shown in ball and sticks. 
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Homology modeling generated 10 models of the 26 residues long SETBP1 chain in MOE 

(figure 2.8). The models were sorted based on the GB/VI scores that range from -898.3 to -806.8 

(table 2.1). There is a large gap between the models with the lowest and the second lowest (-843.5) 

scores. The lowest GB/VI model is considered the best model. After S869 and T873 of SETBP1 

chain were phosphorylated and the whole model was energy minimized. Then, the model was 

selected for further analysis.  

2.3.2. Development of PROTAC 

2.3.2.1. Ensemble Docking 

After performing MD of SETBP1 chain:UBL complex, 10 clusters were generated from 

the trajectory based on the RMSD from the starting structure. From each cluster, a representative 

conformation of the complex was taken for the docking calculations (figure 2.9).  

 

Figure 2: SETBP1 chains in different views (template in purple the best scoring model in cyan, other 
models in yellow) with UBL (green). Atoms of the SETBP1 residues that were mutated, are shown in 
ball and sticks. 

Figure 2.9. Diverse superposed conformations of STEBP1 chain and UBL selected from MD trajectory. (A) Ten 
conformations where the backbone is rendered in lines, all SETBP1 are in cyan and UBL in orange (B) Two diverse 

conformations shown as surface representation, one in green and other in red. UBLs are shown in solid surface 
representation and SETBP1 surfaces are in lines. 
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By using MOE ‘Site Finder’ facility, two docking sites for the E3-ligands were selected 

that are near SETBP1 (figure 2.10). For the warhead, every residue except the degron ones were 

selected as the docking site. 

 

Figure 2.10. Two yellow spheres in UBL (orange) representing the docking sites for E3-ligands. The purple-colored 
regions in SETBP1 were considered as the docking sites for warheads. The degron is indicated in cyan. 

 
 

A total of 26,734 and 7,130 poses for warheads and E3-ligands, respectively, were 

generated from the ensemble docking of the ligands with 10 conformations of the protein complex. 

The poses were sorted in ascending order based on the PBSA score. The top 10-ranked poses of 

warheads and E3-ligands are listed in table 2.2 and 2.3, respectively. All the top ligands are shown 

in figure 2.11. 
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Pose number 

Complex 

conformation 

number 

Warhead 

number 

PBSA 

(kcal/mol) 

Ligand’s 

molecular 

weight 

(g/mol) 

1 8 158 -209.5 691.7 

2 8 112 -205.3 1035.3 

3 3 158 -205.0 691.7 

4 10 112 -199.2 1035.3 

5 3 430 -195.4 635.7 

6 6 156 -194.2 689.7 

7 10 156 -189.2 689.7 

8 1 112 -188.2 1035.3 

9 3 112 -182.8 1035.3 

10 5 158 -181.4 691.7 

Table 2.2: Top 10 poses of warheads ranked in ascending order based on PBSA score. Yellow highlighted pose 
was selected for linker screening. 
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Pose number 

Complex 

conformation 

number 

E3-ligand 

number 

PBSA 

score 

(kcal/mol) 

Ligand’s 

molecular 

weight 

(g/mol) 

1 9 7 -148.4 619.8 

2 10 26 -136.1 594.7 

3 1 94 -128.1 374.5 

4 7 25 -127.7 587.7 

5 3 128 -125.3 537.7 

6 10 108 -123.8 446.5 

7 5 15 -121.2 486.6 

8 4 27 -120.6 587.7 

9 5 24 -120.4 553.7 

10 6 28 -120.4 587.7 

Table 2.3. Top 10 poses of E3-ligands ranked in ascending order based on PBSA score. Yellow highlighted pose 
was selected for linker screening. 
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After docking, the next goal was to 

select the best warhead and E3-ligand pair 

strategically from the docking output results 

for linker screening. Table 2.2 and 2.3 

indicate that warhead number 158 and E3-

ligand number 7 were the best docked 

ligands. However, this pair of warhead 

number 158 and E3-ligand number 7 was not 

selected because warhead number 158 

showed the best docking score binding with 

complex conformation number 8. This 

conformation was not present among the top 10 poses for E3-ligands. Similarly, E3-ligand number 

7 scored the best when it was bound to complex conformation number 9 and none of the top scoring 

warheads were docked onto this conformation.  

After considering the 

above criterion, we found 

complex conformation number 3 

and 10 within the top 5 entries in 

both docking calculations. But 

complex conformation number 10 

scores well with warhead number 

112 which has a significantly higher 

molecular weight compared to other 

A 

B 

Figure 2.11. Docking positions of the top-scoring ligands on 
SETBP1:UBL complex. Ubiquitin ligase in orange, degron in 

cyan, nearby residues of degron in blue, warheads are in green, 
and E3-ligands are in purple. 

Figure 2.12. 2-D structure of (A) warhead number 158, and (B) E3-ligand 
number 128. 
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ligands. As for the complex conformation number 3, two warheads were among the top 5 entries 

(warhead number 158 and 430). Warhead number 158 ranked better than warhead number 430 

against complex conformation number 3, and it was the best among all the warheads (with complex 

conformation number 8). As a result, warhead number 158 was selected for the next stage of 

calculations with E3-ligand number 128, both bound to complex conformation number 3. The 2-

D structures of these selected ligands are shown in figure 2.12.  

2.3.2.2. Linker Screening 

The screening of the database of linkers with the selected receptor and ligands from section 

2.3.1.4. generated 1729 entries. The interaction energy between the two proteins were for each 

entry was calculated. The entries were then ranked ascendingly based on the calculated interaction 

energy. The top 5 entries are shown in table 2.4. The linkers of these top 5 entries have 23 to 32 

atoms, making the PROTAC molecules having an overall molecular weight ranging from 1355 to 

1415 g/mol. Figure 2.13 shows the structure of the PROTAC with the linker in entry number 1 in 

table 2.4. Figures 2.14 and 2.15 depict the 2D structures of the PROTACs containing warhead 

Figure 2.13. Whole PROTAC with warhead number 158 (green), E3-ligand number 128 (cyan), and the top linker 
(yellow). 
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number 158, E3-ligand number 128, and top 5 linkers. These PROTACs will be tested for 

experimental validation. 

 

Rank Linker 
number 

Interaction energy between SETBP1 and UBL 
due the PROTAC with the specific linker 

(kcal/mol) 
1 852 -94.6 
2 214 -83.1 
3 1416 -81.9 
4 573 -78.6 
5 91 -76.1 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4. Computationally screened top 5 linkers for PROTAC development. 

Linker 1 

Figure 2.14. 2-D structure of PROTAC with linker 1 and 2 in orange boxes. 

Linker 2 
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Figure 2.15. 2-D structure of PROTAC with linker 3, 4, and 5 in orange boxes. 
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2.3.3.    Predicting Binding Affinities of Mutant SETBP1 and UBL 

2.3.3.1 Calculation of Total Interaction Energy Between Rigid Mutant SETBP1 Models and 

UBL Crystal Structure 

The average interaction energy calculations of a mutant SETBP1 chain and its 

corresponding wild-type variant with UBL are presented in table 2, columns (a) and (b), 

respectively. The numerical differences from the independent energy minimization rounds are 

provided as "+/-" values. Column (c) in table 2.5 presents the difference between the interaction 

energies of a given mutant species and the wild type (ΔΔE). The "+/-" values are relatively small, 

approximately 2-3 orders of magnitude lower than the interaction energies. This indicates that the 

triplicate energy minimizations essentially converge on similar, though not identical values. An 

exception is observed with the G870V mutant, where the values are precisely the same in the 

triplicates.  

 
 

Mutant 

(a) Average 
interaction energy ΔE: 
[E(wild-type SETBP1) 

– E(UBL)] 
(kcal/mol) 

(b) Average 
interaction energy ΔE: 
[E(mutant  SETBP1) – 

E(UBL)] 
(kcal/mol) 

(c) ΔΔE  
[ΔE column (b) - 
ΔE [column (a)]  

 
(kcal/mol) 

S867R -148.1 ± 0.1 -143.8 ± 0.4 4.3 ± 0.4 
G870V -156.4 ± 0.0 -138.3 ± 0.0 18.1 ± 2.3 
G870S -160.7 ± 2.8 -134.2 ± 0.1 26.5 ± 2.8 
I871S -155.8 ± 0.1 -130.7 ± 1.2 25.1 ± 1.2 
I871T -145.3 ± 0.3 -149.4 ± 7.7 -4.1 ± 7.7 

 

 

 

Table 2.5: Calculated total interaction energies of SETBP1:UBL in various SETBP1 mutants and their 
corresponding wild-type complex. 
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Column (c), indicates that, aside from I871T, all mutants interact with UBL with less 

negative energy values than the wild-type SETBP1, i.e., the SETBP1:UBL interaction is less stable 

in mutants than in the wild-type, with larger ΔΔE values for I871S and G870S than for the other 

species. Conversely, I871T displays the smallest ΔΔE value and possesses more negative average 

interaction energy values compared to the wild-type SETBP1:UBL interaction energy. The "+/-" 

value in column (c) for the I871T mutant is not only of the same order of magnitude as the 

difference itself (unlike other mutants, which have values an order of magnitude smaller), but the 

absolute "+/-" value is also greater than the absolute ΔΔE value. 

2.3.3.2. Calculation of Energy Between The Interacting Residues of SETBP1 and UBL 

The 'Protein Contacts' panel calculated all the inter-pair interactions between residues of 

SETBP1 and UBL on the contact surface of all the minimized structures. Among the numerous 

interactions, those showing differences in average interaction energies exceeding 3 kcal/mol or 

falling below -3 kcal/mol between the wild-type and mutant complexes were deemed significant. 

These interactions were subjected to structural analysis in MOE. To accomplish this, one of the 

minimized structures from both the wild-type and mutant complexes was selected and 

superimposed. 

i. G870V 

In G870V, three interactions contribute significantly that caused the mutant SETBP1:UBL 

complex to be less stable than the wild-type complex (figure 2.16 and table 2.6). The D874-R410 

(figure 2.16a) interaction was present in both complexes, but it was weaker in the mutant complex 

compared to the wild-type complex due to less stable hydrogen and ionic bonds between the 

residues. The S869-K365 and N876-R367 (figure 2.16b, 2.15c) interactions were absent in the 
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mutant complex since the residues were distant from each other. Conversely, the N875-R367 

(Figure 2.16d) interaction is exclusive to the mutant complex and provides stability. 

