
University of Alabama in Huntsville University of Alabama in Huntsville

LOUIS LOUIS

Honors Capstone Projects and Theses Honors College

4-29-2021

Transition Combinations in Java Transition Combinations in Java

William Bradley Thomason

Follow this and additional works at: https://louis.uah.edu/honors-capstones

Recommended Citation Recommended Citation
Thomason, William Bradley, "Transition Combinations in Java" (2021). Honors Capstone Projects and
Theses. 623.
https://louis.uah.edu/honors-capstones/623

This Thesis is brought to you for free and open access by the Honors College at LOUIS. It has been accepted for
inclusion in Honors Capstone Projects and Theses by an authorized administrator of LOUIS.

https://louis.uah.edu/
https://louis.uah.edu/honors-capstones
https://louis.uah.edu/honors-college
https://louis.uah.edu/honors-capstones?utm_source=louis.uah.edu%2Fhonors-capstones%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://louis.uah.edu/honors-capstones/623?utm_source=louis.uah.edu%2Fhonors-capstones%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages

Thomason 2

Table of Contents

Abstract 3

Introduction 4

Early Prototyping 5

Required Transitions 6

Finishing the Prototype 9

Slideshow Editor 11

Final Revisions 17

Additional Transition Work 18

Conclusion 24

Final Project Link 25

Thomason 3

Abstract

My team’s assignment for senior design was a project originally called “Slide Show

Creator.” This project required us to create two applications: one that would allow the user to

construct a slideshow, and another that would allow them to view it, complete with any music or

transitions that they decided to include with the images. In the original statement of work, we

were only required to create five different transitions. The purpose of this Capstone project was

to create eight additional transition options to be used by these applications. After completing

these transitions, I did additional work to improve the performance of all thirteen transitions.

Along with the final application and some premade slideshows to demonstrate the improved

transitions, I will also be submitting this paper that addresses the process of developing the

various components of our application, as well as the challenges encountered while working on

these components.

Thomason 4

I. Introduction

The project that was assigned to my team by Dr. Delugach at the beginning of the

semester was titled “Slide Show Creator.” This project includes an Editor application that allows

users to construct slideshows from the JPG files found within a directory of their choosing.

These images are displayed as thumbnails in the Editor, and the user can view the ones they’ve

selected in a separate section of the Editor labeled “Timeline.” Once in Timeline, the user can

add various transitions to their images, adjust the timing of each transition, and (if the user is

making an automated slideshow) adjust the amount of time an image is displayed before

changing to the next slide. In addition to JPGs, the user can also select various WAV and AIFF

files to use as the soundtrack for their Slideshow.

Once the user is done constructing their Slideshow, they can export it to the directory

they got their pictures from. Once they export their Slideshow, it can then be viewed using a

second application: Slideshow Player. This application allows users to navigate to a directory and

open the Slideshow of their choosing. After reading in this data, the Player constructs and

displays the images selected by the user, along with any transitions and music that were selected

to accompany them.

For my Honors Capstone, I decided to create additional transitions that could be assigned

to the various images in the user’s constructed Slideshows. While the original project only

requires five simple transitions, my Capstone project was to create eight additional transitions

that combine visual effects used by the original five. After completing this portion of the project,

I spent additional time improving the performance of all thirteen transitions. This paper discusses

the development process my team followed throughout this semester, as well as the challenges I

faced while implementing various parts of the application (both transition-related and otherwise).

Thomason 5

II. Early Prototyping

As is the case with any sizable piece of software, the design must be decided upon (at

least in part) before any concrete development of the product can take place. Since all of us have

experience in creating Java GUIs as a result of our prior coursework, we decided that it would be

best for us to code this GUI-intensive project in Java. After that, since the end goal for anyone

using our application would be to view the Slideshow that they created, we decided the most

important thing was storing our data in a way that made it easy for the Player to read and display

the images as specified by the user. By focusing on the structure of the Player before anything

else, this would allow us to determine the most convenient way to store the data. As a result, we

would then have a format to adhere to as we developed the Editor, as well as a means of testing

the Editor’s output to ensure that it was producing usable Slideshow layout files.

