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ABSTRACT, 

Using the classical definition of radiant intensity, I derive a unique formula for the radiant 

intensity of an incoherent source. This new formula differs from the standard equation 

used in coherence theory, by a factor of cos0 1
• From this I will show that the radiant 

intensity of an incoherent source follows Lambert's law. A spatially incoherent source is 

therefore Lambertian. It radiates flux as a Lambertian source in accordance with classical 

radiometry, and a directionally independent radiance. 

This paper also includes a discussion of the basics of radiometry, and the 

derivation of the standard radiant intensity equation used in coherence theory. 
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If you divide these equations by Ri you get the solid angle of the source as viewed from 

the detector, on, and the solid angle of the detector as viewed from the source, on
0 , 

oAt",j Cose 
O and on, = 

R
2 on _ oA."'"1 cos0

:.�o -
I 

R
l e4) 

If we multiply on
0 

by cos0
1 

we get the projected solid angle of the detector as viewed 

by the source. Multiplying on, by cos0
0

, we get the projected solid angle of the source 

as viewed by the detector, 

onpnif = 
oAo cos9 0 cos0,

I R2 and 

These concepts are illustrated in figure e2). 

onr,j = 6A, cos0 I cose 0 

R2 es) 

The radiance L
11 es) can now be expressed in many different ways using the above 

geometric terms, 

d2<1> d2<1> d2<1> d2<1>

L (A-) V V V V 

V s ,ro = dA pmj dn = dA dnpn,j = dA pmj dO. = dA dnpn,j .0 0 0 0 I I I I 
e6)

In this equation, s is the direction of the radiant flux and r;, refers to the location on the 

source. In free space propagation, the radiance function is conserved along the straight 

line path of an optical ray2
• From the radiance function we can derive the three other 

radiometric quantities by integrating over only one parameter of equation (6). 

The spectral radiant exitance is the total spectral flux that leaves the source per unit area, 

MV er;,) = :,.2 = JI LV er;,' s)dncmj
= II LV (Fi,' s) cos(0 0 )dno . (7) 

0 hemisphere hemisphere 

Next is the radiant spectral intensity, I 
11 

(s). this is the total spectral flux emitted by the 

source in the s direction per unit solid angle, 
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dQV I 6U =-=- 1 (12) 
v dV c�· 

Equation(l2) expresses a very important relationship. For this collimated or plane-wave­

like source, its radiance L0 , is the flux density(flux per unit area) over the beam in the 

direction of propagation. The vector s0 L0 is analogous to the magnitude of the Poynting 

or flux density vector of a plane wave3
• 

To find the radiant energy density for a general source, we need to add the 

contributions from each composite plane wave, or integrate equation(l2) over all solid 

angles from which there is radiance(i.e. over the solid angle subtended by the source). 

This leads to3

(r) _ 1 JJ A I JJ � cos(0o) 
dA U

V 
(r,)=; L

v
(ro,s)dn, =c Lv (ro,S) R2 o·

source source 

(13) 

Although we have written equation (13) explicitly in terms of the source, the important 

issue is that the integral is evaluated over all directions for which the radiant function is 

not zero. Equivalently, we can write equation (13) 

u �r) c;;) = ¾ cf.f L
V 

(r. 's)dO. (14)

noting that L
v 
(Fi , s) is non-zero only over the ray directions that trace back to the source.

Recalling that the radiance function is conserved along a ray path, allows the conversion 

between Equations (13) and (14). 

Equation (13) leads to another definition of radiance that is valid everywhere. The 

radiance .function, L
11 

(r. , s), is c times the contribution to the energy density at the point 

r.ofthe radiant/Tia traveling in the s-directionper unit solid ang!e3. Similarly, the 

spectral flux density vector 8
11 

(Fi) is 
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Sv (ri) = <JisLv (Fi, s)dQ. (15) 

In the limit that R is large, the spectral energy density, Equation (13), asymptotically 

approaches 

• (r) A 
, cos(0v) JI c- A 

dA 
I Jv(s) 

hm Uv (sR) = c 

R
2 

L v r0 ,s) o = --
R

2 , 
R� C 

and equation (15) the flux density vector approaches, 

lim s (sR) - JV 
(s)

