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Abstract 

AN INVESTIGATION OF MISSION DESIGNS TO THE OUTER 

SOLAR SYSTEM SUPPORTED BY CENTRIFUGAL NUCLEAR 

THERMAL PROPULSION 

William Ziehm 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Aerospace Systems Engineering 

 

Mechanical and Aerospace Engineering 

The University of Alabama in Huntsville 

December 2023 

 

  Centrifugal nuclear thermal propulsion (CNTP) has potential for supporting 

scientific missions to the outer solar system, shown by investigation of mission and 

vehicle architectures to the outer planets and Kuiper belt. The patched conic method 

provided initial guesses for numerical simulation and relationships between parameters of 

interest for trade studies, recommending engine performance parameters for missions 

supported by CNTP. Results of the patched conic model were validated by comparison to 

numerical results, which were within the expected variance for transit time with identical 

propellant margins based on literature. The trade studies gave a range of performance 

required to close rendezvous missions to the outer planets for 2 mT payload dry mass. 

These ranges were 1200-1800 s, 10-70 kN, and 1.5-4 T/W for direct trajectory transit 

times of 2, 3.5, 7.5, and 10.5 years to Jupiter, Saturn, Uranus, and Neptune. Kuiper belt 
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missions required 1600-1800 s, >60 kN, and >3.7 for transit times between 10 and 16 

years depending on the trajectory type. 
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Chapter 1. Introduction 

1.1 Background on Scientific Missions to the Outer Solar System 

Exploring the solar system is a great challenge given its size and the fundamental 

nature of gravity, and yet this challenge also presents a great reward in the pursuit of 

knowledge regarding our sun and the planets. The outer solar system in particular has the 

potential to answer many questions about the processes that shape planetary systems in 

our past and present [1]. This applies both to the sun and solar system, but also to the 

planets and smaller planetary objects throughout our solar system. In addition, the search 

for other life continues parallel to the pursuit of these questions. The National Academy 

of Science, Engineering, and Medicine is attempting to focus efforts in answering these 

questions for the next decade by recommending specific and achievable missions to the 

outer solar system, such as a mission to Uranus by 2040 [2]. Other reasons, besides 

planetary science, exist as well to explore the outer solar system. These missions often 

require advanced technology, which is either utilized or must first be developed for each 

mission. Especially the technologies of propulsion and communication have seen wider 

development and use as a result of planetary missions [3]. For all the technical benefits 

missions to the outer solar system provide, curiosity and the desire to explore are in 

themselves also driving factors in journeying to the farthest places in the solar system.  

Several missions have been sent to the outer solar system in the past, 

accomplishing a variety of scientific tasks while continuously improving technological 

capability. The Pioneer and Voyager missions were some of the first to visit the outer 

solar system, conducting the first and in some cases only flybys of each of the outer 

planets. Pioneers 10 and 11 were the first spacecraft to visit Jupiter and Saturn, 
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respectively, and continued to make discoveries after their initial flybys [3]. Likewise, 

Voyager I and II pushed the bounds of knowledge by pursuing flybys of all the gas and 

ice giants between the two spacecraft before continuing out of the solar system, making 

discoveries along the way of volcanos on Jupiter’s moon Io and exploring the rings of 

Saturn [4]. Voyager I left the solar system in August 2012, while Voyager II achieved the 

same milestone in November 2018. As of 2018 they were both still sending information 

back to the Deep Space Network from interstellar space beyond the solar system [4].  

There are other more recent missions to the outer solar system whose objectives 

were narrower in scope. These missions involved a flyby or planetary capture of a 

planetary body in order to study the body and its moons in detail. Two planetary captures 

have been achieved around Jupiter, first by Galileo in 1995 followed by Juno in 2016. 

Both missions required gravity assists from Venus and Earth in order to reach Jupiter 

with the allotted program resources and spent many orbits around Jupiter conducting 

science. More details on the need for gravity assist trajectories are given in section 1.2. 

During these missions, particular focus was given to measuring the magnetic field and 

radiation environment near the planet, along with imaging of the atmosphere. Galileo’s 

mission ended in 2003 and was deorbited into Jupiter’s atmosphere, while Juno is still 

conducting research in orbit around Jupiter to this day [5], [6]. Cassini-Huygens 

conducted research in the Saturn planetary system starting in 2004 after a nearly seven-

year journey. In some ways similar to Galileo and Juno, Cassini-Huygens used gravity 

assists from the inner planets to reach Saturn, where it also conducted a variety of 

scientific observations which were sent back to Earth [7] . One of the most recent 

missions to the outer solar system was conducted by the New Horizons spacecraft, which 
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conducted a gravity assist at Jupiter in order to fly by Pluto and its moons. [8] [9]. The 

number and variety of missions to the outer solar system have provided a number of 

scientific discoveries and questions for many of the largest bodies in the outer solar 

system. At the same time, however, they exemplify the difficulty of reaching the outer 

solar system by the technological developments which were required for the missions to 

succeed.  

1.2 Applications of Space Nuclear Propulsion 

Previous missions to the outer solar system, such as Cassini-Huygens and Juno, 

used chemical propulsion and a number of gravity assists in order to reach their 

destination. Due to chemical propulsion being limited to 450 s of specific impulse, 

gravity assists are sometimes used to enable a small vehicle to perform large ΔV’s at the 

cost of a more complex and sometimes longer trajectory. By contrast, nuclear electric 

propulsion (NEP) and nuclear thermal propulsion (NTP) enable new trades of an 

alternative spacecraft architecture for large ΔVs with different requirements for the 

mission trajectory. These trades can be explored by holding aspects of the vehicle or 

trajectory fixed [10]. While NEP and NTP introduce new challenges to spacecraft design, 

new opportunities are gained as well. Examples for each of these are discussed in later 

sections of this work. Already, a considerable amount of work has been done to define 

the use case for nuclear propulsion, and NTP in particular has the potential to support 

different kinds of scientific missions to the outer solar system [11], [12], [13]. In addition 

to meeting needs for spacecraft propulsion, NTP may also be used in other configurations 

to provide for versatile options for power as well [14], [15]. For the case of scientific 

missions to the outer planets, NTP has been shown to have high potential despite its 
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additional drawbacks. Besides scientific missions, however, NTP is also being considered 

for crewed missions and is one of the primary candidates for missions focused on sending 

humans to Mars. As a result, a considerable amount of research involves direct 

application of NTP to Mars rendezvous missions as well as demonstrations which are 

capable of being scaled to that task [16], [17]. 

Solid fuel NTP has a history of testing and development programs, dating back to 

the 1940’s. With the Nuclear Engine for Rocket Vehicle Application (NERVA) program, 

the U.S. Air Force set out to develop an NTP system for intercontinental ballistic missiles 

[18]. The program was then taken over by NASA in the late 1950’s, which proceeded to 

accomplish many full-scale tests over the program’s lifetime. Later programs would 

investigate particle bed reactors as well as the development of ceramic-metallic 

(CERMET) fuels which would each lead to further improvements of the technology [18]. 

In more recent years NASA has again focused on the potential for NTP to support both 

manned and unmanned missions, with recommendations for using the technology in the 

human exploration of Mars, through which insights have been gained in the development, 

operation, and safety requirements regarding NTP systems [19]. In the near future, more 

hardware testing is expected with the continuation of the Demonstration Rocket for Agile 

Cislunar Operation (DRACO) program and the industry progress in manufacturing 

methods for nuclear reactors [20]. 

At a much lower technological readiness level, liquid fuel NTP has not yet been 

physically demonstrated but has also been studied since the 1960s. In contrast to the solid 

phase fuel elements of solid fuel NTP, liquid fuel NTP contains the liquid phase fuel by 

porous membranes which allow propellant to move through or near the fuel [21]. Among 
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several performance advantages, the fuel being liquid phase also removes the risk of fuel 

elements cracking or breaking due to physical and thermal stresses. In 1963, Princeton 

published a full system analysis for a liquid NTP propulsion system, which discussed the 

physical processes and effects which contribute to system operation [22]. Results of the 

analysis include specific impulse and thrust estimates, as well as chemical analysis and 

material selection for the physical system. Additionally, an analysis on radiant-heat-

transfer liquid-core NTP systems was performed at NASA and likewise presented several 

aspects of its possible performance and material makeup [23]. Recently more research 

has been conducted on centrifugal NTP, or CNTP, which contains the liquid fuel in 

centrifugal fuel elements (CFEs) spinning at high RPM to prevent fuel entrainment in the 

propellant stream. In 2020 two papers were presented which laid out some of the 

preliminary analysis and research focal points for further development [24], [25]. Since 

then, universities have continued research into the viability of CNTP, guided by a list of 

challenges presented at the International Astronautical Congress (IAC) in 2021 [26]. 

While many challenges remain, small scale testing of various aspects of the CFEs are 

undergoing research along with other areas of CNTP steady state operation [27]. Static 

models of the CFEs are useful in understanding the behavior of fluid-bubble interactions 

before moving to spinning apparatus which more closely approximate the operation of a 

CNTP system. 

The following work is discussed in sequence by chapters building up to the results 

and conclusions which relate to the two research questions posed in Chapter 2 after 

literature review of the state of the art for the application of spacecraft propulsion. 

Chapter 3 explains the methodology that is utilized to model different trajectories within 



6 

 

chosen mission architectures. Chapter 4 provides an in-depth discussion of a variety of 

vehicle and mission architectures along with their constraints. Next, the corresponding 

results are detailed in Chapter 5. Lastly, conclusions are drawn in Chapter 6 based on 

what the results say about the use-case for CNTP, and future areas of work are also 

discussed in Chapter 7. 
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Chapter 2. Literature Review 

In this chapter, literature is discussed in further detail, which supports the 

formulation of two key research questions. First, the current state of technology for 

missions to the outer solar system is identified in order to establish a case for the 

development of CNTP and the destinations within its potential to reach. Next, modeling 

and analysis of CNTP is explored to better understand previous and current estimates of 

engine performance. Finally, these areas of research are summarized and synthesized into 

research questions to guide this work. 

2.1 Review of Propulsion Technology for Scientific Missions 

In general, there are three major types of propulsion systems which have been 

pursued in use for spacecraft missions. Chemical and electric propulsion in particular 

have seen wide use in spacecraft, and respectively have supported many missions to the 

outer planets and the asteroid belt. Nuclear propulsion, on the other hand, has not seen 

operational use outside of ground test systems, but is currently being pursued as a popular 

option for future crewed and unmanned missions throughout the solar system. Each of 

these systems have pros and cons which prioritize its use in some missions over others, 

and yet there is still a role to be played by future technologies such as CNTP which can 

support missions that would be challenging for other technologies. 

Historically, chemical propulsion has been widely used for missions to the outer 

solar system. As of 2023, 10 space missions have encountered planetary objects beyond 

the asteroid belt and all of these missions were supported by chemical propulsion. Some 

missions consisted of rendezvous with an outer planet, but in order to accomplish the 
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rendezvous one or more planetary fly-bys were required to achieve the necessary ΔV 

within the programmatic constraints. Galileo, Cassini, and Juno all fall into this class of 

mission for their visits to Jupiter, Saturn, and Jupiter respectively [6], [7], [5]. Other 

missions, such as the Voyager and Pioneer probes, conducted fly-bys or gravity assists of 

outer planets without a final rendezvous [3], [4]. Table 2.1 gives details for each of the 

chemical propulsion missions described in this section. 

 

Table 2.1: Summary of Chemical Propulsion Missions to the Outer Solar System. 

Mission Trajectory Type PGAs Destination 

Pioneer 10 [3] Direct None Jupiter Flyby 

Pioneer 11 [3] Single PGA Jupiter Saturn Flyby 

Voyager 2 [4] Multiple PGA Jupiter, Saturn, 

Uranus, Neptune 

Interstellar Space 

Voyager 1 [4] Multiple PGA Jupiter, Saturn Interstellar Space 

Galileo [6] Multiple PGA Venus, Earth Jupiter Rendezvous 

Ulysses [28] Single PGA Jupiter Heliocentric Polar 

Orbit 

Cassini [7] Multiple PGA Venus, Earth, Jupiter Saturn Rendezvous 

Juno [5] Single PGA Earth Jupiter Rendezvous 

New Horizons [9] Single PGA Jupiter Kuiper Belt Flybys 

Lucy [29] Multiple PGA Earth Trojan Asteroid 

Flybys 

 

New Horizons, Ulysses, and Lucy all conducted gravity assists of Jupiter or Earth, 

each for distinct destinations. New Horizons used a gravity assist at Jupiter to reach Pluto 

where a fly-by was conducted of the dwarf planet and other Kuiper belt objects [9]. 

Ulysses also conducted a gravity assist at Jupiter, but rather than another close encounter 

with a planetary object the spacecraft entered a high inclination heliocentric trajectory 
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[28]. Through several Earth gravity assists, Lucy encountered six Trojan asteroids near 

Jupiter’s orbit [29]. In each of these cases chemical monopropellant or bipropellant 

propulsion systems were suited for these missions on account of their high thrust and 

minimal startup/shutdown time, as well as less development work required compared to 

electric and nuclear propulsion. However, the low specific impulse also meant that 

gravity assists were often necessary in order to complete missions within programmatic 

requirements.  

No missions to the outer solar system have yet to utilize electric propulsion, 

however eight missions to the asteroid belt and inner solar system have previously used 

electric propulsion systems ranging from 15 W to 4.6 kW power [30]. Due to their high 

specific impulse, large ΔVs can be achieved with many electric propulsion systems, 

however this comes at the cost of thrust. In many cases, such as with the Dawn or 

BepiColombo missions, long spiral trajectories were required to reach other planetary 

bodies, in these cases Vesta and Ceres or Mercury, respectively [31], [32]. Even with the 

high specific impulse, Hayabusa 2 still required an Earth gravity assist to complete its 

mission to the asteroid 1999 JU3 [33]. In addition to these examples, it is also helpful to 

discuss future potential missions which may be supported by electric propulsion. In a 

response to the call for the 2023 Planetary Science Decadal Survey, a white paper argued 

in favor of the development of a larger 10-kWe propulsion system to be used for 

planetary science in the outer solar system [34]. Among others, these missions include a 

Saturn mission to deliver landers to Enceladus and Titan, a lander mission to 

Triton/Neptune, and a Pluto rendezvous mission. The proposed transit times for each 

mission are 9.75 years, 13 years, and 14.7 years, respectively. On account of the long 
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transit time, the Saturn mission was able to deliver 7200 kg of payload, while the other 

missions were much smaller at 400 kg and 50 kg, respectively. Overall, these proposed 

missions show what is projected to be feasible with high power electric propulsion 

systems. 

Similarly, much of the work regarding interplanetary missions supported by 

nuclear thermal propulsion are in the modeling and analysis stage, due to the low 

technological readiness of the technology. However, historical testing programs have 

been key to understanding the requirements of these potential missions. Namely, 

NERVA, in addition to KIWI and Phoebus, studied multiple operating regimes and 

failure modes which helped to mature the technology of solid fuel NTP [21]. More 

recently, solid fuel NTP has gained interest for both crewed and unmanned missions. On 

the potential of NTP to support manned missions to Mars, historical tests such as 

NERVA are cited as demonstrating many key system elements which can be scaled up to 

meet requirements for manned missions [17]. Kumar has likewise published extensive 

work on the potential for NTP to support scientific missions to the outer planets. 

Specifically, Jupiter and Saturn are prime candidates for the technology although some 

missions to the ice giants have also been studied [13], [19]. Liquid fuel NTP, and 

specifically CNTP, shares many of the strengths of solid fuel NTP. Due to comparable 

thrust and higher specific impulse as explored in the following section, CNTP has 

potential to meet missions of a similar kind to solid fuel NTP, in addition to other 

missions in the far outer solar system. 

This section detailed three distinct propulsion technologies, and their use cases 

related to robotic missions to the outer solar system. First, ten missions to the outer solar 
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system supported by chemical propulsion were discussed. It was shown that all missions 

either required one or more gravity assists to complete the mission, or resulted in flyby 

encounters rather than rendezvous, or both. Next, electric propulsion were shown to have 

supported missions to the inner solar system and asteroid belt, but not for any missions to 

the outer solar system. Lastly, the promise of nuclear thermal propulsion was discussed 

and CNTP specifically was introduced as an advanced technology currently under 

development. The following section provides more detail on the expected performance 

for CNTP systems. 

2.2 Review of CNTP Performance Analysis 

 In addition to reviewing the current state of propulsion technologies for missions 

to the outer solar system, a more in-depth review of CNTP performance is also useful for 

understanding the realm of feasibility with regards to potential engine performance. 

Several types of studies are addressed here which identify strengths of CNTP as well as 

difficulties with future testing and development. Compared to the maximum solid fuel 

NTP performance of 900-1000 s, each analysis shows much higher expected performance 

which may contribute to improvements over solid fuel NTP with regards to payload 

capacity or transit time of missions to the outer solar system. 

 One of the earliest formal analyses done on CNTP was conducted at Princeton in 

1963. The study covered nucleonics, fluid and thermal analysis of fuel/propellant 

interactions, and potential fuel loss as vapor during steady state operation of CNTP [22]. 

The chosen engine configuration chosen is a matrix of spinning centrifuges within the 

reactor moderator, like the CFEs mentioned in the previous chapter. Some of the results 

include key performance parameters for the engine, such as operating temperature and 
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pressure, thrust-to-weight ratios, and specific impulse. A summary of these parameters 

and their values is given in Table 2.2. 

 

Table 2.2: Princeton Study CNTP Performance Values [22]. 

Parameter Value 

Isp 1200 s 

T/W 0.05-0.5 

Operating Temperature 3600-3800 K 

Operating Pressure 3-100 atm 

 

The study focuses on uranium carbide as fuel, and also selected zirconium carbide as a 

dilutant to reduce vapor loss of the fissionable material. CFE rotational speeds are 

concluded to be on the order of 5000 rpm, and further analysis is set aside to investigate 

heat transfer and bubble formation at high G loadings. Finally, assumptions in the areas 

of shutdown transients, material vapor pressures, and nucleonics are recognized as 

needing further research as well. 

 The next major analysis on CNTP was presented in 2020 at an American Nuclear 

Society (ANS) conference, and was coordinated by a diverse team representing Dynetics, 

Southern Research, NASA, Argonne and Idaho National Labs, and The University of 

Michigan [24]. The study presents a similar engine architecture, with 1 m long CFEs 

spun by gas turbines. In-depth performance values are given as 1800 s of specific impulse 

and 5500 K maximum operating temperature, assuming hydrogen propellant. Potential 

applications of storable propellants such as ammonia, methane, or hydrazine are also 

mentioned, citing a specific impulse of 900 s. While more in-depth values are not given, 
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much of the paper is dedicated to modeling and analysis challenges faced in order to 

reduce the risk of technology demonstration. Three key challenges mentioned within that 

section are the CFE cylinder wall mass and heat transfer, centrifuge failure 

accommodation and startup/shutdown transients. Another paper was presented roughly at 

the same time by a similar coalition of universities working with Argonne National Lab 

and NASA. The paper focuses on neutronics of the reactor and displayed many charts on 

sensitivity and relationships of the reactivity coefficient with reactor geometry [25]. 

However, some macroscopic engine performance is also noted, with operating 

temperature and specific impulse cited as 4500 K and 1500 s, respectively. Later in 2021 

at the IAC, a paper presented by NASA, The University of Alabama at Huntsville, and 

Pennsylvania State University combined both of these focuses by investigating key 

challenges to technology development as well as pursuing improvements to reactor and 

engine analysis [26]. A major contribution put forth by that analysis is discussion of 

experimental testing intended to better understand bubble formation and movement 

dynamics within the centrifuge element. Beginning with static apparatus testing using 

Galinstan and nitrogen, the experimental results tie directly to challenges mentioned by 

both the Princeton study and the 2020 ANS paper. Additionally, universities are listed by 

name in association with each of the major development challenges in order to organize 

and prioritize further research.  

 As a result of the key studies and analyses previously presented, research has 

continued to progress in important development areas for CNTP. Particularly in the areas 

of bubble formation modeling and systems modeling, significant progress has been made 

in tackling some of the major challenges listed in previous papers. Two major efforts are 
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being pursued concurrently in the realm of bubble formation. First, a three-dimensional 

bubble dynamics model is being developed to understand how propellant bubbles within 

the liquid fuel behave in a centrifuge [35]. The goal of this model is to fully simulate the 

static and dynamic fluid mechanics inside a rotating CFE and simulate the movement of 

each bubble via the combination of buoyancy, drag, and other pressure effects inside the 

liquid. Simultaneously, an experimental apparatus is being developed to understand 

bubble movement and formation as validation for previous and current simulated data 

[36]. In addition to each of these efforts, comprehensive systems models have been 

designed to predict engine performance for CNTP in the context of tying together 

operation of the reactor with turbomachinery and engine nozzle. Three models have each 

resulted in different CNTP performance results, based on the assumptions and 

methodology used for each model. One of the major assumptions used in all of these 

models is a hexagonal configuration of 19 CFEs within the reactor moderator, as shown 

in Figure 2.1 [25]. 

 

 

Figure 2.1: Axial (left) and Lateral (right) Cross Sections of 19 CFE Core [25]. 
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The models are highlighted here, designated the baseline, upgraded, and 

optimized models respectively. In the baseline model, a power balance tracking enthalpy, 

pressure, and temperature of the propellant supported calculation of engine performance 

through high-level subsystem models [37]. The upgraded model employed much of the 

same methodology while refining the nozzle performance calculations with a focus on 

propellant dissociation and gas kinetics [38]. In the upgraded model, the engine 

geometric configuration was also changed from the baseline case. Lastly, the optimized 

model included a genetic algorithm within a Multidisciplinary Design Optimization 

(MDO) framework to optimize specific impulse [39]. Results for specific impulse and 

thrust from each analysis are given by Table 2.3 [37], [38], [39]. 

 

Table 2.3: Systems Modeling Improvements. 

 Baseline Model [37] Upgraded Model [38] Optimized Model 

[39] 

Specific Impulse (s) 1150 1600 1605 

Thrust (kN) 26 20 49.8 

 

The results of both the baseline and upgraded analysis are used in mission design 

in this work, due to some of this work being completed alongside the systems models. 