 

 

 

 

           

 

 

 

 
Residue 

in 
SETBP1 

 
Residue 
in UBL 

Wild-type complex Mutant complex Δ interaction 
energy 

between the 
residues 

[column (b) 
minus column 
(a)] (kcal/mol) 

(a) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

(b) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

S869 K365 -10.8 DIH 0 -- 10.8 
D874 R410 -33.4 DIH -22.8 DIH 10.7 
N876 R367 -6.1 DH 0 -- 6.1 
N875 R367 0 -- -8.9 DH -8.9 

a b 

c 
d 

Figure 2.16. Interaction between residues with significant difference in interaction energy in G870V. Residues from 
wild-type complex are in cyan and from mutant complex are in orange. Dotted blue lines with cylinders indicate 

hydrogen bonds where the length of cylinder represents the strength of the bond. 

Table 2.6. Calculated interaction between residues with significant ΔΔE in G870V mutant and its corresponding 
wildtype complex. 
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ii.  G870S 

The interactions S869-K365 and N876-R367 (Table 2.7 and Figure 2.17a, 2.17b) were 

present in the wild-type complex, while N875-R367 (Figure 2.17c) was found in the mutant 

complex, all contributing significantly to the stability of the surface interaction between respective 

SETBP1 and UBL. The interactions D874-R410 and S869-R285 (Figure 2.17d, 2.17e) lay at 

opposite ends of the energy difference spectrum, both involving ionic bonds, hydrogen bonds, and 

Van der Waals interactions. In this case, the complex with the more negative energy exhibited 

much stronger ionic and hydrogen bonds compared to its counterpart. The residue E863 binds with 

R285 (2.17f) in the wild-type complex, forming ionic and hydrogen bonds, whereas in the mutant 

complex, only a distance-dependent interaction was present. However, within the wild-type 

complex, the interaction energies between E863-R285 vary significantly across the three 

minimized structures, ranging from -14.2 to -2.4 kcal/mol. Only one wild-type complex featured 

the E863-R285 interaction with a hydrogen bond.  

 
Residue 

in 
SETBP1 

 
Residue 
in UBL 

Wild-type complex Mutant complex Δ interaction 
energy 

between the 
residues 

[column (b) 
minus column 

(a)] 
(kcal/mol) 

(a) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

(b) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

D874 R410 -33.6 DIH -22.2 DIH 11.4 
S869 K365 -10.9 DIH 0 -- 10.9 
E863 R285 -8.2 DIH1 -1.5 D 6.7 
N876 R367 -5.9 DH 0 -- 5.9 
N875 R367 0 -- -8.6 DH -8.6 
S869 R285 -20.4 DIH -33.9 DIH -13.5 

 

Table 2.7. Calculated interaction between residues with significant ΔΔE in G870S mutant and its corresponding 
wildtype complex. The number in superscript in ‘Type of interaction’ column represents how many out of 3 

minimized structures have that interaction. 
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a b 

c 
d 

e 
f 

Figure 2.17. Interaction between residues with significant difference in interaction energy in G870S. Residues from wild-type 
complex are in cyan and from mutant complex are in orange. Dotted blue lines with cylinders indicate hydrogen bonds where 

the length of cylinder represents the strength of the bond. 
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iii.  I871S 

The S869-R285 (table 2.8 and figure 2.18a) interaction showed the greatest difference in 

interaction energy between the wild-type and mutant complexes. In both cases, ionic and hydrogen 

bonds were present, but they are stronger in the wild-type complex (approximately 6 and 9 

a b 

c d 

e 

Figure 2.18. Interaction between residues with significant difference in interaction energy in I871S. Residues from 
wild-type complex are in cyan and from mutant complex are in orange. Dotted blue lines with cylinders indicate 

hydrogen bonds where the length of cylinder represents the strength of the bond. 
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kcal/mol stronger, respectively). In the mutant complex, the E863-R285 (figure 2.18b) and N876-

R367 (figure 2.18c) interactions involved only Van der Waals interactions, leading to reduced 

stability compared to the wild-type complex where those interactions also had electrostatic 

interactions. The mutation from isoleucine to serine at residue 871 in the mutant complex 

weakened the distance-dependent interaction with UBL's R474 (figure 2.18d). The 'Protein 

Contacts' analysis did not predict the formation of any electrostatic bonds between S871 and R474 

in the mutant.  

 
Residue 

in 
SETBP1 

 
Residue 
in UBL 

Wild-type complex Mutant complex Δ interaction 
energy 

between the 
residues 

[column (b) 
minus 

column (a)] 
(kcal/mol) 

(a) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

(b) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

S869 R285 -33.2 DIH -19.7 DIH 13.5 
E863 R285 -9.1 DI -1.4 D 7.8 
N876 R367 -3.7 DH 0.2 D 3.9 
I871S R474 -2.3 D 1.0 D 3.3 
D874 G432 0 -- -5.1 DH -5.1 

 

iv.  S867R 

D874 interacted with two arginine residues of UBL, R431 and R410, in both complexes 

(table 2.9 and figure 2.19a, 2.19b). In the mutant complex, these interactions are less stable than 

those in the wild-type complexes. R431 also interacted with T873 of SETBP1 with the greatest 

difference in interaction energy between the wild-type and mutant complexes. The interaction was 

not favorable in the mutant complex (figure 2.19c) as a clash occurs between oxygen atoms from 

Table 2.8. Calculated interaction between residues with significant ΔΔE in I871S mutant and its corresponding 
wildtype complex. 
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each of the residues. Conversely, S869 interacted with two positively charged residues, K365 and 

R285 (figure 2.19d, 2.19e), and these interactions were much more stable in the mutant complex. 

 

 

 

 

 

 

 

 

 

e 

a b 

c d 

Figure 2.19. Interaction between residues with significant difference in interaction energy in S867R. Residues from 
wild-type complex are in cyan and from mutant complex are in orange. Dotted blue lines with cylinders indicate 

hydrogen bonds where the length of cylinder represents the strength of the bond. Orange dotted line indicate clash 
between atoms. 
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Residue 
in 

SETBP1 

 
Residue 
in UBL 

Wild-type complex Mutant complex Δ interaction 
energy 

between the 
residues 

[column (b) 
minus 

column (a)] 
(kcal/mol) 

(a) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

(b) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

T873 R431 -2.3 DH 10.9 D 13.2 
D874 R431 -10.9 DIH 1.3 D 12.3 
D874 R410 -26.4 DIH -20.8 DIH 5.6 
P866 R521 -10.2 DH -5.3 DH 4.8 
D880 K365 -16.5 DIH -21.9 DIH -5.4 
S869 K365 -0.3 D -9.7 DH -9.4 
S869 R285 -19.5 DIH -38.0 DIH -18.4 

 

             v.  I871T 

The I871T mutation was the only one that resulted in a more negative interaction energy 

between the SETBP1 chain and UBL after the mutation. Interestingly, the 'Protein Contacts' 

analysis indicated a high degree of variation in the interaction energies between the same pair of  

 
Residue 

in 
SETBP1 

 
Residue 
in UBL 

Wild-type complex Mutant complex Δ interaction 
energy 

between the 
residues 

[column (b) 
minus 

column (a)] 
(kcal/mol) 

(a) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

(b) Average 
interaction 

energy 
between the 

residues 
(kcal/mol) 

Type of 
interaction 

G863 R285 -12.1 DIH2 -3.1 DI2 9.0 
N875 R367 -8.7 DH -3.1 D1H1 5.6 
N876 R367 -0.2 D -3.4 D2H2 -3.2 
T873 R431 3.7 D -0.1 D -3.9 
S869 K365 -0.3 D -10.5 DI1H -10.5 

Table 2.9. Calculated interaction between residues with significant ΔΔE in S867R mutant and its corresponding 
wildtype complex. 

Table 2.10. Calculated interaction between residues with significant ΔΔE in I871T mutant and its corresponding 
wildtype complex. The number in superscript in ‘Type of interaction’ column represents how many out of 3 

minimized structures have that interaction. 
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residues. For instance, even though the average interaction energy for N875-R367 in the mutant 

complex was -3.1 kcal/mol (Table 2.10), two of the minimized structures exhibited no interaction 

at all, while the other one showed a value of -9.4 kcal/mol, lower than the average interaction 

energy in the wild-type complex. Similarly, one of the structures lacked any interaction between 

N876 and R367 in the mutant complex. Moreover, variations in the type of interaction within a 

particular complex had been observed in almost all cases. 

2.3.3.3. Calculation of Binding Affinities of Dynamic Conformations of Mutant SETBP1 and 

UBL 

The dynamic interaction between three mutants I871S, G870S, and S867R SETBP1 and 

UBL was calculated by analyzing the conformations from the equilibration phase of the MD 

trajectories. The arithmetic average of MM/GBVI protein-protein affinity score for the mutants 

with UBL are shown in table 2.11. The standard deviation in every mutant was about an order of 

magnitude lower than the average affinity score. Among the mutants, G870S showed the least 

stable interaction between the SETBP1 and UBL, while I871S showed the most stable interaction. 

The protein:protein average affinity for S867R mutant was in the middle between the other two 

mutants but relatively much more close to I871S.  

Mutant Average affinity (kcal/mol) 
I871S -79.3 ± 7.7 
G870S -57.5 ± 6.4 
S867R -73.3 ± 5.8 

 

 

Table 2.11. SETBP1 mutants and their computationally calculated affinity with UBL. 
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2.4.  Conclusion, Discussion and Future Work 

 In this study, our objective was to model the SETBP1 protein and use computational 

approaches to study its inter-molecular interactions to engineer PROTAC molecules for SGS and 

predict how mutations influence SETBP1:UBL interactions. A key challenge in studying SETBP1 

is the limited information available on its structure and biochemical functions, as the precise role 

of SETBP1 and its regulatory mechanisms are unclear. The absence of a solved experimental 

structure made it difficult to understand the diverse functions of the protein and undertake the 

structure-based drug discovery approaches for treating SGS. Furthermore, the relationship 

between SETBP1 mutations and the onset of associated symptoms is not well understood. 

Our research introduced several innovative aspects in the field of SETBP1 structural 

modeling and its potential applications for SGS therapeutic strategies. We obtained insights 

regarding SEBTP1 by generating a model of a short segment of SETBP1 containing the degron. 

Then we investigated the main theme of inter-molecular interactions in protein:ligand and 

protein:peptide interactions to computationally design PROTAC molecules for SGS, and 

understand how different SETBP1 mutations affect the binding of UBL. 

Efforts to model the individual stable full SETBP1 protein were proven to be impossible. 

Various modeling techniques were used but those did not generate an acceptable for the full-length 

SETBP1, indicating the potential intrinsically disordered nature of SETBP1. Therefore, we 

focused on the partial modeling of the SETBP1 chain interacting with a crystal structure of SCF-

βTrCP1 E3 UBL.  