As the technical lead for this project, I have been the one primarily responsible for

writing the source code for our applications. Although this responsibility has been shared with

the other members of my team over the last month or so as we get closer to our deadline, they

were busy writing documents such as the Software Requirements Specification during the early

stages of development. As a result, I was left with the task of creating the prototype for the

Player application. For the first part of this, I created a very simple Player that would display

images at a set aspect ratio and allow the user to iterate through them (without transitions) by

clicking a “Next Slide” button.

Thomason 6

After constructing the basic display for the Player, it was time to establish a format for

the layout files the Player would use to know which images to show. We decided that the best

way to do this would be to use JSON files that stored the full filepath for each image in the

Slideshow. Although the final version of the application allows the user to select their JSON file,

the original prototype used a hard-coded reference to a file named “test.json.” After this was

working, I needed to change the way that the data from these files was being handled as it was

read in. Instead of storing this list of images directly in the Player, each one was stored in a Slide

object. Then, these Slide objects were stored in a Slideshow object. The Player now accessed

images via the Slideshow object, which is also how it accesses them in the final version of the

application.

III. Required Transitions

After getting the basics of the Player and the Slideshow object established, it was time to

add transitions to the Slideshow. Since there are multiple types of transitions and its optional

whether or not a Slide has any, the transitions were implemented in separate classes. In order to

Thomason 7

keep the structure of the Slide independent from whatever transition is attached to it, transitions

were made using an abstract class called “Transition.” Each concrete Transition class has

variables containing their name and duration, as well as a function that is called by the Slide

when it’s time to perform the Transition.

The five transitions required for our project are as follows: Wipe Right, Wipe Left, Wipe

Up, Wipe Down, and Crossfade. At the beginning of the project, Dr. Delugach provided sample

code to provide us with a starting point for these transitions. They served as a good basis for the

concrete classes, but they still needed some modification to work with the structure of our Player.

For example, the original code required four parameters to be passed in every time: JPanel

displaying the images, the old image, the new image, and the duration of the transition. In our

program, images are displayed on a JLabel instead of a JPanel, but this was a simple change to

make. Additionally, since each Slide has its own Transition object whose duration would be the

same every time, we could store the duration in the Transition class instead of passing it as a

variable whenever the “doTrans” function is called. The largest difference was the removal of a

reference to the image being replaced by the Transition. This would require a Slide to have

access to information concerning the image stored in adjacent Slides, which is unnecessary given

that the Transition only needs the new image and a reference to the JLabel that the image is

being drawn onto. The transitions provided by the instructor also had code intended to replace

the original image with the new image (code documentation describes this as a sort of “current

image” reference that may or may not have been needed in the final version of the

instructor-supplied program). Since code like this would mean overwriting the contents of one

Slide with the image from another, this code was also removed from our version of the

Transitions.

Thomason 8

In order to add the appropriate Transition to each Slide when reading in the Slideshow,

the layout file contains whether or not a given Slide should have a transition. If it should, a String

containing the name of the correct subclass is stored with the rest of the Slide’s information.

When constructing the Slideshow, this String is passed into a class called “TransitionLibrary”

that returns an instance of the desired Transition concrete class. It also returns an instance of the

inverse Transition to be used when going to the previous Slide. For example, if the user has

added the “Wipe Right” transition to be used when moving forward through the Slideshow,

moving back to the previous slide would use the “Wipe Left” transition.

Another issue with the provided Transitions was that the implementation of Crossfade

didn’t allow the user to set the duration of the effect. This was because the way the timing

worked in other Transitions was by drawing one piece of the new image (which happened almost

instantly), then pausing briefly before drawing the next piece to create the illusion of movement.