Additionally, the values presented in this table do not quite reach the expected 1800 s of 

specific impulse mentioned in previous papers, however this is mostly due to trade-offs 

of thermal and material constraints within the reactor. One specific source of uncertainty 
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is the lack of uranium data above 2500 K, which can then result in large variances for 

material properties at the 5000-5500 K temperatures predicted in the reactor core [39]. 

 Performance studies for CNTP have dated back to the 1960’s, and in this section 

some of the earliest research on CNTP was presented. The early research was then 

contrasted with more recent studies, which predicted higher performance while still 

recognizing some of the major challenges faced by development of CNTP. Lastly, 

specific system and subsystem models were discussed which provided more detailed 

understanding of internal physics of the engine as well as expected performance 

parameters which can be used in mission design. However, with the system models there 

is still a range of performance which is expected from CNTP based on assumptions and 

simplifications currently being made. 

2.3 Research Questions 

Modeling of internal dynamics and fluid interactions is necessary for a detailed 

picture of CNTP operation in addition to neutronics and reactor physics among many 

other topics of analysis, and yet an operational use-case for CNTP has not yet been fully 

defined in relation to desired performance parameters for the system. This thesis is 

intended to provide analysis of several aspects of mission design which can be used to 

influence the development of CNTP for use-cases that reasonably accommodate both its 

benefits and difficulties. Two questions can be used to direct the focus of subsequent 

work: 

1) What mission destinations and trajectories are enabled by CNTP given its inherent 

benefits and constraints? 
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2) What performance parameters for the CNTP engine are sufficient for the mission 

architectures of interest, within the bounds of the system’s physical capability? 

Both research questions are addressed throughout this thesis through the 

following chapters. Due to the close connectivity between the two questions, the 

methodology, analysis, and results which pertain to each question are given concurrently, 

rather than the collection of work relating to one question being discussed followed by 

the work for the second question. 
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Chapter 3. Methodology 

In Chapter 3, methodologies for the models and studies used in this research are 

discussed in detail. First, section 3.1 explains the use of patched conics in the models and 

how these models are structured and utilized. Section 3.2 then discusses the methodology 

used in two trade studies on CNTP engine performance. Finally, numerical analysis is 

covered in section 3.3 which includes its contribution to validation. 

3.1 Patched Conics 

The patched conic method is a basis for the analysis done in this work, as the 

method offers a simple semi-analytic approach to mission design which would otherwise 

require complicated numerical solutions. Patched conics is a two-body approximation of 

orbital mechanics, and in instances where more than one planetary body is present, the 

two body orbits are “patched” together at the sphere of influence change between the two 

bodies [40]. While an analytic model is not accurate enough for final mission design, it is 

often used as a first pass estimate of trajectories. In this way major changes can be made 

quickly, and some of the underlying dynamics of the trajectory can be understood before 

moving to numerical simulations of higher precision. A considerable amount of research 

into interplanetary mission design is done via patched conics, including some analysis for 

scientific missions to the outer solar system as is a focus of this work [41], [42]. In the 

case of planetary missions, accurate ephemeris data for planets are still necessary for 

patched conics despite lower model accuracy overall compared to numerical simulation, 

as much of the calculations are done based on the position of the planets of interest at 

specific times. 
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In mission design for a Mars mission, for example, hyperbolic orbits are used in 

the Earth and Mars spheres of influence for escape and arrival encounters, and these 

hyperbolas are patched to an elliptical orbit in the Sun sphere of influence for the 

majority of the trip. The mechanism by which the orbits are patched together is the 

patched conic equation which relates the spacecraft velocity with respect to the sun and 

the spacecraft velocity with respect to the planetary body by accounting for the body’s 

velocity with respect to the sun: 

𝑉∞
− + 𝑉𝜙 = 𝑉𝐴𝑅        (3.1) 

𝑉∞
+ + 𝑉𝜙 = 𝑉𝐷𝑃.        (3.2) 

Eq. 3.1 displays the velocity relation for a spacecraft approaching a planetary 

body, while Eq. 3.2 is the departing relation. Gauss’s solution to Lambert’s problem is 

utilized to solve for the arrival and departure velocities, by using the planet positions and 

selected time of flight for the mission [43]. The planet velocity is calculated from its 

position ephemeris, by applying Kepler’s equation, 

𝑀 = 𝐸 − 𝑒𝑠𝑖𝑛𝐸,         (3.3) 

and the energy equation, 

𝑉2

2
=

µ

𝑟
−

µ

2𝑎
,     (3. 4) 

to the definition of angular momentum  

ℎ = √(µ𝑎(1 − 𝑒2)),           (3.5) 

which allow the planetary velocity to be converted to an inertial, cartesian coordinate 

system for further calculations [40]. Definitions of periapsis, 

𝑟𝑝 = a(1 − e),        (3.6) 

and ΔV,  

ΔV = |𝑉𝑛𝑒𝑤 − 𝑉𝑜𝑙𝑑|,           (3.7) 
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are also useful in calculating individual departure and arrival maneuvers [40]. To 

calculate the inclination change for direct trajectories, the position of the inclination 

change is found by the orbit equation for a true anomaly 90º before the destination  

𝑟 =
𝑝

1+𝑒𝑐𝑜𝑠𝜈
          (3.8) 

and applying the energy equation once again the velocity at that position is then inserted 

into the equation  

𝛥𝑉 = 2𝑉𝛥𝑉𝑠𝑖𝑛
𝑖

2
,         (3.9) 

which calculates required ΔV for efficient inclination changes [40]. The time to 

inclination change can then be calculated via the definition of mean motion,  

𝑛 = √
µ

𝑎3,             (3.10) 

and Kepler’s equation. Gravity assist trajectories require careful checks of the angle 

swept through by the spacecraft during the encounter, first by matching visvisa  

𝑣𝑖𝑠𝑣𝑖𝑠𝑎 = 𝑉∞ ∙ 𝑉∞         (3.11) 

for the inbound and outbound trajectories. The available turn-through angle then 

determines if the required energy for this match is available given the spacecraft velocity 

𝑐𝑜𝑠𝛿 =
𝑉∞

+∙𝑉∞
−

‖𝑉∞
+‖‖𝑉∞

−‖
        (3.12) 

in a process described by Williams [42]. The turn-through angle is also used to calculate 

the effective ΔV,  

ΔV = ‖𝑉∞
+‖√(2(1 − 𝑐𝑜𝑠𝛿)),    (3.13) 

and departure velocity,  

𝑉𝐷𝑃 = √(ΔV2 + 𝑉𝐴𝑅
2 − 2𝑉𝐴𝑅ΔVcosD),   (3.14) 

for the gravity assist [44]. Appendices B and C give further details for the 

implementations of these expressions to support the larger models. 



21 

 

As a result of the analytic approach for patched conics, calculations are much 

faster than numerical propagation of orbits which account for all three bodies. One major 

assumption which makes this possible is impulsive maneuvers, where maneuvers are 

treated as having infinite thrust and zero burn time, so that orbit changes are made 

instantaneously. The criteria of this assumption being reasonable is dependent on the 

length of the corresponding finite length burn, in addition to the semi-major axis of the 

orbit [45]. The approach for patched conics is only semi-analytic however, as often 

numerical iteration is used to define the solar orbit. Lambert’s problem describes the 

process of solving for the orbital elements of an orbit given only the initial and final 

position of the spacecraft, and the time of flight between the two positions. Solving 

Lambert’s problem gives the solar orbit for interplanetary missions, and multiple 

solutions have been found for problem [40], [44]. The solution used in this work is 

Battin’s method, which is an improvement over one of the original solutions given by 

Gauss [43]. In addition to Lambert’s problem, boundary conditions for the escape and 

arrival hyperbolic orbits are needed as constraints when using the patched conic method. 

These boundary conditions generally come from requirements of the mission and 

spacecraft, such as periapsis altitudes and delta V capability of the spacecraft. Missions 

supported by nuclear propulsion require safe orbits which are considered reasonable for 

the use of nuclear reactors in space where low risk is presented to Earth and infrastructure 

in low Earth orbit. For NTP systems the minimum altitude for Earth escape is 500 km 

while the minimum end-of-life altitude is 1000 km [46]. The safe orbit used for these 

analyses is discussed further in section 3.4. 
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Another major factor in patched conics is planetary ephemeris as a function of 

time, and the source for this data can affect the results depending on the accuracy and 

precision of the data. For this work, planetary ephemeris was acquired from approximate 

formulas from JPL, which are accurate within 600 arcseconds and 1500 km within the 

time frame of 1800-2050 AD [47]. Besides model inputs, the selection method for model 

outputs is also particularly important. For the use of patched conics, when iterating 

through a large number of initial times, there are several criteria which can be used to 

select the most optimal trajectory.  

A figure of merit (FOM) is used when there are multiple parameters of 

importance to the optimization of the output, as is often the case when planning 

interplanetary spacecraft trajectories. In some cases, more complex methods such as 

genetic algorithms or Monte Carlo simulations are adapted to particular search 

parameters [48], [49]. However, there is also precedent for defining a FOM as the sum or 

product of key factors which influence the spacecraft trajectory [50], [51]. In these cases, 

additional parameters are introduced to nondimensionalize the FOM or contributing 

terms to enable direct comparisons and relationships. However, much of the literature is 

focused on low thrust trajectories or low-Earth orbit trajectories; as such a new figure of 

merit must be defined due to the high thrust of CNTP in addition to its application in this 

context to interplanetary missions. Additionally, these figures of merit are concerned 

specifically with the technical optimization of mission parameters, but when it comes to 

mission design technical factors are not the only drivers of decision for mission planners. 

Economic factors heavily effect decision making, and so it is useful to capture some of 

these by keeping in mind the cost of vehicle development as well as the operational cost 
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of the mission [52], [53]. By constructing the FOM from two parameters which relate to 

the cost of different aspects of the mission, minimizing the FOM then minimizes the cost 

of the mission indirectly. 

For this research a figure of merit was formulated utilizing mission ΔV and transit 

time to the destination. Both of these parameters are key to constraining technical aspects 

of interplanetary missions, and only considering one or the other results in infeasibly long 

transfer times or ΔV magnitudes which are unable to be achieved with the prescribed 

launch vehicle or spacecraft constraints. The FOM shown in Eq. 3.15 also accounts for 

both mission development cost, a factor of vehicle size and therefore vehicle mass which 

is constrained by mission ΔV requirements,  and operational cost (a function of total 

mission duration) in finding the optimal trajectory for a particular mission [52], [53]:  

𝐹𝑂𝑀 = 𝐴
𝛥𝑉

𝑉𝐸
+ 𝐵

𝑇𝑂𝐹

𝑃𝐸
.                 (3.15) 

The Earth orbital period and Earth orbital velocity terms are characteristic 

parameters used to nondimensionalize each term. Rather than finding the Earth departure 

date to minimize ΔV for a given transit time, instead both parameters are accounted for to 

achieve a trajectory that balances vehicle size and transit time. As a result, for the ΔV vs 

transit time curves shown in Chapter 5, their minimums do not translate directly to 

Hohmann transfers. The values of A and B are selected so that nondimensionalizing ΔV 

and TOF by the Earth orbital velocity and orbital period respectively does not add 

artificial weight to either term. More specifically, for considering units of km/s for ΔV, 

the magnitude of Earth orbital velocity is 29.783 km/s [44]. So, A = 29.783 in order to 

negate the change in magnitude of the ΔV term. Similarly, for considering units of years 

for TOF, the Earth orbital period is one year and so B = 1. A similar FOM is also utilized 
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for planetary gravity assist (PGA) trajectories, with the ΔV term modified to decrease the 

selected transit time. A weight term is included to account for the much larger ΔVs 

required for Kuiper belt missions compared to missions to the outer planets and can be 

seen in Eq. 3.16: 

𝐹𝑂𝑀 = 0.5𝐴
𝛥𝑉

𝑉𝐸
+ 𝐵

𝑇𝑂𝐹

𝑃𝐸
.       (3.16) 

 The approach for selecting A and B values for PGA trajectories is the same as for 

direct trajectories, however, due to the long transfer times involved, a weighting term 

does need to be added in order to result in reasonable mission transfer times. This extra 

weight, applied as a value of 0.5 to the first term, results in 0.5*A = 0.5*29.783 = 14.892, 

and B = 1. Further details on the implementation of planetary gravity assist (PGA) 

trajectories in this analysis are given in sections 4.4 and 5.3. Further details are also given 

in Appendix A. 

3.2 Trade Studies 

 The patched conic method relates parameters of interest for the two trade studies 

in this work, which involve trading various performance and mission parameters to 

determine some of the driving factors which influence mission capability for CNTP. In 

general, these trade studies look at specific impulse and engine thrust-to-weight ratios 

and how those values affect other parameters such as delta V capability, time of flight, 

and payload mass capability for destinations in the outer solar system. The first trade 

study provides an initial estimate of minimum performance required of CNTP for a 

variety of missions, while the second trade study provides more detailed limits for 

minimum and maximum engine performance which are able to make use of progress in 
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CNTP systems modeling that took place over the timespan of this research. These 

objectives are selected to answer the second research question which is described in 

section 2.3. 

 An outline of the trade study methodology is given here which is used in sections 

5.1 and 5.4. The methodology is adapted in part from the response surface method (RSM) 

[54]. In each case, variables of interest are first identified and then relationships between 

each variable are defined, just as described in RSM. Each of these variables has a range 

of expected values which are used as a part of the study. However, in this case the 

objective is not a simple optimization of a single variable or value. As a result, criteria are 

defined which determine what values are selected for each variable to answer the 

corresponding question. This step is modified from the SMART methodology outlined by 

Edwards, who describes steps 1 and 4 of the process as defining trade objectives and 

collecting metrics [55]. This is similar to defining metrics, or criteria in this case, based 

on the trade objectives which are not necessarily minimizing or maximizing a single 

variable. Grumbach similarly used a hybrid trade methodology to define and validate 

integration principles for complex systems [56]. The individual steps are summarized 

here, and their application is then discussed in detail for each of the two trade studies: 

1) Identify primary and secondary variables of interest  

2) Identify relationships between variables of interest 

3) Identify criteria by which results will be defined 

4) Apply criteria to related variables 

For each trade study, each step is conducted in relation to the specific factors in that 

study, and results of the applied criteria are displayed which in their own way contribute 
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to the research questions mentioned in section 2.3. The second trade study also includes a 

sensitivity analysis of one of the relationships, which is also consequential for results of 

the numerical simulation for direct and PGA trajectories. 

The objective of the first study is finding minimum CNTP performance values in 

order to support missions of varying payload capacities and destinations in the outer solar 

system. Specifically, the study tracks minimum engine performance required to complete 

direct trajectory missions to the outer planets and two Kuiper belt objects. The primary 

variables considered in this study are specific impulse and engine mass. These two 

variables are chosen to represent engine performance since they are the most directly 

relevant to vehicle capability in a patched conic model. These two variables, along with 

thrust, would fully define other engine performance parameters such as thrust-to-weight 

ratio, exhaust velocity, and mass flow rate, however the patched conic model assumes 

impulsive maneuvers where thrust is taken to be infinite. As a consequence, only specific 

impulse and engine mass are considered, and the extension to engine thrust is left for the 

second trade study. Secondary variables are also included in the first trade study in the 

form of launch vehicle type and payload mass, with both being used to vary constraints 

on the CNTP injection stage. These variables are chosen as they fully define constraints 

on the CNTP injection stage for direct trajectory missions to each of the destinations in 

the outer solar system. 

The relationships used to define the primary and secondary variables consist of 

the rocket equation and a mass balance of the CNTP vehicle which relates volume 

constraints from the launch vehicle to volume and mass of the vehicle components such 

as the spacecraft payload, propellant tank, and CNTP engine. The basis for both of these 
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relations can be found in Elements of Spacecraft Design [57]. Two criteria for the first 

trade study are defined, with the first being the average engine mass which closes the 

mission over the solution space, and the second minimizing the specific impulse at the 

average engine mass. These criteria are chosen to select a single operating point (one 

engine mass and one specific impulse) which are attributed to a combination of 

secondary variables that represent the required capability of CNTP for that mission. The 

applications of these criteria are shown along with the results in section 5.1.  These 

results are improved upon by the second trade study.  

The objective of the second trade study is to investigate how changes to CNTP 

engine performance change overall mission capability to the outer planets. Given a range 

of payload masses, this study selects a range of CNTP performance parameters which 

best deliver those payload masses to each of the gas giants and ice giants with criteria 

specifying the minimum and maximum performance values. The primary variables of 

interest for this study are specific impulse, thrust, and engine mass, with all three 

parameters being directly relevant to vehicle architecture design as well as constraining 

other engine performance parameters as mentioned within the methodology of the first 

trade study. Required vehicle ΔV and engine operating temperature are chosen as 

secondary variables, with operating temperature simplifying a portion of the analysis by 

relating specific impulse and thrust for a given engine mass. Vehicle ΔV is selected for 

each destination via the FOM discussed in section 3.1, rather than varying the ΔV or 

transit time for each destination which significantly complicates the analysis. Besides the 

relationships used in the first trade study, performance curves for the engine specific 

impulse and thrust as a function of reactor temperature are used to constrain the variables, 
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and an analytical approximation for gravity losses developed by Robbins is used to relate 

thrust to the other variables [38], [45]. 

Two criteria are used to select ranges for each engine performance variable by the 

corresponding payload mass delivered to the destination. The criterion for minimum 

performance is limited by physical payload capability within the range of values 

considered in the analysis. The variable ranges come from previous analysis of mission 

design or CNTP systems modeling and are detailed specifically in section 5.4. The 

criterion for maximum performance is also limited by payload capability, with the 

specific values used as cutoffs explained in section 5.4. The second trade study is split 

into two separate analyses, each answering the second research question in a different 

context. The first analysis treats the three performance parameters as unconstrained, 

treating the engine as a black box with an unknown number and geometry of CFEs. The 

second constrains the CNTP engine to a single configuration, with 19 CFEs of a 

particular size and geometry, which allows specific impulse and thrust to be directly 

related to each other for a constant engine mass. The purpose of both analyses is to 

compare the performance requirements for a specific configuration with the general 

performance requirements, as a template for one method of comparison for specific 

engine configurations in future research.  

Once both configurations are discussed, a sensitivity analysis is performed on the 

FOM in order to show the effects of different weights on the ΔV and TOF terms. This 

analysis is based in part on the Brown-Gibson method, which nondimensionalizes a 

figure of merit for scoring criteria and then applies α and 1-α weight terms, with α 

ranging from 0-1, to show how weighting the selection criteria changes results for the 
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selected alternative [58]. The sensitivity analysis in this work utilizes the varied α weight 

to vary dependence on the FOM on ΔV and TOF, however the outputs are not used to 

select alternatives based on scoring but rather to display how robust results of analyses 

such as the numerical simulations and trade study are to changing weights of the FOM.   

3.3 Trajectory Simulations 

 Another use case of patched conic results is as initial conditions for numerical 

propagation of orbital trajectories. For numerical simulations, initial values must be 

inputted for delta-Vs, time of flights, and other parameters which are then converged with 

numerical propagators. In addition to the patched conic models providing initial values 

for numerical simulations, the numerical simulations in turn provide validation for the 

patched conic models. The simulations converge on results which can be compared to the 

patched conic models, and percent error can be calculated from the differences in mission 

ΔV and transfer time. Some differences in results are due to simplifications made in the 

patched conic models, such as ignoring three body effects or gravity losses, and this does 

lead to an increase in error between models.  

 In order to validate the patched conic models, results of the numerical simulations 

are compared to patched conic results to show the initial guesses were close to the final 

trajectories. Due to the differences noted above, a variance can be expected between the 

two sets of results. The magnitude of this variance depends on the mission, but for a 

direct trajectory to Mars the variance between patched conics and commercial software 

has been shown between 0.2% and 8.14% [59]. Results in this work are expected to 

potentially show higher variance than this, due to higher ΔV maneuvers incurring more 

gravity losses and being further from the impulsive assumption than smaller maneuvers. 
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To measure variance between the patched conic models and numerical simulation, the 

vehicle size and shape is matched with less than 1% variance in leftover propellant 

margin. The transit time of heliocentric trajectories are modified to meet this constraint, 

and the variance in transit times is measured to establish how well patched conics 

predicted the trajectory. If the variance in transfer time between the patched conic model 

and numerical simulation is close to or less than the variance measured by Park and 

Wright for a variety of different cases, then the patched conic model will be considered 

valid for use in further analysis.  

In this thesis the numerical simulations are conducted using AGI’s System Tool 

Kit (STK) software, which relies on several built-in functions for propagation. Astrogator 

is the basis for the simulations and is useful for a variety of orbital mechanics analysis 

[60]. Within Astrogator differential correctors are used to modify each subsequent 

iteration of values until constraints are matched, and capability also exists to optimize the 

results from these correctors [61]. For the sake of simplicity, the numerical simulations in 

this work are non-optimized since much higher priority is given to finding possible or 

reasonable trajectory solutions rather than the optimal solution. 
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Chapter 4. Vehicle and Mission Architectures 

In Chapter 4, further detail is given on the architectures and constraints used to 

generate results. Section 4.1 discusses the system analysis which is built upon by the 

mission design, and how improvements to the system model lead to differences in results. 

Sections 4.2 and 4.3 focus on the CNTP injection stage design in terms of constraints 

given by the launch vehicle as well as considerations for the injection stage payload 

which is delivered to the destination. Choices for the mission architecture also 

substantially affect results, and these choices are the subject of section 4.4. Lastly, section 

4.5 lists some of the constraints on the mission architecture.  

4.1 CNTP System Analysis 

The analyses in this research performed on the mission and vehicle architectures 

for CNTP depend primarily on models predicting the performance of CNTP in various 

conditions. Early mission design analysis which uses a specific impulse of 1150 seconds 

is based on a systems model of CNTP which includes analysis of turbomachinery, CFEs, 

and nozzle thermodynamics with the enthalpy of propellant tracked throughout the 

system [37]. This initial analysis identifies how significantly an increase in specific 

impulse affects transit time and vehicle size for a similar vehicle architecture. 