We followed a classic computational structure-based drug discovery approach for the 

Development of PROTACs. MD simulations generated diverse conformations of SETBP1 chain 

and UBL complex, from there 10 representative conformations were selected for targeted 
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ensemble docking. Libraries of warheads and E3-ligands were docked onto the protein complexes 

and the poses were ranked based on the PBSA docking scores. The pair of warhead number 158 

and E3-ligand number 128 bound with a specific conformation of STEBP1:UBL complex were 

selected for subsequent linker screening since both ligands were amongst the top 5 poses when 

docked onto that conformation. A database of linkers was screened virtually and the best 5 linkers 

were selected. Five PROTACs containing these 5 linkers as well as warhead number 158 and E3-

ligand number 128 will undergo experimental validation by our collaborators.  

Protein-peptide interactions between SETBP1 and UBL were studied variously, both by 

analyzing static and dynamic conformations of mutant SETBP1 models with the structure of UBL. 

Energy calculations identified key residues involved in the interaction between five SETBP1 

mutants and UBL. Mutations had impacts on the interaction of S869 of SETBP1 with R285 and 

K365 of UBL in nearly all cases. R367 of UBL, present in multiple mutants, was also affected by 

the mutations, as it interacts with both N875 and N876 of SETBP1. 

The changes in interactions between SETBP1 and UBL were further investigated by 

calculating the energy-minimized structure of each mutant SETBP1 and UBL. A less negative 

interaction energy suggests reduced stability of the mutant SETBP1:UBL complex. This was 

observed for the mutants I871S, G870S, G870V, and S867R, supporting the hypothesis that 

mutations reduce the binding of SETBP1 and UBL. Among these, the G870S mutation showed 

the least stability. Unpublished data, comprising a compilation of symptoms associated with 

various SGS mutations provided by collaborators for all mutants except G870V, indicate that the 

G870S mutation is much more severe in terms of the number of different symptoms compared to 

S867R and I871S. However, the interaction energy for I871S is almost similar to that of G870S. 

Interestingly, the I871T mutant, where the mutation is in the degron, was predicted to have stable 



46 
 

interactions with UBL compared to the wild-type SETBP1, even though the phenotypic data 

suggest this to be a severe mutation. 

The analysis of SETBP1 and UBL interaction was expanded by performing MD for three 

mutants: I871S, G870S, and S867R in complex with UBL, and the arithmetic averages of protein-

protein affinity scores for each mutant were calculated. Again, G870S indicated less stable 

interaction with UBL, potentially causing more severe symptoms in SGS. In contrast, I871S and 

S867R showed relatively high stability with UBL compared to G870S and neither are not as severe 

as G870S.  

The protein-protein affinity was then compared to the unpublished results of half-life (t1/2) 

of SETBP1 ubiquitination experiments provided by the Ernst group from McGill University, 

Canada.  A larger half-life means that there is less interaction with the ubiquitin ligase, and 

therefore the protein is not being ubiquitinated, which indicates more stability of the mutant 

SETBP1. The comparison of the experimental and SETBP1:UBL complex stability indicated a 

negative correlation, albeit with large error bars for the experimental half-life data. The most severe 

mutant G870S showed the least half-life indicating rapid degradation compared to other mutants. 

This contradicts the hypothesis that mutations causing slower ubiquitination are caused by 

decreased binding between SETBP1 and UBL leading to increased severity in SGS patients. This 

finding suggests that interrelation between SETBP1:UBL binding, ubiquitination rates, and SGS 

severity is highly complex and cannot be explained by a simple one-to-one correlation. The exact 

reason behind this complexity is yet to be solved. But one possible explanation may be that some 

mutations could alter the protein's conformation in ways, although it may bind to UBL much 

strongly, it binds less strongly to other associated proteins preventing ubiquitin transfer and, in 

turn, ubiquitination.  
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So, the part of our hypothesis that reduced interaction between SETBP1 and UBL leads to 

reduced ubiquitination has not been validated. However, the finding that reduced interaction 

between SETBP1 and UBL due to mutation is probably still valid. To have complete confirmation, 

we would like to compare the computational interaction matrices with more experimental data for 

additional mutants. Also, we will compare interaction affinity with the severity of SGS as an 

increased number of symptoms. Since our calculations showed a primary correlation between 

mutant SETBP1:UBL stability and the severity of SGS, the PROTAC development will be 

continued. the selected PROTAC molecules will be synthesized by our collaborators in the future 

and their experimental binding affinities will be determined. Furthermore, the computational 

design of other PROTAC molecules will continue with different pairs of warheads and E3-ligands. 

the structural modeling approaches will be expanded in the future. The modeled structures of 

SETBP1 will be used to determine the structures of other protein-binding partners, thereby 

characterizing the interaction network of SETBP1 within the cell. We will also search for other 

segments of SETBP1 that are not IDP and model those. 
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Chapter 3. Characterization of Protein-Protein Interactions of SARS-CoV-2 Spike Protein 

Mutants with ACE2 and Bebtelovimab, and Their Roles in Bebtelovimab's Efficacy 

3.1. Introduction 

The SARS-CoV-2 emerged in Wuhan, China, in the late 2019 that led to the catastrophic 

COVID-19 disease across the world133. The disease affected millions of people worldwide and 

continues to do so134. The COVID-19 disease rapidly escalated into a pandemic, causing a global 

health crisis. This widespread devastation has influenced public health, economies, and the daily 

life of people worldwide. The symptoms of COVID-19 ranges to a great extent, from 

asymptomatic or mild symptoms to severe respiratory issues and failure of multiple organs, 

resulting in significant mortality, especially in older adults and individuals with underlying health 

conditions135,136. As of April 2024, Covid-19 has caused over 700 million infections and nearly 7 

million deaths worldwide, with over 110 million infections and nearly 1.2 million deaths in the 

USA134. 

Figure 1.1. SARS-CoV2 genome [modified from Gordon et al. 2020]. 
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SARS-CoV-2 belongs to the Betacoronavirus genus in the Coronaviridae family and 

contains one of the largest RNA genomes among known RNA viruses137,138. The genome encodes 

29 proteins, including nonstructural, structural, and accessory proteins139 (figure 3.1). The spike 

protein (S), a structural protein, is a trimeric glycoprotein that extends from the viral surface, giving 

the virus its distinctive crown-like appearance140 (figure 3.2). 

Each monomer of the S protein is composed of two subunits, S1 and S2. These subunits 

play roles in binding to the host receptor and aiding the membrane fusion with the host, 

respectively. The S1 subunit includes a receptor-binding motif (RBM) within a domain known as 

the receptor-binding domain (RBD) (figure 3.3), which binds to the membrane-bound 

Angiotensin-converting enzyme 2 (ACE2) of the host cells as its receptor. The RBD has a “down” 

conformation, which is inaccessible for ACE2 binding (figure 3.4). However, its solvent-

accessible “up” conformation allows ACE2 binding, leading to a complex entry process of SARS-

CoV-2 into host cells, mediated by multiple proteins in multiple stages. Upon S-ACE2 binding, a 

crucial step is the proteolytic cleavages at two sites in the spike protein; cleavages at the S1–S2 

boundary by furin and at a specific S2′ site within the S2 subunit by proteases. Then, the S1 subunit 

Figure 3.2. SARS-CoV2 proteins [Jamison Jr. et. al. 2022]. 
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disengages from S2, and S2 undergoes a series of conformational changes to complete the fusion 

of the viral and cellular membranes140.  

The pandemic prompted international and 

national agencies such as the World Health 

Organization (WHO) and the Centers for Disease 

Control and Prevention (CDC), as well as national, 

local governments, and private institutions, to 

implement various public health measures, including 

social distancing, mask-wearing, and widespread 

testing to control the spread of the virus. Despite the 

preventive measures to reduce the spread of disease 

and achieve herd immunity, it was necessary to discover effective vaccines and therapeutic agents 

to treat the infected people. For these reasons, the United States Food and Drug Administration 

(FDA) has granted Emergency Use Authorizations (EUAs) and approvals for several drugs and 

vaccines to treat COVID-19. The FDA has approved several vaccines such as Pfizer-BioNTech, 

Moderna, Novavax, Comirnaty, and Spikevax COVID-19 Vaccine141. Other therapeutics that are 

currently FDA-approved or authorized under EUA are antivirals like remdesivir, molnupiravir, 

nirmatrelvir, and ritonavir, immune modulators such as tocilizumab, baricitinib, anakinra, and 

vilobelimab, and five monoclonal antibodies: bebtelovimab, bamlanivimab-etesevimab, 

casirivimab-imdevimab, sotrovimab, and tixagevimab-cilgavimab142,143. Since the S protein is 

used by SARS-CoV-2 for viral entry into cells, it is regarded as the principal target for therapeutics. 

Therefore, a number of these therapeutics have been targeted against the S protein, making it a 

focal point of SARS-CoV-2 research144,145.  

Figure 3.3. S-protein of SARS-CoV-2 
(https://www.lubio.ch/applications/coronavirus-

research/viral-proteins). 
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Bebtelovimab (beb), authorized by the FDA for emergency use against Covid-19 in 

February 2022, has demonstrated effectiveness against a range of SARS-CoV-2 variants146. It 

blocks the spike protein's interaction with human ACE2, thus preventing viral entry into human 

cells and neutralizing the virus's ability to infect them. In other words, both ACE2 and beb compete 

for binding to the spike protein. 

Protein competition for binding to a shared target protein is a common and fundamental 

phenomenon in cellular signaling and regulation that affects signal transduction, gene expression, 

and metabolic pathways. The predominance with which the target protein binds to one of the 

competitor proteins depends on factors such as their relative concentrations in the cell and the 

affinity of each competitor protein for the target protein. 

The reason SARS-CoV-2 causes a higher number of infections is because of its high 

mutation rate147. Out of these mutations, about 80% occur in the S protein148. The overall goal of 

this project is to investigate the effect of these mutations on FDA-approved therapeutics. Primarily, 

Up Up Up 

Figure 3.4. Up and down conformations of trimeric SARS-CoV-2 S-protein. Orange monomer is in up 
conformation, purple and cyan are in down conformation (PDB ID: 6VSB) (Wrapp 2020). 
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we started with bebtelovimab. Here, we studied how mutations in the spike protein affect the 

efficacy of bebtelovimab by computationally studying the binding of the spike protein to 

bebtelovimab and ACE2, and explaining bebtelovimab's efficacy in terms of the relative strength 

of the spike protein's binding to ACE2 and bebtelovimab. Our hypothesis is that if a mutation in 

the S-protein changes the efficacy of bebtelovimab, it would (i) positively correlate with the spike 

protein's binding to bebtelovimab, (ii) negatively correlate with the spike protein's binding to 

ACE2, or (iii) both (i) and (ii) simultaneously. This protein-protein intermolecular study will help 

to understand our primary goal of how mutations affect FDA-approved therapeutics, as well as to 

better understand viral infection by studying the interaction of the spike protein with ACE2 and 

the drug, thereby aiding in to develop new therapeutics for SARS-CoV-2. 

