
University of Alabama in Huntsville University of Alabama in Huntsville 

LOUIS LOUIS 

Honors Capstone Projects and Theses Honors College 

5-7-2021 

Novel Gamification of Coding Education Novel Gamification of Coding Education 

Owen Seidler 

Follow this and additional works at: https://louis.uah.edu/honors-capstones 

Recommended Citation Recommended Citation 
Seidler, Owen, "Novel Gamification of Coding Education" (2021). Honors Capstone Projects and Theses. 
567. 
https://louis.uah.edu/honors-capstones/567 

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for 
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS. 

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/567?utm_source=louis.uah.edu%2Fhonors-capstones%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Novel Gamification of Coding Education 
by 

Owen Seidler 

An Honors Capstone 

submitted in partial fulfillment of the requirements  

for the Honors Diploma 

to  

The Honors College  

of  

The University of Alabama in Huntsville 

4/6/2021 

Honors Capstone Director: Mr. Nicholas Diliberti 

Computer Science Lecturer 

 

Owen Seidler______________________May 6th, 2021_______________________________                        
Student (signature)   Date 
 
 
_____________________________________________________ 
Director (signature)   Date 
 
 
_____________________________________________________ 
Department Chair (signature)  Date 
 
 
_____________________________________________________  
Honors College Dean (signature) Date 

 

Stamp

FreeText
May 7 2021



 

 

 

Honors College 
Frank Franz Hall 

+1 (256) 824-6450 (voice) 
+1 (256) 824-7339 (fax) 

honors@uah.edu 

 

Honors Thesis Copyright Permission 

This form must be signed by the student and submitted as a bound part of the thesis. 

In presenting this thesis in partial fulfillment of the requirements for Honors Diploma or Certificate 
from The University of Alabama in Huntsville, I agree that the Library of this University shall make it 
freely available for inspection. I further agree that permission for extensive copying for scholarly 
purposes may be granted by my advisor or, in his/her absence, by the Chair of the Department, 
Director of the Program, or the Dean of the Honors College. It is also understood that due recognition 
shall be given to me and to The University of Alabama in Huntsville in any scholarly use which may be 
made of any material in this thesis.  

Owen Seidler____________________________ 

Student Name (printed) 

Owen Seidler____________________________ 

Student Signature 

5/6/2021___________  

Date 

 
 



1   

Table   of   Contents   

  

Abstract 2   

Introduction 3   

Rationale 4   

Design 5   

Resources 7   

Process 8   

Conclusion 11   

Reference   List 12   

Appendix   -   Selection   of   Challenges 13    



2   

Abstract   

As   well   as   their   most   well-known   purpose   of   entertainment,   video   games   also   offer   a   

unique   and   interesting   way   to   both   teach   and   reinforce   concepts   to   their   players,   using   enjoyable   

and   engaging   interactions   to   encourage   players   to   learn   about   and   study   topics   that   they   

otherwise   might   not   have   the   motivation   to   occupy   themselves   with.   To   further   explore   this   idea,   

I   have   created   a   proof-of-concept   of   a   game   to   reinforce   knowledge   of   the   Java   programming   

language,   using   fast-paced   gameplay,   similar   to   how   one   might   study   with   flashcards,   to   

encourage   players   to   quickly   and   reliably   recall   how   to   write   in,   understand,   and   review   Java   

code.       



3   

Introduction   

Many   scholarly   studies   have   been   performed   which   demonstrate   the   educational   potential   

of   video   games.   From   those   specifically   designed   to   provide   clear   educational   benefits,   to   

commercial   games   not   specifically   created   for   such   a   reason,   video   games   have   firmly   and   

undeniably   shown   their   ability   to   teach   concepts   and   aid   in   learning.   However,   the   field   is   still   

young   and   new,   with   a   lot   of   room   to   explore   and   synthesize   new   ideas.   As   part   of   my   own   

academic   career   in   studying   entertainment   computing,   I   sought   to   conceive   of   a   game   that   could   

serve   to   combine   my   interests   and   expertise,   and   came   to   the   idea   to   create   a   game   that   could   be   

used   to   study   a   topic   I   know   well   from   my   college   education:   programming.   Programming   is   

complicated   and   features   a   lot   of   rules   to   learn   and   internalize,   and   I   believe   that   a   video   game   

would   be   a   good   way   to   reinforce   programming   concepts   to   those   trying   to   learn   them,   by   

increasing   engagement   with   the   act   of   writing   code   in   order   to   improve   recall   and   encourage   the   

forming   of   connections.     