Performance parameters used in this instance are different than those used in numerical 

simulations, due to this work being carried out in parallel with development of updated 

CNTP systems models. As a result, more up-to-date numbers were not available at this 

time. While this portion of the analysis utilizes a different version of the systems model, 

the specific performance parameters used are not as important as what the difference in 
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performance between solid fuel NTP and CNTP says about the potential applications of 

CNTP. Since the systems model gives very conservative estimates of performance in this 

case, results showing increased capability of CNTP compared to solid fuel NTP would be 

exaggerated further by using a more updated model.  

Later results utilize an upgraded version of this systems model, which includes 

higher fidelity modeling and especially focuses on the effects of dissociation of the 

propellant at high temperatures [38]. This upgraded model is used for high-performance 

simulations by selecting a single operating point for engine performance. Table 4.1 

summarizes the different CNTP systems models used in each of the results topics, and the 

performance parameters of each model. 

 

Table 4.1: Application of Different Systems Model Versions.  

Application Model Version Performance 

Initial Trade Study N/A Varies 

Comparative 

Analysis 

Baseline Model [37] Isp: 1150 s 

Thrust: 26 kN 

Outer Planet 

Simulations 

Upgraded Model [38] Isp: 1600 s 

Thrust: 20/30 kN 

Kuiper Belt 

Simulations 

N/A Isp: 1600-1700 s 

Thrust: 60 kN  

Final Trade Study Upgraded Model [38] Varies 

 

High-performance simulations to the Kuiper belt do not use the same performance 

parameters described in the upgraded model as the outer planet simulations, due to 
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necessary changes to specific impulse and thrust in order to close the missions. However, 

the new specific impulse and thrust are still within the ranges of potential performance as 

described in the model. In this case, increases to reactor operating temperature and 

changes to moderator material are sufficient to realize the higher performance [38]. The 

final trade study is also based on the upgraded model for a portion of the analysis, 

although rather than using a single performance point the temperature curves for specific 

impulse and thrust are included in their entirety. Since this trade study is intended to 

show the effects of changes in engine performance on injection stage capability, sections 

with constrained engine configurations (meaning the number and size of CFEs are the 

same as used in the upgraded systems model) as well as unconstrained engine 

configurations are used to illustrate these effects. The other portion of the final trade 

study analysis does not use a systems model to predict CNTP engine performance as a 

result. The topic of different system model versions is also addressed in Chapter 5, when 

results are given along with the system performance applied to the CNTP engine. 

4.2 Vehicle Architecture 

Spacecraft are complex systems, with many subsystems and components 

necessary for mission success. For mission design analysis with CNTP, a simplified 

model is used for the vehicle. In this case, the injection stage consists of just the engine 

and propellant tank, with the spacecraft bus and payload attached to the opposite end of 

the tank. Throughout this work, the term ‘injection stage’ refers to the combination of 

CNTP engine and propellant tank, while the term ‘vehicle’ refers to the combination of 

injection stage and spacecraft payload. Figure 4.1 displays a graphic of this vehicle which 

is borrowed from similar analysis of solid fuel NTP missions [13].  
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Figure 4.1: Approximate CNTP Vehicle Architecture. 

 

The required engine mass and geometry is pulled from the CNTP system analysis, 

as is engine performance, and sizing the propellant tank requires iteration to derive the 

needed mass and volume. To this end several sources are utilized to better understand 

how spacecraft and propulsion system mass relate to each other [62], [63], [64]. The 

propellant tank is iteratively solved due to increases in tank mass requiring more 

propellant to accelerate the extra mass, and in turn more propellant requires a larger tank. 

Insulation is also accounted for, due to liquid hydrogen being the propellant of choice 

which must be kept in a liquid state for long periods of time. Passive and active solutions 

for this problem are feasible, with some research showing little to no active cooling 

necessary for long periods of time in deep space [65], [66], [67]. Propellants other than 

hydrogen also have potential in use with CNTP, such as methane or ammonia, especially 

for those that are not cryogenic which would greatly simplify the stage design. Heavier 

propellants will also decrease specific impulse, although this is not a major concern for 

missions where high specific impulse is not required. In this work, hydrogen is the 

propellant of choice as a result of its use in the systems models discussed in the previous 

section.  
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The spacecraft bus size is scaled to the mass for each mission, and in general is 

defined as an input to the models. Since many of these values dependent on each other to 

some extent, there is a large collection of parameters which are needed to fully define the 

CNTP injection stage and payload. The key parameters are listed in Table 4.2. 

 

Table 4.2: Key Vehicle Sizing Parameters. 

Parameter Value Range Units 

Engine Parameters 

Specific Impulse [25], [37] 1150-1800 s 

Thrust [38] 10-70 kN 

Engine Mass [38] 1650-4000 kg 

Length / Diameter [24], [68] 5 / 2 m 

Tank Parameters 

Propellant Density [62] 71 kg/m3 

Ullage Volume Fraction [13] 1.03  

Insulation Area Density [62] 2.88 kg/m2 

Propellant/Tank Mass Ratio [62] 0.128  

Payload Parameters 

Dry Mass [5] [69] [70] 800-5000 kg 

Length / Diameter [5] [69] [70] 1.5-4.5 / 3-5 m 

Payload Mass Fraction [71] 0.4-0.5  

CNTP Vehicle Parameters 

Required ΔV 8-24.5 km/s 

 



36 

 

The considered value range of each parameter is listed for the variance across 

simulations and trade studies. Throughout the proceeding analysis, several of these 

parameters act either as constrained inputs or as free variables depending on the intent of 

a particular section of analysis. Specific impulse, for instance, is an output in the first 

trade study constrained by launch vehicle volume, although in other analyses it is used as 

an input. The value range is the result of analyses giving high and low estimates of CNTP 

performance, respectively from Gates and Schroll [25], [37]. Meanwhile the value range 

for thrust, while at first is based on further analysis from Schroll, is extended to 

incorporate other potential engine configurations in the second trade study [38].  

Physical parameters for the engine such as mass and size are also acquired from a 

variety of sources. Conversely from the thrust, engine mass is at first constrained by 

launch vehicle fairing volume for a variety of missions in the first trade study, and the 

range is extended to include analysis from Schroll which predicts lower values [38]. The 

engine size is selected first in consideration of the 1 m long CFEs and roughly 1 m wide 

reactor, in addition to estimates of nozzle and turbomachinery sizes which are considered 

similar to that of the RL-10 engine [24], [68]. The values utilized for hydrogen propellant 

density, tank insulation area density, and tank mass ratio are all acquired from a source 

on estimating tank sizes for launch vehicles and spacecraft from the University of 

Maryland [62]. The ullage volume fraction is chosen so that 3% of the tank volume is 

dedicated to ullage gases, which allow the pressure of the tank to be precisely controlled. 

The increase in tank volume for ullage gases is consistent with the methodology used by 

Kumar for similar analysis of scientific missions to the outer planets using solid fuel NTP 

[13].  
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The results of the second trade study give a wide range of payload dry masses, 

which are largely constrained by the launch vehicle fairing volume. In many of the 

simulations, however, two specific masses are selected to simplify the analysis and 

results. In these cases, the values of 800 and 2200 kg are chosen as representatives of 

NASA New Frontiers and Flagship class missions such as OSIRIS-REx and Galileo, 

respectively [69], [70]. In the first trade study, 1600 kg is also used as a ‘medium’ sized 

payload to contrast with the other selected values as a comparison with another New 

Frontiers mission, Juno [5]. Similarly, payload length and width are chosen to 

approximate spacecraft sizes with certain masses based on the same historical data. The 

payload mass fraction is chosen to give the scientific spacecraft roughly 1 km/s of ΔV, 

similar to the station keeping capability of Cassini, which is ample propellant for station 

keeping over the duration of a 4-5 year science phase [71]. In general, however, required 

ΔV is derived from patched conic models for a given mission architecture. Each listed 

parameter is an input to determine the mass of propellant and propellant tank which make 

up the vehicle, and all feed into the vehicle constraints discussed in the following section. 

4.3 Vehicle Constraints 

Major constraints on the size and mass of the CNTP injection stage come from the 

fairing size and payload capacity of the launch vehicle used to lift the injection stage into 

its parking orbit. One major constraint put on the vehicle is that only one launch be 

required to lift it into orbit, precluding the need for orbital assembly which would 

dramatically increase the cost and complexity of the mission. Launch vehicle size and 

launch mass constraints for several launch vehicles considered in this analysis are 

summarized in Table 4.3.  
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Table 4.3: Launch Vehicle Constraints. 

 Fairing Length (m) Fairing Width (m) Maximum Payload 

to 2000 km (mT) 

Vulcan Heavy 21.5 5.2 ~26 

New Glenn 21.9 7 ~45 

Starship 18 9 ~100 

 

  Each of these values were acquired from company websites or user manuals 

oriented to specifics of the launch vehicle for potential customers [72], [73], [74]. 

Considerations for these vehicles are given due to large fairing sizes combined with 

relatively low projected cost. 

4.4 Mission Architecture 

Two standard architectures are chosen for missions which are modeled for this 

research. Using the same architecture in both trade studies and numerical simulations 

allows for more easily comparing data, as well as more cohesive conclusions being drawn 

from consistent results. Missions to the outer planets are designed using direct 

trajectories, with no additional encounters between Earth and the destination body. This 

architecture is also utilized in the initial and expanded trade studies. For simulating 

missions to the Kuiper belt, a different architecture is also presented. Due to the long 

transit times and high ΔV necessary, trajectories using PGAs are investigated in order to 

lower the required ΔV and lower engine performance requirements. However, this comes 

at the cost of less frequent launch windows as discussed in section 5.3.  
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In both architectures, the CNTP vehicle begins in a circular parking orbit around 

Earth at 2000 km altitude. This orbit is chosen for two primary reasons – first, the altitude 

is high enough to be considered safe from the perspective of the nuclear reactor if the 

propulsion system fails [46]. However, the safe graveyard orbit listed in the referenced 

source is only 1100 km. The chosen altitude is much higher than the minimum required 

for safety purposes due to the performance capability of chosen launch vehicles. Since 

the CNTP injection stage is volume constrained rather than mass constrained on the 

launch vehicle, there is extra margin in the chosen launch vehicles’ capabilities beyond 

lifting the injection stage to 1100 km. In order to take full advantage of the launch vehicle 

capability, the parking orbit is extended to 2000 km to reduce the ΔV required of the 

injection stage to reach its destination in the outer solar system. The full parameters of 

this orbit used in numerical simulations are given in Table 4.4. 

 

Table 4.4: Earth Escape Orbital Parameters. 

Orbital Parameter Value 

a 8314 km 

e 0 

i 28.5⁰ 

Ω 0⁰ 

ω 0⁰ 

 

The first major maneuver is conducted by the CNTP engine, pushing the vehicle 

out of Earth orbit and onto a heliocentric trajectory toward the destination. At this point, 

the concept of operations (CONOPS) of each architecture diverges and the vehicle 
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undergoes different steps depending on the mission. Figure 4.2 displays the CONOPS of 

direct trajectories, using Jupiter as an example, followed by a summary of the major 

events. 

 

 

Figure 4.2: Direct Trajectory CONOPS. 

 

For direct trajectories, after a period of coasting, a small correction maneuver is 

performed to align the vehicle with the correct inclination angle of the destination. In this 

research, the CNTP engine was used for the correction burn but in future cases a 

chemical thruster could be considered to decrease the number of restarts required for the 

nuclear engine. Using a chemical thruster for the correction burn may increase or 

decrease propellant usage depending on the start-up propellant cost for the CNTP engine, 

however it would make more sense operationally to use a chemical thruster for small 

maneuvers due to their much shorter transient start-up/shut down phases.  Additionally, 
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the correction maneuver could be combined with the escape burn near Earth to conserve 

propellant. However, not only does this incur higher gravity losses being closer to a large 

gravity well but it also makes convergence more difficult in numerical simulations for 

larger inclination changes. For this reason, these maneuvers are kept separate for direct 

transfers. After the correction burn, the vehicle encounters a long coast phase to the 

sphere of influence of the destination body. 

The CONOPS for PGA trajectories is shown by Figure 4.3 with Pluto as an 

example. For both Kuiper belt objects presented in Chapter 5, a flyby of Jupiter is 

conducted in order to gain additional ΔV required to reach the far away dwarf planets.  

 

 

Figure 4.3: PGA Trajectory CONOPS. 

 

In this case, the escape and correction maneuvers are combined since the small 

inclination of Jupiter, the body providing the gravity assist, does not dramatically 
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increase the difficulty of closing the mission. As a result, after the departure maneuver 

from Earth, the vehicle experiences a coast phase until it arrives at the sphere of influence 

of Jupiter. An effective ΔV is gained by the flyby, and after the encounter the vehicle 

coasts once again out to the Kuiper belt object. At this point, the capture maneuver is 

conducted similarly for direct and PGA trajectories. 

The final maneuver is conducted by the CNTP engine, which slows down the 

vehicle into a capture orbit around the destination. While this maneuver could be done by 

the chemical engine on the scientific spacecraft, it is more mass efficient to accomplish 

this with the higher performance injection stage. Results backing up this selection are 

shown in section 4.2. This is a highly elliptical polar orbit, with an eccentricity of 0.95-

0.96 targeted for this analysis, and a period between 30 and 60 days depending on the 

destination. After the capture is complete the propellant tank and CNTP engine separate 

from the scientific spacecraft and are discarded. Lastly, the science phase may commence 

using the spacecraft bus and payload, which is outfitted with its own propulsion system. 

Station keeping during the science phase is not within the prospective use case for CNTP, 

due to the need for small and precise maneuvers for which chemical propulsion is better 

suited.  

4.5 Mission Constraints 

Planet ephemeris, or positions as a function of time, are the greatest constraints on 

the mission architecture. For direct trajectories, the transfer angle between the body of 

departure at time of departure and body of approach at time of arrival strongly influences 

the amount of delta V required to complete the trajectory. In general, the lowest ΔVs are 

going to be closest to a Hohmann transfer, while trajectories faster or slower than that 
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will incur penalties to delta V [40]. The alignment of planets is especially important for 

gravity assist trajectories, where a small perturbation of the planet in either direction 

results in largely different trajectories for the spacecraft. Another constraint for gravity 

assists is the available turn-through angle versus the required turn-through angle. If the 

required energy of the spacecraft is greater than the amount of energy gained from the 

planet over the course of the encounter, the following solar trajectory is not able to send 

the spacecraft to its intended destination at the proper time [42]. 

Requirements of the science phase of the mission also have an impact on the 

mission trajectory. Historically, polar orbits are beneficial for science missions due to the 

large variety of latitudes which can be seen by spacecraft over the course of an orbit. To 

ensure a reasonable length of science phase, additional propellant mass is accounted for 

in both the numerical simulations and case studies for this research. The spacecraft is 

outfitted with enough propellant for 4-5 years of science operations once the CNTP 

injection stage has been discarded. The amount of propellant ranges from 400-900 kg, 

depending on the dry mass of the spacecraft, and corresponds to a mass fraction of 

roughly 1.4. For a payload dry mass of 2200 kg, for example, 900 kg of propellant is kept 

for station keeping.  

4.6 Summary 

 As described in the previous five sections, mission and vehicle architectures are 

carefully selected for the analysis conducted in this work. In addition, constraints on 

these architectures are important to recognize for their application. First, systems models 

of CNTP are discussed and reasoning is given for using different models in different 

sections of the analysis. Next, a simplified vehicle architecture is shown containing a 
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CNTP engine, propellant tank, and scientific spacecraft/payload. Constraints on this 

architecture are also discussed, including constraints on the propellant tank size from the 

launch vehicle fairing volume and on vehicle mass from launch vehicle payload 

capability. Mission architectures are then illustrated via two CONOPS diagrams, and 

details on each maneuver and orbit are given as well. Several constraints on missions are 

listed, namely for geometry of gravity assists and science phase requirements. These 

architectures and constraints are applied in chapter 5, where two trade studies are 

presented on missions to the outer solar system along with patched conic and numerical 

models of detailed trajectory cases.  
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Chapter 5. Results 

 In Chapter 5, multiple analyses of different types are utilized to investigate how 

CNTP compares to solid fuel NTP, as well as determine the range of CNTP performance 

parameters best used for each mission architecture. In section 1, an initial trade study is 

done to estimate the minimum required performance for direct transfers to the four outer 

planets and two Kuiper belt objects. In section 2, a conservative estimate for CNTP 

performance is compared to solid fuel NTP to highlight differences in trajectory design 

and capabilities between the two technologies. These first two analyses provide setup and 

context for the later results, which are meant to directly answer the research questions set 

up in Chapter 2. Section 3 uses numerical simulation to validate the patched conic 

models, as well as provide a general capability baseline for CNTP with a specific set of 

performance values – this analysis addresses the first research question. Lastly, section 4 

displays a more in-depth trade study that investigates a wide range of CNTP performance 

and its effects on payload capacity to the outer planets, which responds to the second 

research question. 

5.1 Initial Trade Study 

Initially, a major question with regards to determining the use case for CNTP is 

what performance values could be best used as metrics for CNTP. An early analysis uses 

specific impulse and engine mass as performance metrics to analyze the minimum 

requirements for a variety of missions. Focusing on direct trajectories to the four outer 

planets and two Kuiper belt objects, patched conics is first used to determine the required 
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ΔV to reach each destination as a function of time using direct transfers. Figure 5.1 

displays these relationships. 

 

Figure 5.1: ΔV Requirements for Outer Solar System Missions. 

 

 At first glance it seems that the minimum of each curve corresponds to a 

Hohmann transfer to each planetary body, however this is not the case in this instance 

due to the chosen figure of merit. In addition, for this analysis individual points on the 

curves were selected rather than iterating through the full dataset. These points are 

marked in the figure as well. Another major takeaway from Figure 5.1 is the lower ΔV 

requirement for Quaoar compared to Pluto, given the same transfer time. Despite Quaoar 

being further from the sun than Pluto by about 4 astronomical units (AU), its inclination 



47 

 

is so much lower, 7 degrees versus 17 degrees, that the larger departure ΔV is offset by 

the much smaller inclination change maneuver [75]. 

 The next major step in this preliminary trade study was to make assumptions 

about the mass of the CNTP injection stage as well as the payload. Both mass and 

volume are needed as constraints to fully integrate the spacecraft model with a reasonable 

launch vehicle to deliver the system to Earth orbit. For a given payload mass and volume, 

the rocket equation can be used to calculate the amount of propellant needed. In addition, 

estimations of tank mass and insulation can be used to fully define the CNTP injection 

stage within the launch vehicle [62]. The parameter space which allows the missions to 

close can then be generated, such as Figure 5.2 which shows the mission space for a 

mission to Jupiter with a Vulcan Heavy launch vehicle.  

 

 

Figure 5.2: Feasible Engine Performance Based on Launch Vehicle for a Jupiter Rendezvous Mission. 

 

Launch Vehicle Volume Constraint 

Feasible 

Infeasible 
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 The launch vehicle volume constraint is met when the CNTP injection stage and 

payload fill all available space in the launch vehicle payload fairing, and no more 

propellant can be fit without unconventional propellant tank shapes. Below the volume 

constraint line, the combination of engine specific impulse and mass result in a closed 

mission, while the line itself represents the maximum engine mass for a given specific 

impulse. To achieve these results, several assumptions had to be made including density 

of the payload and volume of the CNTP engine. A point can be chosen for average 

engine mass (in this figure, roughly 4000 kg), which then gives the minimum specific 

impulse required for that mission. These points can be collected for a wide variety of 

destinations, payload sizes, and launch vehicles, which results in the data shown in Figure 

5.3 and Figure 5.4. The destinations and launch vehicles are labelled for each set of data, 

and the three bars of similar color for each destination correspond to payload dry masses 

of 2200 kg, 1600, and 800 kg, respectively.  

 

 

Figure 5.3: Minimum Specific Impulse Requirements for Initial Trade Study. 
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Figure 5.4: Maximum Engine Mass Requirements for Initial Trade Study. 

 

The three bars of each color correspond to payload dry masses of 800, 1600, and 

2200 kg, which is shown for destinations including the gas giants, ice giants, and two 

Kuiper belt objects. Some limitations on the bounds for these figures are 25 km/s of ΔV 

and 26-degree inclination, which are both roughly limits on vehicle capability assuming 

only one launch to orbit of the CNTP injection stage and payload combined. The launch 

vehicle also introduces constraints into the feasible mission trajectory. For the Vulcan 

Heavy, missions to the Kuiper belt do not close with a transit time of 20 years or less for 

any of the payload classes. As a result, the Vulcan Heavy has no data for those 

destinations in Figures 5.3 and 5.4. One additional note is that the relative constancy of 

the engine mass is an artifact of the method used to identify the minimum specific 

impulse requirement. Since the specific impulse is taken at the average possible engine 
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mass, then engine mass is less susceptible to change than the specific impulse 

requirement.  

From these results, ranges of interest can be selected for each factor to facilitate 

further analysis. Specifically, for specific impulse the range of 1200-1600 s exceeds or 

meets the minimum criteria for most missions to the outer planets. Likewise, 1600-1800 s 

looks to be necessary for missions to the Kuiper Belt with the given launch vehicle 

constraints. In general, engine masses below 3000 kg are below the maximum 

requirements for engine mass in outer planet missions, while Kuiper Belt missions will 

require engine masses below 2500 kg for the majority of missions using the described 

launch vehicles. The engine mass ranges described here are viable as compared to engine 

mass estimates for solid fuel NTP, which can be as low as 30% less than the 4000 kg 

from Figure 5.4, or when compared to initial estimates of CNTP reactor mass of 1300 kg, 

which is expected to be more massive than the turbomachinery or nozzle subsystems 

[13], [24].  The reactor mass of 1300 kg is confirmed by an unpublished presentation 

from The Ohio State University, which gives a detailed breakdown of reactor component 

masses and totals 1336 kg [76]. The mass of the turbomachinery and nozzle are 

approximated via data for the RS-25, which is roughly similar in size and mass flow rate 

to the CNTP engine and add 300-400 kg to the engine mass [68]. An analysis by Schroll 

uses these approximations to give a T/W ratio for CNTP of 1.3, which fits within the 

bounds of Figure 5.4 for engine thrust less than 51 kN [38]. 