R- v 

-�-s
A 

Rl 

1.3 Lambertian sources 

(16) 

(17) 

A Lambertian source is by definition one whose radiance is completely 

independent of viewing angle, in other words, Lv (s) is constant2
• 

For a lambertian source of area A
0 

,and radiance L
0 

equation (8) gives, 

I= JL
0 

cos0dA = L
0
A

0 
cos0 = /

0 
cos0, (18) 

source 

which is known as Lambert's cosine law. This formula shows that the decrease in 

intensity associated with increased observation angle ,0, is due only to the decreased 

projected area of the source. 

The formulas for radiant flux and radiant exitance also simplify from equations 

(1) and (7) for lambertian sources to

6 2<1> = 
LodAodA,

r 2 and M = rr.L. (19)
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2.COHERENCE THEORY,

2.1 Spacial and temporal coherence. 

Coherence is a description of the statistical properties, or correlation functions of 

radiation fields4
• Coherence can be divided into two classifications, even though the two 

are interrelated, as temporal and spatial.

Temporal coherence is directly related to the finite bandwidth of the source. A 

quasi-monochromatic beam of light can be pictured as a series of randomly phased wave 

trains, as in figure (4). The average constituent wave train exists for a time, lit,,, which is 

known as the coherence time. The phase relationship between two points Pi and P
i
, 

located along the wave and separated by a distance r is the temporal coherence. If r is 

less than c!it
,,
, the coherence length, the points are highly coherent. If r is much greater 

that the coherence length then the phases at the two points are unrelated, therefore they 

would be considered highly uncorrelated, or incoherent. 

Spatial coherence is related to the sources finite extent in space. It measures the 

phase difference between two points Pi and P
i
, which are the same distance away from 

the source, but do not lie upon the same path. This is illustrated in Young's double split 

experiment, shown in figure (5). If the two pinholes Pi and P
i
, are illuminated by a 

primary monochromatic source, the phases at Pi and P
2

, are the same and fringes of light 

and dark are formed on a distant observation plane. The phases at these points are highly 

coherent. If the two slits were to be illuminated by separate sources, no fringes would be 

formed on the screen and the two points would be completely uncorrelated, or incoherent. 
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One goal of modem coherence theory has been to clarify the relationships 

between classical radiometry, and the electromagnetic and quantum theories of light5
• In 

order to do this we must first define the correlation functions and then we must relate 

these functions to the measured quantities of radiometry. 

2.2 Defining the mutual coherence function and its Fourier transforms. 

Light is an electromagnetic wave that can be described by E = E
0
e1<ta-m1+a >, where 

E
0 

is the complex amplitude, k is the wave number, co is the frequency, and a is the 

- -

phase angle. If two waves of this form E1 and E2 are combined (i.e. They are incident 

on the same surface, or travel along the same path) the resultant wave is 

E _ E + E _ E e;<kRx_R,-+«Rl 
R- I 2- RO (20) 

An important property of light is the energy density which is proportional to the squared 

modulus of the complex amplitude. Therefore 

~ 2 ~ ~ 2 ~ 2 ~ 2 ~· ~ 
UR =IEoRI =IE01 + Eo2I =lE01I +IE02 I +2Re(Eo, · Eo2). (21) 

The first two terms are the energy densities of the two component waves and the last term 

is the interference term. This term describes the correlation of the phases between the 

radiation fields, or the coherence of the two fields. Complex patterns of light and dark 

regions are the visual results of this term and the visibility, or contrast of these patterns 

reflect the coherence properties of the fields. 

To describe and quantify the coherence properties of the optical field we define 

the mutual coherence function to be6
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r(Fi ,r; ,-r) = (ff: (Fi ,t)E(r; ,t +-r )) = lim 2
1
T jl• (Fi ,t)E(r2 ,t +-r )dt. (22)T-+ao -T 

This equation represent the statistical average of the field amplitudes at points Fi and ;:; 

with a time offset of-r. This correlation function is the statistical generalization of the 

interference term in equation (21). Ifwe set;:;=;:; and-r=O we get the self mutual 

coherence function ,which describes the local energy density 

r(r,r,O) = (IE(r,1)12) = J.�
2
� flE(F,1)12 dt. 