In   this   paper,   I   will   be   covering   my   work   on   this   project,   from   a   look   into   the   scholarly   

explorations   of   games   as   a   tool   for   education,   to   the   process   I   undertook   in   creating   the   project,   

to   an   assessment   of   my   performance,   and   what   I   was   able   to,   and   not   able   to,   accomplish.   My   

hope   is   that   this   project   will   serve   to   further   demonstrate   the   educational   potential   of   games,   

specifically   for   a   coding   education,   and   to   show   a   potential   way   one   might   choose   to   implement   

a   more   complete   version   of   such   a   game.       



4   

Rationale   

Although   once   it   would   have   been   controversial   to   assert   such   a   fact,   at   this   point   in   time   

it   is   well-established   that   video   games   have   a   strong   potential   to   be   used   to   assist   in   education   

and   to   develop   mental   skills.   There   are   many   games   out   there   which   are   designed   explicitly   to   

teach,   provide   practice,   or   reinforce   concepts   to   assist   in   education.   An   example   can   be   found   at   

the   St.   Michael’s   Hospital   in   Toronto,   where   staff   members   have   access   to   a   video   game   “that   

allows   them   to   practise   the   critical   steps   necessary   to   treat   diabetic   ketoacidosis   (DKA)”   [1].   

However,   it   is   not   just   these   kinds   of   games   that   can   provide   clear   educational   benefits,   but   

commercial   ones   too.   For   instance,   in   one   study,   participants   who   had   played   the   popular   puzzle   

game   Portal   2   for   8   hours   had   shown   “significant   increases”   in   tests   on   spatial   skills   [2].   

Certainly   it   seems   undeniable   that   using   video   games   for   educational   purposes   has   significant   

scholarly   potential.   

Given   this   fact,   the   academic   merit   of   the   project   should   be   clear.   I   believe   that   a   game   

such   as   what   I   envisioned   could   assist   computer   science   students,   or   anyone   else   attempting   to   

learn   programming,   by   making   it   fun   and   enjoyable   to   reinforce   and   internalize   the   necessary   

concepts,   rules,   and   syntax   to   understand.       



5   

Design   

When   designing   the   game,   I   chose   to   take   inspiration   from   the   popular   game   series   

WarioWare,   which   pits   the   player   against   a   gauntlet   of   short,   speedy   “microgames,”   each   with   a   

different   gameplay   objective   to   be   completed   within   a   span   of   just   a   few   seconds   [3].   Taking   

inspiration   from   speed-learning   methods   such   as   flashcards,   I   decided   to   pair   this   style   of   

gameplay   with   coding   education   by   devising   a   series   of   fast,   varied   coding   challenges   to   

reinforce   the   concepts   that   a   new   student   of   programming   would   be   currently   learning,   by   asking   

them   to   recall   and   apply   knowledge   of   coding   in   a   short   timespan.   Ultimately,   I   came   up   with   

three   ideas   for   coding   “microgames:”   

● “Fill   In   The   Blanks,”   in   which   an   incomplete   

block   of   code   is   shown   to   the   player   with   

fillable   blank   spaces   in   the   missing   fields,   and   

the   player   must   complete   the   code   according   to   

the   provided   instructions.   

● “Spot   The   Errors,”   in   which   the   code   presented   

to   the   player   has   several   errors   present   which   

must   all   be   identified   by   clicking   on   them.   

● “Question   Time,”   where   the   player   must   correctly   answer   multiple   choice   questions.   

For   each   microgame,   the   player   is   placed   under   a   limited   amount   of   time,   represented   by   the   

green   bar   on   the   bottom   of   the   screen,   which   shrinks   as   time   runs   out   until   it   disappears   and   the   

game   ends.   In   WarioWare,   these   games   would   only   last   around   a   few   seconds,   but   for   this   game,   

I   decided   to   use   a   longer   timer   of   18   seconds,   as   solving   problems   of   these   kinds   would   be   far   

too   difficult   with   such   a   short   timespan.     