In Crossfade, the function for drawing the image was called with a set operator used to rescale

the alpha (i.e. transparency/opacity). This forces the computer to perform calculations for each

Thomason 9

step of a gradual fade in/out, meaning that pausing like with the other Transitions would disturb

the process rather than making it appear smooth. To fix this, I removed the alpha scaling and

replaced it with a set increment to be used in each draw. This forces the Crossfade to be done in a

series of draws similar to the Wipe Transitions, and the code for pausing between each piece can

be used as it is for the others.

IV. Finishing the Prototype

After taking care of the desired Transitions, there were still two features that needed to be

added to the prototype: audio playback and automated Slide playback. For audio playback, we

decided to make a class dedicated to that purpose called “Jukebox.” After the Player constructs

its Slideshow from the layout file, it passes a list of sound files (saved in the JSON as filepath

Strings) into the Jukebox. As the Slideshow begins, Jukebox is told to start playing whatever

music it has been loaded with. It then does this in the background of the application until it

completes every sound file or the application is closed (whichever comes first). Although Dr.

Delugach provided sample code for this functionality as well, it was for a dedicated audio

playback program and had a great deal of code that would’ve been irrelevant to our project.

Rather than attempting to remove all of the unnecessary lines of code and trying to adapt what

was leftover, we chose to develop this feature independent of influence from the provided sample

code.

After making the Jukebox application, the only thing that remained was a separate

playback mode for automated Slideshows. Although this would make use of the same

components as manual playback (e.g. change images, do transitions, play music, etc.), it required

many of them to be handled in a different way. In addition to setting a flag in the layout file to

indicate whether or not the Slideshow should be automated, all automated Slideshows needed to

Thomason 10

have a display interval set for each Slide. Whenever a new Slide is displayed, this time has to be

retrieved from the object and put into a timer. Whenever this timer goes off, it calls a modified

version of the “Next Slide” function that executes the expected Transition before setting up a

timer for the new image.

The other significant feature required in automated playback is the ability to pause (and

subsequently resume) the automated Slideshow. This introduced a problem for the automated

playback timer, because there is no way to stop the timer without resetting the countdown. This

meant that if I paused the Slideshow one second into a Slide that should display for two seconds,

simply resuming playback and starting the timer would cause it to display for two more seconds

instead of the one that should be remaining. To adjust for this, I included code that would

calculate the elapsed playback time since starting the timer whenever the Slideshow is paused. I

could then use this to figure out how much time should be remaining in the countdown and set

that as the new value for the timer whenever playback is resumed. While this resolved the

playback pausing issue for the Slides, we still needed a way to pause the Jukebox’s audio. This

was done by adding a function that would pause the audio stream being used for playback, as

well as a flag used to indicate the Jukebox has been paused. This flag is required because the

class used to monitor audio playback and move to the next file upon completion of the current

song monitors for times when the music is told to stop playing. By adding a flag to indicate when

the user has paused the music, this ensures that the Jukebox only moves on to the next song

when music stops and playback isn’t paused (i.e. when the song is actually over).

Since the automated Slideshows require added Pause functionality and modified versions

of Next and Previous Slide, this means the two playback modes need to display different control

panels. To accomplish this, we use separate functions for building the manual and automated

Thomason 11

playback control panels. As the layout file gets read in, the automation flag is checked to

determine which function should be called when building the control panel.

V. Slideshow Editor

With these measures in place to allow for full support of both automated and manual

playback, the prototype of the Player was complete. Since we now had a format for the layout

files and a means of testing any new layout files we created, it was time to focus on the Editor

application. While the GUI for our Player only has one purpose (i.e. display images), this is not

the case with the Editor. As specified in our statement of work, the Editor needs to allow the user

to construct a Slideshow using the JPEGs in a given directory. These images need to be shown as

thumbnails, and the user needs to be able to adjust the ordering and Transition settings for all

images put into the Slideshow. If the Slideshow is supposed to be automated, the user should also

be able to adjust the timing of any Slide to the interval of their choosing. Additionally, the user

should be able construct a soundtrack from the WAV and AIFF files in that same directory.