The normalized mutual coherence function is given by 

- - rc;;,;:;,-r) Y (r, r. 't ) - --;=��===========., 2' 
- .Jr(- - O)f(- - 0)r1 ,r1, r2 ,r2, 

(23) 

(24) 

This function is called the complex degree of coherence and equation (21) can then be 

written as 

Ur
= U1 + U2 + 2 Re{y (Fi,;:; ,-r )}'1U1 U2 (25) 

If we take the temporal Fourier transform of equation (22) we get the cross spectral 

density, 

W(- - ) 1rr- - ) 121tvld r., r2 
, v = vi , r2 , T e t . (26) 

The self-cross-spectral density, W(r,r, v), is the diagonal element of the cross-spectral 

density which is equivalent to the energy density spectrum, 

W(F,r, v) = UV 
(s,r) (27) 

where, 
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U(s,r) = 1u
v 
(s,r)dv. 

0 

Page. IO 

(28) 

According to the van Cittem-Zernike theorem, the cross-spectral density satisfies the two

Helmholtz equations 7,

[V: + K2 ]W(fi ,'2, v) = 0
[Vi+ K2 ]W(r;,r;,v) = 0

21tv 21t where K=-c-=T·

(29) 

From these relations we can solve for the self-cross-spectral density using standard

Green's function techniques, outlined in Goodman8
• The self-cross-spectral density at a

point� in the upper half space is (assuming r
k 

>> A..),

- - 1 sr 2 1·r 2 - - exp(iK(r2k -rllt )) W(rk ,rk ,v)= '),..2 Jd r, Jd r2W(r1 ,r2 ,v)------cos(0 1 )cos(0 2 ), (30)
source source 

r11cr21c 
plllllc pllllle 

where, r,.t and r21c are the distances from the source points r; and ;:; to r1c , and 0 1 and

0
2 

are the corresponding angles with respect to the surface normal of the source. In the 

limit that the point � is a large distance, R, from the source, equation (30) approaches the

asymptotic limit 1
,

cos2 0 limW(r1c .�, v) = w<')(� .�, v) = ')..} R 2 w0 (-fJ. ,fJ.. ,v),
It➔"' 

(31)

where fJ.. is the transverse spatial frequency associated with a plane wave traveling in the

direction of� from the source and,

w0 (/,J.,fu,v)= Hd2r1 Jd 2r2W(,;,r;,v)exp(-i21t(f.J.. ·r, +fu ·r2 ). (32)
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Equation (32) is the dual spatial Fourier transform of the cross spectral density, or the 

projected-spatial frequency correlation function in the z=O plane. 

It is important to understand the physical meaning of w0 (-/
J.

, /
J.

, v). In the 

coherent limit, we see that 
coherent 

1 Wo(-/
J.

,/
J.

,v) limit l!m2rl;-:(1J.)1 2
7 ... .., (33) 

where 

(: (]J.
) = Jf E" (fo)exp(-i21t (fxxo + Jy y0)dx0dy0 • 

In equation (34) E" (r
0
)is the temporal Fourier transform of the electric field. 

2.3 Deriving the general radiant intensity from coherence theory. 

We can now derive the radiant intensity using the cross-diagonal elements of the 

projected-spatial frequency correlation function and the self-cross spectral density. 

From the relationship given in equation(23), we know that 

l"(s)=cR2 limUt>(sR). 
R➔.., 

By combining this with the relationship given in equation (27} and equation (31) 

we get the equation for radiant intensity in the far field, 

A 
ccos2 0 ~ I"(s)= "A.2 

w
0 (-/

J.
,/

J.
,v).

(34) 

(35) 

(36) 

This is the standard equation for radiant intensity used in coherence theory9
, outside of 

factors that may differ due to choice of units. 
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2.4 Radiant intensity of an incoherent source. 