3.2. Methods 

3.2.1. Computationally Predicting the Interacting Residues of Spike with ACE2 and Beb  

 A structure of dimers of beb co-crystallized with residues N434-P527 of the S-protein's 

receptor-binding domain (RBD) is present in the PDB (ID: 7MMO)146. One monomer of the 

structure was used for our study. In the structure, residues S134-S140 of beb’s heavy chain (chain 

A) were missing in the crystal structure. The atomic coordinates of the missing loop were generated 

in MOE using the 'Loop Modeler' facility. As for the S:ACE2 interaction calculations, the PDB 

structure 6M0J, containing residues T333-G526 of the S-protein's RBD, was used in this study149. 

Water molecules from both structures were deleted. 

 To determine the binding sites of ACE2 and beb on S-protein, the interacting residues of 

the latter were identified using the MOE 'Protein Contacts' facility after energy minimizing the 

structures. This facility calculates one or more of the following interactions between two residues: 

Van der Waals, covalent, arene, ionic, metal, and hydrogen bond. 
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3.2.2. Calculation of S:ACE Interaction Energies 

3.2.2.1. Single-Point Mutation 

Published experimental data regarding the activity of beb against six spike mutants—

N439K, N440D, K444Q, V445A, G446A, and N501Y, are available146. In this study, these six 

mutants were used to investigate the interactions between spike:ACE2 and spike:beb, and the 

computed interaction energies were compared with the experimental data.  

3.2.2.2. Calculation of Total Interaction Energy Between Rigid S:ACE2 Complexes 

The interaction energy between the mutated S-protein and ACE2 was calculated in 

triplicate as follows: two rounds of energy minimization were performed. In the first round, all the 

atoms of the system were fixed in three-dimensional space except the mutated residue and all the 

residues in spike and ACE2 that had at least one atom within 7 Å of any atoms of that mutated 

residue. In the subsequent minimization, all atoms were unfixed, and the process was repeated. 

These minimizations continued until the root-mean-square (RMS) energy gradient was less than 

10-6 kcal/mol/Å2, using Amber10:EHT, accompanied by an 8-10 Å Born solvation model. The 

interaction energies (ΔE) were then calculated using MOE ‘potential energy’ by computing the 

energy of the S:ACE2 complex minus the sum of the energies of spike and ACE2 in their unbound 

states. The average values from the triplicates were documented. 

To compare a mutation's impact on the spike:ACE2 interaction to that of the wild-type 

protein complex, the above procedure was applied to the wild-type Wuhan spike sequence. During 

the initial energy minimization, atoms of the residue stated for mutation and its neighboring 

residues were left unfixed, while others were fixed. This was followed by a full energy 

minimization after releasing all atoms. These computations were also conducted in triplicate, and 

the mean value was recorded. Finally, the difference (ΔΔE) between the average interaction 
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energies of the mutated spike:ACE2 complex and its corresponding wild-type spike:ACE2 

complex was calculated.  

3.2.3. Calculation of Spike:beb Interaction Energies 

Six S-protein mutants mentioned in section 3.2.2.1 were used to investigate interaction 

energies between S-protein and beb. The same protocol, described in section 3.2.2.2. was used to 

calculate the interaction energies between spike and beb by computing the average ΔE values of 

the mutants and wild-types. Again, the ΔΔE was calculated for each mutant.  

3.2.4. Calculation of Binding Affinities of Dynamic Conformations Of S:ACE2 And S:Beb 

Complexes 

The protein:protein binding affinity of spike:ACE2 and spike:beb for both wild-type and 

mutant variants were calculated considering the dynamic motion of the complexes. MDs were 

performed as described in section 2.2.2.1 (from SETBP1 chapter) for all of the complexes. Then, 

every conformations from the equilibration phase was included in the protein:protein affinity 

calculations using MM/GBVI protein-protein affinity score. Finally, the arithmetic average was 

computed for all of the complexes.    
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3.3. Results and Discussion 

3.3.1.   Computationally Predicting the Interacting Residues of Spike with ACE2 and Beb 

 The computational analysis of energy minimized structure of S:beb complex predicted 19 

residues of S-protein responsible for the interaction with beb (figure 3.5 and table 3.1). These 

residues were also reported previously as part of the binding epitope of the spike protein to beb146. 

Only one residue, N448, was reported but missing in our prediction. However, interaction analysis 

with the crystal structure before energy minimization showed that this residue was also involved 

in the interaction. As for the spike:ACE2 complex, 23 residues of the spike protein were predicted 

to be interacting with ACE2 (table 3.1 and figure 3.6). Among the interacting residues of the spike 

protein with ACE2 and beb, 8 residues were found to be common in both. 

 

 

Figure 3.5. Crystal structure of S:beb complex (PDB ID: 7MMO). Interacting residues of S-protein are 
shown in zoomed in view of the interface. 
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S:ACE2 Spike:beb 

Interacting residues 
in S-protein 

Interaction energy 
with other residues of 

ACE2 

Interacting residues 
in S-protein 

Interaction energy 
with other residues of 

Beb 

  T345 -0.45 
  R346 -4.7 

K417 -23.41   
  N439 1.43 
  N440 -7.87 
  L441 -0.64 
  S443 -0.47 
  K444 -48.81 
  V445 -14.61 

G446 -2.32 G446 1.3 
  G447 -8.26 

Y449 12.13 T449 0.76 
  N450 -8.94 

Y453 -0.05   
L455 -5.2   
P456 -3.97   
Y473 -1.45   
A475 -10.3   
G476 2.28   
S477 0.15   
P486 -7.49   
N487 -2.8   
Y489 -1.57   
P490 0.22   
Q493 -4.15   
G496 -9.34   
Q498 -1.45 Q498 -3.92 

  P499 0.76 
T500 -4.63 T500 -8.49 
N501 -1.23 N501 -0.26 
G502 -5 G502 1.06 
V503 -0.86 V503 -0.6 
Y505 -13.17   
Q506 -2.72 Q506 -0.07 

 

Table 3.1. Interacting residues in S-protein with ACE2 and beb, and their associated interaction energy. 
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Superposition of the structures of the two complexes showed that although ACE2 and beb 

do not interact with the exact same binding site on the spike protein. But the binding of both 

proteins to the spike protein simultaneously may not be possible due to steric clashes. The potential 

interaction energy between ACE2 and beb in the superposed structures was calculated, which is 6 

× 1012 kcal/mol, a very high value. 

 

3.3.2. Calculation of Interaction Energies of Rigid Energy-Minimized Structures 

3.3.2.1. Calculation of S:ACE2 Interaction Energies 

The interaction energies between the S-protein and the ACE2 receptor were calculated for 

the N439K, N440D, K444Q, V445A, G446A, and N501Y mutants, and the differences in energies 

from the wild-type complexes were compared with the experimental ACE2 binding inhibition by 

beb (table 3.2). A higher IC50 value of beb against a mutant, compared to the Wuhan variant, 

indicates a preference for the mutant S-protein to interact with ACE2 over beb. This means that a 

higher concentration of beb is required to inhibit the S-protein and ACE2 binding for this mutant. 

Column (b) in table shows the difference in experimental binding between a given mutated S-

Figure 3.6. Crystal structure of S-protein:ACE2 complex (PDB ID: 6M0J). Interacting residues of S-protein 
are shown in zoomed in view of the interface. 
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protein and the wild-type S-protein sequence with ACE2 in the presence of beb. Column (e) in 

table 3.2 gives, for the same mutations, the calculated variation in S:ACE2 interaction energy 

between the wild-type and the mutated variant.  

 

The numerical differences of interaction energy values from the independent energy 

minimization rounds are given as ‘±‘ in columns (c) and (d). These are small, about two orders of 

magnitude less than the interaction energies. This indicates that the triplicate energy minimizations 

essentially converge on similar, albeit non-identical, values. If these +/- values were not taken into 

account, the calculated values in column (e) exhibited a qualitative positive agreement with the 

experimental values in column (b). When the IC50 corresponding to a given mutated S-protein 

mutant was less than that of the Wuhan sequence (N493K, N440D, N501Y), so was the calculated 

interaction energy between the S-protein and ACE2 for that same mutant. The same trend was 

observed for other mutants (K444K, V445A, G446V) where both the ΔIC50 and ΔΔE were 

positive.  

 
 

Variant 

(a) 
Experimental 
ACE2 binding 
inhibition by 

beb 
[IC50 (μg/mL)] 

(b) 
ΔIC50: 

Difference in 
experimental 

binding 
inhibition 
(μg/mL) 

(c)  
ΔE:  

Average 
interaction 
energy for 
wild-type 
complex 

(kcal/mol) 

(d)   
ΔE:  

Average 
interaction 
energy for 

mutant 
complex 

(kcal/mol) 

(e)  
ΔΔE:  

ΔE [column (d)] 
- ΔE [column 

(c)]  
(kcal/mol) 

Wild-type 0.053 -- -- -- -- 
N439K 0.05 -0.003 -405.6 ± 7.0 -411.7 ± 9.3 -6.1 ± 11.6 
N440D 0.051 -0.002 -376.0 ± 5.6 -400.0 ± 10.0 -24.0 ± 11.5 
K444Q 0.777 0.724 -372.8 ± 5.1 -372.2 ± 5.8 0.6 ± 7.7 
V445A 0.752 0.699 -379.9 ± 

11.0 
-371.2 ± 3.8 8.7 ± 11.6 

G446V 0.185 0.132 -396.9 ± 5.2 -391.6 ± 6.1 5.3 ± 8.0 
N501Y 0.046 -0.007 -379.4 ± 6.1 -392.2 ± 10.8 -12.8 ± 12.4 

Table 3.2. Experimental IC50 values and calculated interaction energies of S:ACE2 complex for wild-type 
and mutant spike sequences. 
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However, instead of agreement, there should be a disagreement between these two. Since 

a higher ΔIC50 for a mutant S-protein means that more beb is required to prevent ACE2 binding, 

this suggests that the mutation may cause a stronger binding of S-protein and ACE2. Therefore, 

the ΔΔE for that mutant compared to wild-type should be negative, not positive.  

 

3.3.2.2. Calculation of S:Beb Interaction Energies 

The protocol established for the S-protein:ACE2 interaction energy calculations was used 

for calculations of the interaction energies between the S-protein and beb which were compared 

with the ΔIC50 values from experimental ACE2 binding inhibition of S-protein by beb (table 3.3). 