Lastly, the user needs to be able to save their constructed Slideshow to the directory containing

the relevant image and audio files.

Thomason 12

The image above shows the original class diagram for our project. It is broken into four

components: Editor, Player, Data, and Control. The pieces required for the Player prototype as

discussed in previous sections make up the Player and Data components of our diagram. The

remainder of this section will discuss the Editor and Control components of our design.

The Image Library (as the name suggests) is the part of our GUI responsible for showing

the user the images that can be used in their Slideshow. After reading data in from the user’s

selected directory, the Image Library displays any compatible images in a scrollpane as

thumbnails. The user can then add them to their Slideshow by clicking the “Add” button beneath

the desired image. Adding an image to the Slideshow does not remove it from the Library, and

an image can be added to a single Slideshow as many times as desired.

Thomason 13

The Audio Library is also used to present the user with data from their directory, but it

contains audio information rather than images. Along with a generic thumbnail for audio files,

each item in the Library also lists the name and duration of the file it represents. Audio Library

items have an “Add” button just like the Image Library, but they also have an extra button that

can be used to listen to the sound file. As with Image Library items, sound files can be added to

the Slideshow as many times as desired.

Thomason 14

The element of Slideshow Editor responsible for keeping track of everything added to the

Slideshow is the Timeline. Timeline has two tabs: one for images, and one for audio. Images can

be moved up or down in the overall Slides order, or they can be removed from the Timeline

entirely. Users can also use a dropdown to set the Transition they wish to attach to each image.

After doing so, another dropdown becomes available that allows the user to set the duration of

that Slide’s Transition. In the audio tab, users can reorder their constructed soundtrack as desired.

Beneath the tabbed portion of the Timeline, there is a section used to display the total runtime of

the audio that has been added to the Slideshow.

Originally, we planned to have the Transition Library as a component of the Slideshow

Editor GUI. However, since the Transition Library is an unchanging object that only needs to be

Thomason 15

referenced when adding Transitions to images, we decided to move it back to the Data

Component of our design.

The two Libraries and the Timeline are all contained within the Slideshow Editor class

which serves as the main class for our Editor application. In addition to serving as the frame used

to display the Libraries and Timeline, the Editor has a menu bar that contains a “Settings”

dropdown. When opening the settings menu, users have the option to make their Slideshow

automated and to set the default Slide duration. Whenever these settings are altered, the changes

are sent to the Timeline. After adding the Slide duration to Timeline’s images, the total runtime

for the Slides is displayed at the bottom beside the audio runtime. Setting the slideshow to

automatic also adds a checkbox labeled “Use Default Slide Duration” to each image item. If the

Thomason 16

user unchecks this box, they can use the button that appears to set a different duration for that

specific Slide. If the user opens settings again and turns off Slideshow automation, timing

information for Slides is removed from the Timeline.

Slideshow Editor also contains a menu dropdown used for managing the directory being

used. Upon starting the program, the user is asked to select the “Set Directory” option from this

menu. After doing so, the Slideshow Manager class from the Control component is called to

display the computer’s file system. After the user navigates to a directory containing image

and/or audio files, this data is added to the Libraries and made available for Slideshow

construction. There is also an item in this menu labeled “Export Slideshow” that calls a function

within the Timeline that finishes construction of a Slideshow from the various items added to its

two tabs. After constructing the Slideshow, the data is passed to the Slideshow Manager. The

user is then asked to enter a name for their Slideshow, and after doing so the layout information

for their Slideshow is saved to their active directory (assuming the user entered a valid name for

their file). In my original Capstone proposal, I planned to include layout files along with my

submission to allow for an easy demonstration of the Player and my Transitions. However, since

the layout files only contain the location of the images on a computer (rather than actual

information about the images themselves), there was no way to do this without requiring more

work than necessary on the user’s part. While I have not included any sample Slideshows, my

submissions still contains the Editor and Player applications, meaning that anyone with the link

to the ZIP file (provided at the end of this paper) can download both applications and create their

own Slideshows using whatever compatible images and sound files they have on their computer.