6   

Linking   each   game   is   a   brief   period   of   respite   on   the   main   screen   of   the   game,   where   the  

player   can   see   how   many   microgames   are   awaiting   them   before   the   end   of   the   play   session,   each   

one   represented   as   a   file   on   a   computer   screen,   as   well   as   the   game’s   computer   mascot,   who   will   

react   positively   or   negatively   based   on   the   player’s   performance   in   the   previous   microgame.   

Although   not   every   microgame   was   completed   on   time,   in   a   more   completed   version   of   the   

program,   the   game   would   have   also   featured   “boss   microgames”   with   harder,   longer   challenges   

to   test   the   player’s   programming   abilities   more   thoroughly,   and   represented   by   black-and-red   

files.     

 



7   

Resources   

To   create   this   game,   I   utilized   several   different   programs,   each   for   the   creation   of   a   

different   aspect   or   part   of   the   program.   The   most   important   and   central   of   these   programs   was   

Unity.   Unity   is   a   cross-platform   game   development   engine   that   can   be   used   to   create   both   3D   and   

2D   games   [4].   With   Unity,   one   can   easily   create   and   edit   a   game   world   by   creating   and   moving   

objects   and   attaching   scripts   or   pre-created   components   in   order   to   create   behavior.   Specifically,   

the   version   used   was   version   2019.4.19f1,   which   was   used   because   it   was   the   version   I   was   

already   most   familiar   with.     

For   the   art   assets,   I   used   Aseprite,   a   

software   used   to   create   pixel   art   and   animations   

[5].   This   software   was   chosen   for   the   creation   of   

art   for   two   reasons.   First,   I   sought   to   create   a   

computerized,   digital   aesthetic,   and   pixel   art   would   

suit   this   aesthetic   well.   Second,   I   am   much   more   

familiar   with   the   creation   of   pixel   art   than   any  

other   visual   art,   making   it   the   most   obvious   

choice.    

Finally,   for   music   and   sound,   I   used   two   different   programs.    For   the   music,   I   used   a   free   

chiptune   music   creation   software   known   as   FamiStudio   [6],   while   for   the   sounds,   I   use   a   

chiptune   sound   created   called   Bfxr   [7].   Like   the   art,   these   programs   were   chosen   for   two   reasons:   

because   I   felt   that   the   chiptune   sounds   and   music   they   produced   would   fit   the   digital   aesthetic   I   

was   aiming   for,   and   because   of   prior   experience   with   these   programs.       



8   

  

Process   

Planning   

To   begin   with,   first   I   had   to   plan   my   path   through   the   creation   of   this   game,   including   

deciding   the   aesthetic   theme,   the   intended   audience,   and   details   of   the   gameplay.   As   mentioned   

in   the   Resources   section,   I   decided   to   go   with   an   aesthetic   inspired   by   computers,   including   a   file   

explorer   window   on   a   desktop   as   the   main   screen,   and   a   computer   character   as   the   mascot,   as   it   

would   fit   well   with   programming   being   the   concept   that   the   game   serves   to   reinforce,   and   my   

past   experience   with   pixel   art   and   8-bit   music   would   work   well   for   this   too.   As   for   the   intended   

audience,   I   initially   struggled   between   deciding   on   focusing   on   experienced   coders,   like   myself,   

or   novice   ones,   as   this   decision   would   influence   how   I   approached   the   details   of   the   gameplay   

and   the   types   of   challenges   I   would   create.   Ultimately,   I   decided   to   focus   on   novice   coders,   as   I   

knew   that   my   general   idea   of   using   fast-paced   challenges   would   work   best   with   simpler   

challenges   rather   than   the   more   complex   ones   that   experienced   coders   would   benefit   from.   This   

was   also   the   point   I   chose   to   specifically   focus   on   Java   as   the   language   the   project   would   focus   

on,   as   it   is   an   entry-level   language   for   a   lot   of   people,   and   also   the   language   I   am   most   familiar   

with.   As   for   planning   out   the   gameplay,   I   knew   I   had   to   come   up   with   several   ideas   for   different   

types   of   microgames   that   could   each   reinforce   coding   knowledge   through   a   different   mode   of   

interaction.   In   the   end,   I   came   up   with   the   three   types   of   microgames   mentioned   earlier,   each   to   

serve   a   different   purpose.   “Fill   in   the   Blanks,”   for   instance,   serves   to   test   whether   the   player   can   

remember   what   to   write   to   accomplish   a   specific   task,   and   how   to   use   correct   syntax.   “Spot   the   