The values in column (c) of table shows the changes in S-protein:beb interaction energy due to 

mutations in S-protein. Here, the '±' values in all columns are much smaller than the S:ACE2 

interaction energies shown in the table, meaning that the values converged more for S:beb 

interactions and have a smaller error margin.  

However, the correlation between ΔΔE of S-protein:beb and ΔIC50 did not show expected 

results for all mutant. While a positive correlation was expected between these two, only N440D 

 
 

Mutant 

(a)  
 ΔE:  

Average 
interaction energy 

for wild-type 
complex 

(kcal/mol) 

(b)  
 ΔE:  

Average 
interaction energy 

for mutant 
complex 

(kcal/mol) 

(c)  
ΔΔE:  

ΔE [column (d)] - 
ΔE [column (c)]  

(kcal/mol) 

(d)   
ΔIC50: 

Difference in 
experimental 

binding 
inhibition 
(μg/mL) 

N439K -329.5 ± 3.4 -319.2 ± 1.3 10.3 ± 3.6 -0.003 
N440D -319.5 ± 0.6 -331.9 ± 3.4 -12.4 ± 3.5 -0.002 
K444Q -316.3 ± 6.1 -286.6 ± 3.1 29.7 ± 6.8 0.724 
V445A -313.2 ± 0.7 -323.8 ± 1.3 -10.6 ± 1.5 0.699 
G446V -315.1 ± 5.5 -323.0 ± 1.8 -7.9 ± 5.8 0.132 
N501Y -320.2 ± 0.7 -316.3 ± 4.8 3.9 ± 4.9 -0.007 

Table 3.3. Experimental IC50 values and calculated interaction energies of S:beb complex for wild-type and 
mutant spike sequences. 
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and K444Q showed that, and others did not. For example, a positive IC50 in V445A indicated a 

reduction in the interaction between S-protein and beb due to the mutation. However, the computed 

ΔΔE showed a negative value, indicating a more stable interaction in the mutant S-protein and beb 

than in the wild-type. 

Table also suggested that S-protein mutations would not necessarily have the same effect 

on beb binding as on ACE2 binding. For instance, the V445A mutation was predicted to reduce 

(less negative interaction energy) the strength of interaction between the S-protein and ACE2 

(table 3.2), but to increase (more negative interaction energy) the strength of the interaction 

between the S-protein and beb. In contrast, for the K444Q, both were in the same direction.  

 

3.3.2.3. Calculations of Relative Differences in Interaction Energies Between the Complexes 

Then we investigated the relative differences (ΔΔERel) between the changes in interaction 

energy (ΔΔE) for the S-protein:beb and S-protein:ACE2 interactions, and compared that with the 

change in IC50 (ΔIC50) (table 3.4). A positive value of ΔΔERel for a mutant indicates that the S-

protein prefers binding with beb over ACE2. Therefore, a positive correlation between ΔΔERel and 

ΔIC50 was expected. However, except for K444Q, no other mutants showed such a positive 

 
 

Mutant 

(a)   
ΔΔE in S:beb 

complex 
(kcal/mol) 

(b)    
ΔΔE in S:ACE2 

complex  
(kcal/mol) 

(c)  
ΔΔERel: 

ΔΔE [column (a) - 
ΔΔE [column (b)] 

(kcal/mol) 

(d)   
ΔIC50:  

Difference in 
experimental 

binding inhibition 
(μg/mL) 

N439K 10.3 ± 3.6 -6.1 ± 11.6 16.4±12.1 -0.003 
N440D -12.4 ± 3.5 -24.0 ± 11.5 11.6±12.0 -0.002 
K444Q 29.7 ± 6.8 0.6 ± 7.7 29.1±10.3 0.724 
V445A -10.6 ± 1.5 8.7 ± 11.6 −19.3±11.7 0.699 
G446V -7.9 ± 5.8 5.3 ± 8.0 −13.2±9.9 0.132 
N501Y 3.9 ± 4.9 -12.8 ± 12.4 16.7±13.3 -0.007 

Table 3.4. Relative differences (ΔΔERel) between the changes in interaction energy for the S-protein:beb and 
S-protein:ACE2 interactions. 
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correlation. The error margins were relatively larger numbers, indicating a high amount of 

uncertainty. However, those were smaller than the nominal values that means the direction of the 

correlation would never change. 

3.3.3. Calculation of Binding Affinities of Dynamic Conformations  

 In order to obtain a more rigorous estimate, the dynamic interactions between the 

spike:ACE2 and spike:beb complexes were investigated for wild-type and mutant variants by 

performing MDs. The arithmetic average of the MM/GBVI protein-protein affinity score (pAbeb 

and pAACE2, for spike:beb and spike:ACE2, respectively) was calculated for all the conformations 

from the equilibration phase of the MD trajectories (table 3.5). Then, the difference between the 

average MM/GBVI score of the S-protein with ACE2 (ΔpAACE2) and with beb (ΔpAbeb) was 

calculated for each mutant and its respective wild-type complex. Then, the relative difference 

(ΔpARel) between these two values was determined for each mutant. All of these metrics were 

compared with ΔIC50.  

  

 
 

Variant 

(a) 
pAACE2: 
Binding 
affinity 
between 
S-protein 
and ACE2 
(kcal/mol) 

(b) 
ΔpAACE2: 

Differences 
in binding 
affinity in 

mutant 
S:ACE2 

(kcal/mol) 

(c)    
pAbeb : 

Binding 
affinity 
between 
S-protein 
and beb 

(kcal/mol) 

(d) 
ΔpAbeb: 

Differences 
in binding 
affinity in 

mutant 
S:beb 

(kcal/mol) 

(e) 
ΔpARel: 

[column (d) – 
column (b)] 
(kcal/mol) 

(f) 
ΔIC50:  

Difference in 
experimental 

binding 
inhibition 
(μg/mL) 

Wild-type -91.1 -- -81.8 -- -- -- 
N439K -92.4 -1.3 -87.0 -5.2 -3.9 -0.003 
N440D -92.1 -1 -83.8 -2 -1 -0.002 
K444Q -90.5 0.6 -80.8 1 0.4 0.724 
V445A -100.9 -9.8 -72.0 9.8 19.6 0.699 
G446V -91.4 -0.3 -79.0 2.8 3.1 0.132 
N501Y -90.4 0.7 -81.4 0.4 -0.3 -0.007 

Table 3.5. Protein:protein binding affinity in S-protein:beb and S-protein:ACE2 complexes. 
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A negative correlation of ΔIC50 with ΔpAACE2, and positive correlations with ΔpAbeb and 

ΔpARel are expected. The data in table 3.5 indicate that the expected correlations were not 

maintained in the cases for ΔpAACE2 and ΔpAbeb: Half of the mutants (N439K, N440D, and 

K444Q) showed a positive correlation between ΔIC50 and ΔpAACE2 that did not support our 

hypothesis regarding S-protein's binding to ACE2. As for correlation between ΔIC50 and ΔpAbeb, 

only the N501Y mutant showed an aberrant correlation. However, the compared to the values of 

ΔIC50 and ΔpAbeb for other mutants, N501Y showed relatively small numbers, suggesting this 

mutation may not have affected the interactions significantly.  

The ΔpARel values from calculated protein:protein binding affinities showed a positive 

qualitative correlation with ΔIC50 (table 3.5). K444Q had the highest ΔIC50, but the ΔpARel for the 

mutant did not reflect that. In contrast, the V445A mutant showed the highest numbers for ΔpARel 

and second highest value for ΔIC50 among the mutants. For G446V, both metrics are 

approximately 5-6 times lower than those of V445A. Both N440D and N501Y also demonstrated 

values that are relatively lower compared to other mutants for both metrics.  

3.4.  Conclusion and Future Work 

 This study was focused on investigating the protein-protein intermolecular interactions 

between the SARS-CoV-2 spike S-protein and two key binding partners: the ACE2 receptor and 

the therapeutic antibody beb. The goal of this study was to understand how mutations affect the 

efficacy of beb in terms of the relative strength of the spike protein's binding to ACE2 and beb. 

For six mutants of the S-protein, we computationally predicted the interactions between the S-

protein and ACE2, as well as the S-protein and beb, and compared those with the experimental 

ACE2 binding inhibition of the S-protein by beb.  
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 We identified interacting residues of the S-protein with ACE2 and beb and determined that 

although the binding sites for the partner proteins on the S-protein are not the same, they may not 

be able to bind simultaneously due to potential steric clashes. For four out of the six mutants 

studied here, the mutated residues were not located within the S:ACE2 interface (table), suggesting 

that non-interface residues may also play a role in the binding of S and ACE2.  

 The calculations of the interaction energies between the rigid S-protein and its binding 

partners did not consistently correlate with the experimental data. This was likely due to the fact 

that the calculations only considered potential energies from three energy-minimized 

conformations for each complex. A more rigorous analysis using MD and MM/GBVI binding 

affinity scoring provided better understanding of beb’ efficacy in terms of S-protein’s binding with 

its partners. By considering the relative differences in the S-protein's interactions with beb and 

ACE2, we demonstrated a correlation of computational protein-protein binding affinity with the 

experimental data. This suggests a competition between ACE2 and beb for binding to the S-

protein, supporting the hypothesis that mutations in the S-protein may affect its binding with both 

partners, leading to changes in the overall efficacy of beb. However, this correlation was 

qualitative, suggesting a more complex relationship between the S-protein's binding preferences 

and the resulting effects on beb’s efficacy. 

 In the future, we plan to expand the analysis to more clinically relevant S-protein 

mutations. Longer MD simulations will be performed to sample an increased number of diverse 

conformations that better reflect the binding process. Besides computational analysis, binding 

interactions and affinities will be studied experimentally using techniques such as surface plasmon 

resonance (SPR) or isothermal titration calorimetry (ITC). Other therapeutics will also be included 
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in the study to gain a more holistic understanding of the S-protein's interaction with its binding 

partners, ultimately aiding in the development of new therapeutics for SARS-CoV-2. 
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Chapter 4. Development of Semi-empirical Quantum Chemistry based approach to predict 

substrate binding of Cytochrome P450 

4.1. Introduction 

Most of the xenobiotic chemicals that enter living organisms undergo a transformative 

process and are converted into "metabolites" so that the body can easily handle them150. This 

process is primarily carried out by specialized enzymes known as “cytochrome P450s” or P450s 

for short. These are heme-containing proteins that are found ubiquitously from bacteria to humans 

across, in all domains of life. These versatile enzymes can metabolize a wide range of substrates, 

including endogenous compounds like steroids, fatty acids, and vitamins, as well as exogenous 

compounds such as pharmaceuticals, environmental chemicals, and natural products151–153. P450s 

facilitate the metabolism process by catalyzing diverse reactions, such as methylations, 

demethylations, oxidations, and hydroxylations154. However, at times, these transformed 

metabolites can become harmful to humans, with dire health consequences. For instance, studies 

have shown P450-induced toxicity from tobacco combustion byproducts and the estrogenic 

toxicity of polychlorinated biphenyls (PCB) chemicals commonly present in drinking water, which 

can lead to breast cancer155,156. It becomes hence crucial to predict in advance which of the 

molecules present in the environment may be bound and processed by P450s as their bioproducts 

may become environmental pollutants.   