Thomason 17

VI. Final Revisions

After completing the Editor, it was time to make the changes necessary to prepare for our

live demonstration. Functionally, the one of the only things remaining was allowing the user to

select the file they wish to view in Slideshow Player. The other thing missing was the ability to

maintain each image’s aspect ratio (since the prototype just scaled everything to the same size).

Fortunately, both of these features were fairly easy to implement, and we were able to do so over

the course of a couple of days.

After taking care of the functionality, it was time for us to make our applications more

aesthetically pleasing. While the Editor already looked more or less complete, the Player needed

significant changes to appear ready for our demonstration. After testing a few GUI themes, we

found one that we liked and applied it to our two applications. Then, after a little resizing to

make sure everything lined up in the new theme, our applications were ready to present. With the

requirements for senior design out of the way, I was able to shift my attention to my Capstone

project.

Thomason 18

VII. Additional Transition Work

After completing the required functionality for our two programs, I resumed my work

with the Transitions. The eight transitions I created specifically for my Honors project are as

follows: Diagonal Wipe from Top Left, Diagonal Wipe from Top Right, Diagonal Wipe from

Bottom Left, Diagonal Wipe from Bottom Right, Horizontal Curtains Open Wipe, Horizontal

Curtains Close Wipe, Vertical Curtains Open Wipe, Vertical Curtains Close Wipe. Since I wrote

the original Transitions as concrete implementations of an abstract class, I was able to do the

same when creating these additional Transitions. This meant that they could be stored in Slide

objects just like the other Transitions, and the only additional step needed to access them was to

include them as options in the Transition retrieval function of the Transition Library. With these

issues already taken care of, I was able to focus my time on how to best combine the original

Transitions in order to make these more complex ones. Fortunately, it was a very straightforward

task to determine which Transitions I would combine for each of my new Transitions. The

Diagonal Wipes are combinations of a horizontal and a vertical wipe (e.g. Diagonal Wipe from

Thomason 19

Top Left combines Wipe Right and Wipe Down), while the Curtain Wipes combine either both

horizontal or both vertical Wipes.

The Diagonal Wipes (much like the unidirectional Wipes they are composed of) move

across the screen in a single motion. Unlike the original Wipes, they require management of both

the vertical and horizontal axes throughout the Transition. Fortunately, these were relatively

straightforward to implement, largely due to the time spent simplifying the original transitions at

the beginning of the project. Originally, as the Transitions add the next piece of the new image to

the JLabel, it would replace only the part of the image covered by the new piece. While this was

all that was needed to achieve the desired effect (since the previous pieces had already been

added in previous loops), it added more variables to the code than were necessary. Instead of

monitoring the position of each piece of the image, the same effect could be achieved by keeping

track of how much of the image should be changed by that point. For example, Wipe Right starts

with the leftmost boundary of the image being replaced and ends when the transition has finished

“moving” to the rightmost boundary. Rather than keeping track of how much image is being

Thomason 20

added in each piece, the Transition can be simplified by only keeping track of how far right it

should have progressed at each step of the process. This change reduces the number of variables

used and makes it easier to identify problems in the event that the code for a Transition is written

incorrectly. Now, only one additional variable is needed to make the Diagonal wipes work. For

the Diagonal Wipe from Top Left (which is a combination of Wipe Right and Wipe Down), this

addition is used to keep track of the lower boundary for the current part of the Transition.

