Donald J. Trump's Twitter Engagement During the 2016 Presidential Election Campaign

Amy Irene Jones

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation
https://louis.uah.edu/honors-capstones/425

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.
Donald J. Trump's Twitter Engagement During the 2016 Presidential Election Campaign

by

Amy Irene Jones

An Honors Capstone

submitted in partial fulfillment of the requirements

for the Honors Diploma or Certificate

to

The Honors College

of

The University of Alabama in Huntsville

April 18, 2018

Honors Capstone Director: Dr. Pavica Sheldon
Honors Thesis Copyright Permission

This form must be signed by the student and submitted as a bound part of the thesis.

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or Certificate from The University of Alabama in Huntsville, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by my advisor or, in his/her absence, by the Chair of the Department, Director of the Program, or the Dean of the Honors College. It is also understood that due recognition shall be given to me and to The University of Alabama in Huntsville in any scholarly use which may be made of any material in this thesis.

Amy Jones

Student Name (printed)

Amy Jones

Student Signature

4/19/18

Date
Donald J. Trump’s Twitter Engagement During the 2016 Presidential Election Campaign: A Content Analysis of Popularity Indicators

Amy Jones

Department of Communication Arts, University of Alabama in Huntsville, USA

Advisor: Dr. Pavica Sheldon

A research thesis submitted in fulfillment of the requirements for CM 431 Senior Seminar in Communication Arts
The purpose of this study was to examine a sizable amount of Donald J. Trump’s tweets during the 2016 Presidential Election Campaign. The sample size was 200 tweets during the last month of the campaign. Tweets were categorized according to their content and the number of likes, retweets, and replies were noted for each tweet. Results revealed that in sharp contrast to photo-centric platforms, such as Facebook and Instagram, photos did not perform well on Donald J. Trump’s twitter. Additionally, certain topics such as Barack Obama, Hillary Clinton, and polls performed especially well. The inclusion of photos and the mention of Barack Obama were the largest indicator of how well a tweet would perform.

Keywords: Twitter; Presidential Election, Donald Trump, Hillary Clinton, Barack Obama, Social Media, Engagement
INTRODUCTION

Barack Obama was the first U.S. President to successfully use social media and Twitter to support his presidential campaign (Sheldon 2015). With the growth of users who turn to Twitter as a source of information, the use of Twitter in politics has exploded over the past decade. In American politics and worldwide, Twitter is being used as a direct line of communication between the politicians and the people. Twitter is a social media platform in which users post short status updates with the options to add links, photos, polls, and gifs. Twitter allows for more transparency and more feedback from citizens who are users. By studying the Twitter campaigns of recently elected officials, one can learn valuable strategies to apply to future campaigns. Analyzing the winning candidate’s Twitter during the campaign could provide insightful information for political analysts and future political candidates.

The purpose of this study is to examine what was most significant on Donald J. Trump’s Twitter account during the 2016 Presidential Election Campaign. The study categorizes tweets by their topics. Each tweet is coded with the topics mentioned as well as the likes, retweets, and replies. Tweets could mention multiple topics or just one. The goal is to see which topics gained the most interaction. Additionally, this study collects data on whether the tweet did or did not contain a photo or a link. This indicates the preferred content on Twitter; visual or text-based.
Due to the fast-pace of social media updates and rapidly evolving political atmosphere, there are not many studies about social media political communication. The studies that do examine social media use during campaigns are usually limited to either breadth or depth. This means they either analyze a large set of tweets vaguely, like Pfaffenberger’s (2017) study which coded over 73,000 tweets but only used a hashtag search term, or they analyze just a few tweets with very detailed analysis, like Kobayashi’s (2015) study that recorded detailed responses to just a few Hashimoto’s tweets. Broad studies may look at hundreds of tweets or users without going into much depth of the content of those tweets. Deep studies may closely examine the language, reaction, and effect of just a few tweets.

I wanted to study the specifics topics of Donald J. Trump’s Twitter during the 2016 presidential election campaign and find a way to balance breadth and depth. I wanted to do a study that could support a large data set, but still gain insight into the topics of the tweets being coded. To my knowledge, no one else has studied Trump’s Twitter in this fashion. Other studies do a great job of examining user’s motives on Twitter and other social media platforms, but there is not much research examining the topics of tweets and the effect on interaction. To my knowledge, this is the first study to examine which topics gain the most interaction in Donald J. Trump’s Tweets. It would be useful to other political campaigns to know this information and
use it to their advantage.

Twitter as a Tool in Political Campaigns

Twitter was found to be an equalizer in the political atmosphere. For example, Ahmed (2017) studied Twitter during the 2014 Indian General Election and found that Twitter balanced some of the power struggle and allowed campaigns with less money to maintain a more equal voice. The equalizing effect of Twitter was also validated by Jiang (2016) who studied Twitter’s verified and unverified user reach. Even though there are accounts who are verified, meaning they have blue check mark next to their username and are known to be the account they are claiming to be, the unverified users have just as much public power. Although everyone’s tweets are equally visible, some people view verified accounts as more educated and trustworthy, because they have to undergo a process to become verified by Twitter. Anyone can set up a normal Twitter account, so some may view them to be less trustworthy and more likely to be trolls. Wilson (2011) found that Twitter equalized the minority users and created an environment for political fandoms.