Experimental methods to identify P450 ligands from a pool of molecules are of course the 

“gold standard”, but they can be costly and time-consuming. Computational approaches such as 

molecular docking which predicts binding affinities of potential ligands in their targets proteins, 
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have become an industry standard to prioritize experimental ligand discovery, but allowing the 

experiment to focus on those chemicals that are computationally predicted to be the most likely 

proteins binders of P45070,71,155,156. In these studies, advanced computational approaches of 

machine learning and molecular docking techniques were used to predict chemicals oxidized by 

P450 that do lead to bioactive products with undesirable human health side effects.  

The present work represents the first step toward a method that leverages and integrates 

the speed of docking and the accuracy of SEQM together to determine environmental chemicals 

catalyzed by P450. Our ultimate goal is to develop a "funneling" approach where docking is used 

to quickly screen large databases of environmental chemicals, followed by SEQM calculations 

that focus on docking-prioritized possible ligands.  This approach would much more accurately 

predict the ligand binding than docking alone and identify the top molecules that have the potential 

to be metabolized by P450.  Here, we primarily develop a SEQM methodology to compute the 

energetically favorable binding orientations of midazolam and bromoergocryptine in P450-

CYP3A4 after docking, where experimental crystal structures of the midazolam and 

bromoergocryptine bound to P450 are available. The SEQM calculations are done with truncated 

P450 structures, keeping only the minimum number of residues in the active site to reproduce the 

crystal structures of the complexes.  These results were compared to docking results to validate 

the developed SEQM approach. 

4.2. Methods 

4.2.1. Selection of SEQM Hamiltonian 

In P450 3A4, the Fe of heme is bound to Cys442 of the protein. The atomic coordinates of 

heme and Cys442 from the PDB structure (PDB ID: 5TE8)157 was loaded to MedeA version 

3.7.2158. To neutralize CYS442, hydrogen atoms were added to both termini. Geometry 
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optimization calculations were performed in MOPAC159 separately using each of the following 

Hamiltonians: AM1, RM1, MNDO, MNDOD, PM3, PM6, and PM7.  

4.2.2. Determination of the Minimum Residues Required for SEQM Calculations 

Since the whole structure of the P450 could not be used for SEQM calculations, the 

required residues to keep the system undistorted were determined. For this, energy minimization 

was performed with varied residues selected based on distance from heme and the ligand. A 

minimized structure was considered undistorted if it met two criteria: (1) If the RMSD of heme 

was 0.5 Å or less when superposed with the initial structure, (2) None of the residues had extended 

bonds between atoms, which could occur due to instability caused by lack of surrounding other 

residues. 

At first, two crystal structures of P450, co-crystalized with bromoergocryptine and 

midazolam (PDB ID: 3UA1160 and 5TE8, respectively) were selected (figure 4.1). Using 

Protonate-3D facility in Molecular Operating Environment (MOE), the water molecules were 

deleted, and hydrogen atoms were added at pH 7.0.   

Next, the residues that had at least one atom within 1.75 Å from any atom of the heme and 

ligand, were selected, and all other residues were deleted. All residues were neutralized by adding 

hydrogen atoms to their both termini. In cases where selected residues were connected, hydrogen 

atoms were only added to the two ends of the peptide. Then energy minimization was performed 

using the SEQM technique with an unrestricted Hartree-Fock (UHF) wavefunction in the Self-

Consistent Field (SCF) method, setting the SCF convergence value to 0.0001 kcal/mol. During the 

geometry optimization, the backbone atoms of each residue were fixed using the ‘Freeze’ tab of 

the ‘Atoms spreadsheet’ panel of MedeA. The system's overall charge was adjusted by adding up 

the -2 charge of the heme's propionate tails and the charges of amino acids with charged side chains 
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at pH 7.0 (negatively charged aspartic acid and glutamic acid, and positively charged lysine, 

arginine, and histidine). The multiplicity of the system was set to a high-spin sextet state. 

If geometry optimization of the system with all the residues within the initially selected 

distance the heme and ligand did not result in a final optimized structure met the above-mentioned 

criteria, the distance limit was increased by 0.25 Å and further minimization attempts were 

followed. This continued until a satisfactory optimized final structure was obtained selecting all 

the residues for a certain distance limit. Then new rounds of energy minimization were performed 

with the residues of that distance limit. However, each time, one or more residues were removed 

gradually to determine which residues are required for the least to obtain a system satisfying the 

criteria of the final optimized structure. 

4.2.3. DFT Calculation to Verify the Electronic Description of Fe in Heme  

In order to verify if the charge and multiplicity of the chemical system accurately represent 

the electronic state of the Fe atom in heme of the structures constructed above, DFT calculations 

were performed for both the P450:ligand complexes with a reduced number of residues by our 

collaborator. 

4.2.4. Docking 

Docking calculations were performed in MOE. The bromoergocryptine and midazolam 

were docked against their respective P450 receptors. The Site Finder feature in MOE was used to 

identify the active pocket above the heme within the P450s, which was designated as the 

pharmacophore. Pharmacophore placement was employed for docking, allowing for a maximum 

of 1000 poses, which were then evaluated using the London dG scoring method. The top 30 poses 

were selected for further refinement through protein-ligand complex structure minimization in 

induced fit mode.  Each pose was then scored using the GBVI/WSA ΔG Scoring function (S-score)  
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Figure 4.1. 2D-structures of midazolam (A) charged at Ph 7.0, (B) neutral species, and bromoergocryptine (C) 
charged at Ph 7.0, (D) neutral species. The red colored circles indicate the N atom that became protonated in 

the charged species at pH 7.0. 
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to estimate the free energy of ligand binding. The top protein-ligand poses were refined further by 

additional minimization (0.001 kcal/mol/Å RMS gradient) where receptor atoms within 15 Å of 

the ligands were unfixed while the rest were fixed. The final receptor-ligand interaction energy 

was computed using the PBSA solvation model. 

4.2.5. Protein:Ligand Interaction Energy Calculation by SEQM  

The interaction energy between the ligands and the receptor in the docking poses was 

calculated in MOPAC. For each docking pose, the single-point energy (SPE) was computed 

separately for the entire receptor-ligand complex, the receptor alone, and the ligand alone, as the 

heat of formation (ΔH°
f). In the case of the complex and the receptor, the SPE was calculated using 

a system containing the minimum number of residues from the respective P450-ligand complex, 

as determined in the previous section. The charge for the complex and receptor was set to the 

system's charge considering the heme -2 charge and the charges of amino acids with charged side 

chains at pH 7.0, with a spin multiplicity of sextet state using the UHF wavefunction. To calculate 

the interaction energy between the P450 and ligand in each docking pose, the following equation 

was used: Interaction energy (Eint) = SPEComplex – (SPEreceptor + SPEligand). 

A B 

Figure 4.2. Superposition of initial structure of heme and Cys442 (orange) with the final optimized structures 
by (A) PM6 method (cyan) and (B) PM7 method (blue). 
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4.3. Results and Discussion 

4.3.1. PM7 Method Generated the Best Minimization Results 

Final optimized structures were obtained only by PM6 and PM7 techniques. The initial 

structure of heme and Cys442 of 5TE8 did not converge at the SCF convergence criteria of 0.0001 

kcal/mol with all other Hamiltonians. Superposing the energy minimized structures by PM6 and 

PM7 to the initial structure showed that the heme in PM7-optimized structure was less distorted 

with an 0.18 Å RMSD, compared to that in PM6-optimized structure measuring an RMSD 0.65 A 

(figure 4.2). Additionally, PM7 is an advancement of PM6 with an improved parameterization for 

various factors including heats of formation, hydrogen bonding, dispersion interactions, and 

reaction barrier heights compared to its precursor and suitable for studying non-covalent 

interactions in large-scale biological system. For these reasons, the PM7 method was selected for 

subsequent SEQM calculations.  

4.3.2. Determination of Lowest Number of Residues in Both Systems for SEQM 

Calculations 

            In several instances, geometry optimization of 3UA1 with charged form of 

bromoergocryptine (figure 4.1) led to final structures where the ring containing the protonated N 

atoms of bromoergocryptine was broken. Therefore, the neutral species of bromoergocryptine, as 

well as midazolam (figure 4.1), were selected to determine the minimum number of residues 

required for SEQM calculations in both structures. 

The final optimized structures meeting the predetermined criteria were obtained when all 

residues within 2.25 Å of any atom of the heme or ligand were selected for both 5TE8 and 3UA1. 

In 3UA1 with bromoergocryptine, 21 residues were found within this distance from the heme and 

the ligand. Gradually reducing the residues from these 21 residues in subsequent minimization 
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calculations resulted in the best minimized structure with 12 residues comprising a total of 368 

atoms, indicated as '368-i', that met the satisfactory criteria (table 4.1, figure 4.3). The RMSD value 

of this energy-minimized structure after superposing with the initial structure was 0.48 Å. Another 

system of 3UA1, indicated as '368-ii', containing 368 atoms but 12 different residues from '368-i', 

was also optimized. The final structure of this system had an RMSD of 0.37 Å.  However, a bond 

within it showed an increased length, indicating distortion. All other optimized systems of 3UA1 

with fewer than 368 atoms failed to generate a structure with an undistorted heme or residues. 

For 5TE8, the optimal structure with the fewest residues was identified, containing 8 

residues and 253 atoms. Labeled as ‘253-i’, it had an RMSD of the heme from the initial structure 

of 0.42 Å (table 4.2 and figure 4.3). Another system, labeled as '253-ii', contained a similar number 

of atoms but different residues, and exhibited an extended bond, thus it was not considered for 

further calculations. The list of selected residues for both systems is presented in table 4.3. 
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Figure 4.3.  Superposition of initial (orange) and final structures (bromoergocryptine in purple and midazolam 
in green). (A) and (C) show the determined residues (in thin lines) that are at least required for obtaining a 

satisfactory minimized structure along with heme and ligands (in stick). (B) and (D) show the heme and ligand 
of superposed structures without the residues. 

