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ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree = Masters of Science College/Dept. Science/Computer Science

Name of Candidate = Nathan Henderson

Title Human Action Classification Using Temporal Slicing

for Deep Convolutional Neural Networks

Artificial Neural Networks are a widely used computing system implemented
for a wide variety of tasks and problems. A common application of such networks
is classification problems. However, a significant amount of this research focuses on
one and two-dimensional information, such as vectorized data and images. There is
limited research performed on three-dimensional media such as video clips. This can
be attributed to a lack of adequate resources, available training datasets, hardware
constraints, and appropriate frameworks for implementing such networks.

This thesis attempts to provide an alternate methodology of feeding three-
dimensional video data by preprocessing instead of directly inputting to a deep con-
volutional neural network. By taking sequential segments from multiple frames of a
single video clip and combining them into a single image, the temporal dimension of
the video can be encoded as a two-dimensional image. This process is called as tempo-
ral slicing and repeated for the entire spatial dimension of the video. The end result is
spatio-temporal data encoded in a spatial format, which is then propagated through
a convolutional neural network as image data. This method is less resource-intensive

and is remarkably faster than pre-existing three-dimensional convolutional methods,
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while achieving significantly higher accuracy compared to the aforementioned network

architectures.
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CHAPTER 1

INTRODUCTION

Applications of Convolutional Neural Networks (CNNs) are becoming more
predominant in the fields of computer vision and machine learning, due to the ro-
bustness of artificial neural networks and the networks’ capability to extract features
from multidimensional data. Present efforts involve these networks being applied to
spa,t.io—temporal data such as video clips and motion data. This thesis attempts to
demonstrate an innovative approach to video classification, specifically classification

of human action video data, while using Convolutional Neural Networks.

1.1 Motivation

With the progression of hardware and processing capabilities of computers, an
increase in applications of Artificial Neural Networks (ANNs) is seen in the field of
machine learning. ANNs are capable of modeling complex, non-linear data and are
able to approximate virtually any function. This capability makes the classification
as a predominant use of neural network technology. By training a neural network
on a certain dataset, it is intuitively and relatively simple to use a neural network

to predict the class or label of other specified data samples. With the evolution of



ANNSs, comes the Convolutional Neural Network, which applies the same principles
of network connectivity as ANNs, while also being tolerant to translation invariance
in the input data, through its use of spatial convolution windows for subsampling.

Frequently, the type of datasets used to train a neural network consist of
numerical data formatted in a one or two-dimeqsional structures. Convolutional
Neural Networks are commonly used for data processing involving spatial or spatio-
temporal information, such as image recognition or natural language processing [4].
This specific network architecture is especially adept at spatial feature extraction.
Due to the fact that CNNs are able to somewhat maintain the spatial integrity of
the input data, the networks are able to adapt to shifts or translations in the input
samples [5]. This proves essential in the application of CNNs to input data that
involves such movement or shifting, such as that which is found in video data depicting
various human actions or movements. By using filters to adapt to certain recurring
features in each video, the CNN is able to learn and track certain motions across the
time domain.

Human action recognition is a complex problem due to the multiple variables
and parameters involved, such as an infinite possible ways of movements and posi-
tions, dynamic camera positions and perspectives, background noise and movements,
and appearance of the video subjects, such as clothing and accessories. However, the
ability to accurately and reliably classify data depicting human activity and move-
ment is of utmost importance in research fields such as human-computer interaction,
computer vision, video retrieval, and video surveillance, as well as recognition prob-

lems such as human facial expression or emotion predictions.



In comparison to image data that is most commonly used by CNNs, video
datasets are extremely large and can easily be terabytes in size. Common video
datasets such as UCF-101 [6] contain over 13,000 videos and 101 classes, and the
Sports 1M Dataset [2] contains over 1.1 million videos and 487 classes. Classifying
datasets of this size leads to a series of obstacles that must be considered when
developing an approach to classify such large amounts of data. These obstacles are

as follows:

1. Hardware Constraints

The neural network must be able to process at least a single training video
sample at a time, meaning that there must be an adequate amount of local
memory available to handle the mini-batches of training data. Often, a CPU
(Central Processing Unit) does not contain enough memory, nor does it provide
the speed necessary to train an entire network in a reasonable amount of time.
With this in mind, often a GPU (Graphics Processing Unit) is utilized to handle
such large image or video datasets, as demonstrated in [7]. Adequately training
a deep CNN can take days or weeks at a time; thus, it is imperative that the
hardware is able to handle a batch size large enough so that the network training

can be completed in a reasonable amount of time.

2. Network Depth

Often, CNNs used for classifying video data contain several convolutional and
pooling layers, as well as fully-connected layers. The convolutional layers can

contain hundreds or thousands of filters used for feature extraction, and this



greatly contributes to any time or hardware constraints that might exist. It is
important that the network is able to extract and learn certain features from
each video, therefore the network architecture must not be too small or too

large.

3. Computational Time

As previously stated, the time needed to adequately train a deep CNN can
be days or even weeks. The networks that have been used in [2], [3], [8], [9],
and other experiments each consist of numerous convolutional layers, with each
layer containing a certain number of filters. To help minimize the computational
cost of training a network, various measures may be taken in the preprocessing
stage, such as selecting the first n number of frames from a video, similar
to [10], cropping all frames to certain dimensions, or using different sub-sampling
methods. However, such methods result in a loss of spatial information, which

can lead to decreased accuracy.

