Anisotropic Spiky Colloids for Antifouling Surfaces

Mackenzie Williamsa and Dr. Isaac Torres-D{\textcircled{\textsc{d}}}{b}
aDepartment of Mechanical and Aerospace Engineering
bDepartment of Chemical and Materials Engineering

Motivation

Fouling is the accumulation of contaminants on a surface. Fouling reduces surface efficiency and can cause contamination, impacting several industries such as medical, maritime, and space.2,3

Our approach uses the assembly of anisotropic spiky colloids to fabricate antifouling surfaces to repel the broad range of shapes and sizes of fouling materials.

Objective: Characterize the assembly of anisotropic spiky colloids of differing spike size and distribution over a planar surface to repel fouling materials of different shapes and sizes.

Methodology

Particle morphology and spike distribution

<table>
<thead>
<tr>
<th>n = 1.4</th>
<th>n = 2</th>
<th>n = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random Sequential Adsorption, or RSA, is a process in which particles are randomly introduced to a system. If a particle is placed on the surface where there is not already a particle, it adsorbs and remains fixed for the duration of the simulation.

Figure 1. (a) European common blue butterfly wing (\textit{P. icarus}) at 50\textmu m, and (b) a giant blue morpho wing (\textit{Blue Morpho didius}) showing superhydrophobic and anisotropic flow properties.2

Figure 2. Particles schematics with a cube spike distribution with varying superellipsoid parameters, ranging from n= 1.4 to 4, \(r_1 = r_2 = r_3 = 1.0 \).

Figure 3. Representative plot of random adsorption of particles at different steps, represented in the insets.

Roughness

\[\sigma = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{N} \sum_{j=1}^{N} d(i,j) \right) \]

Figure 4. A set of particles with the peaks, valleys, and midline outlined alongside the equation used to find average roughness.

The pair correlation function characterizes the particle configuration/structure by measuring the probability of finding the center of a particle at a distance from another particle, which is defined by

\[g(r) = \frac{V}{4\pi r^2 N} \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(r - d(i,j)) \]

Figure 5. Comparison of Random Sequential Adsorption curves of different aspect ratios (a) \(n = 1.4 \), (b) \(n = 2 \), and (c) \(n = 4 \).

Figure 6. Roughness of adsorbed particle structures using spiky particles with a superellipsoid parameter (a) \(n = 1.4 \), (b) \(n = 2 \), and (c) \(n = 4 \).

Pair correlation function

Figure 7. The pair correlation function of adsorbed particle structures, with superellipsoid parameters (a) \(n = 1.4 \), (b) \(n = 2 \), and (c) \(n = 4 \).

Conclusions and Future Work

- The maximum number of adsorbed particles decreases as particles aspect ratio increases. Furthermore, the number of adsorbed particles decreases as the shape parameter (n) increases.
- The average roughness increases as the spike shape parameter increases. But the particle-particle separation decreases.
- We create representative 3D-printed models of the particles studied.
- In the future we will study more aspect ratios and particle morphologies and begin adding multi-scale fouling particles.

References

Acknowledgements

All RCEU projects were sponsored in part by the Alabama Space Grant Consortium, the UAH Office of the President, Office of the Provost, Office of the Vice President for Research and Economic Development, the Deans of the College of Science, the College of Engineering, the College of Arts, Humanities, and Social Sciences, the College of Education, and the College of Nursing.