Twitter was found to be a valid source of political commentary because of the number of users and the correlation to discussion in the traditional media outlets. Jungherr (2016) found this to be true when analyzing the Tweets during the 2013 German Federal Election. Jungherr’s results revealed that the topics becoming heavily covered on television and radio outlets were also becoming more heavily covered on Twitter. Additionally, another study of Jungherr (2014) found that the same was true during the 2009 German Federal Election. Twitter has also been found to be a source of news, rather than just a platform for new discussion (Bode. 2016).
Arnaboldi (2017) analyzed European politicians tweets in 2017 and found that the tweets attracted much more attention if they mentioned specific policies or problems. Although Twitter does follow a lot of the same topics as the traditional media, it does deviate from existing media because it has been found to inspire more social action and political involvement (Gustafsson. 2010).

A Twitter account’s success can be measure by the amount of interaction it receives. Interaction can be characterized by likes, retweets, and replies. Followers can be used as a measure of the influence of a particular Twitter account, but it is often noted that followers can be bought and followers do not perfectly correlate to Twitter interaction. I wanted to examine the correlation between Donald J. Trump’s tweet’s content and the amount of interaction they received. First, I was interested in the logistics of posting photos on Twitter. Twitter is a much more text based platform than Instagram and Facebook. From previous studies, I have learned that text posts do not do well on Instagram, so I wanted to know if the opposite was true for Twitter.

Therefore I propose a research question:

RQ1: When a picture is attached to a tweet on Donald J. Trump’s Twitter, does it increase or decrease the interaction on the tweet?

Another aspect I was interested to learn more about was what specific topic gained the most interaction on Twitter. While Donald J. Trump was running a political campaign, all of his tweets were not entirely related to policy, but most of the tweets did include some common
RQ2: What topics stimulated the most interaction on Donald J. Trump’s Twitter account during the campaign?

METHODS

I examined 200 tweets during the last month of Donald Trump’s campaign. I documented every tweet from mid October to early November of 2016. For reference, I documented the number of interactions on November 9th, 2017. It is important to note this because the interaction can be constantly changing. I used the mean number of likes, retweets, and replies so the data would not be swayed by the number of tweets in each category, though I do note that in the results. The categories I selected were as follows: photo (included or not included), link (included or not included), vote, Barack Obama, Hillary Clinton, Obamacare, Trump rallies, drain the swamp, immigration, foreign policy, terrorism, Make America Great Again, policy, and polls & debates. The categories of donate and policy had around .5% of the tweets, so I decided to exclude them for the remainder of the data analysis. There were so few tweets in these topics that I decided the sample size would not have been enough to gather an accurate measurement. Additionally, I included videos in the photo category as they were still visual representations in the same way that pictures were.
RESULTS

Out of the tweets I analyzed, there were more tweets with photos attached (64.5%) than not. There were also more tweets with links (61%) than not. Tweets about donating to the Trump campaign and the police only accounted for .5% of tweets, so I decided to remove those from the sample. I would like to note that the tweet percentages will not add up to 100% because most of the tweets included multiple topics. Tweets about voting made up 22% of the tweets. Tweets including Barack Obama made up 4% of the tweets. Tweet including Hillary Clinton made up 35% of the tweets. Tweets including Obamacare made up 11% of the tweets. Tweets about the Trump Rallies, including announcing them and follow-up tweets, made up 44% of the tweets. Tweets including Drain the Swamp, #draintheswamp, or mentions of the economy made up 20.5% of the tweets. Tweets about immigration, including the border wall, made up 4% of the tweets. Foreign policy tweets were 5.5% of the tweets. Terrorism was 3% of the tweets. Tweets including Make America Great Again, MAGA, #MakeAmericaGreatAgain, or #MAGA made up 22.5% of the tweets. Tweets about the polls or the presidential debates made up 5.5% of the tweets. And finally, tweets about policy made up 1.5% of the tweets.
Figure 1. Pie chart comparing frequency of topics discussed

Next, I looked at the number of likes, retweets, and replies to each section of tweets with and without the topic included. Firstly, photos had a large discrepancy between the amount of interaction with and without photos attached to the tweets. There was much more interaction in likes, retweets, and replies on the tweets without photos attached. In contrast, there was more interaction in likes, retweets, and replies on tweets that did include links. The tweets that included and did not include vote did not have a significant difference. Tweets that included Barack Obama gathered more interaction in every category. Additionally, tweets including Hillary Clinton also drew more interaction than tweets that did not include her. Tweets including Obamacare versus those that did not include Obamacare did not have a significant difference between them. All the tweets that did not include Trump’s rallies did better with interaction than those that did include rally information. When tweets included Drain the Swamp, they would
gain slightly more replies and likes. Immigration had only a slight difference, with slightly more retweets and likes when immigration was mentioned. Tweets that included foreign policy information had more interaction across the board than those that did not. The same was true for terrorism. Tweets that included Make America Great Again had slightly more like and replies and those without the slogan. Tweets about policy gained more interaction in every category than those that did not. Finally, tweets that mentioned the polls or presidential debates had much more interaction than those that did not.