Errors,”   on   the   other   hand,   asks   the   player   to   test   their   ability   to   parse   an   already   completed   

block   of   code,   and   to   read   carefully   in   order   to   spot   where   typos   and   mistakes   may   lie,   a   skill   that   



9   

is   very   important   when   actually   coding.   Finally,   “Question   Time”   is   an   opportunity   to   directly   

ask   the   player   questions   to   test   more   abstract   concepts   that   direct   interaction   with   code   may   not   

be   able   to   address,   such   as   whether   they   know   all   the   data   types,   or   how   arrays   are   enumerated.   

With   all   my   planning   completed,   it   was   time   to   begin   setting   up   the   project   itself.   

Setup   

To   begin,   first   I   had   to   create   a   new   Unity   project,   and   create   all   the   framework   on   which   

the   actual   game   would   be   implemented,   including   the   creation   of   a   title   screen,   arranging  

placeholder   objects   in   each   scene   to   be   replaced   by   actual   functional   objects   later,   and   a   couple   

basic   scripts   to   allow   the   game   to   move   from   scene   to   scene.   

This   is   also   the   phase   during   which   asset   creation   began.   To   start   out   with,   I   prioritized   

the   musical   cue   that   would   play   before   each   microgame,   and   the   music   itself   that   would   play   

during   one.   I   knew   that   the   flow   between   each   microgame   was   a   very   important   thing   to   get   

right,   as   it   would   help   the   player   get   in   the   right   mindset   and   create   the   rhythmic   feel   of   play   that   

would   help   the   player   stay   on   track   and   in   the   moment   while   keeping   the   limited   amount   of   time   

in   mind.   Then,   I   created   a   couple   more   musical   cues,   one   for   winning   a   microgame,   and   one   for   

failing   one,   before   moving   on   to   sprite   creation,   where   I   created   the   file   explorer   window   for   the   

background,   a   file   icon   to   serve   as   the   indicator   for   each   microgame,   and   the   computer   mascot,   

who   I   created   because   I   wanted   the   game   to   have   a   personal   “face”   to   it   to   give   it   some   identity.   

With   the   basic   asset   creation   finished,   the   assets   were   then   added   to   the   Unity   project   

itself.   At   this   point,   with   the   framework   and   assets,   it   was   time   to   create   the   actual   mechanics.   

Implementing   the   Mechanics   

With   the   framework   established   and   assets   added,   mechanics   had   to   be   created   for   each   

microgame.   Work   began   on   “Fill   In   The   Blanks”   first:   I   created   a   placeholder   block   of   code,   and   



10   

created   a   few   fillable   blanks,   each   of   which   would   register   itself   as   “complete”   when   the   user   

inputted   the   correct   string.   After   filling   all   the   blanks   correctly,   the   game   would   exit   and   be   

marked   as   a   success.   This   is   also   when   I   created   the   timer,   which   I   would   use   for   both   other   

game   types   as   well.   At   the   bottom   of   the   screen,   a   green   bar   will   slowly   shrink   as   time   passes.   

After   the   bar   fully   disappears   (around   18   seconds),   the   game   will   exit   and   be   marked   as   a   failure.   

By   copying   and   pasting   the   bar   into   scenes   for   the   other   two   microgames,   this   timer   could   easily   

be   imported   into   those   microgames   as   well,   saving   on   resources.   

Creating   the   mechanics   for   “Question   Time”   was   fairly   easy,   as   Unity   has   plenty   of   

pre-existing   button   functionality,   meaning   all   I   had   to   do   was   set   four   up,   have   clicking   on   three   

of   the   four   register   a   failure   and   exit   the   microgame,   and   have   one   register   a   success   instead.   

Finally,   I   had   to   create   the   mechanics   for   “Spot   The   Errors.”   For   this   one,   I   ended   up   creating   

invisible   objects   that   could   be   placed   over   wherever   the   error   in   the   code   would   be.   When   

clicked   on   (as   the   user   would   be   clicking   where   the   error   would   be),   the   object   would   change   

appearance   from   being   invisible   to   showing   a   green   circle   to   indicate   a   success,   and   clicking   

every   single   one   would   register   the   microgame   as   a   win.   

