Development of Mechanical Characterization Techniques and Analysis of Flexible Electronic Materials

Joshua Corbin, mentor Dr. Nicholas Ginga
Department of Mechanical and Aerospace Engineering

Overview

- Flexible PCBs are an advancement in the field of additive electronics. Flexible circuitry can be printed onto flexible plastic substrates using ink-jet printers.
- This research project aims to investigate the change in interfacial fracture strength between silver conducting ink/PET substrates due to prolonged high humidity exposure to mimic accelerated real-world use conditions of flexible electronics.

Custom 3D Printed Interfacial Wedge Tester

Results

Compared to a control group of silver ink samples that were exposed to room temperature/humidity conditions, the following changes were observed:

<table>
<thead>
<tr>
<th>Percent Change in Silver Ink Interfacial Toughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Hour Exposure at 90% RH</td>
</tr>
<tr>
<td>5 Minute Dry</td>
</tr>
<tr>
<td>24 Hour Dry</td>
</tr>
<tr>
<td>72 Hour Dry</td>
</tr>
</tbody>
</table>

Conceptual Framework

Flexible electronics are frequently exposed to high humidity conditions in real-world applications. Examples include:

- Sensors mounted on flexible and complex shaped airplane airfoils
- Biomedical electronics/sensors close to/in contact with human skin
- Flexible smart devices/cell phones

- The mechanical reliability of flexible circuits used in harsh environments is sensitive to humidity.
- Data on the effect of humidity on the interfacial fracture toughness between flexible electronic material systems, such as silver conducting ink and flexible PET substrates, is necessary to build better mechanical models and to improve the mechanical reliability of flexible electronic devices.
- The silver ink/substrate interfacial fracture toughness can be measured using an Interfacial Wedge Tester.
- An environmental chamber was used to subject printed silver conducting ink on PET samples to 90% RH for 24 hours. Samples were then allowed to dry before being mechanically tested.

References

2. Enhanced Interfacial Toughness of Thermoplastic–Epoxy Interfaces Using ALD Surface Treatments
 Yuan Chen, Nicholas J. Ginga, William E. LePage, Erik Kajaks, Andrew J. Gayle, Jing Wang, Robert E. Rodriguez, M. D. Thousee, and Neil P. Desai
 ACS Applied Materials & Interfaces 2019 11 (45), 49573-49580
 DOI: 10.1021/acsami.9b10199

Acknowledgements

All RCEU projects were sponsored in part by the Alabama Space Grant Consortium, the UAH Office of the President, Office of the Provost, Office of the Vice President for Research and Economic Development, the Deans of the College of Science, the College of Engineering, the College of Arts, Humanities, and Social Sciences, the College of Education, and the College of Nursing.