In summary, the patched conics method is used to identify relationships between 

transfer time and ΔV to various destinations, which are used to size the CNTP injection 

stage. Making assumptions for size of CNTP engine and payload, the vehicle is shown to 
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be volume constrained rather than mass constrained from launch vehicles, which provides 

boundaries on two performance parameters chosen for the engine. At this point, CNTP 

looks to be feasible for many scientific missions to the outer planets, and possibly for 

missions to some Kuiper belt objects. The minimum criteria can then be used with the 

patched conic model as initial guesses for numerical simulations performed in STK. The 

transit times to each destination are frozen in this study, and a wider variety of 

trajectories are pursued by the trade study described in section 5.4. 

5.2 Preliminary Comparative Mission Analysis 

 One of the first numerical simulations conducted within this research compares 

the performance of solid fuel NTP to estimates of CNTP performance from preliminary 

systems analysis. The systems analysis carried out by Schroll utilizes an engine 

configuration employing 19 CFEs which results in performance as given in Table 5.1 

[37]. Likewise, the performance values for NTP which are used for this comparison are 

also included [13]. 

 

Table 5.1: Early Approximation of CNTP vs NTP Performance. 

Metric CNTP Value NTP Value 

Number of CFEs 19 N/A 

Mass Flow Rate 2.4 kg/s 7.56 kg/s 

Thrust 26 kN 66.7 kN 

Specific Impulse 1150 s 900 s 
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 The major differences shown in Table 5.1 display some trades between CNTP and 

solid fuel NTP. While CNTP has significantly higher specific impulse, in this case the 

thrust is much lower. Additionally, the CNTP specific impulse is much lower than other 

estimates at 1600-1800 s – the purpose of using this data, which are more conservative 

than other models that predict much higher performance, is to highlight the differences in 

trajectory design for two NTP technologies. Since the analysis was performed parallel to 

the engine modeling, the more conservative data are what was available at the time 

within the current CNTP research. Despite the opportunity to rerun these results with 

later systems models, the results shown here are sufficient to convey the similarities and 

differences in CNTP and solid fuel NTP mission analysis. As a preliminary study, these 

results are important in that better capability for CNTP compared to solid fuel NTP as a 

result of the increased performance would mean an even wider gap in capability for 

CNTP vehicle architectures utilizing the higher predicted performances of later models. 

Using these performance values, an injection stage can be sized by constraints from the 

engine and chosen launch vehicle. The CNTP injection stage is fitted to constraints for 

Vulcan Heavy in this case, which also fits in New Glenn. Subsystem masses are given in 

Table 5.2 for both CNTP and solid fuel NTP once again. 

 

Table 5.2: Mass Components of Spacecraft and CNTP/NTP Vehicle. 

Component CNTP Mass (kg) NTP Mass (kg) 

Engine 3,800 2,560 

Propellant Tanks 2,000 2,200 

Injection Stage Propellant 11,900 12,650 

Spacecraft Onboard Propellant 900 2,050 
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Spacecraft Bus and Payload 2,300 2,300 

Total Wet Mass 20,900 21,760 

 

The systems model utilized for this analysis did not include a mass estimate for 

the engine, so to estimate the CNTP engine mass a conservative number was derived 

from the results in section 5.1. As shown in Figure 5.4, a mission to Jupiter for CNTP 

using a ULA Vulcan Heavy requires an engine mass no more than 3800 kg, and so this 

value was chosen as a ‘worst case scenario’ for this simulation. Despite this considerable 

difference in engine masses, the CNTP injection stage requires less propellant overall as a 

result of the higher specific impulse. Additionally, the CNTP and solid fuel NTP vehicles 

utilize slightly different CONOPS which account for the significantly lower amount of 

propellant onboard the scientific spacecraft. As mentioned in section 4.4, the CNTP 

engine is used for the capture burn at the destination, while the solid fuel NTP CONOPS 

consists of discarding the injection stage after a deep space correction. Using the CNTP 

engine for the capture burn is not an arbitrary decision, but an optimization for the 

performance qualities and vehicle architecture requirements for CNTP. As an example, 

Figure 5.5 displays a comparison of vehicle mass using a CNTP capture burn versus a 

chemical capture burn, with the injection stage being discarded after the correction 

maneuver. This comparison is made for a mission to Jupiter with a Vulcan Heavy launch 

vehicle. 
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Figure 5.5: Mass Penalty of Chemical Capture Burn. 

 

With higher specific impulse, the increased performance by using the CNTP 

engine increasingly overcomes the mass penalty of carrying the heavy propellant tank 

and engine rather than discarding them earlier in the flight. The extent to which this result 

is true for CNTP depends on the specific impulse, and in this case with a specific impulse 

of 1150 s, there is a marginal mass difference (less than 100 kg on a 12 mT vehicle) 

between using the CNTP engine or chemical engine in this case. However, it can also be 

noted that for CNTP specific impulse of more than 1300 s, the CNTP capture burn is 

favored, with comparable or greater differences in vehicle mass for other destinations and 

launch vehicles. The same comparison for solid fuel NTP results in chemical capture 

being the more mass efficient option against an NTP system with 900 s of specific 

impulse. However, with the inclusion of gravity losses in the analysis the difference in 
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mass between the systems is closer to 100-300 kg rather than the 1000 kg suggested by 

the above plot [77]. Another possible reason for the difference in projected mass penalties 

is methodology, since in this work the payload mass is held constant and initial vehicle 

mass modified to meet the different architecture. The analysis for solid fuel NTP instead 

holds initial vehicle mass constant and varies delivered payload mass. 

For the NTP mission the spacecraft itself utilizes its chemical propulsion system 

for the capture burn in addition to the proceeding station keeping. In both cases, the 

chemical thruster on the spacecraft has 323 s of specific impulse and 1100 N of thrust. 

Despite these differences, the trajectory flown by the CNTP injection stage is similar to 

that of the solid fuel NTP vehicle and is shown in Figure 5.6. 

 

 

Figure 5.6: Solar View of Spacecraft Trajectory. 
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The first maneuver for the CNTP injection stage is the departure burn, or Trans-

Jovian Injection (TJI). The details of this maneuver, which lasts 73.1 minutes and imparts 

7.46 km/s of ΔV, are given in Table 5.3 with a graphic of the burn displayed by Figure 

5.7. 10110 kg of propellant are used during the burn, and the thrust vector is aligned with 

the vehicle velocity vector for the full burn duration. 

 

Table 5.3: TJI Burn Parameters. 

Parameter Initial Value Final Value 

Ephemeris 20 Feb 2031 10:27:37 UTCG 20 Feb 2031 11:40:42 UTCG 

Right Ascension 54.96 deg 206.19 deg 

Declination 24.03 deg -13.66 deg 

R Magnitude 8374.60 km 26180.84 km 

Inclination 28.48 deg 28.49 deg 

 

 

Figure 5.7: Earth View of Spacecraft Trajectory. 
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 After TJI, the CNTP injection stage coasts for 73 days before performing a deep 

space correction. The small correction consists of a 2.7-minute burn using 374 kg of 

propellant. 398 m/s ΔV is directed with respect to Earth VNC axes at 17.6⁰ elevation and 

10.8⁰ azimuth angles, and after the burn another coast occurs for 547 days before the final 

maneuver. 

 Jupiter Orbital Insertion, or JOI, is the capture burn which puts the vehicle in a 

highly eccentric polar orbit around Jupiter. The maneuver imparts 1.65 km/s of ΔV over 

10.25 minutes, and costs 1417 kg of propellant to achieve. During the burn the thrust 

vector is aligned opposite of the velocity vector, and afterwards the CNTP engine and 

tank are discarded. The final orbit around Jupiter has a period of 48.8 days and an 

eccentricity of 0.95, which is utilized for the science phase of the mission. Further details 

and ephemeris for the maneuver are given in Table 5.4 and Figure 5.8. 

 

Table 5.4: JOI Burn Parameters. 

Parameter Initial Value Final Value 

Ephemeris 2 Nov 2032 00:38:25 UTCG 2 Nov 2032 00:48:40 UTCG 

Right Ascension 297.03 deg 297.03 deg 

Declination -21.67 deg -21.67 deg 

R Magnitude 106,933 km 107,012 km 

Inclination 79.48 deg 78.21 deg 
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Figure 5.8: Jovian View of JOI Maneuver. 

 

 Other than significant differences in propellant and vehicle mass between CNTP 

and solid fuel NTP, the trajectory is shown to have several differences as well. The result 

of these differences is a transit time of 1.7 years for a direct trajectory capture mission to 

Jupiter for CNTP, while the solid fuel NTP trajectory in this comparison takes 2.1 years 

to reach its destination. With the same payload dry mass in each case, these results show 

that the increase in specific impulse of CNTP compared to solid fuel NTP, even with its 

trade-off of lower thrust, can result in significant reductions to transit time even with very 

conservative estimates for engine mass.  

5.3 High Performance Simulations 

With preliminary results giving rough estimates of the minimum performance 

requirements and a detailed comparison to mission design for solid fuel NTP achieved, it 
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is also helpful to investigate how trajectory and vehicle architecture change with CNTP 

performance closer to the theoretical maximum. As a result, updated results from the 

CNTP system model were used to run simulations to all four outer planets. Table 5.5 lists 

the performance parameters used for this portion of the analysis. 

 

Table 5.5: Updated CNTP Performance Data [38]. 

Metric Value 

Number of CFEs 19 

Engine Mass 1650 kg 

Reactor Operating Temperature 4600 K 

Reactor Operating Pressure 15 MPa 

Thrust (Gas/Ice Giants) 20/30 kN 

Specific Impulse 1600 s 

Engine T/W Ratio (Gas/Ice 

Giants) 

1.24/1.38 

 

Using these parameters, and a payload dry mass of 2200 kg, the direct trajectory 

patched conic model is used to generate initial guesses for the required ΔV and propellant 

mass for each destination body. Two separate launch vehicles are selected to demonstrate 

the similarity of missions when neither vehicle mass nor volume are close to their 

constraints, and for this purpose both Vulcan Heavy and New Glenn are used in this 

model. With numbers gathered for vehicle size, numerical simulations are used to 

increase fidelity of the patched conic results as well as for validation of the patched conic 
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model. The results of the patched conic trajectories and shown by Table 5.6 and the 

numerical simulations are given in Table 5.7.  

 

Table 5.6: Selected Patched Conic Outer Planet Trajectories. 

 Jupiter Saturn Uranus Neptune 

Initial Mass (kg) 8940 11280 12260 15720 

Prop Mass (kg) 3540 5550 6400 9380 

ΔV 1 (km/s) 6.248 7.768 8.570 9.451 

ΔV 2 (km/s) 0.575 0.997 0.319 1.120 

ΔV 3 (km/s) 1.096 1.867 2.696 3.679 

TOF (yrs) 2.15 3.38 7.65 10.72 

 

Table 5.7: Simulated Outer Planet Trajectories. 

 Jupiter Saturn Uranus Neptune 

Initial Mass (kg) 8940 11280 12260 15720 

Prop Mass (kg) 3537 5545 6393 9377 

ΔV 1 (km/s) 6.568 8.350 9.119 9.929 

ΔV 2 (km/s) 0.335 0.617 0.219 0.931 

ΔV 3 (km/s) 0.999 1.649 2.225 3.379 

TOF (yrs) 2.21 3.56 8.33 11.18 

 

 The propellant mass shown in these tables is the predicted propellant required for 

all three maneuvers, with 900 kg of propellant intended to be left over for station keeping 

during the mission science phase. As mentioned in section 4.3, the vehicle generated by 

the patched conic model is matched in the numerical simulations, within 1% of propellant 
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margins. The variance to measure and compare between patched conic and numerical 

results is taken from the TOF, and the calculation of variance is given by Eq. 5.1 with 

results in Table 5.8: 

%𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
|𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑇𝑂𝐹−𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑇𝑂𝐹|

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑇𝑂𝐹
∗ 100%.     (5.1) 

 

Table 5.8: Variance between Patched Conic and STK Transit Time for Outer Planets. 

Jupiter Saturn Uranus Neptune 

2.71% 5.06% 8.16% 4.11% 

 

 

Variance of the results comes most prominently from neglecting gravity loss and 

three body effects in the patched conic model, while of these are included in the 

numerical simulations. The data presented in these tables serve as validation for the 

patched conic model results which closely resemble results of the higher fidelity 

numerical simulation. Additionally, the time of flights are comparable to transit times of 

Voyager 2 out to each of the four planets for example, despite the Voyager 2 mission 

encountering each planet via flyby while also using each encounter as a gravity assist [4]. 

The direct trajectories shown here are much less complex, occur more frequently, and 

result in rendezvous rather than flybys. The validation results are important considering 

the launch vehicle constraint on the CNTP vehicle. With only one launch of a 

commercial launch vehicle, a CNTP injection stage can support a capture mission to 

planets in the outer solar system with much lower transit time than similar rendezvous 

missions previously flown to destinations such as Jupiter and Saturn. Additionally, with 

the predicted performance of CNTP at 1600 s of specific impulse and 20/30 kN of thrust, 
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it is likely that the maximum predicted performance of 1800 s may not be necessary. A 

lower target specific impulse has the potential to increase temperature and structural 

margins within the engine and reactor systems. Further elaboration of this conclusion is 

given with the results in section 5.4. 

 In addition to missions to the outer planets, missions to the Kuiper belt are also of 

interest to the scientific community, and some analysis is necessary to explore the 

feasibility of these missions supported by CNTP. Both direct and PGA transfers are 

considered for this section, as each have benefits and detriments when using CNTP. The 

Kuiper belt objects in question are Pluto and Quaoar, and to reiterate the mission 

architecture to these destinations, capture of the scientific spacecraft around the objects is 

the goal as opposed to a flyby encounter. The difficulties of these missions primarily 

come from the extreme distance from the sun as well as high eccentricity from the 

ecliptic plane, both of which require substantially larger ΔV than capture missions to the 

outer planets in general. The CNTP engine performance required to close these missions 

varies based on the type of transfer and destination, and Table 5.9 illustrates the 

differences between those requirements. An important note can be made here regarding 

the direct transfer to Pluto, as the trajectory chosen by the FOM for a CNTP rendezvous 

mission is not feasible with a single launch of a commercial launch vehicle.  

 

Table 5.9: Kuiper Belt Mission Performance Requirements. 

 Pluto Direct Pluto PGA Quaoar Direct Quaoar PGA 

Isp (s) 1800 1600 1700 1600 

Thrust (kN) - 60 60 60 
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Engine T/W - 3.7 3.7 3.7 

 

 All of these missions are performed with a thrust of 60 kN and an engine T/W of 

3.7. While these values are close to the minimum required for this combination of vehicle 

and mission architecture, a more in-depth optimization may yield lower values for some 

cases. Additionally, Starship is the primary launch vehicle used to constrain the CNTP 

injection stage for this portion of the analysis. While the Vulcan Heavy and New Glenn 

are included for missions to the outer planets, neither vehicle has the payload mass or 

volume capacity to support Kuiper Belt missions according to the constraints of this 

analysis. This result differs from the results of section 5.1, because different criteria are 

compared to results to determine viability. For the initial trade study, transit time for 

direct transfers to the Kuiper belt is held constant at 20 years, which can be supported by 

New Glenn and Starship by that analysis. The transit time was chosen in the previous 

analysis in a conservative manner so that the required ΔV was within the capability of an 

injection stage constrained by volume from the launch vehicle. Here, the transit time is 

selected via a figure of merit. Using the figure of merit significantly reduces the selected 

transit time, since the injection stage volume is used as a check afterwards rather than the 

initial basis for transit time selection, but also increases the necessary propellant to close 

the mission. 

 As with the outer planet missions, a patched conic model is used to generate 

initial guesses for the numerical simulation. Both direct and PGA transfers are iterated 

through over a variety of departure dates and transit times, and the FOM selects a single 

trajectory based on ΔV and transit time. The set of data which the FOM selects from 

display the available launch windows for mission in the cases of direct and PGA 
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trajectories. Figure 5.9 displays the patched conic results for Pluto for PGA architectures, 

and Figure 5.10 shows the results for Quaoar PGA and direct missions. The direct and 

PGA transfers are plotted with respect to ΔV and transfer time respectively, as a result of 

the different driving factors with each trajectory type. Dates of departure are selected to 

match ephemeris data acquired from JPL’s Horizons database which are used in the 

numerical simulation [75]. As a consequence of no Horizons data for Quaoar past 2030 to 

use in STK results, Quaoar trajectories are run with dates in the past to meet time 

constraints for the rendezvous. 

 

Figure 5.9: Pluto PGA Trajectory Launch Windows. 
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Figure 5.10: Quaoar PGA Trajectory Launch Windows. 

 

 Several results are apparent from these plots. First, abnormal slopes in the direct 

transfer plots appear just to the right of each minimum. Likewise, many transfers in the 

PGA plot do not fit nicely into the curves made up of most results. These two issues stem 

from a similar drawback with patched conic models – when two planetary objects have a 

transfer angle close to 180 degrees, Lambert’s problem becomes difficult to solve. Due to 

division by a very small number, the outputs are unrealistic and cause the noted 

differences in each of these plots. The direct transfer model attempts to account for this 

by removing the unrealistic data and using a spline fit to predict what the realistic results 

should be, however since the results of the PGA model are not a smooth curve, the 

artifacts remain. Otherwise, the major takeaway from these plots is the relative frequency 

of launch windows. For direct transfers to the Kuiper belt, launch windows which are 

feasible for CNTP occur roughly every 12 months, while PGA transfers offer a few 

windows every twelve years. While the latter are much faster, the cost of these faster 

transfers is reduced length and frequency of launch windows. 
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In addition to the ΔV and transfer time results, vehicle masses as a function of 

transfer time can also be generated for both kinds of trajectories. Using the ΔV associated 

with each transfer time, Figure 5.11 is generated for Pluto and Quaoar. Engine 

performance parameters are as shown in Table 5.9 for each case, and the chosen payload 

dry mass is 800 kg with an expected 400 kg of propellant left for station keeping during 

the science phase of the mission. 

 

 

Figure 5.11: CNTP Vehicle Masses for Kuiper Belt Missions. 

 

 Figure 5.11 confirms that a CNTP vehicle supporting a capture mission to the 

Kuiper belt can reach its destination much faster with a PGA trajectory, assuming a 

similar vehicle size, with other factors remaining the same. However, as noted by Figure 

5.10 this once again comes at the cost of launch window availability, while also having 
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lower requirements for CNTP specific impulse. With the data presented in Figure 5.9 and 

Figure 5.10 a FOM ranks and then selects a trajectory to be modelled using STK. The 

comparison of patched conics results vs numerical simulation results is given by Table 

5.10 and Table 5.11. 

 

Table 5.10: Selected Patched Conic Kuiper Belt Trajectories. 

 Pluto Quaoar 

Direct PGA Direct PGA 

Initial Mass (kg) 58660 28760 33630 32970 

Prop Mass (kg) 48440 22380 26630 26050 

ΔV 1 (km/s) 12.515 9.250 10.876 8.576 

ΔV 2 (km/s) 11.180 14.401 5.117 15.939 

ΔV 3 (km/s) 9.818 n/a 10.184 n/a 

TOF 1 (yrs) 13.63 1.04 15.72 1.17 

TOF 2 (yrs) n/a 9.52 n/a 10.32 

 

Table 5.11: Simulated Kuiper Belt Trajectories. 

 Pluto Quaoar 

Direct PGA Direct PGA 

Initial Mass (kg) n/a 28760 33630 32970 

Prop Mass (kg) n/a 22383 26628 26047 

ΔV 1 (km/s) n/a 10.569 9.930 9.659 

ΔV 2 (km/s) n/a 13.066 5.579 14.830 

ΔV 3 (km/s) n/a n/a 10.65 n/a 
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TOF 1 (yrs) n/a 1.07 15.78 1.21 

TOF 2 (yrs) n/a 10.4 n/a 11.45 

 

A couple of major differences between these tables are important to note. First of 

all, a direct transfer to Pluto is summarized in Table 5.10 but not Table 5.11, as the 

trajectory selected by the patched conic model does not close with a single launch of a 

commercial launch vehicle. Additionally, since direct and PGA trajectories are shown 

side by side, come columns skip ΔV 3 or TOF 2, depending on the architecture shown. 

Regardless, just as shown in the outer planets mission design, propellant mass is within 

1% of margin assuming 400 kg left over for station keeping once in orbit around the 

Kuiper belt object. Table 5.12 displays the variances in total transit time for each case.  

 

Table 5.12: Variance between Patched Conic and STK Time of Flight for Kuiper Belt Objects. 

Pluto (Direct) Pluto (PGA) Quaoar (Direct) Quaoar (PGA) 

n/a 7.93% 0.38% 9.24% 

 

Patched conics has been shown to have up to 8.15% error compared to high 

fidelity numerical simulations for a direct trajectory to Mars as mentioned in section 3.3 

due to the simplifications and assumptions made by the model, so seeing the error near or 

below 8% does instill confidence in the patched conic model used to generate initial 

guesses. Additionally, these tables confirm that PGA trajectories enable faster transit 

times and lower performance requirements than direct trajectories for rendezvous 

missions to the Kuiper belt using CNTP. Once again, however, this is at the cost of a 

more complex trajectory and less frequent launch windows.  
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Compared to the outer planet simulations, the results for PGA trajectories show 

higher error between the patched conic model and the numerical simulations. A major 

contributing factor to this difference is the much greater gravity loss associated with 

longer and larger maneuvers. Since the patched conic models assume instantaneous 

maneuvers, smaller maneuvers close to large planetary bodies will incur less gravity loss, 

or gravity drag, as opposed to long maneuvers near objects with very low gravity. 