While the changes made to Transition behavior did make it easier to implement the

Curtain Wipes, creating these effects wasn’t as straightforward a process as the Diagonals. In the

Diagonal Wipes(as well as in the original unidirectional Wipes), there are two regions of the

JLabel: a part that has been replaced by the new image, and a part that hasn’t. For the Curtain

Wipes, there are three distinct regions. For Horizontal/Vertical Open, there is one region in the

middle that expands outward and contains part of the new image, and two regions (one on either

side) that contain portions of the previous image. For Horizontal/Vertical Close, the part in the

middle is what contains the original image, and the regions on the sides expand inward to cover

Thomason 21

it with the new one. Because of this difference, each pair of Curtain Transitions had to be

handled in a different way.

For the Horizontal Curtain Close Transition, I used the draw statements from Wipe Left

and Wipe Right to draw each of the “curtains.” However, since the curtains are supposed to meet

in the middle (instead of going all the way across like in a simple Wipe), I had to adjust the size

of each of their pieces so that the two Wipes would only reach the middle by the end of the

Transition. This is the same approach I took when creating the Vertical Curtain Close Transition,

but I combined the Up and Down Wipes instead of the Left and Right ones.

The Open Transitions were an interesting pair to work with. Even though they have three

distinct visual regions (middle contains new image and has old image on either side), the way

they behave functionally is very similar to the Diagonal Wipes. This is because only one of the

three regions contains the image being drawn by the Transition. Since the part containing the

new image is continuous (rather than being broken in two like in the Close Transitions), the new

portion can be drawn using a single statement with two moving borders. However, rather than

being a vertical and horizontal pair like the Diagonal Transitions, the shifting borders move in

opposite directions and are either both vertical or both horizontal. To accomplish this, I

calculated the locations of these borders relative to the middle of the image and (just like the

other Curtain transitions) halved the increment used to shift each border in order to ensure the

Transitions lasted the entire expected duration.

After completing the eight Transitions stated in my Capstone proposal, I decided to spend

some time improving the overall performance of all thirteen Transitions. The original code given

to us by Dr. Delugach broke each image into a set number of pieces (50 for the Wipes, 15 for

Crossfade) and used that number to calculate the time to pause between drawing each piece. For

Thomason 22

example, performing 50 draw operations over the course of a one second Transition would mean

the Transition paused for 20 milliseconds between each draw. However, this meant that longer

Transitions would have far longer pauses in between pieces (e.g. 5 second Transitions had 100

millisecond pauses). This created Transitions that were functionally adequate, but appeared

choppy at higher durations because of how much longer the pauses were. To fix this, I set the

number of iterations to adjust based on the expected duration of the Transition. Since the

Transitions weren’t choppy when breaking a one second Wipe into 50 pieces, I used that as the

basis for the Wipe timing. Now the number of iterations scales at a rate of 50 pieces for every

second that the Transition lasts, meaning the pause remains constant at 20 milliseconds. I used a

similar scale for the Crossfade transition, but with 15 as the basis instead of 50. While this

change made the Crossfade Transition work smoothly for all durations, it introduced a new

problem for the other twelve.

As stated previously, the twelve Wipe Transitions break the image into a certain number

of equal-size pieces. The size of each piece is found by dividing the relevant image dimension

(width for horizontal Wipes and height for vertical ones) by the number of pieces. The

dimensions of these pieces must be expressed as pixels, which means the values must be

integers. Since it is possible that the image dimension will not be neatly divisible by the number

of pieces, this means that truncation could occur. The result of this is that not all of the pixels of

the new image get drawn onto the JLabel as part of the Wipe. While the resulting offset (less

than one pixel per step of the Wipe) isn’t very noticeable at low duration due to the relatively low

number ofs steps, it causes Transitions with longer durations to fall considerably short of

completion. Although the issue was present in the unidirectional Wipes, it wasn’t noticeable

because it isn’t uncommon for the image to fail to take up the entire display area. When this

Thomason 23

happens, the remaining pixels in the display are filled in to make a black background; so the

unidirectional Transitions usually end by “overwriting” the old image’s black background with

the new image’s black background. When Transitions fell short of proper completion in a

situation like this, it wasn’t very noticeable because most (if not all) of the skip would occur in

the identical-looking black areas. However, the Curtain Close Transitions demonstrated the issue

quite clearly since the lack of Transition occurred right in the middle of the image. While the

issue could have been identified at some point even if only unidirectional Transitions had been

used, the inclusion of the Curtain Transitions in the project made it impossible to miss.