According to coherence theory, an incoherent source is one in which the cross­

spectral density is delta correlated 1
• In general the cross-spectral density can be described 

as the energy density spectrum multiplied by some function of the positions r.and ,;, 

we;.,,;,v)=U11{ter. +fi)}Fe,;-;.). e37) 

If this function is delta correlated the equation can only be non-zero for one set of points 

;. and ,; 10• In other words a source is incoherent if 

we;. ,F2, v) = UV {Fi }6 er; -Fa) . 

Substituting this equation into equation (32) we get 

wo e-Z .. ,Jl. , v) = Hd2r, Hd 2r2U11 OD6 er; -Fi )exp{-i27t].l (Fi -,;)}
. rourcc source 
plane pl�nc 

= IJd2r,U
11 er.)= Qv,

source 
plane 

(38)

(39) 

where Q11 is a constant. Returning to equation (36) we see that for an incoherent source 

A def)\/ 2 
I es) = - = c · cos 0 · Q . 

v 

dQ 
v 

(40) 

This implies that an incoherent source is not a Lambertian source, since as we recall from 

equation (18), I is proportional to cos0 ,for a Lambertian source, not cos2 0 
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3. THE NEW CORRELATION FUNCTIONS BASED ON OPTICAL FLUX.

3.1 Relating radiant flux to electromagnetic quantities. 

In electromagnetics the Poynting vector, 

s = ¼
rr 

(bii) (41) 

is defined to be the rate at which electromagnetic energy passes through a unit area whose 

normal is in the direction of propagations. According to Poynting's theorem the 

conservation of energy for a combined system of charged particles and electromagnetic 

fields is expressed as 
11

dQ = -/S-tj'dA, 
dt 

de1cctor 

(42) 

which from radiometry is the radiant flux <I>=:;. We also know from equation. (9) that

the flux is related to the irradiance by the integral 

<I>= JEv dA I . (43) 

Combining these three equations we find the relationship between optical flux and the 

electromagnetic fields to be, 

<t>= JJ EdA= Hs-rfdA=...E... JJ(Exii}tfdA. 
dcteclor detector 41t detector
arc3 arc.I area 

(44)



D. M. Seitz," Resolving a conflict between Coherence Theory and Classical Radiometry, ... " Page.14

3.2 Derivation of correlation function based on flux density. 

If two beams with measured optical fluxes <1>1 and <1>2, respectively, are combined 

then the resultant flux <I>
r 
will be 

<I>r = <I>, + <1>2 + <I>, 2 • (45) 

The third term that results is the interference term. The interference is the result of the 

wave nature of light. The phase difference between the two waves determine how the 

waves interfere at each point along the wave, either adding constructively or 

destructively. 

From equation (44) we can write <I>r as 

<I>= Hs1· ·ifdA {f-) H(.e xii )lfdA
detector 1t detector 
area lll'Ca 

(46) 

For simplicity we will solve for the total Poynting vector, so for .E = E
1 
+ £2 and

- - -

H=H
1

+H
2 

.s\(r;,r;,1 1,12) =(
4
: )[(E"{r;,11)+ E"(r2,1i))x (il(r1,11)+ il{r2 ,12))] (47) 

Working out the cross product we get 

Sr(F. ,r; ,1 1 ,12) = (4: )( [E" (r, ,t,)x il{ri,t1 )]+ [E" {r2 ,ti }x il(r2 ,t2)

+[E"{ri ,t 1 )x il(r2 ,t2)+ E
0

{r2 ,ti }x il(r.,1 1 )] ) (48) 

The first two terms of this equation correspond to the Pointing vectors for the two 

individual beams, S (rs ,t,) and S(r
2 
,1

2
) leaving the last term as the interference term, we

get 
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812 �1 ,r2 ;t ;rf }rf = (4: ){E• (r1 ,t )x H�
2 ,t +-r )- i

r �1 ,t )x E�
2 ,t +-r )}rf. (49) 

From this we can define our new correlation function, M('fi ,.r
2 
,-r ,rf)by taking the 

statistical average of equation ( 49) with a time offset of -r, 

Mlfi ,r;, "t ,rf )= (
4
: )( i• {Fi ,I )x iJ(r; ,t +-r )- iJ• {Fi ,t )x E(r;, t +-r )t .. · rf. (50) 