Writing   the   Challenges   

With   the   mechanics   for   the   games   created,   it   was   time   for   me   to   write   the   actual   

challenges   themselves   that   would   use   these   microgames.   To   create   these   challenges,   I   referenced   

“The   Java   Tutorials,”   a   series   of   official   tutorials   put   out   by   the   Oracle   Corporation   to   educate   

new   programmers   on   the   Java   programming   language   [8].   Unfortunately,   it   was   at   this   point   that   

the   end   of   the   semester   drew   close,   and   I   found   myself   unable   to   implement   every   challenge:   

however,   I   did   create   enough   in   the   end   to   demonstrate   each   microgame   with   an   actual   

educational   challenge   involved.     



11   

Conclusion   

Video   games   have   a   lot   of   potential   to   be   used   for   the   education   of   numerous   topics   and   

subjects,   and   programming   is   no   exception.   Although   in   the   end   I   was   ultimately   unable   to   

complete   all   the   challenges   I   planned   to   include,   I   still   believe   the   project   serves   its   intended   

purpose:   a   proof   of   concept   to   demonstrate   the   potential   viability   of   using   such   a   gameplay   

system   for   coding   education.   There   is   plenty   of   potential   to   develop   the   ideas   and   progress   of   this   

project   into   a   more   substantial   and   complete   state,   as   well   as   the   potential   for   research   and   

playtesting   to   be   performed   in   order   to   measure   the   effectiveness   of   such   a   game.     

   



12   

Reference   List   

[1] T.   Lougheed,   “Video   games   bring   new   aspects   to   medical   education   and   training,”   

Canadian   Medical   Association   Journal ,   vol.   191,   no.   37,   2019.     

[2] V.   J.   Shute,   M.   Ventura,   and   F.   Ke,   “The   power   of   play:   The   effects   of   Portal   2   and   

Lumosity   on   cognitive   and   noncognitive   skills,”    Computers   &   Education ,   vol.   80,   pp.   

58–67,   2015.    

[3] Super   Mario   Wiki,   “WarioWare   (series),”    Super   Mario   Wiki ,   04-May-2021.   [Online].   

Available:   https://www.mariowiki.com/WarioWare_%28series%29.   [Accessed:   

05-May-2021].     

[4] U.   Technologies,    Unity .   [Online].   Available:   https://unity.com/.   [Accessed:   

05-May-2021].     

[5] D.   Capello,    Aseprite .   [Online].   Available:   https://www.aseprite.org/.   [Accessed:   

05-May-2021].     

[6] “FamiStudio   NES   Music   Editor,”    FamiStudio .   [Online].   Available:   

https://famistudio.org/.   [Accessed:   05-May-2021].     

[7] Bfxr.   Make   sound   effects   for   your   games.    [Online].   Available:   https://www.bfxr.net/.   

[Accessed:   05-May-2021].     

[8] The   Java™   Tutorials .   [Online].   Available:    https://docs.oracle.com/javase/tutorial/ .   

[Accessed:   06-May-2021].     

  

  

  

   

https://docs.oracle.com/javase/tutorial/


13   

Appendix   -   Selection   of   Challenges   

This   appendix   contains   a   selection   of   one   challenge   of   each   microgame   type.   The   full   

project   including   all   completed   challenges   can   be   found   at   the   following   URL:   

https://drive.google.com/file/d/1O1CxSsa-ByUEcQRzVsAqNqCsL3gbFsBm/view?usp=sharing .   

Fill   In   The   Blanks   

  

  

https://drive.google.com/file/d/1O1CxSsa-ByUEcQRzVsAqNqCsL3gbFsBm/view?usp=sharing


14   

Question   Time   

  

Spot   The   Errors   

  



15   

  


	Novel Gamification of Coding Education
	Recommended Citation

	Microsoft Word - honors-thesis-title-page_copyright_permission_form.doc

		2021-05-09T18:06:15-0500
	William Wilkerson


		2021-05-07T11:03:57-0500
	Dr. Heggere Ranganath