1.2  Our Approach

The temporal aspect of video data is one of the reasons for the increased
training time, as well as the addition of background noise and dynamic camera per-
spectives that negatively impact classification accuracy. In this thesis, we propose a
different approach that both improves network accuracy and greatly reduces training
time. During the video preprocessing stage, we take a number of frames from each

video and extract a subset of sequential pixel ”slices” from each frame, combining



them into a single data sample, or "segment”. This process is then repeated until
the entire spatial area of each frame is included in the data sample. The result is a
series of sequential segments, comprising a single ”strip”. Each strip represents an
entire video clip. By extracting a fixed number of frames per video clip, we are able
to keep the length of each frame strip the same. Through this process, we are able
to successfully compress the temporal information, while keeping it intact enough for
the convolutional network to adapt to and learn the features of each video sample.
Because the convolutional network is now processing two-dimensional (2D) informa-
tion instead of three-dimensional (3D) information, the computational workload is
significantly reduced. The dataset of frame strips is then used to train a CNN called
the Deep Slicing Network (”DeepSlice”). Other video clips, previously unseen by the

network, are used to test the network’s performance.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 provides a basic conceptual
overview of Convolutional Neural Networks and their respective attributes and pa-
ramcters, as well as their application to this specific problem domain. Chapter 3
contains previous related work in this field. This includes convolutional neural net-
works, human action classification, and spatio-temporal processing through slicing.
Chapter 4 describes our own approach to the problem, including the dataset used,
the preprocessing techniques employed, and the CNN architecture as well. Chapter 5
shows our results of the DeepSlice network, concerning both the classification accu-

racy and the computational performance. These results are then compared to other

n



’ benchmark results of previous experiments on similar or identical datasets. Finally,
Chapter 6 is a summary of the thesis, specifically our approach and the results, and

potential future work in this rescarch field as well.



CHAPTER 2

OVERVIEW OF CONVOLUTIONAL NEURAL NETWORKS

This chapter provides a basic overview of convolutional neural networks, and
their various architectures and parameters. This includes the various types of layers
that are commonly founded in CNNs and our DeepSlice network, and the hyperpa-
rameters involved. Finally, we include a summary of different techniques that are

used to improve initial classification results, such as dropout and weight decay.

2.1 CNN Layers

2.1.1 Convolution Layer

Convolutional neural networks are an advanced variation of multilayer percep-
tron networks, but are designed to maintain the integrity of the spatial dimension.
This makes the CNN optimal for video and image processing, and other spatial clas-
sification tasks, as well as natural language processing. The primary component of a
CNN is the convolution layer. Each convolution produces as output the total weighted
input from a local receptive field, determined by the size of the convolutional window.
The convolutional window is then translated according to a predetermined ”stride”.

Through this process, the output is contained in a hidden layer. Because this architec-



ture also implements shared weights (weights that are used across multiple receptive

fields), the spatial data is preserved [1]. This is further illustrated in Figure 2.1.

input neurons
0090 S din ok
oooo&..-“\—_h\\ ) first hidden layer

B L ———

OPOOOmT RS S S0 ¢

Figure 2.1: Convolution Across a Single Spatial Data Sample [1]

The output of a certain layer [ at position (7, j) given a bias B and filter
size (FzF'), shared weights array w, and a being the input activation to the node, is
shown in Equation 2.1. For 3D convolution such as [3], this principle is applied in

three dimensions instead of two.

F-1F-1
Tik = B+ Z Z W @41, k+m (2.1)
1=0 m=0
This process is continued for a set number of kernels (or "filters”). The output
of a filter applicd to an input layer is referred to as a ”feature map”. This process
of convolution is repeated for a defined number of filters, thus producing an output

with a depth dimension. These feature maps determine the activation of the following

layer in the network architecture.



2.1.2 Pooling Layer

A common layer found to follow convolutional layers is called a pooling layer.
The purpose of these layers is to preserve the spatial dimensionality of the preceding
layer’s output, while also downsampling the data to reduce the amount of local da‘tfa‘
and to avoid overfitting. The pooling layers in DeepSlice implement the ” Max Pool-
ing” algorithm which simply returns the highest activation value within the pooling
window. We experiment with different pooling windows in this thesis. Typically, due
to the unorthodox dimensions of our data, the pooling windows are often rectangu-
lar for our data, instead of commonly-used square windows. This technique is used
for the purpose of downsampling individual dimensions of the data, to ensure that

enough data was present for the duration of the forward-propagation.

2.1.3 Fully Connected Layer

A fully-connected (or ”affine”) layer contains a single matrix of nodes that arc
all connected to the input of each of the nodes of the previous layer. An example
of a multi-layer perceptron network (constructed entirely of fully-connected layers) is

shown in Figure 2.2.

2.1.4 Rectified Linear Unit

The activation function used for the layers in DeepSlice are called Rectified

Linear Units. This activation function follows the equation shown in Equation 2.2.

f(z) = maz(0, z) 2.2)



output

Figure 2.2: Diagram of Multilayer Perceptron Network [1]

2.1.5 Softmax Layer

The output layer of our network is a softmax layer. This layer contains a
vector of output of the number of classes. For the UCF101 dataset, the number
of output nodes is 101. This network outputs a vector of probabilities that, when
summed, equal 1. The probability of class y in input vector z for K classes is shown
in Equation 2.3. This layer also calculates the loss of the output of the function. The
primary purpose of the network is to minimize this cost function as it approaches the
global minimum.

e T T. w;y

k;l emka

In the literature, results often report a "top-k” accuracy, indicating that the
class was correctly predicted in the top "k” group. For example, the top-1 accuracy
indicates that the correct class was within the top 1 softmax predictions when sorted
by increasing probability. A top-5 accuracy indicates that the network predicted the

correct class within the top 5 probabilities.
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2.2 Optimization

2.2.1 Stochastic Gradient Descent

The optimization, or learning algorithm, for this network is Stochastic Gra-
dient Descent (SGD) [11]. SGD is an iterative optimization function that uses the
gradient of the loss function to gradually approach the global minimum of the loss
function. The weights are adjusted during backpropagation using a specified learning
rate a and the loss function gradient 57Q);. The momentum coefficient p determines
how much the previous weight adjustment affects the current weight adjustment. The
equation for the weight adjustment using SGD with momentum is shown in Equation
2.4. SGD has proven to be a reliable and robust optimization technique [12] and

continues to be widely used in many neural network architectures.

wi=w—pyQi(w)+alAw (2.4)

2.2.2 Dropout

A regularization method used in DeepSlice is dropout. This is a technique
used to prevent overfitting, especially within fully-connected layers, due to the large
amount of parameters and connectivity within these layers. During each training
iteration, a randomized selection of nodes within a layer are removed. This allows
for a certain amount of variation within the training phase, and is similar to training

multiple similar but not identical networks on a single sample (bagging) [13] [14]. In

11



DeepSlice, the final fully-connected layer implements dropout with a probability of

0.5.