Figure 2. Interaction for photos and links
Figure 3. Interaction for vote, Obama, and Clinton

Figure 4. Interaction for Obamacare, rallies, and drain the swamp
Figure 5. Interaction for immigration, foreign policy, and terrorism

Figure 6. Interaction for Make America Great Again (MAGA), policy, and polls & debates
Finally, I would like to discuss my ideas of why I gathered the results I did. Because Twitter is such a text-centric social networking space, I believe that photos clog up people’s newsfeed and they are more likely to skip over them. Photos are not as popular on Twitter because it is not the appropriate platform for them, especially when overused. I do think Donald J. Trump’s Twitter account overused photos as 64.5% of the tweets contained photos. I also believe that there was higher interaction on tweets with Barack Obama and Hillary Clinton because those were his major political opponents at the time. Because of this ongoing feud, his supporters loved to hate Obama and Clinton, while Obama and Clinton supporters also stimulated more interaction on the tweets by replying and defending them. In a similar instance to the photos, Donald J. Trump tweeted about his rallies 44% of the time. This led to less interaction on these tweets because they were always targeted to one specific location and there was not much to comment on or argue about by replying. Donald J. Trump is also known for his signature slogans on Twitter like Make America Great Again and Drain the Swamp. Both of these categories did see increases in interaction. To be honest, I was expecting a much higher correlation between Make America Great Again and higher interaction. I believe a reason that it was not higher was because of the use of Make America Great Again in most of his picture tweets. This would account for the drop on interaction in the overall data.
LIMITATIONS

The limitations of this study are the sample size and the time period of the tweets. I believe with more time, a bigger research team, and a larger data set of tweets, one could analyze more topics that Trump tweets about and could examine more timelines for differences. Additionally, it would be insightful to measure the same interaction and engagement on Hillary Clinton’s Twitter in this time period to examine if there is a difference between the two politicians and what they talk about. This would provide insight into whether or not this information can be generalized to all of Twitter, specific political parties, or only this particular candidate. It would also be interesting to collect data from Twitter accounts in different time periods. Even collecting data from celebrity Twitter accounts could be useful. Like and retweets on Twitter are somewhat indicative of whether or not the user agrees or disagrees with the tweet; however, replies are not indicative of the attitude of the user. One could develop a computer software to quickly and generally decide whether or not the reply is positive or negative, but this would draw problems of its own. In any case, it would be interesting to see this data collection method applied to other Twitter accounts.
REFERENCES

APPENDIX

<table>
<thead>
<tr>
<th></th>
<th>NumbersWelsh</th>
<th>NumbersEntered</th>
<th>NumbersUK</th>
<th>Photo</th>
<th>Vote</th>
<th>Decade</th>
<th>BarackObama</th>
<th>HillaryClinton</th>
<th>Obamacare</th>
<th>Draithsw</th>
<th>TrampRallies</th>
<th>Immigration</th>
<th>ForeignPolicy</th>
<th>Terrorism</th>
<th>MAGA</th>
<th>PollsandDeb</th>
<th>Police</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2600</td>
<td>5600</td>
<td>30800</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1710</td>
<td>12900</td>
<td>36800</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2400</td>
<td>18300</td>
<td>36800</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1380</td>
<td>6300</td>
<td>23000</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>940</td>
<td>7500</td>
<td>17200</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1380</td>
<td>11900</td>
<td>30800</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1980</td>
<td>8300</td>
<td>20900</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2180</td>
<td>44000</td>
<td>40000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2180</td>
<td>14400</td>
<td>36800</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>2600</td>
<td>12600</td>
<td>33800</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>2180</td>
<td>18300</td>
<td>40100</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>2180</td>
<td>16880</td>
<td>36800</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>2680</td>
<td>15800</td>
<td>36800</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1380</td>
<td>5400</td>
<td>20300</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1780</td>
<td>6500</td>
<td>23000</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>2180</td>
<td>5900</td>
<td>26800</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1380</td>
<td>8300</td>
<td>15900</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>2300</td>
<td>11900</td>
<td>50100</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>4560</td>
<td>18300</td>
<td>46900</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>1800</td>
<td>4300</td>
<td>17200</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>1080</td>
<td>6400</td>
<td>16500</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>1780</td>
<td>11900</td>
<td>21000</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>1180</td>
<td>7600</td>
<td>16000</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>1380</td>
<td>12600</td>
<td>21000</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1600</td>
<td>4700</td>
<td>20000</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1980</td>
<td>11900</td>
<td>31000</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>1080</td>
<td>8300</td>
<td>23000</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>1280</td>
<td>5700</td>
<td>19800</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>4800</td>
<td>23600</td>
<td>115000</td>
<td>0</td>
</tr>
</tbody>
</table>