An update to the mass properties calculations for the CNTP engine which 

occurred after the analysis of these results was completed increased the predicted engine 

mass as 2800 kg for the specified engine configuration and materials, which differs from 

the engine mass of 1650 utilized in the presented simulations. The effect of this change 

varies depending on the mission parameters held constant – with the trade-offs of mission 

design, the effect can be treated as an increase in transfer time, decrease in delivered 

payload mass, or increase in vehicle mass. Due to the relatively small vehicles used for 

outer planet missions, the vehicle mass can be increased by the extra 1150 kg plus mass 

for additional propellant without significant changes to the trajectory (this may approach 

the launch vehicle volume constraint for Uranus/Neptune missions supported by Vulcan 

Heavy). However, if small vehicle size is prioritized then payload mass can be reduced 

by 1150 kg to a delivered payload dry mass of roughly 900 kg or transfer time may 

increase, likely by 10-15%. The changes to Kuiper belt missions are more severe, with 

direct transfers to Quaoar becoming much longer if still feasible at all, and PGA 

trajectories increasing in transit time by more than 20-25% if additional propellant is not 

added. Decreases in payload mass or increases in propellant mass to accommodate the 
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more massive engine are likely not feasible due to the already very large vehicles which 

deliver a small payload to the destination.   

5.4 Updated Trade Study 

The objective of this study, as stated in section 3.2, is to define a range of CNTP 

specific impulse, thrust, and engine mass which are best suited for direct trajectory 

capture missions to the outer planets. The first method of meeting this objective is 

treating the engine as a black box, with no direct relationships that constrain the 

performance parameters to each other. The volume constraint on the CNTP vehicle is 

chosen to exactly meet the volume provided by the launch vehicle, so the injection stage 

carries the maximum possible propellant for the given payload mass. In this case, the 

launch vehicle constraint is chosen so that the Vulcan Heavy or New Glenn could support 

these CNTP vehicle architectures. The generalized engine configuration is related to the 

injection stage sizing through a mass balance which requires a certain mass fraction (ratio 

of dry mass to propellant mass) for a specific ΔV. The required ΔV for each destination is 

selected by the FOM detailed in section 3.1, is shown in Figure 5.12. 
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Figure 5.12: Updated ΔV Requirements for Outer Solar System Missions. 

 

The selected points in Figure 5.12 differ from Figure 5.1 due to the use of the 

FOM described in section 3.1, as well as more precise calculations for planetary positions 

from their ephemeris. These trajectories are utilized both in this analysis and the 

proceeding analysis, where the engine configuration is constrained. With the required ΔV 

selected for each destination, the mass fraction is calculated via the rocket equation, with 

an analytical approximation used to represent additional ΔV incurred due to gravity drag 

[57], [45]. These expressions are shown in Eq. 5.2 and 5.3: 

𝑀𝐹 =
𝑚𝑝

𝑚𝑓
= 𝑒ΔV∗/g𝐼𝑠𝑝 − 1             (5.2) 

ΔV∗ =
1

24
𝛴(

µ

𝑟3
𝑡2ΔV) + ΔV.          (5.3) 

The mass balance shown by Eq. 5.4 is used to determine the amount of payload 

deliverable to the destination constrained by the mass fraction and launch vehicle 

volume. This expression assumes the dry mass of the vehicle consists of only the engine, 
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propellant tank, and spacecraft payload. Akin details a process which can be used to 

approximate tank mass as a function of propellant mass [62]: 

𝑚𝑝 = 𝑀𝐹(𝑚𝑙 + 𝑚𝑒 + 𝑚𝑡).         (5.4) 

The delivered payload mass can be plotted for each of the primary variables. 

Figure 5.13-Figure 5.15 display delivered payload mass versus specific impulse, thrust, 

and engine mass, respectively. 

 

 

Figure 5.13: Payload Mass versus Specific Impulse. 
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Figure 5.14: Payload Mass versus Engine Thrust. 

 

Figure 5.15: Payload Mass versus Engine Mass. 

 

 Due to the multidimensional space of parameters being analyzed within this trade 

study, simplifications were made for the generation of these plots. Each primary variable 
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is shown plotted against payload mass for the other two parameters being constant at the 

upper bound. For example, for specific impulse, thrust and engine mass are held constant 

at 70 kN and 1650 kg, respectively, to generate Figure 5.13. With each relationship well 

defined, the criteria can now be applied; minimum and maximum performance can be 

defined by defining a range of payload masses which have previously been used on 

scientific missions. While more payload mass is always beneficial from a scientific 

perspective, there is a range of payload masses previously used which can define a 

narrower range of CNTP performance in order to guide performance targets during 

development. Therefore, the minimum performance is selected at the lowest payload 

mass historically delivered to the outer solar system, which is the mass of New Horizons 

at roughly 480 kg [78]. The maximum performance is selected at the highest payload 

mass historically delivered to the outer planets that still meets the launch vehicle 

requirements previously described. The upper bound is then the mass of the Juno 

spacecraft, at 3600 kg. In any case, if the minimum required performance is below the 

range of parameters considered, the lower range bound is recorded. Similarly, if the upper 

payload limit is not feasible within the considered range, the upper bound is recorded. 

Once the criteria are applied, the results can be tabulated as shown in Table 5.13. 

 

Table 5.13: Engine Performance for Unconstrained Configuration. 

 Jupiter Saturn Uranus Neptune 

 Min Max Min Max Min Max Min Max 

Isp (s) <1200 <1200 <1200 1474 <1200 1620 <1200 >1800 

Thrust (kN) <10 14.2 12.4 28.4 14.9 39.9 20 >70 
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𝑀𝑒 (kg) >3800 >3800 >3800 >3800 >3800 2840 >3800 <1650 

 

 The engine mass is opposite the other variables, in that a lower number is better in 

terms of performance. In that sense, minimum and maximum performance correspond to 

highest and lowest engine mass, respectively. One important result from Table 5.13 is 

that performance within the bounds that is feasible for CNTP is not required in general 

for missions to Jupiter in that the performance required for payload between 480 and 

3600 kg are lower than the bounds of performance considered in this study. For direct 

rendezvous missions to Jupiter near the selected transit time solid fuel NTP, a simpler 

system at a higher technological readiness, may be better suited for these missions with 

transit times of two years or more. Likewise, even at the highest limit of potential CNTP 

performance, 3600 kg is outside the range of feasible payload mass for direct rendezvous 

missions to Neptune with transit times less than 10.5 years. However, in this case there is 

a range of payload mass for which the mission does close, up to roughly 3200 kg. 

Missions to Saturn and Uranus do converge using CNTP for the selected transit times. In 

most cases across all four destinations, engine mass of greater than 3800 kg is able to 

close the mission at the maximum bound of specific impulse and thrust. 

The second method of answering the second research question is constraining the 

engine to a single configuration, which can be compared to the generalized unconstrained 

case previously presented. For a constrained engine configuration, the primary variables 

are the same with operating temperature and required ΔV utilized as secondary variables. 

Specific impulse and temperature are related via the reactor operating temperature, which 

means that applying criteria to the reactor operating temperature rather than each 

performance value individually simplifies the analysis. This relationship is also important 
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since increasing specific impulse for a given reactor configuration decreases thrust, with 

the reverse also being true. These relations, given in Eq. 5.5 and 5.6, are taken from curve 

fits of the optimized systems model of CNTP and are roughly quadratic [39]: 

𝐼𝑠𝑝 = 0.0000083𝜃2 + 0.2040833𝜃 + 313.0391482         (5.5) 

𝑇 =  0.00000464𝜃2 − 0.0698215𝜃 + 288.6810675.         (5.6) 

The precision of each curve fit is necessary to replicate the shape of the generated 

curves within the mission design analysis. In addition to the engine performance, the 

number, layout, and size of CFEs are also constrained, so changing the operating 

temperature changes the thrust and specific impulse of the engine but the size and weight 

remain the same. For this configuration the engine mass is held constant at 2800 kg [79]. 

Calculating deliverable payload mass from a selected ΔV and transit time, and a range of 

operating temperatures, then leads to a comparison between different temperatures in 

terms of how much payload they allow to be delivered. Figure 5.16 displays the overall 

relationship between these values for all four outer planets. 
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Figure 5.16: Operating Temperature Versus Payload Mass for Constrained Engine Configuration. 

 

The same criteria applied in the previous configuration are also utilized to tabulate 

results here. In this case, they are applied to select minimum and maximum reactor 

operating temperatures, which can be used to calculate corresponding specific impulse 

and thrust. A summary of these results is shown in Table 5.14. 

 

Table 5.14: Engine Performance for Constrained Configuration. 

 Jupiter Saturn Uranus Neptune 

 Min Max Min Max Min Max Min Max 

Temperature 

(K) 

<3500 3664 <3500 >5500 <3500 >5500 3528 >5500 

Corresponding 

Isp (s) 

1130 1170 1130 1690 1130 1690 1136 1690 
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Corresponding 

Thrust (kN) 

101.2 95.1 101.2 45 101.2 45 101.1 45 

 

 The results in Table 5.14 primarily once again show that direct rendezvous 

missions to Jupiter do not require performance in the range of CNTP in order to close for 

payload masses less than 3600 kg, and also concur with the previous analysis in that 

Neptune requires higher performance than CNTP is capable of for delivering the same 

amount of payload with the selected transit time. Missions for Saturn and Uranus fall 

between the payload mass criteria at all reactor temperatures. Diminishing returns on 

payload capacity for increased performance is also shown by the figure. The 

methodology shown here is a sample of future analysis, which can be used to compare 

different engine configurations to show what operating temperatures result in what 

payload capacity for each configuration. For the constrained case, the payload capacity is 

slightly lower overall compared to the unconstrained case but is also less sensitive to 

changes in performance.  

Validation of the underlying model is discussed in section 5.3, which compares 

variance of trajectory transfer time between patched conic and numerical models. Further 

confidence in the results discussed in sections 5.3 and 5.4 can also be gained by 

investigating the sensitivity of the FOM for direct trajectories to variation on weights for 

the ΔV and TOF terms. The robustness of the FOM to variance in the term weights can 

then be extended to discuss validity of results for both the numerical simulations as well 

as the second trade study. A summary of the applied sensitivity analysis method is given 

in section 3.2, which is similar to the Brown-Gibson method but without directly 

comparing alternatives. Applying a weight term α to the ΔV term and an opposing 1- α 
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weight to the TOF term allow varying the dependence of the FOM result from only ΔV to 

both ΔV and TOF to just TOF, and the responses of the selected ΔV and TOF are 

recorded. Eq. 5.7 displays how these values are inserted into equation 3.3:  

𝐹𝑂𝑀 = α𝐴
𝛥𝑉

𝑉𝐸
+ (1 − α)𝐵

𝑇𝑂𝐹

𝑃𝐸
.           (5.7) 

The results of this analysis are shown in Figure 5.17 and Figure 5.18 for ΔV and TOF, 

respectively. 

 

Figure 5.17: FOM Sensitivity of ΔV.  
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Figure 5.18: FOM Sensitivity of Transit Time. 

 

 Since ΔV and transit time are equally weighted for direct missions in previous 

analyses, the selected transfer time and ΔV for each destination correspond to α = 0.5, 

which means the weight term is split 50/50 between the two inputs. Overall, the curves 

for Uranus and Neptune are very smooth but with larger slopes than Jupiter and Saturn, 

which in turn have more discontinuities. The discontinuities are similar to those in Figure 

5.12 which originate from changing departure dates being selected for the lowest ΔV 

from one transit time to the next. The lower slopes for the Jupiter and Saturn curves show 

that the FOM result changes very little over much of the weight range, but at times when 

the result does change the change is large. For these destinations the ΔV and transit time 

are less sensitive to weights for terms of the FOM, but instead are more sensitive to 

changes in departure date which are iterated through by the model. This result makes 
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sense in terms of the physical orbital mechanics, in that destinations which are faster and 

closer to Earth will have shorter available launch windows than destinations which are 

further away but move much slower around the sun. 

 The results displayed in these figures can also be extended to address the validity 

of using the patched conic model as a basis for the numerical simulations and trade study. 

The use of patched conics as initial values for numerical simulations is validated in 

section 5.3 by comparing the results of the patched conic model to the numerical 

simulations and showing that the variance in transfer time, with other mission details 

being similar, was close to or less than an expected value from literature. The sensitivity 

study increases confidence in the patched conic model and FOM by showing that similar 

results can be expected when the weights to inputs in the FOM are changed. Likewise, 

the FOM is a significant component of the trade study, since payload masses for each 

destination are calculated assuming a transfer time which is selected by the FOM. Small 

changes to the FOM weights result in small or no change to the selected transfer time, 

and so confidence in these results is increased as well. 
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Chapter 6. Conclusions 

 The analyses presented in the preceding sections demonstrate the range of 

potential for CNTP in supporting missions to the outer solar system. First, a comparison 

to solid fuel NTP conveys that even a moderate increase in specific impulse can lead to a 

substantial improvement in capability for scientific missions, including payload mass, 

transit time, and required propellant mass. Using systems models to predict CNTP 

performance, it is shown that missions to the outer planets, both gas giants and ice giants, 

can be performed with engine capabilities of 1600 s specific impulse, 20 kN thrust, and 

1.3 T/W. More generally, a range of performance from 1200-1620 s, 10-40 kN, and >1.5 

T/W enables access to most direct trajectory missions presented to the outer planets with 

a payload mass of up to 3600 kg with the exception of Neptune being limited to smaller 

payloads for transfer times of less than 10.5 years. 1200-1800 s, 10-70 kN, and >4 T/W 

enables all of the presented mission trajectories to the outer planets. These results are 

valid for transfer times of 2 years to Jupiter, 3.5 years to Saturn, 7.5 years to Uranus, and 

10.5 years to Neptune.  

Likewise, capture missions are shown to close to the Kuiper belt with much 

higher performance requirements of 1600-1800 s of specific impulse and 60 kN of thrust 

for a T/W ratio of 3.7, although some do require gravity assists in order to reduce transit 

time and performance requirements. The reduction in transit time for Quaoar is 16 years 

down to 12 years, and likewise PGA trajectories to Pluto offer transit times of 10-12 

years. The preceding analysis results in lower transit times as compared to previous 

missions flown to the outer solar system - for example, the Juno spacecraft required 

nearly five years and multiple gravity assists to reach Jupiter compared to the two-year 
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direct trajectory selected for CNTP [5]. Similarly, many of the scientific missions 

discussed in chapter 2 consist of longer and/or more complicated trajectories than the 

proposed CNTP trajectories for rendezvous missions. 

6.1 Constraints and Limitations 

 As mentioned in the opening paragraph, one limitation of the displayed results is 

the capability of CNTP constrained by a single launch of a commercial launch vehicle to 

deliver payload to Neptune within a given transfer time. The numerical simulations also 

show that CNTP within this constraint is not capable of achieving ΔVs much greater than 

25 km/s. Just as limitations of the results themselves are shown by the above analysis, 

limitations of the analysis itself also have an effect on the conclusions for this work. One 

such example is the simplified vehicle model, which assumes mass for other subsystems 

not specifically mentioned are accounted for within the payload mass, although a more 

detailed model would result in more precise vehicle mass estimates. Additionally, engine 

mass estimates significantly affect the results of each study, and with this analysis being 

performed in tandem with system modeling for the CNTP engine, many assumptions are 

still being used to define an engine mass with the current analyses. The final trade study 

which defines the range of CNTP performance useful for missions to the outer solar 

system is only performed for the outer planets, and not for direct or PGA trajectories to 

the Kuiper belt. Time and limitations are constraints throughout this analysis, with some 

analyses showing further work needed to define mission design aspects within the trade 

space. These are discussed further in section 6.2, as well as in chapter 7. 
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6.2 Application of Results 

The recommendation of performance ranges lower than the ideal maximum from 

the opening paragraph of chapter 6 is noteworthy – since specific impulse does not need 

to be 1800 s in order to accomplish missions to the outer planets, the reactor operating 

temperature can be lower than the 5500 K listed as a requirement in previous papers [25], 

[26]. A lower operating temperature could result in larger thermal margins in the reactor, 

or broaden the range of material choices, which would make the CFEs and therefore 

engine as a whole easier to fabricate.  

 Numerous factors are considered in this analysis, primarily focusing on the 

architecture of the trajectory, the CNTP injection stage vehicle, and their constraints. For 

the architectures detailed in this thesis, the CNTP injection stage was largely bounded by 

the volume and capability of the launch vehicle, while the trajectory itself is constrained 

by the size of injection stage, payload mass, and intended destination. First, a patched 

conic model is described in detail which uses two-body orbital motion to calculate 

trajectories with instantaneous maneuvers. The patched conic model used relies on a 

FOM which weights the transit time versus the required ΔV. A sensitivity analysis on the 

equation shows that small changes to the weights within the expression lead to small 

changes or no change to the output. Different factors are considered at this stage to define 

how the maneuvers are conducted, and here differences in the capture burn from solid 

fuel NTP are investigated with the use of the spacecraft chemical thruster and the CNTP 

engine. Specifically, it is shown that for a CNTP engine with a mass of 3800 kg, there is 

a marginal difference in vehicle mass for a chemical or CNTP capture burn for a Jupiter 

rendezvous mission with a two-year transit time. The mass difference is in favor of 
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CNTP for any specific impulse above 1200 s. The CNTP engine is chosen in order to 

reduce vehicle mass at the cost of stricter requirements for propellant boil-off which may 

require a passive or active ZBO system.  

The propellant chosen in these configurations of CNTP engines is liquid 

hydrogen, although other propellants could potentially be investigated to gain more thrust 

at the cost of specific impulse. Later, gravity losses and three-body effects are accounted 

for via numerical simulation, and further analytic analysis also includes gravity losses to 

give a conservative estimate of capability. The propulsion and tank systems are the 

primary spacecraft subsystems covered in this work, with some discussion of thermal 

control as well. A simplified model is used for the spacecraft which does not fully capture 

all aspects of mission design, but rather captures the aspects most relevant to the work in 

this thesis. Subsystems such as power and communication were given placeholder masses 

for the scientific spacecraft based on estimates from historical missions, but further 

details were outside the scope of this work and could potentially be investigated with 

further analysis.  
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Chapter 7. Future Work 

 While the work presented in this thesis answers some questions faced by the 

development of CNTP, there are also other challenges which are outside the scope of this 

work and which still need to be addressed in the future. First, on the note of constraints 

and limitations introduced in the previous chapter, other alternatives to vehicle 

architecture choices made here can be pursued. This work focused primarily on liquid 

hydrogen as propellant, although other choices may also prove useful with CNTP. Other 

propellants may decrease the specific impulse of the engine, but at the same time may 

also increase thrust and storability so are worth further consideration. Assumptions are 

made regarding the tank insulation and thermal management, but further work pursuing 

passive ZBO systems would be beneficial for long duration scientific missions. Similarly, 

other spacecraft subsystems such as power and communication, can provide more in-

depth understanding of the driving trade-offs associated with these mission architectures. 

In regard to the patched conic models and associated FOMs, a cost analysis of previous 

missions is a future task which will help select better weights for the ΔV and TOF terms. 

Understanding what portion of mission cost goes to development versus operations will 

also ensure the best trajectory is selected. 

 A better operational understanding of CNTP is also vital to making informed 

decisions on how maneuvers are carried out. In Chapter 4, it is mentioned that the DSM, 

or correction burn, can potentially be done with chemical thrusters from the payload. The 

difference this change makes is dependent on the propellant cost of starting up and 

shutting down the CNTP engine, and due to the higher specific impulse of CNTP this 

may or may not use less propellant. Regardless of propellant use, chemical thrusters for 
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short duration maneuvers make more sense operationally due to the complexity of CNTP. 

In general, these transient operating modes are not considered in this analysis and so also 

affect the propellant used for departure and capture burns.  
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Appendix A. Figure of Merit Details 

The figure of merit discussed in section 3.1 combines two key parameters of 

interest in the design of interplanetary trajectories, namely the required ΔV and transit 

time of flight. The goal of this FOM is to minimize both parameters, however since 

decreasing one increases the other a balance must be found. Additionally, since the terms 

have different units – km/s for the ΔV and years for the transit time are the units best 

used in this context – additional factors must be included to nondimensionalize the terms 

so they can be added. The general form of the FOM is given by Eq. 3.15: 

𝐹𝑂𝑀 =
𝐴

𝑉𝐸
ΔV +

𝐵

𝑃𝐸
𝑇𝑂𝐹. 

In this equation, A and B are constants, 𝑉𝐸 is the Earth orbital velocity and 𝑃𝐸 is 

the Earth orbital period. While the fractions are used to nondimensionalize the parameters 

in terms of units, it is important for the relative values of each term to remain the same to 

prevent artificial weighting in consideration of the FOM value. The nondimensionalizing 

values were not utilized when writing the patched conic models, which just used the ΔV  

and TOF terms, and to prevent much of the analysis from having to be redone, A and B 

are chosen to keep the overall value of the FOM the same in each case. A is selected to 

the be the same value as V𝐸  to cancel out changes in magnitude for the term as a whole. 