2.3 Summary

This chapter serves as a basic introduction to the basic fundamentals of CNNs,
and the benefit that certain optimization and learning algorithms offer to the training
process. This is by no means an exhaustive list of possible CNN features and algo-
rithms, and the addition of certain features such as normalization or another learning

algorithm might provide an additional increase to the classification of DeepSlice.

12



CHAPTER 3

RELATED WORK

This chapter describes some of the previous research relevant to our work.
This includes the work related to convolutional neural networks in general, their ap-
plication to motion data, including human action and pose estimation, as well as ex-
perimentation with temporal slicing with image and video data. With the availability
of video data sets and ground-truths, it is now possible to compare the performance

of various techniques fairly.

3.1 Convolutional Neural Networks

With the increase in hardware capabilities supporting Convolutional Neural
Networks, much work has been done in the area of image processing, such as [15], [16],
and [17]. The authors of [15] introduce a large image dataset called ”ImageNet”, con-
sisting of over 1.2 million high-resolution images sorted into 1000 classes. The CNN
used in their experiments consists of five convolutional layers, three fully-connected
layers, and a final softmax output layer. This architecture has been the foundation
for several other works, including the C3D Network found in [3]. [16] furthers the

work on the ImageNet dataset by exploring the correlation of network depth with

13



classification accuracy. Through their increase in convolutional layer depth and filter
sizes, they were able to improve upon the standard baseline accuracy. [17] focuses
on the utilization of the computational resources while allowing for increases in the
network size and depth. This allows for a wider variety of network architectures to
be tested on the Imagenet dataset. [8], [18], and [2] all expand this technology by
incorporating temporal data into their respective datasets. The work done by [8]
uses CNNs to process videos frame by frame, while the other works attempt to use
the temporal context of the data through 3D convolution windows and 3D pooling
layers. A combination of three-dimensional convolutional neural networks and recur-
rent neural networks are used in [18] to implement a feature-extraction mechanism to
aid the classification of two different video datasets [19]. [2] introduces the Sports1M
dataset, consisting of over 1.2 million videos split into 487 classes, which has led to a

number of experiments further exploring spatio-temporal classification using CNNss.

3.2 Human Action Classification

Convolutional neural network architectures have been applied to human action
or motion recognition domains in several different approaches. For video classification,
Karpathy et al. [2] use single-frame analysis as well as temporal convolution in slow,
early, and late fusion models. This allows for certain network architectures to perform
feature extraction in parallel, while maintaining spatial and temporal integrity of
the data samples. Their paper experiments with various types of networks that
fuse temporal information from the neural network at certain times during forward-

propagation. The three networks used in this experiment are Late Fusion, Early

14



Fusion, and Slow Fusion. Each of these networks takes in a sequential grouping of
video frames at a time, in order to preserve the temporal order. These results are
compared to a network trained on each video frame individually. Their diagram of
such processes is shown in Figure 3.1. In this work, their network architecture is
described as "C(96, 11, 3)-N-P-C(256, 5, 1)-N-P-C(384, 3, 1)- C(384, 3, 1)-C(256, 3,
1)-P-F C(4096)-F C(4096)” [2], where C is a convolutional layer, P is a pooling layer,
N is a normalization layer, and FC is a fully connected layer. The pooling layers use
a 2x2 window. Each convolutional layer is shown using C(d, f, s), with d filters of
dimensions fzf, using a stride of s.

Another experiment attempted in their paper is splitting each input stream
into two separate input streams. The first is a low-resolution context stream, and the
second is a high-resolution ”fovea” stream. This stream focuses on the central region
of the frames that contain the most spatial information about the action, instead
of the entire high-resolution frame. This is shown to be beneficial in improving the
performance of the network. The network is trained on the Sports1M dataset, and the
Slow Fusion network obtains the highest accuracy level, a 41.9% top-1 clip accuracy.
This network is then fine-tuned on the UCF101 dataset to achieve a 3-fold accuracy
of 65.4%, as a result of fine-tuning the top 3 layers. As a baseline, their network is
trained from scratch on UCF101, achieving an accuracy of 41.3%.

Du Tran et al. [3] use the C3D network, a network architecture reliant on
3D convolution and 3D pooling throughout. C3D is a caffe-based implementation
of an ANN framework that allows for pooling and convolutional layers to perform

temporal convolution, and utilizes techniques such as SVMs and fine-tuning of the
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Figure 3.1: Temporal Fusion Networks Tested in [2] (2014 IEEE)

final layers to improve upon their initial accuracy results. C3D implements true
three-dimensional convolution and pooling in their network architecture, maintaining
spatial and temporal integrity throughout the entire forward-propagation process,
and continues the principle discovered by the Slow Fusion model in [2], that is, pure
3D convolution and pooling within the network’s convolutional layers achieves higher
results. A portion of this experimentation is to discover the best kernel size for
convolution, and it is discovered that a 3x3 convolution kernel provides the best
results. This theory is also confirmed by our own experiments.

Further experimentation was conducted to determine the best temporal di-
mension size for the kernels. Several depths were tested, such as 1, 3, 5, and 7. In
addition, networks with increasing depths such as 3-3-5-5-7 and decreasing depths
such as 7-5-5-3-3 were also tested. These experiments were run on the UCF101
dataset, using the training and test split 1. The constant depth of 3 performed the
highest, achieving approximately 44% accuracy when trained from scratch. These
previous experiments determined the final architecture of the C3D network, which is

shown in Figure 3.2
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Figure 3.2: C3D Architecture 3] (2015 IEEE)

The convolution window in each layer is 3x3x3, with a stride of 1. Each pooling
layer uses a kernel of size 2x2x2, with a stride of 1. However, the first pooling contains
a temporal depth of 1, to preserve the temporal dimension for later convolution. This
technique was also implemented in our own experiments and networks. C3b was later
trained on Sports1M, and tested using the UCF101 dataset, with a top-1 accuracy of
44.9% when trained from scratch.