A B 

C 
D 
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Table 4.1: Energy minimization of various systems of P450:bromoergocryptine of 3UA1. Asterisk (*) indicates that 
the final minimized structures have an extended bond. Yellow highlighted one indicates the system that was taken 

for subsequent calculations. 

Distance 
from 

heme or 
ligand 

Number of atoms Number 
of 

residues 

Residues Overall 
charge 

RMSD 
of heme 

from 
crystal 

1.75 264 6 R105, W126, 
F304, A305, 
A370, C442 

-1 1.14 

2 345 10 R105, S119, 
W126, F304, 
A305, T309, 
A370, R375, 
R440, C442 

1 0.49* 

2.25 532 20 R105, F108, 
S119, I120, 

W126, R130, 
R212, T224, 
F304, A305, 
G306, T309, 
T310, A370, 
R372, R375, 
G436, R440, 
C442, F447 

4 

0.45 
490 18 R105, F108, 

S119, I120, 
W126, R130, 
F304, A305, 
G306, T309, 
T310, A370, 
R372, R375, 
G436, R440, 
C442, F447 

3 

0.56 
446 15 R105, F108, 

S119, I120, 
W126, R130, 
G306, T310, 
A370, R372, 
R375, G436, 
R440, C442, 

F447 

3 

0.58 
423 15 R105, S119, 

W126, R130, 
F304, A305, 
G306, T309, 

2 

0.5 
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T310, A370, 
R375, G436, 
R440, C442, 

F447 
414 14 R105, S119, 

W126, R130, 
F304, A305, 
G306, T309, 
T310, A370, 
R375, R440, 
C442, F447 

2 

0.53 
407 13 R105, S119, 

W126, R130, 
F304, A305, 
T309, T310, 
A370, R375, 
R440, C442, 

F447 

2 

0.54 
401 14 R105, S119, 

W126, R130, 
F304, A305, 
G306, T309, 
T310, A370, 
R375, G436, 
R440, C442 

2 

0.58 
394 13 R105, S119, 

W126, R130, 
F304, A305, 
T309, T310, 
A370, R375, 
G436, R440, 

C442 

2 

0.48 
392 13 R105, S119, 

W126, R130, 
F304, A305, 
G306, T309, 
T310, A370, 
R375, R440, 

C442 

2 

0.51 
385 12 R105, S119, 

W126, R130, 
F304, A305, 
T309, T310, 
A370, R375, 
R440, C442 

2 

0.59 
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371 11 R105, S119, 
W126, R130, 
F304, A305, 
T309, A370, 
R375, R440, 

C442 

2 

0.49 
368-i 12 R105, S119, 

R130, F304, 
A305, T309, 
T310, A370, 
R375, G436, 
R440, C442 

2 

0.48 
368-ii 12 R105, S119, 

W126, F304, 
A305, T309, 
T310, A370, 
R375, G436, 
R440, C442 

2 

0.37* 
354-i 11 R105, S119, 

R130, F304, 
A305, T309, 
A370, R375, 
G436, R440, 

C442 

2 

0.68 
354-ii 11 R105, S119, 

R130, F304, 
A305, T310, 
A370, R375, 
G436, R440, 

C442 

2 

0.58 
338 10 R105, S119, 

R130, F304, 
A305, A370, 
R375, G436, 
R440, C442 

2 

0.82 
319 9 S119, R130, 

F304, A305, 
T309, A370, 
R375, R440, 

C442 

1 

0.57* 
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Table 4.2: Energy minimization of various systems of P450:midazolam of 5TE8. Asterisk (*) indicates that the final 
minimized structures have an extended bond. Yellow highlighted one indicates the system that was taken for 

subsequent calculations. 

Distance 
from 

heme or 
ligand 

Number of atoms Number 
of 

residues 

Residues Overall 
charge 

RMSD 
of heme 

from 
crystal 

2 271 8 W126, 
R130, A305, 
A370, R375, 
R440, C442, 

F447 

1 0.39* 

2.25 362 13 R105, S119, 
W126, 

R130, L216, 
F302, A305, 
A370, R375, 
G436, R440, 
C442, F447 

2 

0.46 
349 12 R105, 

W126, 
R130, L216, 
F302, A305, 
A370, R375, 
G436, R440, 
C442, F447 

2 

0.66 
331 11 R105, S119, 

W126, 
R130, L216, 
A305, A370, 
R375, R440, 
C442, F447 

2 

0.55 
301 10 R105, R130, 

L216, A305, 
A370, R375, 
G436, R440, 
C442, F447 

2 

0.42 
289 9 R105, R130, 

L216, F302, 
A305, R375, 
G436, R440, 

C442 

2 

0.49 
279-i 9 S119, W126, 

R130, L216, 
A305, A370, 

0 

0.61 
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R375, C442, 
F447 

279-ii 9 R105, R130, 
L216, A305, 
A370, R375, 
G436, R440, 

C442 

2 

0.48 
275-i 9 R105, R130, 

L216, A305, 
A370, R375, 
G436, C442, 

F447 

1 

0.46 
275-ii 9 R105, R130, 

L216, A305, 
A370, G436, 
R440, C442, 

F447 

1 

0.45 
275-iii 9 R105, L216, 

A305, A370, 
R375, G436, 
R440, C442, 

F447 

1 

0.42 
275-iv 9 R130, L216, 

A305, A370, 
R375, G436, 
R440, C442, 

F447 

1 

0.42 
271 9 R105, S119, 

R130, A305, 
A370, R375, 
G436, R440, 

C442 

2 

0.46 
267 8 R105, R130, 

L216, A305, 
R375, G436, 
R440, C442 

2 

0.75 
259 8 R105, S119, 

R130, A305, 
R375, G436, 
R440, C442 

2 

0.59 
257 8 R105, S119, 

R130, L216, 
A305, A370, 
R375, C442 

1 

0.44 
253-i 8 R105, R130, 

L216, A305, 
1 

0.42 
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A370, R375, 
G436, C442 

253-ii 8 R105, R130, 
L216, A305, 
A370, G436, 
R440, C442 

1 

0.46* 
249-i 8 L216, A305, 

A370, R375, 
G436, R440, 
C442, F447 

0 

0.48* 
249-ii 8 R130, L216, 

A305, A370, 
G436, R440, 
C442, F447 

0 

0.47* 
249-iii 8 R130, L216, 

A305, A370, 
R375, G436, 
C442, F447 

0 

0.39* 
249-iv 8 R105, L216, 

A305, A370, 
G436, R440, 
C442, F447 

0 

0.47* 
249-v 8 R105, L216, 

A305, A370, 
R375, G436, 
C442, F447 

0 

0.46* 
249-vi 8 R105, R130, 

L216, A305, 
A370, G436, 
C442, F447 

0 

0.42* 
241-i 7 R105, R130, 

L216, A305, 
G436, C442, 

F447 

1 

0.67* 
241-ii 7 R105, R130, 

L216, A370, 
G436, C442, 

F447 

1 

0.48* 
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4.3.3 Docking Results 

The top 5 poses from the docking calculations of neutrally charged midazolam and 

bromoergoryptine against their respective P450 receptors were sorted and ranked (Rank_S in table 

4.4), with the pose having the lowest (best) S-score assigned the rank of 1. Subsequent refinement 

calculations using the PBSA solvation model computed the interaction energy for each pose, which 

were then re-sorted and ranked (Rank_PBSA in table 4.4).  

In the docking calculation of bromoergocryptine against the P450 receptor, ‘Pose II was 

the most resembling to the orientation and conformation of the crystal structure in 3UA1. It was 

ranked 2nd based on S-score while 1st based on PBSA (table 4.4A).  

On the other hand, during the docking of neutral 

midazolam against P450 of 5TE8, none of the top 5 ligand 

poses resembled crystal structure-like conformation (table 

4.4B). Interestingly, for Pose I and V, the rankings showed a 

complete discrepancy, Pose I was best by Rank_PBSA and 

worst by Rank_S, and vice-versa. When the docking 

calculation was extended for more than 5 poses, the crystal 

structure-like conformation was obtained at 11th position when 

ranked on S-score (table 4.4C). Interestingly, this pose scored 

1st when those top 11 poses based on S-score were sorted and ranked according the PBSA scoring. 

A subsequent docking was performed with charged midazolam (figure 4.1) against 5TE8. The 

output result generated a pose that resembled the orientation and conformation of the crystal 

structure. This pose was ranked 1st according to both S-score and PBSA (table 4.4D).  

5TE8 3UA1 
R105 

 
R130 

R105 
S119 
R130 

L216  
 F304 

A305 A305 
T309 

 T310 
A370 
R375 

A370 
R375 

G436 G436 
 

C442 
R440 
C442 

Table 4.3. List of residues that are 
needed to obtain a satisfactory 

optimized structure. 
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                                                                          A 

Pose S-score Rank_S PBSA score Rank_PBSA 
I -11.55 1 -114.49 2 

II* -11.15 2 -116.81 1 
III -11.07 3 -98.61 4 
IV -11.00 4 -89.15 5 
V -10.82 5 -99.26 3 

                                                                                                                                                   
 

  B 
Pose S_score Rank_S PBSA score Rank_PBSA 

I -6.80 1 -33.12 5 
II -6.72 2 -53.24 2 
III -6.71 3 -44.21 4 
IV -6.61 4 -53.08 3 
V -6.60 5 -63.96 1 

 
                             C 

Pose S_score Rank_S PBSA score Rank_PBSA 
I -6.80 1 -33.12 8 
II -6.72 2 -53.24 4 
III -6.71 3 -44.21 7 
IV -6.61 4 -53.08 5 
V -6.60 5 -63.96 3 
VI -6.59 6 -47.21 6 
VII -6.48 7 -25.95 11 
VIII -6.46 8 -31.38 9 
IX -6.40 9 -64.42 2 
X -6.13 10 -30.39 10 

XI* -6.09 11 -81.87 1 
 
                                                                           D 

Pose S_score Rank_S PBSA score Rank_PBSA 
I* -8.04 1 -162.05 1 
II -7.29 2 -150.02 3 
III -7.10 3 -158.90 2 
IV -6.85 4 -112.72 4 
V -6.76 5 -111.18 5 

Table 4.4: S-score and PBSA scores of top docking poses and the ranking of the scores. (A) top 5 poses 
bromoergoryptine against the receptor of 3UA1, (B) top 5 poses of neutral midazolam against the receptor of 

5TE8, (C) top 11 poses of neutral midazolam against the receptor of 5TE8, (D) top 5 poses of charged midazolam 
against the receptor of 5TE8. The asterisk (*) indicates pose that resembles most like the crystal-structure. 