Since V𝐸 = 29.783 km/s, A is chosen so that A = 29.783 as well. The Earth orbital 

velocity is not unity, and so as a result the exact value of 𝑉𝐸 is used to prevent weighing 

the term for direct transfers. Likewise, for the TOF in years, the Earth orbital period is 1, 

which means the second term is not changed in magnitude by nondimensionalization and 

so B is chosen to also be 1. In the case of PGA transfers, a weight of 0.5 is included to 

output reasonable transit times for the different mission architectures. 
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Appendix B. Direct Trajectory Patched Conic Model 

Main Function 

% Programmer: Will Ziehm 

% Project: Delta V Calculations to an Outer Planet on a Direct Transfer 

% Date: January 2023 

clc 

clear variables 

close all 

[Sol,Earth,Jupiter,Saturn,Uranus,Neptune,Pluto,Quaoar] = GetEphemeris(); 

 

% DESTINATION BODY 

% Modify for change in destination % 

 

Dest = Pluto;               %% User Input Based on Desired Destination %% 

 

discon = 5.3; 

 % discontinuity factor (1.6,1.9,0.8,1.6,5.3,4.6) 

earth.a = 2000 + Earth.r; 

earth.e = 0; 

 % Initial Earth orbit 

 

dest.a = 50*Dest.r; % use 50*R for STK 

dest.e = 0.95; 

 % Final destination orbit 

%DDate = 0.25:0.0001:0.35; % (Planets) 

DDate = 0.28:0.00006:0.34; % (Pluto) 

%DDate = 0.08:.00006:.14; % (Quaoar) 

 % (centuries past J2000) 

TOF = 12.5:0.05:20; % years (1-2.5,2-6,5-10,9-14,12.5-17.5,12.5-17.5) 

 

DV_a = zeros(length(DDate),1); 

DV_1a = zeros(length(DDate),1); 

DV_2a = zeros(length(DDate),1); 

DV_3a = zeros(length(DDate),1); 

TOF1_a = zeros(length(DDate),1); 

min_DD = zeros(length(DDate),1); 

opt_Eartha = cell(length(DDate),1); 

opt_Desta = cell(length(DDate),1); 

opt_sola = cell(length(DDate),1); 

DV = zeros(length(TOF),1); 

J = zeros(length(TOF),1); 

DV_1 = zeros(length(TOF),1); 

DV_2 = zeros(length(TOF),1); 

DV_3 = zeros(length(TOF),1); 

TOF_1 = zeros(length(TOF),1); 

FOM = zeros(length(TOF),1); 
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PCDV = zeros(length(TOF),length(DDate)); 

PCDV1 = zeros(length(TOF),length(DDate)); 

PCDV2 = zeros(length(TOF),length(DDate)); 

PCDV3 = zeros(length(TOF),length(DDate)); 

opt_Earth = cell(length(TOF),1); 

opt_Dest = cell(length(TOF),1); 

opt_sol = cell(length(TOF),1); 

 

testR = zeros(length(DDate),1); 

for i = 1:length(TOF) % iterates through TOF in years 

    for j = 1:length(DDate) % iterates through depature dates 

 

        % Planet Positions 

        [Earth,Dest] = Planet_Positions(Earth,Dest,DDate(j),TOF(i)/100); 

 

        % Lamberts Black Box 

 

        n = 100; 

         % fraction levels 

        tol = 1e-8; 

         % output tolerance 

        kmax = 100; 

         % maximum number of iterations 

        [sol.a,sol.p,Earth.Vdep,Dest.Varr,~,G,ta] = 

Lambert(Earth.R,Dest.R,TOF(i)*(365.25*24*3600),Sol.mu,1,n,tol,kmax); 

        %[sol.a,sol.p,Vdep,Varr] = 

Lambert2(Earth.R,Dest.R,TOF(i)*(365.25*24*3600),Sol.mu,0,tol,kmax); 

 

        testR(j,:) = ta;%[ta,G,0]; 

        % discontinuity when transfer angle is ~ 0 rads 

        if abs(pi-ta) < 0.1*discon 

            sol.a = NaN; 

            sol.p = NaN; 

            Vdep = [NaN,NaN,NaN]; 

            Varr = [NaN,NaN,NaN]; 

        end 

 

        % Earth Departure 

        [Earth,DV1] = Departure(Sol,Earth,Dest,sol,earth,DDate(j),TOF(i)); 

 

        % Destination Arrival 

        [Dest,DV3] = Arrival(Sol,Dest,dest,DDate(j)); 

 

        % Inclination Change 

        [DV2,TOF1,sol] = inclin_change(Sol,sol,Dest,DDate(j)); 

 

        DV_a(j) = DV1 + DV2 + DV3; 

        DV_1a(j) = DV1; 

        DV_2a(j) = DV2; 

        DV_3a(j) = DV3; 

        TOF1_a(j) = TOF1; 

        opt_Eartha(j) = {Earth}; 

        opt_Desta(j) = {Dest}; 

        opt_sola(j) = {sol}; 
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    end 

 

    [DV(i),J(i)] = min(DV_a); 

    min_DD(i) = DDate(J(i)); 

    DV_1(i) = DV_1a(J(i)); 

    DV_2(i) = DV_2a(J(i)); 

    DV_3(i) = DV_3a(J(i)); 

    TOF_1(i) = TOF1_a(J(i)); 

    opt_Earth(i) = opt_Eartha(J(i)); 

    opt_Dest(i) = opt_Desta(J(i)); 

    opt_sol(i) = opt_sola(J(i)); 

    FOM(i) = DV(i) + TOF(i); 

    PCDV(i,:) = DV_a; 

    PCDV1(i,:) = DV_1a; 

    PCDV2(i,:) = DV_2a; 

    PCDV3(i,:) = DV_3a; 

    PCtest(i,:) = testR; 

end 

 

[opt.FOM,I] = min(FOM); 

opt.TOF = TOF(I); 

opt.DV = DV(I); 

opt.DD = min_DD(I); 

opt.DV1 = DV_1(I); 

opt.DV2 = DV_2(I); 

opt.DV3 = DV_3(I); 

opt.TOF1 = TOF_1(I); 

opt.TOF2 = (opt.TOF*365*24*3600) - opt.TOF1; 

opt.Earth = opt_Earth(I); 

opt.Dest = opt_Dest(I); 

opt.sol = opt_sol(I); 

fprintf('Minimum FOM: %0.3f\n',opt.FOM) 

fprintf('Optimum TOF: %0.2f years\n',opt.TOF) 

fprintf('Optimum DV: %0.3f km/s\n',opt.DV) 

 

%for d = 1:length(DDate) 

%end 

figure 

plot((DDate*100) + 2000,PCDV(I,:)) 

hold on 

xSpline = interp1((DDate*100) + 2000,PCDV(I,:),(DDate*100) + 2000,'spline'); 

plot((DDate*100) + 2000,xSpline) 

hold on 

plot((DDate*100) + 2000,PCDV(I,:)) 

ylabel('Delta-V (km/s)') 

xlabel('Departure Date') 

ylim([20 35]) 

xlim([(DDate(1)*100)+2000 (DDate(end)*100)+2000]) 

 

figure 

plot(TOF,PCDV(:,J(I))) 

%hold on 

%plot(TOF,DV) 
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ylabel('Delta-V (km/s)') 

xlabel('Transfer Time (years)') 

xlim([1 16]) 

ylim([0 30]) 

 

%figure 

%plot(TOF,(PCDV1(:,J(I))./PCDV(:,J(I)))) 

%hold on 

%plot(TOF,(PCDV2(:,J(I))./PCDV(:,J(I)))) 

%hold on 

%plot(TOF,(PCDV3(:,J(I))./PCDV(:,J(I)))) 

 

output.DV = PCDV(:,J(I)); 

output.DV1 = PCDV1(:,J(I)); 

output.DV2 = PCDV2(:,J(I)); 

output.DV3 = PCDV3(:,J(I)); 

output.DV_alt = DV; 

save('Saturn.mat',"output") 

 

figure 

plot(TOF,DV) 

ylabel('Delta-V (km/s)') 

xlabel('Transfer Time (years)') 

ylim([0 30]) 

 

%figure 

%plot(DDate,sqrt((testR(:,1).^2)+(testR(:,1).^2)+(testR(:,1).^2))) 

%hold on 

%plot(DDate,testR(:,1)) 

%hold on 

%plot(TOF,PCtest(:,J(I))) 

%hold on 

%plot(DDate,testR(:,3)) 

 

%figure 

%plot(TOF,PCDV(:,677)) 

%hold on 

%plot(TOF,PCDV(:,659)) 

 

%figure 

%plot(1:length(J),J) 

%xlim([0 length(TOF)]) 

%ylim([0 length(DDate)]) 

%xlabel('Departure Date Index') 

%ylabel('Time of Flight Index') 

 

%figure 

%contour(DDate,TOF,PCDV,'ShowText','on','LevelList',[4,6,8,10,12,14,16,18,20,22,24]) 

%ylabel('Transfer Time (years)') 

%xlabel('Departure Date') 

 

%figure 

%contour(DDate,TOF,PCtest,'ShowText','on','LevelList',[2.7,2.8,2.9,3,3.1,3.2,3.3,3.4,3.5]

) 
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%ylabel('Transfer Time (years)') 

%xlabel('Departure Date') 

g = 9.81; % m/s^2 

 % gravitational accleration on Earth 

 

% CNTP Performance 

Isp = 1800; % s 

 % Specific Impulse 

m_e = 1650; % kg 

 % engine mass 

 

% LV Constraints 

R = 4.3; % m (Starship) 

 % max tank diameter 

 

m = 800;%[800,1000,1200]; 

mlp = 0.5*m; 

m_o = zeros(length(DV),1); 

m_p = zeros(length(DV),1); 

 

figure 

for m_ldry = m 

    for k = I%1:length(DV) 

 

        m_l = 1.5*m_ldry;%+mlp; % kg 

 

        % Tank estimates 

        m_t = 0; % kg 

         % tank mass estimate for LH2 

        tank_margin = 2; 

 

        while tank_margin > 1 

            m_t2 = m_t; 

            m_f = m_l + m_e + m_t2; % kg 

             % final mission mass 

            m_ps = m_f*(exp((DV(k))*1000/(g*Isp))-1); % kg 

             % propellant mass 

            V_p = m_ps*1.03/71; % m^3 

             % full prop volume 

            V_pl = V_p - ((4/3)*pi*R^3); 

             % cylindrical prop volume 

            L = V_pl/(pi*R^2); % m 

             % tank cylindrical length 

            %if L < 0 

            %    R = R - 0.01; 

            %    tank_margin = 2; 

            %    fprintf('Warning! Tank not full!\n') 

            %end 

            m_t = (m_ps*0.128) + (2.88*((2*R*pi*L)+(4*pi*R^2))); 

             % new tank mass 

            tank_margin = abs(m_t - m_t2); 

        end 
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        m_p(k) = m_ps; 

        m_o(k) = m_ps + m_f; % kg 

         % initial mission mass 

    end 

 

    plot(TOF,m_o./1000) 

    hold on 

end 

ylim([0 42]) 

xlim([8 20]) 

legend('Payload Dry Mass: 800 kg','1000 kg','1200 kg') 

xlabel('Transfer Time (years)') 

ylabel('Initial Vehicle Mass (mT)') 

%{ 

PGAT = load('Quaoar_PGA_TransitTime'); 

PGAM = load('Quaoar_PGA_Mass'); 

plot(PGAT.mass_transit,PGAM.m_o./1000) 

hold on 

PGAT = load('Pluto_PGA_TransitTime'); 

PGAM = load('Pluto_PGA_Mass'); 

plot(PGAT.mass_transit,PGAM.m_o./1000) 

xlim([11 20]) 

ylim([0 42]) 

xlabel('Transfer Time (years)') 

ylabel('Initial Vehicle Mass (mT)') 

legend('Quaoar Direct Trajectory','Quaoar PGA Trajectory','Pluto PGA Trajectory') 

%} 

%figure 

%plot(m,m_o) 

 

%fprintf('Required Propellant Mass: %0.2f kg\n',m_p) 

%fprintf('Spacecraft Total Mass: %0.2f kg\n',m_o) 

Definition of Planetary Ephemeris 

function [Sol,Earth,Jupiter,Saturn,Uranus,Neptune,Pluto,Quaoar] = GetEphemeris() 

 

% SOL 

 

Sol.mu = 1.327e11; % km^3/s^2 

 % Gravitational parameter of Sol 

Sol.AU = 1.496e8; % km 

 % Definition of 1 astronomical unit 

 

% EARTH 

 

Earth.mu = 3.9860e5; % km^3/s^2                  %% 

 % Gravitational parameter of Earth 

Earth.r = 6378.14; % km                         %% 
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 % Radius of Earth 

Earth.a =@(T) (1.00000261+(T*0.00000562))*Sol.AU; % km 

 % Semi-major axis of Earth orbit 

Earth.e =@(T) 0.01671123-(T*0.00004392); 

 % Eccentricity of Earths orbit 

Earth.i =@(T) (-0.00001531-(T*0.01294668))*pi/180; % rads 

 % inclination of Earths orbit 

Earth.L =@(T) (100.46457166+(T*35999.37244981))*pi/180; % rads 

 % mean longitude 

Earth.theta =@(T) (102.93768193+(T*0.32327364))*pi/180; % rads 

 % longitude of perihelion 

Earth.RAAN =@(T) (0.0+(T*0.0))*pi/180; % rads 

 % Longitude of ascending node 

 

% JUPITER 

Jupiter.mu = 1.26687e8; % km^3/s^2               %% 

Jupiter.r = 69911; % km                         %% 

Jupiter.a =@(T) (5.20288700-(T*0.00011607))*Sol.AU; % km 

Jupiter.e =@(T) 0.04838624-(T*0.00013253); 

Jupiter.i =@(T) (1.30439695-(T*0.00183714))*pi/180; % rads 

Jupiter.L =@(T) (34.39644051+(T*3034.74612775))*pi/180; % rads 

Jupiter.theta =@(T) (14.72847983+(T*0.21252668))*pi/180; % rads 

Jupiter.RAAN =@(T) (100.47390909+(T*0.20469106))*pi/180; % rads 

 

% SATURN 

 

Saturn.mu = 3.7931e7; % km^3/s^2 

Saturn.r = 58232; % km 

Saturn.a =@(T) (9.53667594-(T*0.00125060))*Sol.AU; % km 

Saturn.e =@(T) 0.05386179-(T*0.00050991); 

Saturn.i =@(T) (2.48599187+(T*0.00193609))*pi/180; % rads 

Saturn.L =@(T) (49.95424423+(T*1222.49362201))*pi/180; % rads 

Saturn.theta =@(T) (92.59887831-(T*0.41897216))*pi/180; % rads 

Saturn.RAAN =@(T) (113.66242448-(T*0.28867794))*pi/180; % rads 

 

% URANUS 

 

Uranus.mu = 5.7940e6; % km^3/s^2 

Uranus.r = 25362; % km 

Uranus.a =@(T) (19.18916464-(T*0.00196176))*Sol.AU; % km 

Uranus.e =@(T) 0.04725744-(T*0.00004397); 

Uranus.i =@(T) (0.77263783-(T*0.00242939))*pi/180; % rads 

Uranus.L =@(T) (313.23810451+(T*428.48202785))*pi/180; % rads 

Uranus.theta =@(T) (170.95427630+(T*0.40805281))*pi/180; % rads 

Uranus.RAAN =@(T) (74.01692503+(T*0.04240589))*pi/180; % rads 

 

% NEPTUNE 

 

Neptune.mu = 6.8351e6; % km^3/s^2 

Neptune.r = 24624; % km 

Neptune.a =@(T) (30.06992276+(T*0.00026291))*Sol.AU; % km 

Neptune.e =@(T) 0.00859048+(T*0.00005105); 

Neptune.i =@(T) (1.77004347+(T*0.00035372))*pi/180; % rads 
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Neptune.L =@(T) (-55.12002969+(T*218.45945325))*pi/180; % rads 

Neptune.theta =@(T) (44.96476227-(T*0.32241464))*pi/180; % rads 

Neptune.RAAN =@(T) (131.78422574-(T*0.00508664))*pi/180; % rads 

 

% PLUTO 

 

Pluto.mu = 8.724e2; % km^3/s^2 

Pluto.r = 1195; % km 

Pluto.a =@(T) (39.48211675-(T*0.00031596))*Sol.AU; % km 

Pluto.e =@(T) 0.24882730+(T*0.00005170); 

Pluto.i =@(T) (17.14001206+(T*0.00004818))*pi/180; % rads 

Pluto.L =@(T) (238.92903833+(T*145.20780515))*pi/180; % rads 

Pluto.theta =@(T) (224.06891629-(T*0.04062942))*pi/180; % rads 

Pluto.RAAN =@(T) (110.30393684-(T*0.01183482))*pi/180; % rads 

 

% QUAOAR (Horizons Small Body Database Lookup) 

 

Quaoar.mu = 93.4332; % km^3/s^2 

Quaoar.r = 555; % km 

Quaoar.a =@(T) (43.38833028+(T*0))*Sol.AU; % km 

Quaoar.e =@(T) 0.04028864+(T*0); 

Quaoar.i =@(T) (7.99130083+(T*0))*pi/180; % rads 

Quaoar.L =@(T) (281.22046283+(T*125.6157883))*pi/180; % rads 

Quaoar.theta =@(T) (346.79068308+(T*0))*pi/180; % rads 

Quaoar.RAAN =@(T) (189.10126806+(T*0))*pi/180; % rads 

 

end 

Calculation of Planet Positions 

function [Earth,Dest] = Planet_Positions(Earth,Dest,DD,TOF) 

 

T = DD; 

% Earth.n*(departure - Earth.tp) = E1 - (Earth.e)*sin(E1); % solve for E, Newton 

Earth.E1 = newton(1,Earth.e(T),Earth.L(T)-Earth.theta(T),1000,1e-8);%Earth.n*(DD - 

Earth.tp)*365.25*24*3600 

Earth.test = Earth.L(T)-Earth.theta(T); 

while Earth.E1 > 2*pi 

    Earth.E1 = Earth.E1 - (2*pi); 

end 

r1 = Earth.a(T)*(1 - (Earth.e(T)*cos(Earth.E1))); 

%O1 = Earth.theta + (2*atan((((1+Earth.e)/(1-Earth.e))^(1/2))*tan(E1/2))); 

O1 = Earth.theta(T)-Earth.RAAN(T)+(2*atan((((1+Earth.e(T))/(1-

Earth.e(T)))^(1/2))*tan(Earth.E1/2))); 

%U1 = Earth.RAAN; 

U1 = Earth.RAAN(T); 

%i1 = Earth.i; 

i1 = Earth.i(T); 

 

Earth.DCM = [(cos(U1)*cos(O1))-(sin(U1)*sin(O1)*cos(i1)),-(cos(U1)*sin(O1))-
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(sin(U1)*cos(O1)*cos(i1)),(sin(U1)*sin(i1));... 

    (sin(U1)*cos(O1))+(cos(U1)*sin(O1)*cos(i1)),-

(sin(U1)*sin(O1))+(cos(U1)*cos(O1)*cos(i1)),-(cos(U1)*sin(i1));... 

    (sin(O1)*sin(i1)),(cos(O1)*sin(i1)),cos(i1)]; 

 % Including only r components for simplicity 

Earth.R = Earth.DCM*[r1;0;0]; 

 

T = DD+(TOF); 

% Dest.n*(departure + TOF - Dest.tp) = E2 - (Dest.e)*sin(E2); % solve for E, Newton 

Dest.E2 = newton(1,Dest.e(T),Dest.L(T)-Dest.theta(T),1000,1e-8); %Dest.n*(DD + TOF - 

Dest.tp)*365.25*24*3600 

while Dest.E2 > 2*pi 

    Dest.E2 = Dest.E2 - (2*pi); 

end 

r2 = Dest.a(T)*(1 - (Dest.e(T)*cos(Dest.E2))); 

%O2 = Dest.theta + (2*atan((((1+Dest.e)/(1-Dest.e))^(1/2))*tan(E2/2))); 

O2 = Dest.theta(T)-Dest.RAAN(T)+(2*atan((((1+Dest.e(T))/(1-

Dest.e(T)))^(1/2))*tan(Dest.E2/2))); 

%U2 = Dest.RAAN; 

U2 = Dest.RAAN(T); 

%i2 = Dest.i; 

i2 = Dest.i(T); 

 

Dest.DCM = [(cos(U2)*cos(O2))-(sin(U2)*sin(O2)*cos(i2)),-(cos(U2)*sin(O2))-

(sin(U2)*cos(O2)*cos(i2)),(sin(U2)*sin(i2));... 

    (sin(U2)*cos(O2))+(cos(U2)*sin(O2)*cos(i2)),-

(sin(U2)*sin(O2))+(cos(U2)*cos(O2)*cos(i2)),-(cos(U2)*sin(i2));... 

    (sin(O2)*sin(i2)),(cos(O2)*sin(i2)),cos(i2)]; 

 % Including only r components for simplicity 

Dest.R = Dest.DCM*[r2;0;0]; 

 

end 

Newton Method Solution for Kepler’s Equation 

function num = newton(x_o,c1,c2,max,tol) 

% Purpose:  Using Newtons method to numerically approximate any given value 

% Inputs:   c1-c3 - variable or constant values needed in chosen equation 

%           tol - tolerance for numerical approximation 

%           max - maximum number of iterations in loop 

% Outputs:  numerically approximated value 

    x = zeros(1,max); 

 

    f =@(E,e,M) M - E + e*sin(E); 

    fp =@(E,e) e*cos(E) - 1; 

 

    for i = 1:max 

        if i == 1 

            y = f(x_o,c1,c2); 

            yp = fp(x_o,c1); 
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            x(1,i) = x_o - (y/yp); 

            % calculations for initial run 

        else 

            y = f(x(1,i-1),c1,c2); 

            yp = fp(x(1,i-1),c1); 

            x(1,i) = x(1,i-1) - (y/yp); 

            % calculations for non-initial run 

 

            if abs(x(1,i)-x(1,i-1)) < tol 

                break; 

            end 

            % ends loop when tolerance is met 

        end 

    end 

    num = x(1,i); 

    % final value 

end 

Lambert Solver 

function [A,P,V1,V2,conv,G,ta] = Lambert(R1,R2,TOF,mu,JJ,n,tol,kmax) 

%{ 

    Programmer: Grant Hecht 

    Date:       3/11/2019 

    File:       Lambert.m 

    Purpose:    This function solves Lambert's Problem using Battin's 

                method. 

 

    Inputs: 

    R1:     Vector to Pt#1 

    R2:     Vector to Pt#2 

    TOF:    Time of Flight 

    mu:     Gravitational parameter for central body 

    JJ:     Integer that determines initial guess for x 

                (set JJ = 1 for an ellipse) 

                (set JJ = 0 for a parabola or hyperbola) 

    n:      Number of continued fracton levels 

                (set n = 0 for default of 10) 

                (recomend setting n >= 100 for most accurate results) 

    tol:    Tolerance to exit iterations 

    kmax:   Maximum Iterations 

 

 

    Outputs: 

    V1:     Velocity Vector at Pt#1 

    V2:     Velocity Vector at Pt#2 

    conv:   Boolean to indicate convergence. 