Ji et al. [20] use the same type of 3D convolution, while also incorporating
optical flow information into the dataset. Their work also explores the optimal size of
the kernels to produce improved results. Ng et al. employ a recurrent neural network
in [8] called LSTM (Long Short Term Memory) that stores video clip information
continuously, thus allowing the network to learn more features over longer durations.
In this experiment, the authors deviate from the common practice of using sequential
video frames, due to the computational workload. Instead, the authors prefer to
process each frame individually, and obtain the motion information separately using
optical flow techniques. The authors of this paper explore various pooling techniques,
such as implementing the pooling layers after the convolutional layers, at the end of
the network (after the fully-connected layers), after both the convolutional and fully-
connected layers, and after time-domain convolution. The output of this network is

then used as input to the LSTM network for the classification. This experiment is first
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carried out on the Sports1M dataset and then tested on the UCF101 dataset. This
paper claims to have achieved a 3-fold accuracy of 82.6% for convolutional pooling of
120 frames.

Specific to human action analysis, Jayabalan et al. [21] use CNN networks to
process joint movement data. Through their use of joint data representations, they
are able to work with lower-dimensionality data compared to data such as images or
videos. This is one of the first implementations of CNNs for this task, as previous
human action analysis work was primary performed using Recurrent Neural Networks.
Grinciunaite et al. [22] use similar joint regression information in 3D space to predict
certain movements and poses. Their work also utilizes 3D convolution in their CNN.

Finally, Tachhetti et al. [10] make comparisons to the biological processes
behind visual identification of actions and explores certain aspects of data such as
video translation, and camera invariance. It is worth noting that [23], [24], [25], and [8]
use information such as optical flow to fine-tune their networks. Many others such
as [26] and [3] use other feature extraction methods such as Support Vector Machines

(SVMs) to further improve their results.

3.3 Temporal Slicing

The concept of temporal segmentation has been tested for clustering, and
retrieval of clustered video shots has been demonstrated by [27], and this concept
was further explored in [28]. [27] introduces the concept of temporal slicing of video
frames for the extraction of motion patterns and recognition of different color patterns

and motion analysis. The segmented data was then used for clustering for a two-class
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classification problem. This technique was apf)lied to discover various kinds of camera
breaks in [28], in order to break a video clip into several individual segments. In our
work, we used the temporal slicing technique in order to reduce the computational
burden of the neural network. However, the results of our application of temporal
slicing is then used for a convolutional neural network, not for a clustering algorithm.

In this way, this slicing approach is applied to a new problem domain.

3.4 Summary

Although there have been several noted attempts at human action or motion
classification using convolutional neural networks, currently we have not discovered
any that utilize the temporal slicing technique to form a different dataset to be used
as input to the neural network. Although many of the previous works discussed use
optical flow or other external motion data as input into the CNNs, we prefer to use the
raw video frames as input, and apply our temporal slicing technique to the original

video frames, as this is what makes our approach innovative and unique.
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CHAPTER 4

METHODOLOGY

This chapter provide information on the dataset used to test DeepSlice’s clas-
sification accuracy, UCF-101. The preprocessing of video data using temporal slicing
is an important feature of DeepSlice. The experiments to test the functionality and
performance of DeepSlice on temporally sliced data are also described here, including
the experimentation used to determine the best orientation to be used for the slicing.
Finally, the architecture of the DeepSlice network itself is described and illustrated
in this chapter, as well as the various hyper-parameters that were shown to provide

the most optimal results.

4.1 Dataset

In this thesis, we use the UCF-101 video dataset, as described in [6]. This
dataset is comprised of 13,320 video clips depicting 101 human actions. These classes
include labels such as Applying Eye Makeup, Brushing Teeth, Hammering, Mopping
Floor, Bowling, and Writing On Board. Each class contains over 100 video clips.
The average video clip length is 7.21 seconds, with the range of lengths being 1.06 to

71.04 seconds. The videos are recorded with a frame rate of 25 frames per second,
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at a resélution of 320x240 pixels. The training and test datasets contain separate
7groups” of videos, with each group containing individual video clips. Such ”clips”
contain different actors or other differentiable context, but are taken from the same
long video clip. For example, two separate video clips from the same group in the
"baseball” class might contain two different batters, but would contain the same
background, and the same camera angle. The train and test datasets were separated
by groups to avoid similar clips in both sets, leading to inflated accuracy as a result.

A list of the individual classes in UCF-101 can be found in Appendix A.

4.2 Temporal Slicing

In order to reduce the training time of the network, while also preserving
the spatial and temporal information in some regard, we take a different approach
to the data presentation to the network. Projects that use 3D Convolution take
in a sample of sequential video frames which keeps the spatial information intact
and also maintains the temporal order of the data. However, in our approach, we
sample exactly 30 frames from each video clip. Each frame was cropped to 128x171
pixels. A strip of spatial data was taken from the same position in each frame and
was sequentially placed in order to create a segment of slices that contain all image
data for a single localized area across all sampled frames, thus encoding the temporal
dimension as well. This process was repeated until each frame was completely covered.
For frames of size h x w pixels, the width of the resulting image strip is f x w pixels,

with f being the number of frames taken from each clip.
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This process is completed a second time, this time with row extraction, instead
of column extraction. Both types of preprocessing were completed with the same
dataset, using 128x171 pixel frames, and 30 frames per video. This concept is further
illustrated in Figure 4.1 and Figure 4.2, which shows a single image strip for a series
of frames from a single video clip, containing n different segments. It is worth noting
that in row-wise slicing, the resulting frame strip has an extended vertical dimension,
while the column-wise slicing produces a frame strip with an extended horizontal

dimension, more closely resembling an actual ”filmstrip”.