In order to fix this problem for the unidirectional Wipe Transitions, I calculated the

remainder left from dividing the number of pixels in the relevant dimension by the number of

pieces being used. When only this many pieces remained to be drawn, I increased the size of the

increment. This results in a minute change to the size of each slice, but ultimately means that the

entire image gets drawn instead of just most of it. This fix also worked for the Diagonal Wipes,

but I had to store remainders for both axes and update the horizontal and vertical increments

separately based on their respective remainders.

Unfortunately, the process of fixing the Curtain Transitions was less straightforward.

Because the increment used to increase the size of the new image along the relevant axis is split

between the two shifting boundaries, this means that truncation could occur twice when

calculating increment size. When this happens, adjusting the increment based on the remainder

won’t work because it doesn’t account for both truncations. Instead, after preparing the

increments like normal, the Curtain Transitions check to see if the amount of pixels the new

image is set to increase at each step is divisible by two. If it is, then the increase can be split

between the two shifting borders at the beginning with no need for correction. If this increase

Thomason 24

cannot be split evenly, then the truncated value is used for the beginning of the Transition. If this

happens, then every step of the Transition updates the count of how many pixels of the changing

dimension have been overwritten and calculates how many pixels remain of the original image.

This number is then divided by the number of remaining steps of the Transition. If the result of

this division is divisible by 2, the increment is made larger so the shifting boundaries both reach

their destination. At this point, a flag is also set to indicate that further correction calculations are

not necessary.

VIII. Conclusion

The original purpose of this Capstone project was to create eight additional Transitions

that could be used in my team’s Slideshow Editor and Slideshow Player applications. These eight

Transitions (Diagonal Wipe from Top Left, Diagonal Wipe from Top Right, Diagonal Wipe from

Bottom Left, Diagonal Wipe from Bottom Right, Horizontal Curtains Open Wipe, Horizontal

Curtains Close Wipe, Vertical Curtains Open Wipe, Vertical Curtains Close Wipe) are are

combinations of various effects used by the Transitions that were originally required for our

project. When making various improvements to the performance of the various Transitions, the

inclusion of my eight Capstone Transitions allowed me to more readily identify (and

subsequently correct) problems that affected all Transitions. In total, out of the 70+ hours I spent

writing code for this project, over half of my time was spent writing code related to the playback

functionality of our Player application. Of the time spent on the Player application,

approximately 15 hours were spent writing code related to the Transition work I did (both to

prepare for and to complete my Capstone). As a result, our Player application is capable of

displaying images with Transitions, and is capable of doing so smoothly regardless of the

Transition or duration the user has selected.

Thomason 25

IX. Final Project Link

The link on this page leads to a shared folder on my Google Drive. There you can

download a ZIP file that contains the source code for my team’s project. The ZIP also contains

all of our project documentation, the installers for the Windows executable versions of our two

programs, some pictures that can be used in our applications, and a README to help you get

started.

https://drive.google.com/drive/folders/1AuKwq0sDUvYTbt5Jac7DO2pUoVXFIlXP?usp=sharing

https://drive.google.com/drive/folders/1AuKwq0sDUvYTbt5Jac7DO2pUoVXFIlXP?usp=sharing

	Transition Combinations in Java
	Recommended Citation

	tmp.1646931963.pdf.jATY6

		2021-05-05T16:42:14-0500
	William Wilkerson