 

%} 

% Defalt Value for n 
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n_default = 10; 

 

% If does not converge, set as false 

conv = true; 

 

% Sets n to defalt value if n = 0 is passed 

if n == 0 

    n = n_default; 

end 

 

% Find Transfer Angle 

ta = acos(dot(R1,R2)/(norm(R1)*norm(R2))); 

if R1(1)*R2(2)-R1(2)*R2(1) < 0 

    ta = 2*pi - ta; 

end 

 

% Find Chord 

c = sqrt(norm(R1)^2 + norm(R2)^2 - 2*norm(R1)*norm(R2)*cos(ta)); 

 

% Find Semi-Perimeter 

s = (norm(R1) + norm(R2) + c)/2; 

 

% Find Lambda 

lambda = sqrt(norm(R1)*norm(R2))*cos(ta/2)/s; 

 

% Find w 

w = atan((norm(R2)/norm(R1))^0.25)-(pi/4); 

 

% Find l 

if (0 < ta) && (ta < pi) 

    l = (sin(ta/4)^2+tan(2*w)^2)/(sin(ta/4)^2+tan(2*w)^2+cos(ta/2)); 

elseif (pi <= ta) && (ta < 2*pi) 

    l = (cos(ta/4)^2+tan(2*w)^2-cos(ta/2))/(cos(ta/4)^2+tan(2*w)^2); 

else 

    fprintf('Cannot Compute for Transfer Angle of 0 or 360 degrees.'); 

    return 

end 

 

% Find m 

m = (8*mu.*TOF.^2)/(s^3*(1+lambda)^6); 

 

% For Eliptical Transfer Orbit Use x = l for Initial Guess 

% For Hyperbolic or Parabolic Transfer Orbit Use x = 0. 

if JJ == 0 

    x = 0; 

else 

    x = l; 

end 

 

%Define Velocity Vectors 

V1 = zeros(3,1); 

V2 = zeros(3,1); 
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%Define delta x and counter 

DX = 100; 

k  = 0; 

 

%Iterate to solve 

while abs(DX) > tol 

 

    % Breaks Itteration and sets conv = false if k = kmax 

    if k >= kmax 

        conv = false; 

        break 

    end 

 

    % Calculates Continued Fraction PHI for 'n' Levels 

    eta = x/(sqrt(1+x)+1)^2; 

    f   = 1; 

    % Itterate to Calculate levels 4 -> n 

    for j = n:-1:4 

        ceta = j^2/((2*j)^2-1); 

        f = 1 + ceta*eta/f; 

    end 

    % Finishes Calculation of PHI with levels 1 -> 3 

    PHI = 8*(sqrt(1+x)+1)/(3+1/(5+eta+(9/7)*eta/f)); 

 

    h1 = (l+x)^2*(1+3*x+PHI)/((1+2*x+l)*(4*x+PHI*(3+x))); 

    h2 = m*(x-l+PHI)/((1+2*x+l)*(4*x+PHI*(3+x))); 

    B  = 27*h2/(4*(1+h1)^3); 

    u  = B/(2*(sqrt(1+B)+1)); 

 

    % Calculates Continued Fraction K(u) for 'n' Levels 

    f = 1; 

    r = n/2-1; 

    % Iterate to Calculate Levels 3 -> n 

    for j = r:-1:1 

        g2n  = 2*(3*j+1)*(6*j-1)/(9*(4*j-1)*(4*j+1)); 

        g2n1 = 2*(3*j+2)*(6*j+1)/(9*(4*j+1)*(4*j+3)); 

        f = 1 + g2n*u/(1 + g2n1*u/f); 

    end 

    % Finishes Calculation of K(u) with levels 1 -> 2 

    K = (1/3)/(1+(4/27)*u/f); 

 

    % Calculates New Values for y and x 

    yNew = ((1+h1)/3)*(2+sqrt(1+B)/(1+2*u*K^2)); 

    xNew = sqrt(((1-l)./2).^2+m/yNew.^2)-(1+l)/2; 

 

    % Compares xNew with x 

    DX = abs(xNew - x); 

 

    % Sets x and y to xNew and yNew 

    x = xNew; 

    y = yNew; 

 

    k = k + 1; 
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end 

 

%Computes Orbit Parameters and Initial and Final Velocity 

A  = m.*s.*(1+lambda).^2/(8.*x.*y.^2); 

P0 = c^2*(1+x)^2/(16*A*x); 

P  = 4*norm(R1)*norm(R2)*P0*sin(ta/2)^2/c^2; 

F  = 1-(norm(R2)/P)*(1-cos(ta)); 

G  = norm(R1)*norm(R2)*sin(ta)/sqrt(mu*P); 

FDOT = sqrt(mu/P)*tan(ta/2)*((1-cos(ta))/P-1/norm(R2)-1/norm(R1)); 

GDOT = 1-(norm(R1)/P)*(1-cos(ta)); 

for K=1:3 

    V1(K)=(1/G)*(R2(K)-(F*R1(K))); 

    V2(K)=FDOT*R1(K)+GDOT*V1(K); 

end 

end 

Departure Burn Analysis 

function [Earth,DV1] = Departure(Sol,Earth,Dest,sol,earth,T,TOF) 

Earth.v = sqrt(Sol.mu*((2/norm(Earth.R))-(1/Earth.a(T)))); 

Earth.h = sqrt(Sol.mu*Earth.a(T)*(1-Earth.e(T)^2)); 

Earth.y = acos(Earth.h/(Earth.v*norm(Earth.R))); 

if Earth.E1 > pi 

    Earth.y = -Earth.y; 

end 

Earth.V = Earth.DCM*[Earth.v*sin(Earth.y);Earth.v*cos(Earth.y);0]; 

Earth.Vinf = Earth.Vdep - Earth.V; 

 

hyper_a = -Earth.mu/(norm(Earth.Vinf)^2); 

r_p = earth.a*(1-earth.e); 

 

hyper_v = sqrt(Earth.mu*((2/r_p)-(1/hyper_a))); 

ellip_v = sqrt(Earth.mu*((2/r_p)-(1/earth.a))); 

 

DV1 = hyper_v - ellip_v; 

Earth.DV1 = Earth.DCM*[0;DV1;0]; 

end 

Arrival Burn Analysis 

function [Dest,DV2] = Arrival(Sol,Dest,dest,T) 

 

Dest.v = sqrt(Sol.mu*((2/norm(Dest.R))-(1/Dest.a(T)))); 

Dest.h = sqrt(Sol.mu*Dest.a(T)*(1-Dest.e(T)^2)); 

Dest.y = acos(Dest.h/(Dest.v*norm(Dest.R))); 

if Dest.E2 > pi 
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    Dest.y = -Dest.y; 

end 

Vinf = Dest.Varr - (Dest.DCM*[Dest.v*sin(Dest.y);Dest.v*cos(Dest.y);0]); 

 

hyper_a = -Dest.mu/(norm(Vinf)^2); 

r_p = dest.a*(1-dest.e); 

 

hyper_v = sqrt(Dest.mu*((2/r_p)-(1/hyper_a))); 

ellip_v = sqrt(Dest.mu*((2/r_p)-(1/dest.a))); 

 

DV2 = hyper_v - ellip_v; 

 

end 

Inclination Change Analysis 

function [DV,TOF,sol] = inclin_change(Sol,sol,Dest,T) 

 

sol.e = sqrt(1-(sol.p/sol.a)); 

 % solar orbit eccentricity 

sol.n = sqrt(abs(Sol.mu/sol.a^3)); 

     % solar mean motion 

 

sol.nu_dest = acos(((sol.p/mag(Dest.R))-1)/sol.e); 

 % true anomaly of destination planet on solar orbit 

if Dest.y < 0 

    sol.nu_dest = 2*pi - sol.nu_dest; 

end % quad check 

sol.nu_DV = sol.nu_dest - (pi/2); 

 % true anomaly of inclination change 

 

r_DV = sol.p/(1+(sol.e*cos(sol.nu_DV))); 

 % Position of inclination change 

V_DV = sqrt(Sol.mu*((2/r_DV)-(1/sol.a))); 

 % inclination change initial velocity 

 

DV = 2*V_DV*sin(Dest.i(T)/2); 

 % Delta-V 

 

if sol.e < 1 

    sol.E_DV = acos((sol.e+cos(sol.nu_DV))/(1+(sol.e*cos(sol.nu_DV)))); 

    if sol.nu_DV > pi 

        sol.E_DV = 2*pi - sol.E_DV; 

    end % quad check 

    sol.TOF = (1/sol.n)*(sol.E_DV-(sol.e*sin(sol.E_DV))); 

else 

    sol.F_DV = acosh((sol.e+cos(sol.nu_DV))/(1+(sol.e*cos(sol.nu_DV)))); 

    sol.TOF = (1/sol.n)*((sol.e*sinh(sol.F_DV))-sol.F_DV); 

end 

TOF = sol.TOF; 
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end 
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Appendix C. Gravity Assist Trajectory Patched Conic Model 

Main Function 

% Programmer: Will Ziehm 

% Project: Delta V Calculations to an Outer Planet on a Flyby Transfer 

% Date: January 2023 

clc 

clear variables 

close all 

[Sol,Earth,Jupiter,Saturn,Uranus,Neptune,Pluto,Quaoar] = GetEphemeris(); 

% DEPARTURE BODY (Earth) 

 

earth.a = 2000 + Earth.r; 

earth.e = 0; 

 % Initial Earth orbit 

 

% FLYBY BODY 

Dest1 = Jupiter; 

 

dest1.r_p = 12.5*Dest1.r; 

 % Flyby periapsis radius 

%dest1.tol = 1e-4; 

 % tolerance on rp match 

 

% DESTINATION BODY 

Dest2 = Quaoar; 

 

dest2.a = 50*Dest2.r; % use 50*R for STK 

dest2.e = 0.95; 

 % Final destination orbit 

 

% EVENT TIMES 

 

T1 = 4:.006:10; % (Quaoar) 

%T1 = 28:.006:34; % (Pluto) 

 % Departure Date, years past J2000 

T2 = 0.5:.003:2; % years 

 % TOF Departure to Flyby, range 

T3i = 5; % years 

 % TOF Flyby to Arrival, initial guess 

 

% LAMBERT INPUTS 

 

n = 100; 

 % fraction levels 

tol = 1e-8; 

 % output tolerance 
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kmax = 300; 

 % maximum number of iterations 

TT_FOM = zeros(length(T2),1); 

TT_DV_1 = zeros(length(T2),1); 

TT_DV_2 = zeros(length(T2),1); 

TT_Earth = cell(length(T2),1); 

TT_earth = cell(length(T2),1); 

TT_Dest1 = cell(length(T2),1); 

TT_dest1 = cell(length(T2),1); 

TT_Dest2 = cell(length(T2),1); 

TT_dest2 = cell(length(T2),1); 

TT_sol1 = cell(length(T2),1); 

TT_sol2 = cell(length(T2),1); 

TT_T3 = zeros(length(T2),1); 

 

all_DV1 = zeros(length(T1),length(T2)); 

all_DV2 = zeros(length(T1),length(T2)); 

all_DV = zeros(length(T1),length(T2)); 

all_T3 = zeros(length(T1),length(T2)); 

all_Earth = cell(length(T1),length(T2)); 

all_earth = cell(length(T1),length(T2)); 

all_Dest1 = cell(length(T1),length(T2)); 

all_dest1 = cell(length(T1),length(T2)); 

all_Dest2 = cell(length(T1),length(T2)); 

all_dest2 = cell(length(T1),length(T2)); 

all_sol1 = cell(length(T1),length(T2)); 

all_sol2 = cell(length(T1),length(T2)); 

 

opt_FOM = zeros(length(T1),1); 

J = zeros(length(T1),1); 

opt_DV_1 = zeros(length(T1),1); 

opt_DV_2 = zeros(length(T1),1); 

opt_Earth = cell(length(T1),1); 

opt_Dest1 = cell(length(T1),1); 

opt_Dest2 = cell(length(T1),1); 

opt_sol1 = cell(length(T1),1); 

opt_sol2 = cell(length(T1),1); 

opt_T2 = zeros(length(T1),1); 

opt_T3 = zeros(length(T1),1); 

 

%for i = 1:length(TOF) % iterates through TOF in years 

%    for j = 1:length(DDate) % iterates through depature dates 

 

for i = 1:length(T1) % Iterates through departure date 

    fprintf('Progress: %0.3f Complete\n',i/length(T1)) 

    for j = 1:length(T2) % Iterates through transfer time for each dd 

 

        % Planet Positions 

        [Earth] = Planet_Position(Sol,Earth,T1(i)); 

        [Dest1] = Planet_Position(Sol,Dest1,T1(i)+T2(j)); 

 

        % Lamberts Black Box 

        % (discontinuity when transfer angle is ~ 0 rads) 
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        [sol1.a,sol1.p,Earth.Vdep,Dest1.Varr,~,G1,ta1] = ... 

            Lambert(Earth.R,Dest1.R,T2(j)*(365.25*24*3600),Sol.mu,1,n,tol,kmax); 

         % Transfer Arc between Earth and Dest1 

        if abs(pi-ta1) < 0.08 

            sol1.a = NaN; 

            sol1.p = NaN; 

            Earth.Vdep = [NaN,NaN,NaN]; 

            Dest1.Varr = [NaN,NaN,NaN]; 

 

            DV1 = NaN; 

            DV2 = NaN; 

        else 

 

            % Earth Departure 

            [Earth,DV1] = Departure(Earth,earth); 

 

            % Fly-by 

            [Dest1,dest1] = Flyby(Dest1,dest1); 

 

            conv = false; 

            k = 0; 

            T3s = linspace(T3i,T3i+kmax*0.05,kmax); 

            kconv = kmax; 

            for k = 1:kmax 

                [Dest2] = Planet_Position(Sol,Dest2,T1(i)+T2(j)+T3s(k)); 

                [sol2.a,sol2.p,Dest1.Vdep,Dest2.Varr,~,~,~] = ... 

                    Lambert(Dest1.R,Dest2.R,T3s(k)*(365.25*24*3600),Sol.mu,1,n,tol,kmax); 

                Dest1.Vinfp = Dest1.Vdep - Dest1.V; 

                Dest1.visvisa_p(k) = dot(Dest1.Vinfp,Dest1.Vinfp); 

                %T3 = T3 + 0.1; 

                if k > 1 && ~conv 

                    if Dest1.visvisa_m < Dest1.visvisa_p(k-1) && Dest1.visvisa_m > 

Dest1.visvisa_p(k) 

                         if 

acos(dot(Dest1.Vinfp,Dest1.Vinfm)/(norm(Dest1.Vinfm)*norm(Dest1.Vinfp))) < dest1.delta 

                             conv = true; 

                             kconv = k; 

                         end 

                    end 

                end 

            end 

            T3 = T3s(kconv);% = T3 - 0.1*(kmax-kconv); 

            [Dest2] = Planet_Position(Sol,Dest2,T1(i)+T2(j)+T3); 

            [sol2.a,sol2.p,Dest1.Vdep,Dest2.Varr,~,~,~] = ... 

                Lambert(Dest1.R,Dest2.R,T3*(365.25*24*3600),Sol.mu,1,n,tol,kmax); 

 

            if conv == false 

                DV2 = NaN; 

            else 

                % Destination Arrival 

                [Dest2,DV2] = Arrival(Dest2,dest2); 

            end 

        end 
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        Earth.ta = acos(dot(Earth.R,[1;0;0])/(norm(Earth.R))); 

        if Earth.R(2) < 0 

            Earth.ta = 2*pi - Earth.ta; 

        end 

        Dest1.ta = acos(dot(Dest1.R,[1;0;0])/(norm(Dest1.R))); 

        if Dest1.R(2) < 0 

            Dest1.ta = 2*pi - Dest1.ta; 

        end 

        Dest2.ta = acos(dot(Dest2.R,[1;0;0])/(norm(Dest2.R))); 

        if Dest2.R(2) < 0 

            Dest2.ta = 2*pi - Dest2.ta; 

        end 

 

        FOM = (T2(j) + T3) + 0.5*(DV1 + DV2); 

 

        TT_FOM(j) = FOM; 

        TT_DV_1(j) = DV1; 

        TT_DV_2(j) = DV2; 

        TT_T3(j) = T3; 

        TT_Earth(j) = {Earth}; 

        TT_earth(j) = {earth}; 

        TT_Dest1(j) = {Dest1}; 

        TT_dest1(j) = {dest1}; 

        TT_Dest2(j) = {Dest2}; 

        TT_dest2(j) = {dest2}; 

        TT_sol1(j) = {sol1}; 

        TT_sol2(j) = {sol2}; 

        %all_vdep(j) = Dest1.vdep; 

    end 

 

    [opt_FOM(i),J(i)] = min(TT_FOM); 

    %opt_DV_1(i) = TT_DV_1(J(i)); 

    %opt_DV_2(i) = TT_DV_2(J(i)); 

    %opt_T2(i) = T2(J(i)); 

    %opt_T3(i) = TT_T3(J(i)); 

    %opt_Earth(i) = TT_Earth(J(i)); 

    %opt_Dest1(i) = TT_Dest1(J(i)); 

    %opt_Dest2(i) = TT_Dest2(J(i)); 

    %opt_sol1(i) = TT_sol1(J(i)); 

    %opt_sol2(i) = TT_sol2(J(i)); 

 

    all_DV1(i,:) = TT_DV_1; 

    all_DV2(i,:) = TT_DV_2; 

    all_DV(i,:) = TT_DV_1 + TT_DV_2; 

    all_T3(i,:) = TT_T3; 

    all_Earth(i,:) = TT_Earth; 

    all_earth(i,:) = TT_earth; 

    all_Dest1(i,:) = TT_Dest1; 

    all_dest1(i,:) = TT_dest1; 

    all_Dest2(i,:) = TT_Dest2; 

    all_dest2(i,:) = TT_dest2; 

    all_sol1(i,:) = TT_sol1; 

    all_sol2(i,:) = TT_sol2; 

end 
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[opt.FOM,I] = min(opt_FOM); 

opt.DV1 = all_DV1(I,J(I)); 

opt.DV2 = all_DV2(I,J(I)); 

opt.DV = opt.DV1 + opt.DV2; 

opt.T2 = T2(J(I)); 

opt.T3 = all_T3(I,J(I)); 

opt.Earth = all_Earth(I,J(I)); 

opt.earth = all_earth(I,J(I)); 

%opt.Dest1 = opt_Dest1(I); 

opt.Dest1 = all_Dest1(I,J(I)); 

opt.dest1 = all_dest1(I,J(I)); 

opt.Dest2 = all_Dest2(I,J(I)); 

opt.dest2 = all_dest2(I,J(I)); 

opt.sol1 = all_sol1(I,J(I)); 

opt.sol2 = all_sol2(I,J(I)); 

opt.DD = T1(I); 

fprintf('Minimum FOM: %0.3f\n',opt.FOM) 

fprintf('Optimum TOF: %0.2f years\n',opt.T2 + opt.T3) 

fprintf('Optimum DV: %0.3f km/s\n',opt.DV) 

fprintf('Transfer angles: %0.2f rads, %0.2f rads\n',... 

    

acos(dot(opt.Earth{1,1}.R,opt.Dest1{1,1}.R)/(norm(opt.Earth{1,1}.R)*norm(opt.Dest1{1,1}.R

))),... 