128 pixels

Figure 4.1: Localized Column Temporal Slicing

Figures 4.5 through 4.20 contains examples of video clips after the prepro-
cessing stage. This includes the frame extraction from each clip, and the temporal
slicing. All videos are cropped to 128x171 pixel dimensions. Note that for the sake

of this thesis, the figures display a single frame strip divided into 4-6 segments placed
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Figure 4.2: Localized Row Temporal Slicing

in parallel, due to sizing constraints. The actual images are several thousand pixels

long, and are handled by the CNN as such.

4.2.1 Original Frames

The following sections contain visual examples of the preprocessing that occurs
for the DeepSlice network. Two different video clips are taken from two separate
classes, " Golf Swing” and "High Jump”. This is intended to visualize the effect that
various slicing widths and orientations has on the image strip. Each frame is 128x171
pixels, and exactly 30 frames are taken from each video using iterative extraction so

that the entire duration of the video clip is covered.
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The first example shown in Figure 4.3 is an example from the class ”Golf
Swing”. This video clip depicts a golfer performing a normal golf swing, hitting a golf
ball off of a tee. The camera remains stationary during this shot, which climinates a

significant source of background noise and translation.
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Figure 4.3: Sampled Frames From ”Golf Swing” Video Clip

The second example, shown in Figure 4.4, is from the "High Jump” class.
This video depicts an athlete performing the high jump over a crossbar inside of
a gymnasium. However, in contrast to the previous clip, this camera follows the
movement of the athlete, and shifts horizontally during the video, which is visible

from the extracted clips.
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Figure 4.4: Sampled Frames From ”High Jump” Video Clip

4.2.2 Column-wise Slicing

This section displays the resulting frame strips of the temporal slicing prepro-
cessing technique. Each of the 30 frames that were extracted previously have a select
slice removed, and are then combined in a contiguous manner. This is then repeated
until the entirety of the spatial dimension of each frame is covered. This process is
shown for slice widths of 3, 6, 12, and 24 pixels. Each of the images are shown with
segments of the 128x5040 image in parallel, due to sizing constraints.

Shown in Figures 4.5 through 4.8 are the results of the column-wise temporal
slicing for the ” Golf Swing” video clip for various slice widths, whose extracted frames

are shown in Figure 4.3.



Figure 4.5: ”Golf Swing” Clip Using Column Slice Width of 3 pixels
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Figure 4.6: " Golf Swing” Clip Using Column Slice Width of 6 pixels
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Figure 4.7: " Golf Swing” Clip Using Column Slice Width of 12 pixels
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Figure 4.8: ”Golf Swing” Clip Using Column Slice Width of 24 pixels

Shown in Figures 4.9 through 4.12 are the results of the column-wise temporal
slicing for the "High Jump” video clip for various slice widths, whose extracted frames

are shown in Figure 4.4. When slice width is increased, the content can be interpreted
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better by a human. It is difficult to grasp the content of a video for images using low

slice width.
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Figure 4.9: "High Jump” Clip Using Column Slice Width of 3 pixels

Figure 4.10: "High Jump” Clip Using Column Slice Width of 6 pixels
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Figure 4.11: "High Jump” Clip Using Column Slice Width of 12 pixels
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Figure 4.12: "High Jump” Clip Using Column Slice Width of 24 pixels

4.2.3 Rowwise Slicing

The same temporal slicing process is repeated on the original frames, this time

with a horizontal orientation. This results in a 3780x171 strip. Once again, several
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segments of the same strip are shown side-by-side due to sizing constraints of this
thesis. This process contains the results of row widths of 3, 6, 12, and 24 pixels.
Figures 4.13 through 4.16 show the rowwise temporal slicing for the Golf Swing

clip for various slice widths.

Figure 4.13: ”Golf Swing” Clip Using Row Slice Width of 3 pixels
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"Golf Swing” Clip Using Row Slice Width of 6 pixels

Figure 4.14:
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"Golf Swing” Clip Using Row Slice Width of 12 pixels

Figure 4.15:
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Figure 4.16: " Golf Swing” Clip Using Row Slice Width of 24 pixels

Figure 4.17 through 4.20 show the results of the rowwise temporal slicing for
the High Jump video clip for various slice widths. Note that a significant amount of
blank space is shown due to the internal cropping of the camera viewer in this video

clip, and this information is also encoded into the frame strips.



Figure 4.18: "High Jump” Clip Using Row Slice Width of 6 pixels
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Figure 4.19: "High Jump” Clip Using Row Slice Width of 12 pixels

Figure 4.20: "High Jump” Clip Using Row Slice Width of 24 pixels
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4.3 CNN Architecture

DeepSlice consists of two convolutional layers and their respective max pooling
layers, followed by two consecutive convolutional layers, a pooling layer, and two
more convolutional layers. Finally, a max pooling layer is connected to a single fully
connected feature vector, which is connected to a Softmax output layer. Because
the width of the image strip is usually several thousand pixels wide, the convolution
layers contain a kernel of size (3x3), but the pooling windows are of size (2x2), or
(1x2).

The first four convolutional layers contain 60 filters, while the last two convo-
lutional layers contain 60 and 50 filters, respectively. Convl, 3a, 3b, 4a and 4b use
a stride of 3, with Conv2 using a stride of 1. Using a stride of 3 for the first con-
volutional layer, in addition to the slice widths of 3, helps to preserve the temporal
information [3]. The last pooling layer contains a kernel of size 1x2 to account for the
large width:height ratio of the image strip. Finally, the feature vector contains 1000
nodes, with the Softmax layer containing 101 output nodes.

Each layer contains a Rectified Linear Unit (ReLU) activation function, and
the weights are initialized using a Gaussian distribution with a standard deviation of
0.01. The feature vector contains a dropout ratio of 0.5 [29]. Finally, the network is
optimized using Stochastic Gradient Descent, with a momentum coefficient of 0.9, and
a base learning rate of 0.003. The learning rate was decreased by a factor of 10 every
10000 iterations. DeepSlice was trained on an Nvidia Tesla K20c GPU and we used

the caffe framework [30] to implement our neural networks for both the training and
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testing phases. The temporal slicing and preprocessing of the dataset was performed
using the Python language, as well as the NumPy library, OpenCV, and FFMpeg.
Tables 4.1 and 4.2 contains the network architecture and hyperparameters of the

DeepSlice network.