We will call this function the flux density correlation function. We obtain its cross­

spectral flux density function, Mv (Fi ,r; ,rf),as before, by taking the temporal Fourier 

transform of M(fi,fi,-r ,rf), 

Mv ('Fi ,r; ;rf) = J M<fi ,r;, -r, rf) exp(i21tv-r )dt 

- -

=
4
: {E:(fi)xHv (fi)-H:(r.)xEv (fi)}rf, (51) 

where E
v 
and Hv represent the temporal Fourier transforms of the electric and magnetic 

fields respectively. To obtain the associated projected-spatial frequency correlation 

function, we take the dual two -dimensional spatial Fourier transforms of Mv ('Fi ,r; ,rf), 

mv (Ju. ,Ju)= Jf d 2r1 Jf d2r2 
Mv ('Fi ,r; ;rf) exp(-i21t (Ju.· r1 + J2J. · r2 )

.,ourre source 

plw,e plwie 

= 4: t-:• (],.L) X Hv (]2.L)- H: (]1.L) X /;-: (fu) }Tl , (52) 

where 1;-: and H
v 

represent the spatial Fourier transforms of Ev 
and H

v
. Remembering 

thats x 1;-: = Hv 
we can rewrite equation (52) as 

"'v c-1.L,f.L) = 2: [1;-:· cJ.L) •1;-: <l.L)J [s ·rf] (53)
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We can see that the first term is equal to w0
(-fi. ,fi.

, v), and from geometry that the 

second term is cos0 , where 0 is the angle between sand ;, . This yields a simple 

relationship between ifz
11
(f,i.,la) and w0(fu,fa;v), 

- - C - -

my (fu,fa) = -i;w0(f..i. ,/2i.;v)cos(0 ). (54) 

Ifwe apply the definition of incoherence to the cross-spectral flux density, we obtain 

M 11 (ri , '2 , tj') = Pv {r. }6 ('2 - r. ) ,

which describes the measured spatially incoherent source. 

From this we find that 

m
11(-fi.,fi.)= Jfd 2r1 

Jfd 2r2 P11(r.)6(ri-r.)exp{-i21t]i.(r. -Fi)} 

where \J'
11 
is a constant. 

source source 

plane plane 

= ffd\Pv (r.}=\Jlv , 
source 
plane 

(55) 

(56) 

4. DERIVATION OF RADIANT INTENSITY FROM NEW CORRELATION

FUNCTION.

Recall from equation(36) that 

A dcJ.>v C • cos2 0 ~ 
] v ( S) = dQ = 'A.2 ' Wo (-fi., Ii. , V) • 

- - - -

(57) 

Using the relationship between mv (f..i.,fa) and w0(fu,fa;v),from equation (53), we 

can rewrite this as 
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- - - -

Using the relationship between iiiv (fu .. ,f
2J.

) and w
0 (/1.L,f2J. ; v),from equation (53), we 

can rewrite this as 

21t - - 21t 
Jv (s)= '),} iiiy (-/J. ,/J.)cose = 'J...2 Cl>y cos0. (58) 

This shows that w
0 

(-J
J. 

,f
J.

, v) cos8 is a constant, and that the radiant intensity of an 

incoherent source is proportional to cos8 , which is the same dependence exhibited by a 

Larnbertian source. 

5. CONCLUSIONS.

In this paper I have merged the principals of classical radiometry with the modern 

theory of partial coherence. I have derived a new equation describing the radiant 

intensity of an incoherent source to be proportional to w
0
(-/

J.
,f

.L
, v)and cos8 . This 

new formula corrects the standard coherence equation, which was proportional to cos2 0 

In doing this I have shown that the radiant intensity of an incoherent source exhibits the 

same cos0 dependence as a Larnbertian source. 
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Figure 1: Geometry for definition of radiance. 
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Figure 2: Solid Angle and Projected Solid Angle 
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Figure 3: Geometry for a perfectly collimated source 
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Figuce 4: Temporal Cohecence, candomly phased wave train 
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Figure 5 : Young's Double Split experiment 
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