    

acos(dot(opt.Dest1{1,1}.R,opt.Dest2{1,1}.R)/(norm(opt.Dest1{1,1}.R)*norm(opt.Dest2{1,1}.R

)))) 

%{ 

figure 

plot(T1 + 2000,opt_DV_1 + opt_DV_2) 

hold on 

xSpline = interp1(T1 + 2000,opt_DV_1 + opt_DV_2,T1 + 2000,'spline'); 

plot(T1 + 2000,xSpline) 

ylabel('Delta-V (km/s)') 

xlabel('Departure Date') 

%} 

 

for d = 1:length(T1) 

    T_transit(d) = T2(J(d)) + all_T3(d,J(d)); 

    if T_transit(d) == 20.5 

        T_transit(d) = 25; 

    end 

end 

figure 

plot(T1+2000,T_transit,'o') 

xlabel('Departure Date') 

ylabel('Transfer Time (years)') 

ylim([8 22]) 

xlim([2004 2010]) 

 

figure 

plot(T1 + 2000,all_DV(:,J(I)),'o') 

%hold on 
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%xSpline2 = interp1(T1 + 2000,PCDV(:,J(I)),T1 + 2000,'spline'); 

%plot(T1 + 2000,xSpline2) 

ylabel('Delta-V (km/s)') 

xlabel('Departure Date') 

 

figure 

plot(T2 + all_T3(I,:),all_DV(I,:)) 

ylabel('Delta-V (km/s)') 

xlabel('Transfer Time (years)') 

xlim([8 20]) 

ylim([14 30]) 

%{ 

for a = 1:i 

    Earth_ta(a) = all_Earth{a,J(I)}.ta; 

    Dest1_ta(a) = all_Dest1{a,J(I)}.ta; 

    Dest2_ta(a) = all_Dest2{a,J(I)}.ta; 

end 

 

figure 

plot(T1 + 2000,Earth_ta) 

hold on 

plot(T1 + 2000,Dest1_ta) 

hold on 

plot(T1 + 2000,Dest2_ta) 

 

figure 

plot(T1 + 2000,Dest1_ta-Earth_ta) 

hold on 

plot(T1 + 2000,Dest1_ta-Dest2_ta) 

%} 

 

c = I; 

%for b = 1:j 

Dest1_vsvs_p = all_Dest1{c,J(I)}.visvisa_p; 

Dest1_vsvs_m = all_Dest1{c,J(I)}.visvisa_m; 

%end 

 

f = figure; 

h1 = plot(T3s,Dest1_vsvs_p); 

hold on 

h2 = plot(T3s,Dest1_vsvs_m*ones(kmax,1)); 

 

e1 = sqrt(1-opt.sol1{1,1}.p/opt.sol1{1,1}.a); 

e2 = sqrt(1-opt.sol2{1,1}.p/opt.sol2{1,1}.a); 

if e1 < 1 

    theta1 = acos((opt.sol1{1,1}.a-

opt.Earth{1,1}.r)/(opt.sol1{1,1}.a*e1)):0.01:acos((opt.sol1{1,1}.a-

opt.Dest1{1,1}.r)/(opt.sol1{1,1}.a*e1)); 

    r1 = opt.sol1{1,1}.a*(1-e1*cos(theta1)); 

else 

    theta1 = acosh((opt.sol1{1,1}.a-

opt.Earth{1,1}.r)/(opt.sol1{1,1}.a*e1)):0.01:acosh((opt.sol1{1,1}.a-

opt.Dest1{1,1}.r)/(opt.sol1{1,1}.a*e1)); 

    r1 = opt.sol1{1,1}.a*(1-e1*cosh(theta1)); 
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end 

 

if e2 < 1 

    theta2 = acos((opt.sol2{1,1}.a-

opt.Dest1{1,1}.r)/(opt.sol2{1,1}.a*e2)):0.01:acos((opt.sol2{1,1}.a-

opt.Dest2{1,1}.r)/(opt.sol2{1,1}.a*e2)); 

    r2 = opt.sol2{1,1}.a*(1-e2*cos(theta2)); 

else 

    theta2 = acosh((opt.sol2{1,1}.a-

opt.Dest1{1,1}.r)/(opt.sol2{1,1}.a*e2)):0.01:acosh((opt.sol2{1,1}.a-

opt.Dest2{1,1}.r)/(opt.sol2{1,1}.a*e2)); 

    r2 = opt.sol2{1,1}.a*(1-e2*cosh(theta2)); 

end 

 

figure 

polarplot(linspace(0,2*pi,100),opt.Earth{1,1}.r*ones(1,100)) 

hold on 

polarplot(linspace(0,2*pi,100),opt.Dest1{1,1}.r*ones(1,100)) 

hold on 

polarplot(theta1,r1) 

hold on 

polarplot(theta2+(theta1(end)-theta2(1)),r2) 

[m_p,m_o,m_t,L] = MassCalcs(T2,all_DV,I,all_T3); 

M_P = m_p(J(I)); 

M_O = m_o(J(I)); 

M_T = m_t(J(I)); 

LL = L(J(I)); 

Definition of Planetary Ephemeris 

function [Sol,Earth,Jupiter,Saturn,Uranus,Neptune,Pluto,Quaoar] = GetEphemeris() 

 

% SOL 

 

Sol.mu = 1.327e11; % km^3/s^2 

 % Gravitational parameter of Sol 

Sol.AU = 1.496e8; % km 

 % Definition of 1 astronomical unit 

 

% EARTH 

 

Earth.mu = 3.9860e5; % km^3/s^2                  %% 

 % Gravitational parameter of Earth 

Earth.r = 6378.14; % km                         %% 

 % Radius of Earth 

Earth.a =@(T) (1.00000261+(T*0.00000562))*Sol.AU; % km 

 % Semi-major axis of Earth orbit 

Earth.e =@(T) 0.01671123-(T*0.00004392); 

 % Eccentricity of Earths orbit 
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Earth.i =@(T) (-0.00001531-(T*0.01294668))*pi/180; % rads 

 % inclination of Earths orbit 

Earth.L =@(T) (100.46457166+(T*35999.37244981))*pi/180; % rads 

 % mean longitude 

Earth.theta =@(T) (102.93768193+(T*0.32327364))*pi/180; % rads 

 % longitude of perihelion 

Earth.RAAN =@(T) (0.0+(T*0.0))*pi/180; % rads 

 % Longitude of ascending node 

 

% JUPITER 

Jupiter.mu = 1.26687e8; % km^3/s^2               %% 

Jupiter.r = 69911; % km                         %% 

Jupiter.a =@(T) (5.20288700-(T*0.00011607))*Sol.AU; % km 

Jupiter.e =@(T) 0.04838624-(T*0.00013253); 

Jupiter.i =@(T) (1.30439695-(T*0.00183714))*pi/180; % rads 

Jupiter.L =@(T) (34.39644051+(T*3034.74612775))*pi/180; % rads 

Jupiter.theta =@(T) (14.72847983+(T*0.21252668))*pi/180; % rads 

Jupiter.RAAN =@(T) (100.47390909+(T*0.20469106))*pi/180; % rads 

 

% SATURN 

 

Saturn.mu = 3.7931e7; % km^3/s^2 

Saturn.r = 58232; % km 

Saturn.a =@(T) (9.53667594-(T*0.00125060))*Sol.AU; % km 

Saturn.e =@(T) 0.05386179-(T*0.00050991); 

Saturn.i =@(T) (2.48599187+(T*0.00193609))*pi/180; % rads 

Saturn.L =@(T) (49.95424423+(T*1222.49362201))*pi/180; % rads 

Saturn.theta =@(T) (92.59887831-(T*0.41897216))*pi/180; % rads 

Saturn.RAAN =@(T) (113.66242448-(T*0.28867794))*pi/180; % rads 

 

% URANUS 

 

Uranus.mu = 5.7940e6; % km^3/s^2 

Uranus.r = 25362; % km 

Uranus.a =@(T) (19.18916464-(T*0.00196176))*Sol.AU; % km 

Uranus.e =@(T) 0.04725744-(T*0.00004397); 

Uranus.i =@(T) (0.77263783-(T*0.00242939))*pi/180; % rads 

Uranus.L =@(T) (313.23810451+(T*428.48202785))*pi/180; % rads 

Uranus.theta =@(T) (170.95427630+(T*0.40805281))*pi/180; % rads 

Uranus.RAAN =@(T) (74.01692503+(T*0.04240589))*pi/180; % rads 

 

% NEPTUNE 

 

Neptune.mu = 6.8351e6; % km^3/s^2 

Neptune.r = 24624; % km 

Neptune.a =@(T) (30.06992276+(T*0.00026291))*Sol.AU; % km 

Neptune.e =@(T) 0.00859048+(T*0.00005105); 

Neptune.i =@(T) (1.77004347+(T*0.00035372))*pi/180; % rads 

Neptune.L =@(T) (-55.12002969+(T*218.45945325))*pi/180; % rads 

Neptune.theta =@(T) (44.96476227-(T*0.32241464))*pi/180; % rads 

Neptune.RAAN =@(T) (131.78422574-(T*0.00508664))*pi/180; % rads 

 

% PLUTO 
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Pluto.mu = 8.724e2; % km^3/s^2 

Pluto.r = 1195; % km 

Pluto.a =@(T) (39.48211675-(T*0.00031596))*Sol.AU; % km 

Pluto.e =@(T) 0.24882730+(T*0.00005170); 

Pluto.i =@(T) (17.14001206+(T*0.00004818))*pi/180; % rads 

Pluto.L =@(T) (238.92903833+(T*145.20780515))*pi/180; % rads 

Pluto.theta =@(T) (224.06891629-(T*0.04062942))*pi/180; % rads 

Pluto.RAAN =@(T) (110.30393684-(T*0.01183482))*pi/180; % rads 

 

% QUAOAR (Horizons Small Body Database Lookup) 

 

Quaoar.mu = 93.4332; % km^3/s^2 

Quaoar.r = 555; % km 

Quaoar.a =@(T) (43.38833028+(T*0))*Sol.AU; % km 

Quaoar.e =@(T) 0.04028864+(T*0); 

Quaoar.i =@(T) (7.99130083+(T*0))*pi/180; % rads 

Quaoar.L =@(T) (281.22046283+(T*125.6157883))*pi/180; % rads 

Quaoar.theta =@(T) (346.79068308+(T*0))*pi/180; % rads 

Quaoar.RAAN =@(T) (189.10126806+(T*0))*pi/180; % rads 

 

end 

Calculation of Planet Positions 

function [Planet] = Planet_Position(Sol,Planet,T) 

 

T = T/100; 

 % converts T to centuries for ephemeris functions 

 

Planet.E1 = newton(1,Planet.e(T),Planet.L(T)-Planet.theta(T),1000,1e-8); 

 % uses Newtons method to solve Keplers equation 

 

while Planet.E1 > 2*pi 

    Planet.E1 = Planet.E1 - (2*pi); 

end % quad check 

Planet.rs = Planet.a(T)*(1 - (Planet.e(T)*cos(Planet.E1))); 

 % position magnitude 

 

nu1 = (2*atan((((1+Planet.e(T))/(1-Planet.e(T)))^(1/2))*tan(Planet.E1/2))); 

O1 = Planet.theta(T)-Planet.RAAN(T)+nu1; 

U1 = Planet.RAAN(T); 

i1 = Planet.i(T); 

 % classical orbital angles 

 

Planet.DCM = [(cos(U1)*cos(O1))-(sin(U1)*sin(O1)*cos(i1)),-(cos(U1)*sin(O1))-

(sin(U1)*cos(O1)*cos(i1)),(sin(U1)*sin(i1));... 

    (sin(U1)*cos(O1))+(cos(U1)*sin(O1)*cos(i1)),-

(sin(U1)*sin(O1))+(cos(U1)*cos(O1)*cos(i1)),-(cos(U1)*sin(i1));... 

    (sin(O1)*sin(i1)),(cos(O1)*sin(i1)),cos(i1)]; 
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 % Directional Cosine Matrix 

 

Planet.v = sqrt(Sol.mu*((2/Planet.rs)-(1/Planet.a(T)))); 

Planet.h = sqrt(Sol.mu*Planet.a(T)*(1-Planet.e(T)^2)); 

Planet.y = acos(Planet.h/(Planet.v*Planet.rs)); 

if Planet.E1 > pi 

    Planet.y = -Planet.y; 

end % quad check 

 

Planet.R = Planet.DCM*[Planet.rs;0;0]; 

Planet.V = Planet.DCM*[Planet.v*sin(Planet.y);Planet.v*cos(Planet.y);0]; 

 % complete cartesian elements of Planet at time T 

end 

Newton Method Solution of Kepler’s Equation 

function num = newton(x_o,c1,c2,max,tol) 

% Purpose:  Using Newtons method to numerically approximate any given value 

% Inputs:   c1-c3 - variable or constant values needed in chosen equation 

%           tol - tolerance for numerical approximation 

%           max - maximum number of iterations in loop 

% Outputs:  numerically approximated value 

    x = zeros(1,max); 

 

    f =@(E,e,M) M - E + e*sin(E); 

    fp =@(E,e) e*cos(E) - 1; 

 

    for i = 1:max 

        if i == 1 

            y = f(x_o,c1,c2); 

            yp = fp(x_o,c1); 

            x(1,i) = x_o - (y/yp); 

            % calculations for initial run 

        else 

            y = f(x(1,i-1),c1,c2); 

            yp = fp(x(1,i-1),c1); 

            x(1,i) = x(1,i-1) - (y/yp); 

            % calculations for non-initial run 

 

            if abs(x(1,i)-x(1,i-1)) < tol 

                break; 

            end 

            % ends loop when tolerance is met 

        end 

    end 

    num = x(1,i); 

    % final value 

end 
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Lambert Solver 

function [A,P,V1,V2,conv,G,ta] = Lambert(R1,R2,TOF,mu,JJ,n,tol,kmax) 

%{ 

    Programmer: Grant Hecht 

    Date:       3/11/2019 

    File:       Lambert.m 

    Purpose:    This function solves Lambert's Problem using Battin's 

                method. 

 

    Inputs: 

    R1:     Vector to Pt#1 

    R2:     Vector to Pt#2 

    TOF:    Time of Flight 

    mu:     Gravitational parameter for central body 

    JJ:     Integer that determines initial guess for x 

                (set JJ = 1 for an ellipse) 

                (set JJ = 0 for a parabola or hyperbola) 

    n:      Number of continued fracton levels 

                (set n = 0 for default of 10) 

                (recomend setting n >= 100 for most accurate results) 

    tol:    Tolerance to exit iterations 

    kmax:   Maximum Iterations 

 

 

    Outputs: 

    V1:     Velocity Vector at Pt#1 

    V2:     Velocity Vector at Pt#2 

    conv:   Boolean to indicate convergence. 

 

%} 

% Defalt Value for n 

n_default = 10; 

 

% If does not converge, set as false 

conv = true; 

 

% Sets n to defalt value if n = 0 is passed 

if n == 0 

    n = n_default; 

end 

 

% Find Transfer Angle 

ta = acos(dot(R1,R2)/(norm(R1)*norm(R2))); 

if R1(1)*R2(2)-R1(2)*R2(1) < 0 

    ta = 2*pi - ta; 

end 

 

% Find Chord 

c = sqrt(norm(R1)^2 + norm(R2)^2 - 2*norm(R1)*norm(R2)*cos(ta)); 
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% Find Semi-Perimeter 

s = (norm(R1) + norm(R2) + c)/2; 

 

% Find Lambda 

lambda = sqrt(norm(R1)*norm(R2))*cos(ta/2)/s; 

 

% Find w 

w = atan((norm(R2)/norm(R1))^0.25)-(pi/4); 

 

% Find l 

if (0 < ta) && (ta < pi) 

    l = (sin(ta/4)^2+tan(2*w)^2)/(sin(ta/4)^2+tan(2*w)^2+cos(ta/2)); 

elseif (pi <= ta) && (ta < 2*pi) 

    l = (cos(ta/4)^2+tan(2*w)^2-cos(ta/2))/(cos(ta/4)^2+tan(2*w)^2); 

else 

    fprintf('Cannot Compute for Transfer Angle of 0 or 360 degrees.'); 

    return 

end 

 

% Find m 

m = (8*mu.*TOF.^2)/(s^3*(1+lambda)^6); 

 

% For Eliptical Transfer Orbit Use x = l for Initial Guess 

% For Hyperbolic or Parabolic Transfer Orbit Use x = 0. 

if JJ == 0 

    x = 0; 

else 

    x = l; 

end 

 

%Define Velocity Vectors 

V1 = zeros(3,1); 

V2 = zeros(3,1); 

 

%Define delta x and counter 

DX = 100; 

k  = 0; 

 

%Iterate to solve 

while abs(DX) > tol 

 

    % Breaks Itteration and sets conv = false if k = kmax 

    if k >= kmax 

        conv = false; 

        break 

    end 

 

    % Calculates Continued Fraction PHI for 'n' Levels 

    eta = x/(sqrt(1+x)+1)^2; 

    f   = 1; 

    % Itterate to Calculate levels 4 -> n 

    for j = n:-1:4 

        ceta = j^2/((2*j)^2-1); 
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        f = 1 + ceta*eta/f; 

    end 

    % Finishes Calculation of PHI with levels 1 -> 3 

    PHI = 8*(sqrt(1+x)+1)/(3+1/(5+eta+(9/7)*eta/f)); 

 

    h1 = (l+x)^2*(1+3*x+PHI)/((1+2*x+l)*(4*x+PHI*(3+x))); 

    h2 = m*(x-l+PHI)/((1+2*x+l)*(4*x+PHI*(3+x))); 

    B  = 27*h2/(4*(1+h1)^3); 

    u  = B/(2*(sqrt(1+B)+1)); 

 

    % Calculates Continued Fraction K(u) for 'n' Levels 

    f = 1; 

    r = n/2-1; 

    % Iterate to Calculate Levels 3 -> n 

    for j = r:-1:1 

        g2n  = 2*(3*j+1)*(6*j-1)/(9*(4*j-1)*(4*j+1)); 

        g2n1 = 2*(3*j+2)*(6*j+1)/(9*(4*j+1)*(4*j+3)); 

        f = 1 + g2n*u/(1 + g2n1*u/f); 

    end 

    % Finishes Calculation of K(u) with levels 1 -> 2 

    K = (1/3)/(1+(4/27)*u/f); 

 

    % Calculates New Values for y and x 

    yNew = ((1+h1)/3)*(2+sqrt(1+B)/(1+2*u*K^2)); 

    xNew = sqrt(((1-l)./2).^2+m/yNew.^2)-(1+l)/2; 

 

    % Compares xNew with x 

    DX = abs(xNew - x); 

 

    % Sets x and y to xNew and yNew 

    x = xNew; 

    y = yNew; 

 

    k = k + 1; 

end 

 

%Computes Orbit Parameters and Initial and Final Velocity 

A  = m.*s.*(1+lambda).^2/(8.*x.*y.^2); 

P0 = c^2*(1+x)^2/(16*A*x); 

P  = 4*norm(R1)*norm(R2)*P0*sin(ta/2)^2/c^2; 

F  = 1-(norm(R2)/P)*(1-cos(ta)); 

G  = norm(R1)*norm(R2)*sin(ta)/sqrt(mu*P); 

FDOT = sqrt(mu/P)*tan(ta/2)*((1-cos(ta))/P-1/norm(R2)-1/norm(R1)); 

GDOT = 1-(norm(R1)/P)*(1-cos(ta)); 

for K=1:3 

    V1(K)=(1/G)*(R2(K)-(F*R1(K))); 

    V2(K)=FDOT*R1(K)+GDOT*V1(K); 

end 

end 
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Departure Burn Analysis 

function [Earth,DV1] = Departure(Earth,earth) 

 

Earth.Vinf = Earth.Vdep - Earth.V; 

 

hyper_a = -Earth.mu/(norm(Earth.Vinf)^2); 

r_p = earth.a*(1-earth.e); 

 

hyper_v = sqrt(Earth.mu*((2/r_p)-(1/hyper_a))); 

ellip_v = sqrt(Earth.mu*((2/r_p)-(1/earth.a))); 

 

DV1 = hyper_v - ellip_v; 

Earth.DV1 = Earth.DCM*[0;DV1;0]; 

 

end 

Gravity Assist Analysis 

function [Dest,dest] = Flyby(Dest,dest) 

 

% Varr, Vdep, Vbody 

 

Dest.Vinfm = Dest.Varr - Dest.V; 

Dest.varr = norm(Dest.Varr); 

Dest.vinf = norm(Dest.Vinfm); 

%Dest.Vinfp = Dest.Vdep - Dest.V; 

Dest.visvisa_m = dot(Dest.Vinfm,Dest.Vinfm); 

 

dest.a = -Dest.mu/(Dest.vinf^2); 

dest.e = 1 - (dest.r_p/dest.a); 

dest.delta = 2*asin(1/dest.e); 

 

Dest.dv = Dest.vinf*sqrt(2*(1-cos(dest.delta))); 

 

dest.beta = 0.5*(pi-dest.delta); 

dest.Gamma = acos(dot(Dest.Vinfm,Dest.Varr)/(Dest.vinf*Dest.varr)); 

dest.d = dest.beta + dest.Gamma; 

Dest.vdep = sqrt((Dest.dv^2)+(Dest.varr^2)-(2*Dest.dv*Dest.varr*cos(dest.d))); 

 

end 
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Arrival Burn Analysis 

function [Dest,DV2] = Arrival(Dest,dest) 

 

Dest.Vinf = Dest.Varr - Dest.V; 

 

hyper_a = -Dest.mu/(norm(Dest.Vinf)^2); 

r_p = dest.a*(1-dest.e); 

 

hyper_v = sqrt(Dest.mu*((2/r_p)-(1/hyper_a))); 

ellip_v = sqrt(Dest.mu*((2/r_p)-(1/dest.a))); 

 

DV2 = hyper_v - ellip_v; 

Dest.DV2 = Dest.DCM*[0;DV2;0]; 

 

end 

Injection Stage Mass Calculations 

function [m_p,m_o,m_t,L] = MassCalcs(T2,all_DV,I,all_T3) 

 

g = 9.81; % m/s^2 

 % gravitational accleration on Earth 

 

% CNTP Performance 

Isp = 1600; % s 

 % Specific Impulse 

m_e = 1650; % kg 

 % engine mass 

 

% LV Constraints 

R = 4.3; % m 

 % max tank diameter 

 

m = [800,1000,1200]; 

 

figure 

for m_ldry = m 

    m_o = zeros(length(T2),1); 

    m_p = zeros(length(T2),1); 

    m_t = zeros(length(T2),1); 

    L = zeros(length(T2),1); 

 

    for k = 1:length(T2) 

 

        m_l = 1.5*m_ldry; % kg 

 

        % Tank estimates 
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        m_ts = 0; % kg 

         % tank mass estimate for LH2 

        tank_margin = 2; 

 

        while tank_margin > 1 

            m_t2 = m_ts; 

            m_f = m_l + m_e + m_t2; % kg 

             % final mission mass 

            m_ps = m_f*(exp((all_DV(I,k))*1000/(g*Isp))-1); % kg 

             % propellant mass 

            V_p = m_ps*1.03/71; % m^3 

             % full prop volume 

            V_pl = V_p - ((4/3)*pi*R^3); 

             % cylindrical prop volume 

            Ls = V_pl/(pi*R^2); % m 

             % tank cylindrical length 

            %if L < 0 

            %    R = R - 0.01; 

            %    tank_margin = 2; 

            %    fprintf('Warning! Tank not full!\n') 

            %end 

            m_ts = (m_ps*0.128) + (2.88*((2*R*pi*Ls)+(4*pi*R^2))); 

             % new tank mass 

            tank_margin = abs(m_ts - m_t2); 

        end 

        L(k) = Ls; 

        m_t(k) = m_ts; 

        m_p(k) = m_ps; 

        m_o(k) = m_ps + m_f; % kg 

         % initial mission mass 

    end 

 

    %plot(opt_DV_1 + opt_DV_2,m_o) 

    mass_transit = T2 + all_T3(I,:); 

    plot(T2 + all_T3(I,:),m_o/1000) 

    hold on 

end 

 

xlim([8 20]) 

ylim([0 40]) 

xlabel('Transfer Time (years)') 

ylabel('Initial Vehicle Mass (mT)') 

legend('Payload Dry Mass: 800 kg','1000 kg','1200 kg') 

 

%figure 

%plot(m,m_o) 

 

%fprintf('Required Propellant Mass: %0.2f kg\n',m_p) 

%fprintf('Spacecraft Total Mass: %0.2f kg\n',m_o) 

 

end 
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