Table 4.1: DeepSlice Architecture

I Layer “ Shape | Parameters | Initialization l
data || (3, 128, 5040)
convl | (60, 3, 3) stride=3 Gaussian(std=0.01)
pooll (2,2) stride=2
conv2 | (60, 3, 3) stride=1, bias=1 Gaussian(std=0.01)
pool2 (2,:2) stride=1
conv3a | (60, 3, 3) stride=3 Gaussian(std=0.01)
conv3b | (60, 3, 3) stride=3 Gaussian(std=0.01)
pool3 (1, 2) stride=1
convda || (60, 2, 2) stride=2 Gaussian(std=0.01)
conv4b | (50, 3, 3) stride=3 Gaussian(std=0.01)
pool4 (1, 2) stride=1
feh 1000 dropout=0.5=1, bias=1 | Gaussian(std=0.005)
fc6 101 Gaussian(std=0.01)

Table 4.2: DeepSlice Hyperparameters

LHyperparameter ]| Value |
Base learning rate 0.003
Gamma 0.1
Step Size 10000
Momentum coefficient || 0.9
Weight decay 0.0005
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4.4 Summary

The DeepSlice network experimentation was carried out solely on the UCF-
101 dataset, primarily because the dataset provided enough training data to train the
network to be able to adequately distinguish between various human actions, even
several that are very similar, such as ” Apply Eye Makeup” and ” Apply Lipstick”.
The UCF-101 dataset is well grouped, as it distinguishes between not only various
clips, but groups of clips that share a similar context or background. The network
architecture that was listed in this chapter, as well as the temporal slicing technique
that was described, is the foundation for the experimental work performed in the

following chapter.
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CHAPTER 5

EXPERIMENTS AND RESULTS

This chapter showcases the results produced by the DeepSlice network. This
includes the experimentation that determined the preprocessing techniques that ren-
dered the best accuracy of the network, as well as the network parameters that also
produced optimal results. This chapter also includes our observations on specific
classes of the UCF-101 dataset that produced either noticeably positive or negative
results. Finally, the computational performance of DeepSlice is observed and com-
pared to the C3D network, and the training time is shown to be improved, while still
achieving sufficient training to produce higher classification results as well.

The network was trained and validated using the UCF-101 train and test split-
1 [6]. This step ensures that video clips taken from the same long video sample or
similar environments are not duplicated in the training phase. These are the same
training and test datasets used in experiments such as [3]. The training set includes

a copy of each clip that is flipped horizontally to expand the training set.
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5.1 Slice Width and Orientation

To determine a reasonable segmentation width for the columns extracted from
each frame, we tested DeepSlice on images consisting of slices of 3, 6, 12, and 24
pixels in width, using a convolutional filter size of 3x6. Each dataset was tested using
the saﬂle dataset split for 20,000 iterations with a minibatch size of 20. The results

are shown in Table 5.1.

Table 5.1: Effect of Column Slice Width on DeepSlice Performance

| Slice Width || Top-1 Accuracy I Top-5 Accuracy l

3 53.75% 75.76%
6 19.45% 41.01%
12 21.00% 41.49%
24 52.99% 75.46%

An interesting observation from Table 5.1 is that slice widths of 3 and 24 both
produce significantly impressive results. The slices of widths 6 and 12 provide a more
equal balance of spatial and temporal data for each section of the video frames, while
the width of 3 provides significant temporal information, and 24 provides significant
spatial information to the network. This allows the network to learn to recognize the
features and motion more easily, thus leading to higher classification accuracy.

The same process was repeated using row slicing instead of column slicing.
The only difference in the network architecture itself was that any asymmetric ker-
nels were rotated by 90 degrees. This is due to the fact that rowwise segmentation
results in a 3600x171 pixel image, instead of a 128x5130 pixel image with the column

segmentation. Thus, the 3x6 kernels using in the convolutional layers were 6x3 ker-
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nels for the row sliced dataset. The results of this experiment are shown in Table 5.2.

A side-by-side comparison of the two preprocessing techniques is shown in Table 5.3.

Table 5.2: Effect of Row Slice Width on DeepSlice Performance

] Slice Width || Top-1 Accuracy | Top-5 Accuracyw

3 21.25% 42.37%
6 21.49% 40.49%
12 22.47% 43.23%
24 22.53% 45.00%

Table 5.3: Results of Column Slicing vs Row Slicing

@lice Width “ Column Accuracy | Row Accuracy [

3 53.75% 21.25%
6 19.45% 21.49%
12 21.00% 22.47%
24 52.99% 22.64%

Although the row accuracy is slightly higher than column accuracy for 6 and
12 pixel slices, the 3 and 24 pixel column slices perform drastically better than any
of the other preprocessing methods. A possible explanation for this is that many
instances of the actions contained in this dataset occur in the vertical direction,
which would be more prominently displayed in columns instead of rows. In addition,
the human targets in the video clips are often in vertical, erect positions for many of
the classes. This would indicate that the action and motion is more easily recognized
and extracted when the spatial information is maintained in the vertical dimension,
versus the horizontal dimension. Therefore, for the majority of experiments in the

remainder of this paper, the datasets used are the column-wise slicing datasets.
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5.2 Kernel Size

We tested DeepSlice using three different kernel sizes within the convolutional
layers. The kernel sizes tested were 3x3, 3x6, and 3x9. Each network was trained for

20,000 iterations, and the results are shown in Table 5.4.

Table 5.4: Effect of Kernel Size on DeepSlice Performance

| Slice Width [[ 3x3  [3x6  [3x9 |

3 59.48% | 53.75% | 54.21%
6 15.54% | 19.45% | 15.82%
12 16.52% | 21.00% | 18.75%
24 57.77% | 52.99% | 38.20%

Based on these results, the temporal slicing of width 3 appears to produce the
best results with a filter size of 3x3. This suggests that the network performs better
when it focuses on spatial context in earlier layers and delay integration of temporal

information.

