
● Motivation. Undetected or late-detected comorbidities

lead to worse patient outcomes.

● Research gap. Current models focus on phenotypic

links, struggling to predict disease subtype relationships.

● Aim. Use graph-based relationships to better predict

missing and future comorbidities at the patient level.

Key Findings
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Methodology
● Data was obtained from MIMIC-III2, a critical care

database, and formatted to compare diseases, indexed

by their ICD-9 codes, across multiple patients.

● Disease types that co-occur were represented

graphically using Bayesian networks and disease

prevalence was measured by conditional probabilities.

● An Independent Cascade Model3 was used to simulate

the effect of diseases affecting each other and compare

their marginal utilities.

● Seed nodes that affected the most other diseases were

identified with a greedy algorithm that searched through

and scored different nodes to maximize the spread of

influence.

Overview

Conclusions

● Visualizing and predicting missing comorbidities

enhances risk assessment and personalizes treatment.

● Future work may explore diverse node clusters and the

clinical predictiveness of the BayesNet.
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● We were able to analyze the influence spread of disease

subtypes within a given category.

● We compared the clustered subgroups of diseases with

the overall dataset to find places where observations

vary from the predefined categories.

● Ongoing efforts. Use diversity indices5 to test the

alignment of the ICD-9 category with co-occurrence

based on the BayesNet.
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Diseases: A B C

Patient 1 1 1 0

Patient 2 1 1 0

Patient 3 0 0 1

● Seed nodes

● Maximize (sinusitis)

● Minimize (cold)

● Don’t care

Respiratory Sinus Influence Maximization

Figure. The nodes represent

disease codes and directed link

(𝑢, 𝑣) represents the influence of

node 𝑢 on the occurrence of 𝑣.

Figure. The seed nodes

influencing respiratory sinus

nodes, identified using influence

maximization approach

Figure. Coloring disease 

nodes in the BayesNet by 

their ICD-9 categories.

Proposed approach. Find seed nodes in BayesNet4,

that maximize a cost function based on 2 criteria:

1. Reward the activation of disease nodes of interest.

1. Penalize the activation of off-target nodes.

Figure. There is increased

prevalence of COVID-19

among patients with underlying

conditions or comorbidities1.

∆σ(A,𝑣) = σ(A ∪ {𝑣}) - σ(A)
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