82 
 

4.3.4 Correlation Between the Rankings of Interaction Energies Calculated by SEQM 

and Molecular Docking 

The SEQM interaction energy between the ligand and the receptor for all docked poses, 

as indicated in table 4.4, was calculated using the PM7 technique. The residues listed in table 4.3 

were included for SPE calculations of the entire complex and the receptors. However, no 

residues were considered while computing the SPE of the ligands. The interaction energies 

between the ligand and the receptor for all poses in each system were determined, and then, 

sorted and ranked in ascending order (table 4.5).  

                                                                          A                                                                                                   
                                                                                                                             
 
 
 
 
 
                                                   
 
 
                                                              Bromoergocryptine                                           
                                        
 
                   B 
 
                                                                                            
 
 
 
 
 
                       
  
    
                                           Neutral Midazolam (5 poses) 

 
Pose 

Interaction 
energy 

(kcal/mol) 

 
Rank_Eint 

Rank_S Rank_PBSA 

I -87.6 2 1 2 
II* -109.7 1 2 1 
III -63.6 4 3 4 
IV -23.0 5 4 5 
V -63.6 3 5 3 

 
Pose 

Interaction 
energy 

(kcal/mol) 

 
Rank_Eint 

Rank_S Rank_PBSA 

I 44.9 5 1 5 
II -82.7 2 2 2 
III 12.6 4 3 4 
IV -69.2 3 4 3 
V -115.6 1 5 1 

Table 4.5. Interaction energy of docked poses calculated by PM7 method with reduced number of residues, (A) 
bromoergocryptine with the receptor of 3UA1, and (B) neutral midazolam (5 poses), (C) neutral midazolam (11 poses), 

(D) charged midazolam, with the receptor of 5TE8. 
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                                                                           C                                                                                                     
 
 
 
 
 
 
 
 
 
 
 
                                              
 
 
 

Neutral Midazolam (11 poses) 
        
 

              D 
 
 
 
 
 
 
                                  
 
 

                                                       
                                                    Charged Midazolam                                         

 
 

The Rank_Eint for each docking pose was then compared with the Rank_S and Rank_PBSA 

from table 4 for that respective pose (table 4.5). In the case of bromoergocryptine, Pose II, which 

closely resembles the crystal structure and scored best according to PBSA, showed the lowest 

interaction energy among all poses (table 4.5A). Not only Pose II but every pose had the same 

ranking for both Rank_Eint and Rank_PBSA, indicating a Pearson's correlation coefficient (r) of 

 
Pose 

Interaction 
energy 

(kcal/mol) 

 
Rank_Eint 

Rank_S Rank_PBSA 

I 44.9 11 1 8 
II -82.7 4 2 4 
III 12.6 10 3 7 
IV -69.2 7 4 5 
V -115.6 2 5 3 
VI -61 8 6 6 
VII -126.7 1 7 11 
VIII -81.3 5 8 9 
IX -85.4 3 9 2 
X -56.8 9 10 10 

XI* -75.7 6 11 1 

 
Pose 

Interaction 
energy 

(kcal/mol) 

 
Rank_Eint 

Rank_S Rank_PBSA 

I* -115.9 3 1 1 
II -91.8 5 2 3 
III -177.9 1 3 2 
IV -100.9 4 4 4 
V -150.9 2 5 5 
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1.0 (table 4.6A). This perfect positive correlation between the two rankings was also observed in 

the docking of neutral midazolam, when the top 5 poses based on the S-score were considered 

(table 4.6B). Although none of these poses resembled a crystal-like conformation and orientation, 

Pose V showed the best Rank_Eint and Rank_PBSA (table 4.5B). However, when the poses were 

extended to Pose IX (until the crystal-like pose was generated) the perfect correlation was not 

found (table 4.6C). This Pose IX was ranked the best based on PBSA, despite having a middle-

range Rank_Eint and the worst Rank_S (table 4.5C). However, there were some poses that ranked 

the same or nearly the same in these two-ranking metrics, such as Pose II, V, IX, and X. Besides, 

docking of charged midazolam showed almost no correlation between Rank_Eint and Rank_PBSA 

as well (table 4.6D).  

When Rank_Eint was compared with Rank_S, the correlation showed discrepancies for 

different systems. The r-values ranged from -0.7 to 0.6 indicating positive correlations for some 

and negative for others.  

                                    A                                                                                   B 

                  
                             Bromoergocryptine                                          Neutral Midazolam (5 poses)                                  
 
                                    C                                                                                  D 

 
            Neutral Midazolam (11 poses)                                          Charged Midazolam 
 

 Rank_S Rank_PBSA 
Rank_Eint 0.6 1.0 

 Rank_S Rank_PBSA 
Rank_Eint -0.7 1.0 

 Rank_S Rank_PBSA 
Rank_Eint 0.6 0.2 

 Rank_S Rank_PBSA 
Rank_Eint -0.3 0.1 

Table 4.6. Pearson correlation coefficient between Rank_Eint with  Rank_S and Rank_PBSA  after docking 
calculations of  (A) bromoergocryptine, (B) neutral midazolam (5 poses), (C) neutral midazolam (11 poses), (D) 

charged midazolam. 
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4.4 Conclusion 

In this study, we devised a primary approach combining molecular docking and SEQM to 

predict binding and analyze protein-ligand interactions of environmental chemicals catalyzed by 

P450 enzymes. The final goal of this study is to provide early warnings about molecules that can 

become toxic products after P450 metabolism, offering computational 'red flags' and aiding in 

creating environmentally friendly industrial development. 

Our findings demonstrated the superior performance of energy minimization of P450 

containing both heme and ligands achieved by the PM7 method over PM6, as PM7 maintains a 

more accurate representation of the heme’s crystal environment. Since proteins are larger 

molecules and QM calculations of proteins may be computationally exhaustive and time-

consuming, our developed method used a truncated system with a reduced number of atoms in 

combination with molecular docking. We determined the residues of P450, as shown in table 4.3, 

that were at least required to maintain the integrity of heme and the ligands midazolam and 

bromoergocryptine, to perform SEQM calculations. The number of residues for midazolam was 

lower than bromoergocryptine as the former is smaller in size. DFT calculations verified the 

accuracy of the electronic configuration of the Fe atom in heme in these truncated P450s. 

After performing the docking calculations, interaction energies between various 

conformations of the ligand and P450 from those docking poses were computed in the respective 

truncated P450 systems using the PM7 technique and ranked. These energy ranks (Rank_Eint) were 

compared with the rankings of two docking scores (Rank_S and Rank_PBSA). The strength and 

direction of the correlation between Rank_Eint and Rank_S varied significantly across different 

systems. The correlation between Rank_Eint and Rank_PBSA was positive in all cases, but the 

strength varied, with some showing a perfect correlation and others almost no correlation. 
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Interestingly, the poses that resembled crystal structures, ranked 1st by PBSA in every case, 

indicating that consideration of entropic change, solvation effects, and surface area interactions 

are important for predicting protein-ligand binding accurately. Although the developed SEQM 

method did not predict the best docked poses for the ligand, it can be improved in the future by 

increasing the number of residues during the calculations. The entropic effect could be added by 

including solvent models in SEQM calculations to account for solvation entropy.  
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Chapter 5. Conclusion 

The journey of scientific discovery is a quest for the unknown. In this journey, one 

challenges the existing norms and uncovers novel realities. The curiosity to unravel the mysteries 

of the natural world is the main reason why one goes on this journey. Acquiring a doctorate degree 

is the first significant milestone. A doctorate degree is philosophically related to nurturing the spirit 

of inquiry and developing oneself as a researcher.  During this process, researchers dig deep into 

a particular topic. They develop their skills to design and carry out necessary experiments. They 

analyze relevant data and communicate their findings. As a result, they build an overall expertise 

in the particular topic. This training prepares them to tackle complex problems by creating a 

mindset of curiosity and innovation.  

As this dissertation is concluded, this work highlights the philosophical appreciation for 

the elegance of the intricate network of intermolecular interactions that are fundamental to life. 

We studied intermolecular interactions not only to dive into the details of molecular behavior but 

also as a bridge to understanding the complex fabric of life itself at a molecular level.  By 

examining these interactions, especially those involving proteins through protein-protein and 

protein-ligand interactions, this dissertation aims to deepen our understanding of molecular 

recognition and the mechanisms behind various cellular processes. This understanding was then 

applied to solve real-world problems in human health. Moreover, the dissertation brings together 

multiple disciplines; biology, structural biology, chemistry, computational chemistry, and 

biophysics, under the hood of biotechnology to understanding protein behavior, indicating the 

importance of a holistic approach in science.  
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Each chapter of this dissertation examines different aspects of protein interactions and 

biological problems. By using computational models and applying the principles of molecular and 

quantum mechanics, we attempted to create novel solutions to those problems.  

The first project shows the essence of doctoral journey. We identified a problem, 

demystified the reason for the problem in the absence of enough information, and developed 

innovative therapeutic strategies. We studied the complex interactions involving the SETBP1 

protein. This protein is the center of various cellular processes and the causative protein of SGS. 

Followed by modeling of SETBP1 chain, we started the development of PROTAC molecules by 

analyzing the protein-ligand interactions. Then, we investigated the protein-peptide interactions 

between mutant SETBP1 and the SCF-βTrCP1 E3 ubiquitin ligase. This facilitated an 

understanding of mutation in SETBP1 with ubiquitination and severity of SGS.  

The second chapter is focused on protein-protein interactions of the SARS-CoV-2 spike 

protein. It investigated how mutations in the spike protein affect its binding efficacy with ACE2 

and therapeutic antibody beb. Thus, this research addresses a significant global health issue while 

looking at the fundamental principles of molecular recognition and protein competition. This is 

consistent with the core of PhD journey since we enhanced our understanding of how microscopic 

molecular changes can have significant health implications.  

The third chapter aims to develop and improve scientific methods, a basic aspect of the 

PhD journey that is innovation. We combined computational predictions with experimental 

validations to study interactions between cytochrome P450 enzyme and its ligands. This work is 

important for environmental health as it shows the enzyme’s role in metabolizing xenobiotics, 

which can lead to toxic metabolites. 
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In conclusion, this dissertation leads us to obtain knowledge foremost. In addition to that, 

it helps us to gain a deep sense of responsibility to continue inquiring, discovering, and applying 

the properties of molecular interactions for the betterment of human life and our world. After 

reflecting on this doctoral journey, we can feel that it has impacted our personal and professional 

growth. Besides, it has shown that the future of scientific advancement lies in our ability to think 

across boundaries, blend diverse methods, and build interdisciplinary collaborations.  All these 

could increase our grasp and manipulation of the molecular world for the good of humans. This 

dissertation marks a milestone in this ongoing journey, one that will be continued in the upcoming 

years. 
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