5.3 Classification Accuracy

Additional experimentation was conducted on the 3 and 24 width datasets,
with the 3 width dataset producing the highest results. The loss for the training of
DeepSlice for the 3 width dataset is shown in Figure 5.1.

After training for approximately 45 epochs (40,000 iterations), DeepSlice reached
its optimal classification accuracy of 61.42%. Further details are shown in Table 5.5.

The frame strips that were produced for each video clip were created by taking

slices of 3 pixels from each frame in a video clip. This ensured that enough spatial
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Figure 5.1: Loss during DeepSlice Network Training

Table 5.5: DeepSlice Classification Results for Slice Width of 3

] K ] Top-K Result?l

1 |61.42%
5 | 81.12%
10 | 88.57%
50 | 98.75%

context was preserved so that the network was able to learn certain features about
the subject of each video and follow the subject’s motion accordingly, while also
providing enough encoded temporal information for the network to make a fairly
accurate prediction based on the entire video as a whole. The confusion matrix is

shown in Figure 5.2 as a normalized gray-scale heat map.
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We compare our results to other experiments that trained a network from
scratch using the same UCF-101 dataset and the same training and test split. These
results are shown in Table 5.6, and do not include any results that were obtained
by using any external or post-training techniques such as Support Vector Machines
(SVMs), feature extractors, fine-tuning, or pre-trained networks. All accuracies in

Table 5.6 are also assumed to be top-1 accuracies.
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Table 5.6: Network Accuracy Comparison

| Network || Accuracy |

DeepSlice 61.42%
C3D [3] (based on 3-fold || 44%

split of UCF-101 dataset)
Slow Fusion [2] 41.3%
Three Order [31] 38.6%
Two-Stream ConvNet [9] | 48.6%

Tables 5.7 and 5.8 contain information that is not easily derived from the
gray-scale confusion matrix. The precision and recall of each individual class was
computed, and these results were then used to calculate the F1-Score of each class.
The ten classes with the highest F1-Score are shown in Table 5.7 and the ten classes
with the worst F1-Score are shown in Table 5.8. Each class contained an average of
32 individual video clips that were used to test the trained network, and each test
video clip is taken from a group that was not previously shown to the network during
the training phase. Finally, Table 5.9 shows the most common misclassifications that

occurred during the testing phase.



Table 5.7: Highest Classification Rate by F1-Score

Class | Precision | Recall | F1-Score |

Breast Stroke | 1.0000 ]0.9583[0.9787 |

Typing [ 0.8889 [0.9412]0.9143 |
| Playing Guitar [ 0.9211 [ 0.8974 | 0.9091 |
| Jump Rope | 0.9032 [0.9032]0.9032 |
| Billiards [ 0.8718 [0.9189 [ 0.8947 |
| Playing Dhol [ 0.8444  10.9268 | 0.8837 |
| Table Tennis Shot [ 0.9091 [ 0.8571 [ 0.8824 |
| Playing Daf [ 0.8140 ]0.9459 [ 0.8750 |
| Wall Pushups [ 0.8529 [ 0.8788 [ 0.8657 |
| Tennis Swing | 0.8500 | 0.8500 | 0.8500 |

Table 5.8: Lowest Classification Rate by F1-Score

| Class || Precision | Recall | F1-Score |

Balance Beam [ 0.1818 ]0.1852]0.1835 |

Pizza Tossing [0.2778 Jo0.1724]0.2128 |
| Blowing Candles [ 0.2500 0.2222]0.2353 |
| Mopping Floor [0.2368 ]0.3214 [ 0.2727 |
| Baby Crawling [ 0.2813 [0.2727[0.2769 |
| Haircut [0.3333 ]0.2727 [ 0.3000 |
| Rock Climbing Indoor [ 0.2727 [ 0.3429 [ 0.3038 |
| High Jump [ 03103 [0.3000 [ 0.3051 |
| Walking With Dog [ 0.3056 [ 0.3548 [ 0.3284 |
| Floor Gymnastics [ 03143  [0.3548]0.3333 |

Upon looking at Table 5.9, it is worth noting that several of the misclassifica-
tions made were due to major similarities between a majority of the videos between
the predicted and the actual class. The most common case, ”Balance Beam” and
"Uneven Bars”, occurs due to the striking similarities in the background and angle

of the videos. Both videos are commonly shot in a gymnasium, and the human ac-
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Table 5.9: Most Common Misclassifications

[ Predicted Class ” Actual Class I Occurrences [
LBala,nce Beam ” Uneven Bars I 6 —|
| Baseball Pitch || Golf Swing | 5 §|
| Walking With Dog | Soccer Juggling | 5 |
[ Shaving Beard [ Applying Eye Makeup | 4 |
LPunch ” Floor Gymnastics | 4 [

Pole Vault ” High Jump [ 4 I

Basketball Dunk ” Sumo Wrestling | 4 W

tion contains very similar movement, such as flips and other gymnastics maneuvers.
Classes such as "Shaving Beard” and ” Applying Eye Makeup” contain videos that
are taken from a similar viewing angle, and the human subject is commonly looking
into a mirror during the video, which also may lead to the common misclassification.
Actually, this is an interesting misclassification and indicates that our network is able
to determine a person is doing something with his or face. Likewise, ”Baseball Pitch”
and ”Golf Swing” contain similar quick movements of humans contrasted by a similar
background, and the same theory can be applied to "Pole Vault” and "High Jump”.
It is not as apparent why such classes such as ” Walking With Dog” and ”Basket-
ball Dunk” are misclassified as they are. One possible explanation is that during
the course of each of these actions, the human subject remains upright during the
duration of the video clip, in both the predicted class and its corresponding actual
class. The column-wise slicing will preserve the length of the moving subject, and
this can possibly cause such misclassifications to occur.

The classes containing the highest F1-Score usually contain an element or

background that is consistent across all videos in the class, leading to such a high
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classification rate. For example, ”Breast Stroke” almost always contains a background
containing water, something learned by the network. Similarly, ” T'yping” and ”Play-
ing Guitar” contain keyboards and guitars, respectively. These objects are able to
be learned as features by the network and this greatly contributes to the higher F1-
Scores. Inversely, classes such as ”Balance Beam” and ” Pizza Tossing” do not contain
such distinguishable features, or are extremely similar to other classes, as is the case
with "Balance Beam.” It is also possible that classes such as ”Pizza Tossing” and
"Blowing Candles” contain features that are not recognized by the network, possible
due to the column-wise slicing. This would be a factor that would contribute to the

low classification accuracy for such classes.

48



5.4 Performance

An additional benefit to the DeepSlice network is that it is able to achieve sig-
nificantly improved classification accuracy without compromising the training time
compared to other networks such as C3D. Because each training sample used in Deep-
Slice represents an entire video clip, the entire UCF101 dataset can be propagated
through the network in less time. The fact that the DeepSlice network also handles
each frame strip as a two-dimensional image instead of a three-dimensional video,
means that the network is able to increase the batch size of the network based on
the GPU specifications, and this also contributes to the decreased training time.

However, there are few direct comparisons to be made between the perfor-
mance of C3D [3] and DeepSlice. The root cause of this is that fact that each video
clip is processed in its entirety with C3D. However, only a fixed selection of frames
are extracted from each video in the DeepSlice preprocessing techniques. This means
that not all frames of a certain video clip will be seen by our network. The amount
of video data that is skipped by the preprocessing method increases as the length
of the video clip increases. However, with C3D, each video clip is split into fixed-
duration segments, which are then treated as separate training samples. With this
in mind, note that this is why DeepSlice is trained on 19,982 samples, one per video
clip. However, C3D trains on 46,548 samples, after each of the original 19,982 clips
are split into the fixed-length segments. This factor, along with the fact that 3D
convolution is more computational expensive than 2D convolution, are the biggest

reasons that the training time of C3D is drastically longer that the training time for
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DeepSlice. However, it is also noteworthy that DeepSlice is able to achieve a higher
classification accuracy, in spite of less data being propagated through the network.
Further information is shown in Figure 5.10 below. The times shown in Figure 5.10

are for the training only, not the validation or testing times.

Table 5.10: Training Time Comparison

[ | C3D | DeepSlice I

Batch Size 5 20
Train Samples | 46,548 | 19,982
Iterations 148,953 | 40,000
Epochs 14 45
Time (hours) || 24.83 | 8.88

A possible solution to high training times is to reduce the sampling rate of
the videos during the preprocessing stage. However, after a certain threshold is
reached, the network is not provided enough spatial or temporal information and
the classification accuracy begins to decrease. Further experiments in [3] and [2]
show that the number of frames sampled is an important factor in the classification

accuracy of any network.

5.5 Summary

Through experimentation, we determined that the achieved higher classifica-
tion rates with column-wise frame slicing, compared to row-wise slicing. Afterwards,
it was concluded that slice widths of 3 and 24 pixels yield higher accuracy compared
to 12 and 6 pixels, with 3 pixels edging out 24 pixels for the highest classification

results. With the optimal kernel size of 3x3, the classification rate of the DeepSlice
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network peaked at 61.42% and also required less training time to achieve this accu-
racy, compared to 3D convolution as illustrated by C3D. Upon looking at the most
common misclassifications, it can be reasonably concluded that many of the mistakes
made by the network were fairly reasonable, which further illustrates the capability

of the network to track and learn various human movements and motions.



CHAPTER 6

CONCLUSION

We demonstrate in this thesis an innovative and improved approach to train-
ing convolutional neural networks on spatio-temporal datasets. By mapping the tem-
poral dimension of the video frames into spatial data during the temporal slicing
stage, the computational overhead of the temporal convolution can be mitigated and
decreases the overall training time of the network. Moreover, this approach also
significantly improves the classification accuracy of the network as well, as the exper-
iments conducted for this paper demonstrate around 20% improvement over current
state-of-the-art networks trained from scratch on the same dataset.

The two-fold benefit of our approach to human action classification using deep
convolutional neural networks reduces the workload of the training process. Through
the compression of the temporal data, the network only encounters two dimensions.
This aspect, which results in faster training time and improved accuracy, reduces
the time needed to thoroughly train a network, allowing results to be obtained in
a faster, more efficient manner. This improvement can be achieved without com-
promising the classification accuracy when compared to other networks that use 3D

convolution or other computationally expensive approaches. The experimentation
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on the varying kernel sizes provided further evidence that decreasing the kernel size
often has beneficial results, similar to the work displayed in [3]. This further strength-
ens our confidence in the current DeepSlice architecture, and serves as a formidable
foundation for continued work in this field.

There is much additional work that can be performed concerning this ap-
proach. As with all artificial neural networks, there is an infinite amount of possible
configurations for the network architecture and hyper-parameters that may lead to
increased performance. Further adjustments to the convolution and pooling windows
may also improve performance. Another advancement that can be made is by ex-
perimenting with DeepSlice on another dataset such as Sports1M [2]. One possible
approach to this would be to train the network on Sports1M, but use UCF101 as the
validation/testing set to demonstrate DeepSlice’s robustness. Finally, there are fur-
ther experiments that could be conducted with the frame preprocessing that might
also lead to better results. These include changing the number of frames sampled
from each video, and the number of sequential pixel columns sampled. Further ex-
perimentation can be conducted to determine a time-space tradeoff with the number
of sampled frames, and the size of the frame strips in relation to the computational
processing time of the network, and its relationship to the accuracy of the network.
More potential experimentation can be performed to determine if spacing of the tem-
poral slices is detrimental to the network accuracy. If this is not the case, it is
possible to maintain the network’s original accuracy while significantly reducing the

computation and training time and further increasing the speedup of the network.
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